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Abstract

Topics in Designing Low Thermal Expansion Lattices at the Microscale

John Chu
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University of Toronto

2011

Microscale bi-material lattices with near zero thermal expansion are designed to create

a thermally stable optical surface for applications in a space telescope. To facilitate

the design, the thermal expansion of a unit cell with spacers is derived analytically

and validated via finite element studies. Predicting the lattice behaviour also requires

knowledge of the constituent properties. To this end, molecular dynamics simulations

are performed to determine the thermal expansion and recrystallization behaviour of

aluminum and titanium thin films, and nanoindentation experiments are conducted to

extract their elastic-plastic properties. Unit cell configurations giving near zero thermal

expansion are obtained through iterative analysis. The resulting designs are analyzed

and validated via finite element simulations and shown to exhibit long term stability.
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Chapter 1

Introduction

1.1 Background Information

1.1.1 Low Thermal Expansion Materials

Materials with low thermal expansion are desirable in situations where there are large

variations and gradients in temperature. Systems in extreme thermal environments are

susceptible to large thermal strains and thermo-mechanical fatigue which may ultimately

lead to structural failure. Variations in temperature can also lead to unwanted geometric

changes in sensitive applications requiring very fine precision. Systems in space are

particularly vulnerable to large temperature changes when passing in and out of sunlight.

The exterior surfaces of space vehicles are also subject to extremely high temperatures

upon atmospheric re-entry.

To preserve structural stability and reduce thermal stresses, it is desirable to employ

materials that have a low coefficient of thermal expansion (CTE). In addition to minimal

CTE, a candidate material must also exhibit sufficient rigidity and robustness to bear

loads. Materials that have all of the aforementioned properties, however, do not currently

exist. Figure 1.1 plots the families of structurally robust materials in the space of stiffness

and thermal expansion. Ceramics are not included in this graph because they are brittle

and prone to cracking. Invar, an iron-nickel alloy, is noted for having an anomalously low

CTE, roughly 1 part per million per Kelvin (ppm/K). It is both stiff and robust, however

its property of low thermal expansion is only observed at temperatures below 373 K [20].

Carbon composites have high stiffness and low CTE over a wide temperature range when

used in a matrix, but robustness issues and fabrication complexities limit its application

1



Chapter 1. Introduction 2

Figure 1.1: Young’s modulus and CTE range of various structurally robust materials

(excluding ceramics) adapted from Steeves et al. [61].

[61]. Metals and composites have similar characteristics; both materials have moderate

to high stiffness and thermal expansion. As seen in Figure 1.1, polymers and polymer

foams have very large CTEs and are also lacking in rigidity. Bi-material lattices have

been proposed as a new family of materials with low thermal expansion that are both

stiff and robust, thus solving the deficiencies encountered with other materials. Starting

with rigid and reliable metals, a lattice composed of two constituents with empty space

is designed such that its overall thermal expansion is below that of either material. By

using components with widely varying CTEs, the thermal expansion of the members are

accommodated through rotations at the joints. Depending on the materials used and the

geometry of the bi-material lattice, the CTE can be tailored according to the needs of a

given application.

Low thermal expansion lattices have been proposed and studied by other researchers,

most notably by Lakes [38], Sigmund and Torquato [58], Jefferson et al. [33], and Steeves

et al. [61], whose unit cell configurations are shown in Figure 1.2. All four designs

incorporate two materials with high and low thermal expansion as illustrated by the red

and blue members respectively. The lattice by Lakes [38] was created to have arbitrarily

large thermal expansion, but can also be designed to have a CTE of zero. It has, however,

poor stiffness qualities and strength since the members support mechanical loads through

bending. Sigmund and Torquato [58] used topology optimization to design a bi-material
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Figure 1.2: Unit cells by (a) Lakes [38], (b) Sigmund and Torquato [58], (c) Jefferson

et al. [33], and (d) Steeves et al. [61] with red and blue constituents representing materials

with high and low CTE respectively.

lattice with zero thermal expansion while maximizing the bulk modulus. Although the

bulk modulus was optimized, the in-plane uniaxial stiffness is lacking. The complicated

configuration and geometry of the unit cell by Sigmund and Torquato [58] also limits

its application due to difficulty in manufacturing. The lattice by Steeves et al. [61] is

relatively simple, stiff, and can be designed to have zero thermal expansion. The net CTE

of the lattice is in fact tailorable by altering the geometry and/or materials. Steeves et al.

