Applications of Frequency Combs

- Applied to laser-based metrology/sensing systems
 - As a spectral ruler
 - As a “time” ruler

Newbury, Nat. Phot., 5, 186 (2011)
Diddams, JOSA B, 27, B51 (2010)
- **Introduction**
- **Overview of comb applications**
 - All terrestrial and mainly all laboratory based
 - NIST-centric view!
- **Some applications not covered**
- **Conclusion**
Example applications

Precision microwave generation
(for RADAR)

Precision molecular spectroscopy
(for greenhouse gases)

Precision spectroscopy
(for exoplanet searches)

Precision timing across synchronized network

Precision ranging

Others:
Advanced communications
Fundamental scientific tests
...
Example applications

Precision microwave generation
(for RADAR)

Precision molecular spectroscopy
(for greenhouse gases)

Precision spectroscopy
(for exoplanet searches)

Precision timing across synchronized network

Precision ranging

Others:
- Advanced communications
- Fundamental scientific tests
 ...

![Graph showing precision microwave generation for RADAR](image1.png)

![Image of precision molecular spectroscopy for greenhouse gases](image2.png)

![Image of precision spectroscopy for exoplanet searches](image3.png)

![Image of precision timing across synchronized network](image4.png)

![Image of precision ranging](image5.png)
Photonic Microwave Generation

Laser Comb
Frequency Divider
N ~ 10^5-10^6

Stabilized CW Laser
~ 500 THz

Microwave Output via Photodetection
1-100 GHz

Comb uncertainty at the 20th decimal place

1. Ultrastable CW Laser Oscillator

- CW Laser
 - $\nu_{opt} = 500$ THz
 - $\Delta \nu < 1$ Hz

2. Optical Frequency Divider
- Femtosecond laser frequency comb
- Phase coherent division from optical to microwave
- Reduction of phase noise power by N^2

3. Opto-Electronic Conversion

- Microwave signal: any harmonic of f_r
 - $\Delta f/f < 10^{-15}$ @ 1s
 - $S_{\mu\text{wave}}(f) = S_{opt}(f)/N^2$

Main Components of Present System

Frequency Reference: Cavity-Stabilized Laser
- ULE fused silica Fabry-Perot etalon
- Housed in temp-controlled vacuum chamber
- Vibration (active) and acoustic isolation
- Cavity length is thermal noise limited to <1 femtometer (nuclear diameter)

Optical Frequency Divider
- Self-referenced (octave spanning) femtosecond laser
- Demonstrated with both Ti:sapphire and Er:fiber systems
- Need very low intensity noise

Photodiode
- 10-50 GHz bandwidth
- High linearity, high power handling
Optics beats electronics

Optical Frequency Division

Stable Fabry-Perot Cavity

\[f_r = \nu_{\text{opt}}/N \]

\[S_{\mu\text{wave}}(f) = S_{\text{opt}}(f)/N^2 \]

Integrated Jitter (1Hz – 5 GHz)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>OFD</td>
<td>2.6 fs</td>
</tr>
<tr>
<td>Sapphire dielectric</td>
<td>300 fs</td>
</tr>
</tbody>
</table>

\[f_r \rightarrow \text{Have extended to frequencies from 10 MHz to 100 GHz} \]

Example applications

Precision microwave generation
(for RADAR)

Precision molecular spectroscopy
(for greenhouse gases)

Precision spectroscopy
(for exoplanet searches)

Precision timing across synchronized network

Precision ranging

Others:
Advanced communications
Fundamental scientific tests...
Searching for Exoplanets with the Radial Velocity Technique

Slides courtesy of Gabe Ycas & Scott Diddams

Mayor & Queloz, Nature (1995)
Searching for Exoplanets with the Radial Velocity Technique

Mayor & Queloz, Nature (1995)
Searching for Exoplanets with the Radial Velocity Technique

Earth-like Planets orbiting Sun-like stars
Doppler shift 10 cm/s (~100 kHz in the visible)

