Self-referencing electro-optic frequency combs

Scott Papp & Scott Diddams

National Institute of Standards and Technology
Boulder, CO USA

Funding: NIST, DARPA (QuASAR, PULSE, DODOS)
AFOSR, NASA, NRC
Different combs for different jobs

Electro-optic modulation combs

Features: Wide mode spacing, tunable, mWs per mode, COTS + scalable fabrication, retrace
Challenges: Low pulse energy, narrow BW, electro-optical noise

Modelocked laser comb

Features: Large pulse energy, wide BW, many examples self-referenced
Challenges: Narrow mode spacing, modelocking, power per line
Self-referencing EOM & Kerr combs

Electro-optic modulation (EOM) comb

CW pump → Intensity mod. → Phase mod. → + → EDFA → Nonlinear media → f-2f

f_{eo} \rightarrow \Delta \phi

CW laser is the center of comb

Kerr microcomb

CW pump → + → EDFA → micro-cavity → f-2f

f-2f detection gives carrier-offset frequency: \(f_0 = \text{CW laser} - 19,340 \times 10 \text{ GHz} \)

microcombs: EPFL, Caltech, OEwaves, JPL, Cornell, NIST, Purdue, Yale, Columbia, FEMTO-ST ...
Outline

Electro-optic modulation (EOM) comb

- Bit on possible applications
- EOM combs, two challenges:
 1. Spectral broadening
 2. Electro-optic noise
- EOM/microcombs in practice
- Future perspective

Kerr microcomb
EOM/Kerr comb applications

Molecular identification / spectroscopy

Geodesy/ranging. Grace-FO mission

Quantum-based systems: Comb is a classical phase reference. Microcombs at quantum interface

Cavity optomechanics

Atoms, ions

Microwave systems: ADMX dark matter
Building an EOM comb line-by-line

- CW laser
- EOM comb
- Super-contin.
- Filter cavity
- 10 GHz clock
- 10 GHz x N
- CW optical frequency
- 192 THz
- N x microwave

Laser

EOM comb

Super-contin.

EOM super-contin.
Self-referencing an EOM comb

![Diagram showing the process of self-referencing an EOM comb.](image)

- **CW pump**
- **Intensity modulator**
- **2x Phase modulator**
- **EDFA**
- **HNLF**
- **Optical filter**
- **Line-line filter**
- **EDFA DD-HNLF**

1st-stage:
- Wavelength (nm)
- Optical power spectral density (dBm/nm)

2nd-stage:
- Wavenumber
- Optical power spectral density (dBm/nm)

f
- 10 GHz
- 4 W

2f
- 2.5 GHz
- 1 W

f₀ = CW laser – 19340 x 10 GHz

Laser - 19,340 x 10 GHz (MHz)

Beha arXiv 2015
Supercontinuum at 10’s of GHz

- **J band**
 - Power (dB)
 - Wavelength (µm): 1.10 to 1.40
 - EOM comb: 33 GHz, 4 W

- **K band**
 - Power (dB)
 - Wavelength (µm): 2.00 to 2.40
 - EOM comb: 10 GHz, 4 W

- **Microcomb**
 - Optical power (10 dB/div)
 - Wavelength (nm): 1000 to 2400
 - Microcomb: 16.5 GHz, 5 W

- **EOM comb**
 - Frequency (GHz)
 - f2f photocurrent (dB)
 - Frequency (GHz): 7.49 to 7.53
 - EOM comb: 10 GHz, 4 W
Electro-optic noise

\[f_0 = \text{CW laser} - 19340 \times 10 \text{ GHz} \]

10 GHz → 192 THz
Putting EOM combs to work

- Menlo fiber comb
- EOM comb

Sensing: Observe optical reference drift ~70 mHz/s

\[f_0 = \text{CW laser} - 19340 \times 10 \text{ GHz} \]

Synthesis: Locking the EOM seed laser

\[\text{CW laser frequency (Hz)} \]

\[\text{CW laser - setpoint (Hz)} \]

Beha arXiv 2015
What might future systems look like?

Silica resonators at 100+ GHz

Silicon nitride comb

Silica comb

Heterogeneous integration

Thin-film lithium-niobate on silicon
Conclusion

Chip-scale combs are an interesting new direction for experimenters.

• EOM combs are based on mature technology.

• Chip-integrated systems on the horizon.

• Basic physics of microcombs remains interesting. Will be a driver of applications in future.
Thank you!

Collaborators
Kerry Vahala, Caltech
Kartik Srinivasan, NIST
John Bowers, UCSB

Scott Diddams
Katja Beha
Daniel Cole
Pascal Del’Haye
Aurélien Coillet
Erin Lamb
William Loh
Joe Becker
Adam Green
Fred Baynes
Travis Briles
Jordan Stone
Yi-Chen Chuang

EOM comb & microcomb self-referencing
<100 Hz linewidth chip-scale lasers
High rep rate SiN combs