[61] has shown that the biaxial stiffness of the unit cell is near the theoretical limits for

bi-material lattices with zero thermal expansion as derived by Gibiansky and Torquato

[27].

1.1.2 Properties of Bi-material Lattices

The configuration of the lattice plays an important role in determining its stiffness and

strength. Stretching-dominated lattices are favoured over bending-dominated topologies

due to significant advantages in stiffness as noted by Deshpande et al. [17]. Both archi-

tectures are illustrated and contrasted in Figure 1.3. The bending-dominated structure

shown on the left collapses when it is loaded as the struts are free to rotate about the

pin-joints. On the other hand, the stretching-dominated structure shown on the right re-

mains intact because the additional strut allows the applied load to be supported through

tension and compression in the members. For cellular structures, it has been shown that

stiffness is correlated to the relative density, ρ̄, which is defined as the density of the

material divided by the density of the solid block from which the cell walls are formed

[29]. For planar lattices, the stiffness scales linearly with ρ̄ for stretching-dominated

topologies, while for bending-dominated architectures the stiffness is proportional to ρ̄3
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Figure 1.3: Illustration of bending and stretching-dominated architectures adapted from

Deshpande et al. [17].

[29]. Typical values of ρ̄ will be between 0.1–0.5 for the bi-material lattices of interest

[61]. Therefore planar stretching-dominated architectures will be approximately one to

two orders of magnitude stiffer than their bending-dominated counterparts.

As elucidated by Steeves et al. [61], a lattice must posses certain characteristics to

obtain the properties of low thermal expansion and sufficient rigidity. The key traits are

summarized in the following points:

1. The topology should be at minimum three-phase, incorporating empty space with

two materials having different CTE. The coefficients of thermal expansion for ma-

terials 1 and 2 are identified as α1 and α2 respectively, where α1 < α2.

2. A continuous periodic network of unit cells shaped as skewed polygons is con-

structed from constituent 1. Contained within the unit cells are unskewed polygons

of material type 2. The skewness angle, θ, is an important geometric parameter

that represents the deviation of constituent 1 members from a regular polygon.

3. Two types of nodes should exist within the structure: (i) lattice nodes — points

at which the unit cells are attached to one another, and (ii) expansion nodes —

interface points between the two constituents.

4. The unit cell must be completely triangulated such that the structure is stretching-

dominated when mechanically loaded.

5. Length changes of the members should be absorbed through rotations at the nodes.

This property is also important to ensure that the lattice has high stiffness and

strength.

Examples of unit cells having the above characteristics are illustrated in Figure 1.4. Each

is based on a regular polygon and it is observed that the complexity of the lattice increases
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Figure 1.4: Schematic diagram of various polygonal unit cells that are fully triangu-

lated and stretching-dominated, adapted from Steeves et al. [61]. Blue and red members

represent materials 1 and 2 having α1 and α2 respectively.

with the numbers of edges. It is important to note that in theory, the overall thermal

expansion of the lattice is independent of the configuration of constituent 2 members,

provided they behave isotropically.

1.2 Motivation and Scope of Research

A bi-material lattice consisting of unit cells approximately 50 mm in length has been

designed, fabricated, and validated experimentally to have near zero CTE by Steeves

et al. [61, 62]. Their design consists of aluminum (Al) and titanium (Ti) constituents

due to the ideal ratio of their CTEs, and serves as a basis for the work conducted in this

thesis. The objective of the research presented in this report is to extend the work done

by Steeves et al. [61] to the microscale, several orders of magnitude smaller than what

has been currently achieved. At such small length scales, a number of important issues

arise that need resolving.