HARPS, HARPS-N (ESO)
ESPRESSO, CODEX (ESO)
Keck / HIRES (NASA)
Potentially habitable planets orbiting cooler M dwarf stars
Doppler shift 100-1000 cm/s (~500 - 5000 kHz in the near IR)

Habitable-zone Planet Finder (Penn State University)
CARMENES (EU)
Astronomical Spectrograph Calibration

Frequency Comb Calibration Source:
Bright, uniformly spaced, well resolved features
Stability achieved by referencing comb to atomic clocks, $\Delta \lambda / \lambda = 10^{-9} - 10^{-11}$

Out of the Lab and into the Field
Frequency Comb Calibration of Stellar RV’s

G. Ycas, et al, Optics Express 20, 6631 (2012)
Example applications

- **Precision microwave generation**
 (for RADAR)

- **Precision molecular spectroscopy**
 (for greenhouse gases)

- **Precision spectroscopy**
 (for exoplanet searches)

- **Precision timing across synchronized network**

Others:
- Advanced communications
- Fundamental scientific tests
 ...
Why precision ranging?

Formation flying for synthetic apertures
Precision Range & Attitude Control

Grace-like constellations for geodesy
Absolute ranging to multiple satellites
Large-scale optical metrology to support large aperture imaging

Combs have not played a role in these systems, but maybe they could...

Possible advantages of a comb-based system

• Absolute distance with interferometric precision & fast update rates
• Absolute calibration to rf standard rather than secondary length reference (etalon)
• Low systematics from spurious reflections & cyclic errors
Laser ranging (LADAR)

Pulsed Time-of-Flight

Absolute distance
Poor resolution

Laser Interferometry

Sub-wavelength resolution
No absolute range (λ ambiguity)
(remove by adding more λ’s)

Comb combines these!
Properties of Combs For Ranging

Time-domain

Stable pulse timing → time-of-flight
Stable carrier frequency → interferometry

Frequency-domain

Comb = thousands to millions of “cw lasers”
→ Multi-wavelength interferometry

Many (tens) of comb-based LADARs demonstrated in labs worldwide

- **Joo et al., OE, 14, 5954 (2006)**
- **Cui et al., OE, 19, 6549 (2011)**
- **Balling et al., OE, 17, 9300 (2009)**
- **Lee et al., Nat. Phot. 4, 716 (2010).**
- **Schuhler et al., OL, 31, 3101 (2006)**
- **Salvade et al., AO, 47, 2715 (2008)**
- **Joo et al., OE, 16, 19799 (2008).**
- **Minoshima et al., AO, 39, 5512 (2000)**
- **Yokoyama et al., OE, 17, 17324 (2009)**
- And many more
Dual-Comb Ranging

- LO comb "reads out" reflected signal pulses
 - LO comb at detuned repetition rate
 - Equivalent to a linear optical sampling scope
- Sensitivity, fast and accurate

Dual-Comb Ranging

Time-of-Flight Range = \(\frac{v_{\text{group}}}{2} \times \text{time-of-flight} \)

Interferometric Range = \(\frac{\varphi_T - \varphi_R}{(4\pi)\lambda + N\lambda/2} \)

Handover of time-of-flight to interferometric range...

Reference

Target

"Range Window" or Ambiguity is 1.5 meters (but can extend to > 30 km)
Dual-Comb Ranging with “free running” fs lasers

- No phase locking of combs
- Simple linear fs Er laser cavity
- Roughly tune to desired repetition rate offset
- Count repetition rate & process signals
- Range still traceable to rf reference clock
- Lose interferometric ranging

Dual-comb ranging with free-running fs fiber lasers

No penalty except loss of interferometric range

Phase locked combs
Free-running fs fiber lasers + processing
Dual-Comb Ranging

- **Advantages**
 - Rapid, absolute, high precision ranging (sub-micron in sub-ms)
 - Immune to spurious reflections with no significant dead zones

- **Disadvantage**
 - Two combs
 - Linear sampling -> inefficient use of photons -> nWatts needed

- Conventional swept laser interferometry (FMCW LADAR) is more photon efficient

Can we combine combs and swept laser interferometry?
Combing Swept Cw Lasers & Combs

Goal: Track a swept laser’s phase with a comb
- With high accuracy
- At high speeds
- Over arbitrary waveforms

Why?
- Swept laser ranging
- Swept laser spectroscopy

Conventional etalon-calibrated swept laser

Swept laser + Gas cell + Etalon

Comb-calibrated swept laser

Swept laser + Comb = Fs fiber laser + f_{rep} counter

Disadvantage:
- Greater complexity – needs a comb!

Advantages:
- Absolute calibration based on f_{rep} vs. physical etalon
- Phase continuous measurements
- Compatible with future chip-scale systems
Comb-calibrated Laser Ranging

FMCW LADAR (= Swept Source LIDAR)

- 1 THz bandwidth
- 100 nm accuracy traceable to rf clock (limited by air index)
- Speckle phase noise limited
- 2000 points/sec
- 8 min for a megapixel image

Comb-calibrated Laser Ranging

Replace time-consuming, low-quality casting of impression evidence

eye-safe laser

frequency calibration

(simplified comb)

Scanner/lens processor (FPGA + CPU)

Comb-calibrated Laser Ranging
Measuring Complex, Soft Surfaces

2 - 10 meter
(100 m should be possible)

Non-metallic surface with enormous range variation

Moth

Cactus

eye-safe laser

Scanner/lens

frequency calibration

(simplified comb)

processor (FPGA + CPU)

3D image
Example applications

Precision microwave generation
(for RADAR)

Precision molecular spectroscopy
(for greenhouse gases)

Precision spectroscopy
(for exoplanet searches)

Precision timing across synchronized network

Others:
Advanced communications
Fundamental scientific tests
...

Precision Ranging
Climate Change And Greenhouse Gases

Goal: Accurately measure Greenhouse gases [CO$_2$, CH$_4$, H$_2$O, isotopes]
Identify sources and sinks (cities, wells, landfills) etc.

Point-sampling in a Vehicle

CW Rella, Global Monitoring Annual Conference, 2013

GOSAT (GHG-observing satellite)
Monthly Column-averaged CO$_2$ Concentration

Comb spectroscopy over a km-scale open air path can provide:
• 1-10 km length scales (between point & satellite sensors)
• Eye safe, accurate, continuous, automated measurements....
Absorption Spectroscopy

Comb as the ideal source

- Collimated, single-mode light for long interaction lengths
- Broadband spectral coverage across vis/ir/uv spectrum
- Narrow “delta-function” frequency sampling
- Built-in frequency calibration

But how to detect?
Spectral dispersers

Frequency Comb

Gas Sample

Detector

Grating Spectrograph

Fourier Transform Spectrometer

Grating/VIPA (high res) Spectrograph

Dual-Comb Spectroscopy

I_0

I

Comb 1 (f_0)

Comb 2 ($f_0 + \Delta f$)
Phase lock combs with small difference in repetition rates

\[\Delta f_r = f_r - f_r \]

EXACT one-to-one correspondence between optical & rf frequencies
Phase lock combs with small difference in repetition rates

EXACT one-to-one correspondence between optical & rf frequencies
Phase lock combs with small difference in repetition rates

\[\Delta f_r = f_r - f_r \]

EXACT one-to-one correspondence between optical & rf frequencies
Dual Comb Spectroscopy: real data

Measure gas absorption (and phase shift) on a comb tooth by comb tooth basis

Ian Coddington, Bill Swann, PRL 100, 013902 (2008)
Frequency Comb and Dual-Comb Spectroscopy: Demonstrations

Comb 1 \((f_r) \)

Comb 2 \((f_r + \Delta f_r) \)