This research is performed in collaboration with The Keck Institute for Space Studies

(KISS) at the California Institute of Technology (Caltech) and is motivated by the ap-

plication of low thermal expansion materials in space. More specifically, thermally stable

materials are desired in the construction of optical elements in an infrared space tele-

scope. KISS has put forth a technical development program which studies the concept

and feasibility of a self-assembling, large space telescope. The primary mirror is a mosaic

comprised of smaller segments that are launched on a number of low cost nano-satellites

that will autonomously rendezvous and dock. As a part of this case study, thermally

stable materials for constructing the mirrors are investigated to maintain the shape of
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the optical elements without thermal protection. The concept of bi-material lattices are

therefore applied to create an optical surface that has zero thermal expansion.

Due to the empty spaces in the three-phase lattice, the size of the unit cell must be

small to avoid optical diffraction. For this particular application, it is desired that the

length of a unit cell be on the order of microns. At these length scales, the lattice is

manufactured from thin metallic films via electron-beam (e-beam) deposition and photo-

lithography. Special considerations must therefore be made when dealing with microscale

materials. During e-beam deposition, metal is evaporated using a beam of electrons and

the vapour is deposited onto a substrate. When the atoms contact and settle on the

substrate, they do not form a crystalline lattice. Instead, an amorphous structure is

formed which has been confirmed by electron backscatter diffraction (EBSD) and x-ray

diffraction (XRD) experiments performed by collaborators at Caltech. In an amorphous

material, there exists no long range order and atoms do not sit neatly on crystallographic

planes. As a result of differing microstructures, the mechanical and thermal properties

of the thin metallic films may differ from their bulk crystalline forms.

This research aims to encompass the issues and questions that arise when designing

and applying the concepts of low thermal expansion lattices at the microscale. The

specific topics included and studied in this thesis are outlined as follows:

1. New features that have been incorporated into the design of the unit cell, known

as spacers, are analyzed to determine their effect on the thermal expansion of the

lattice. Analytical solutions are derived to obtain an expression for the theoretical

CTE of the lattice for both pinned and bonded joint configurations. The theoretical

predictions are subsequently verified through finite element (FE) simulations.

2. The thermal expansion of amorphous Al and Ti are undocumented in literature,

thus their CTEs are studied and determined via molecular dynamics (MD) simula-

tions. Furthermore, the recrystallization temperatures of amorphous Al and Ti are

investigated and the resulting volume changes due to devitrification are quantified.

3. The elastic-plastic properties of Al and Ti films are determined using load-displacement

curves obtained from nanoindentation experiments. The Young’s modulus and con-

stitutive stress-strain relationship are extracted and confirmed via FE simulations.

4. Microscale lattices having near zero thermal expansion are designed with the aid

of information obtained from previous studies. Unit cell configurations are ther-

mally cycled via FE simulations to validate their CTE and ensure stable long term
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behaviour.

The exploration and study of the issues above will therefore facilitate the design of

thermally stable materials for the application of orbital optics. It is critical for its devel-

opment to understand the impact of spacers on the thermal expansion of the bi-material

lattice, and know the material properties of Al and Ti thin films. This knowledge will

allow accurate models and predictions to be made regarding the thermal and mechanical

behaviour of the lattice.

1.3 Thesis Organization

The following content in this thesis will be divided into five chapters as follows. In

Chapter 2, the CTE of a pinned and bonded joint lattice with spacers is derived. The

effect of spacers on the thermal expansion of a bi-material lattice is discussed and the

analytical solutions are compared with results from FE simulations. Next, the MD

simulations for studying the thermal expansion and recrystallization of amorphous Al and

Ti are described in Chapter 3. The methods for analyzing simulation data are presented

and the results from the study are interpreted. In Chapter 4, the procedures in which the

mechanical properties of Al and Ti thin films are extracted through nanoindentation are

given. Elastic-plastic stress-strain relationships obtained from the analyses are discussed

and confirmed using FE simulations. Next, unit cell configurations with near zero CTE

are presented in Chapter 5. FE simulations are conducted to illustrate the thermal

expansion behaviour and to confirm long term stability of the lattice. Lastly, conclusions

and recommendations for future studies are given in Chapter 6.