Dual Frequency Comb Spectroscopy over Open Air Path

- Measure path-integrated absorption spectrum of CO$_2$, CH$_4$ & H$_2$O
- Fit to known spectral parameters
- Extract gas concentration along path

Rieker et al., Optica, 1, 290 (2014)
Dual-Comb spectrometer

Comb 1
- fs laser
- Amp
- LMA
- HNLF

Comb 2

Spectral Shaper

Phase correction

Fast Steering mirror

Transmitted Intensity vs Frequency (THz)

1600-1670 nm
700 absorption features
10^5 teeth
270 cm$^{-1}$ (\sim8.1 THz)

2 km Open path
Time-Dependence of Greenhouse Gas Concentrations
Three days in June, 5 minute averages

- CO2 & CH4 reported as true dry mixing ratios
- CO2 adjusted by 1.76% bias vs WMO-calibrated sensor
- HDO and air temperature not shown

Retrieved Concentrations are Model Dependent without spectrometer bias
Dual-comb spectroscopy & space platform

- Broadband dual-comb spectroscopy likely too photon inefficient
- More modest bandwidth EOM-based dual-comb spectroscopy?
 - Still many spectral points across a few lines for low systematics
 - Compatible with ASCENDS-type system

Two EOM combs

Example applications

Precision microwave generation
(for RADAR)

Precision molecular spectroscopy
(for greenhouse gases)

Precision spectroscopy
(for exoplanet searches)

Precision timing across synchronized network

Precision ranging

Others:
Advanced communications
Fundamental scientific tests...

- NIST
Optical Clocks / Oscillators: femtosecond timing & <10^{-17} Accuracy

How small is 10^{-17}?
- Requires extended precision
- Diameter of human hair
- Distance to Pluto
- Doppler shift of 3 nm/sec
- Gravitational redshift for 10 cm

Optical Clock Output
Laser light with a 300 THz stable to >15 digits @ 1sec frequency accurate to >17 digits

References:
- Hinkley et al. 2013
- Ushijima et al. arXiv, 2014

PRL 104, 070802 (2010)
Science 319, 1808 (2008)
PRL 98, 220801 (2007)
1 part in 10^{18} corresponds to 1 cm displacement
Combs and Clocks

- Comb translates clock signal to other optical signals
- Combination is the ultimate measurement tool for
 - Length, time, frequency, SI constants
 - Gravitational potential (from redshift)
- If we can get the signals out of the lab!
Comparing Optical Clocks Across Distance

1. Time and Frequency Dissemination
 - Redefinition of sec
 - Support fundamental measurements

1. Tests of Special & General Relativity

2. Geodesy (vertical maps): Flooding & Earth Science

1 cm = 10^{-18} at 1g

- $1 \ cm = 10^{-18}$ at 1g
Combining optical and microwave clocks: Future clock networks?

- Ultra-high performance OFD Microwave clock
- Large master Optical/atomic clock
- Good performance Microwave clock
- 2nd optical clock
- 3rd optical clock
Two Clocks: Synchronized

slave

Timing Information

master

H M S MS US NS PS PS FS
MASTER: 845:59:29.000,000,000,000,000,000
SLAVE: 845:59:29.000,000,000,000,000,000
Why is this hard? *Turbulence, platform motion…*

1) Amplitude noise & signal loss
 - From turbulence (scintillation & beam wander)
 - From obstructions & platform motion
 - Well-known from free-space optical communications

2) Phase noise (time-of-flight variations)
 - From turbulence (“piston effect”)
 - From platform motion

1st order Doppler shifts -> Need less than 3 nm/sec to reach $v/c < 10^{-17}$
Turbulent Atmosphere is reciprocal*

For *two-way single-mode* link, time-of-flight variations are common mode

(not true for a multi-mode link)

Two-Way Time Transfer: Basic Concept

\[t_A = 0 \]
\[t_B = 0 \]
\[t_{B \rightarrow A} = 0 + T_{\text{link}} - \Delta t_{AB} \]
\[t_{A \rightarrow B} = 0 + T_{\text{link}} + \Delta t_{AB} \]

\[T_{\text{link}} = \frac{(t_{A \rightarrow B} + t_{B \rightarrow A})}{2} \]

Time-of-flight between clocks

\[\Delta t_{AB} = \frac{(t_{A \rightarrow B} - t_{B \rightarrow A})}{2} \]

Time Offset between clocks
Two-Way Time Transfer + Feedback Synchronization

Slave Site

- Timer
- Feedback
- $t_B \rightarrow A$
- $t_A = 0$
- Δt_{AB}

Master Site

- Timer
- $t_B = 0$
- $t_A \rightarrow B$

Communication link

$T_{link} = (t_A \rightarrow B + t_B \rightarrow A)/2$

$\Delta t_{AB} = (t_A \rightarrow B - t_B \rightarrow A)/2$

Real-time calculation

Implemented ...but at multiple layers
- Psuedo-random Binary Sequence (PRBS) phase modulated light for “coarse” time transfer
- Comb-based transfer for “fine” time transfer
- Coherent comm channel
Overall Synchronization Setup

Deschenes et al, arXiv, 1509.07888

System exchanges three signals:
- Two way comb ranging/timing,
- PRBS ranging/timing,
- Optical communication

Common reference plane for truth data
4 km Turbulent Air Path
50 Hours of Optical-to-Optical Synchronization Across 4 km with only 40 fs of wander

Clock correction (MHz)

Time Offset DT (fs)

7.5 ppb fractional change in clock frequency
Timing Deviation for 50 Hour Measurement

![Graph showing timing deviation vs. averaging time. The graph indicates that the timing deviation is below 1 fs until 6500 sec.](image)

- **Timing deviation below 1 fs until 6500 sec**
- **Synchronization bandwidth**
- **Link reciprocal to 70 nm**
- **Corresponding modified Allan Deviation <10^{-18} @ 1000s**
Optical Pulse Synchronization

Detect optical interference between 1 PPS signals at reference plane with sheering interferometer
Optical Pulse Synchronization
From 4 km to 11.6 km: NIST to Valmont Butte
View from NIST
Synchronization at 11.5 km
Initial data

Only ~ 3 mW of comb light and ~ 3 mW of comm/PRBS light launched
Some applications not covered...

- **Fundamental scientific tests of**
 - General relativity
 - Local Lorentz invariance
 - Changes in fundamental constants
 - Searches for dark matter*
 - Etc.

- **Advanced communications**
 - Single coherent comb source can replace multiple transmitters
 - Lower redundancy but much lower SWAP (both from transmitter and processing)
 - Low phase noise microwaves for higher order QAM

- **THz spectroscopy**
 - Dual-comb spectroscopy = (original) Time-domain THz spectroscopy

*Derevianko et al., Nat. Phys.10 (2014)
**Pfeifle et al, Nat. Phot. 8 (2014).
Space based comb applications

- **Evolutionary vs revolutionary**
 - e.g. comb-assisted ranging vs optical clocks
 - Both of value

- **Complexity**
 - Phase locked combs are complicated but
 ...phase locking not always needed (vs processing)
 ...could still simplify overall system since 1 comb = many lasers

- **Photon efficiency important**
 - Intrasatellite vs Intersatellite vs Ground-to-Satellite

- **Fiber combs vs Solid state vs EOM based vs Microcombs?**
Conclusion

- Frequency Combs a unique new laser tool for measurement
 - As a spectral ruler
 - As a temporal ruler

- Many potential applications
 - Precision absolute ranging
 - Timing synchronized networks at femtosecond levels
 - Precision optical and microwave sources
 - Precision spectroscopy (active and passive)
 - Fundamental science
 - Future deployment of optical clocks

- What lab demonstrations can be “translated” to robust, autonomous, useful operation in space?