Chapter 2

Analytical and Numerical Study of

Spacers

In this chapter, the effect of adding spacers to the lattice by Steeves et al. [61] is analyzed

and discussed. First, an overview of the existing unit cell geometry is given in Section 2.1,

and the motivation for introducing spacers is explained. The thermal expansion of the

new lattice geometry assuming pinned and bonded joints are then derived in Section 2.2.

The resulting expressions and change in thermal properties are also discussed. Lastly, FE

models are constructed and analyzed to provide a numerical comparison in Section 2.3.

Results from theoretical and simulated models are compared and contrasted.

2.1 Low Thermal Expansion Lattices

The bi-material lattice designed by Steeves et al. [61] utilizes unit cells based on an

equilateral triangle as illustrated in Figure 2.1. Constituents with low and high CTE are

depicted in blue and red respectively. Important geometric parameters of the unit cell

have been identified as θ, the skewness angle, ℓ1, the length of type 1 members, ℓ2, the

length of type 2 members, and L, the overall length of the unit cell. For a lattice with

a net CTE of zero, the stationary points (nodes that remain fixed during a change in

temperature) are labeled as the centres of constituent 2 members and the lattice nodes.

8
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Figure 2.1: Illustration of bi-material lattice based on a triangular unit cell adapted from

Steeves et al. [62]. Important geometric parameters of the unit cell are labeled and the

stationary nodes for a lattice with a net CTE of zero are identified.

2.1.1 Pinned Joint Lattices

To predict the thermal behaviour of the bi-material lattice, an analytic expression for

the net coefficient of thermal expansion, ᾱ, is desired. Considering a unit cell with an

original length L, ᾱ is defined to relate an incremental change in unit cell length, dL, due

to an incremental change in temperature, dT . The relationship dL = ᾱLdT is therefore

obtained. Similarly, the change in length of members 1 and 2 are given by dℓ1 = α1ℓ1dT

and dℓ2 = α2ℓ2dT respectively. Using geometric relations, the normalized net thermal

expansion of the lattice has been derived by Steeves et al. [61] for a pinned joint lattice

(where members are allowed to rotate freely at the joints with no internal stress buildup)

as follows:

ᾱ

α1

=
1 − 1

2

(
α2

α1

)

sin (2θ)
(

1√
3

+ tan θ
)

1 − 1

2
sin (2θ)

(
1√
3

+ tan θ
) (2.1)

From Equation 2.1, it is evident that the only parameters affecting the net thermal

expansion of the lattice are the ratio of material CTEs, Σ = α2/α1, and the skewness

angle, θ. It is important to note that the thermal expansion of the lattice is independent

of the length of the unit cell. The lattice can therefore be scaled while maintaining its

thermal properties, and Equation 2.1 is applicable to lattices fabricated at the microscale.

By selecting appropriate values of Σ and θ, it is possible to tailor the net thermal

expansion of the lattice as desired to meet the needs of specific applications. Isolines of

Equation 2.1 are plotted in Figure 2.2 for various values of ᾱ/α1, including zero. This
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Figure 2.2: Contour plot of ᾱ/α1 in the design space of θ and Σ = α2/α1 obtained using

Equation 2.1, adapted from Steeves et al. [62]

plot illustrates the required combination of Σ and θ to produce a lattice with the desired

net CTE. As a general rule, increasing θ or Σ will lower thermal expansion of the lattice.

Note that the upper limit on skewness for the triangular unit cell configuration is 30◦,

which in reality is unfeasible since type 1 members from adjacent unit cells would become

overlapped. Without the void regions in between unit cells, the low thermal expansion

property of the lattice is lost. It should also be noted that ᾱ is not necessarily limited

to be positive, but can take on negative values given the appropriate combinations of

materials and skewness. To construct a lattice with zero thermal expansion, materials

with disparate CTEs must be used, giving values of Σ greater than 2, along with relatively

large angles of skewness. It has been noted by Steeves et al. [61] that for Al and Ti,

Σ ≈ 2.5 and thus a zero CTE bi-material lattice would exist when θ ≈ 25◦.

2.1.2 Bonded Joint Lattices

Equation 2.1 from the previous section gives the theoretical expression for a pinned

joint lattice where the members are allowed to rotate freely with no internal stresses. In

practice, the joints will be bonded rather than pinned due to simplicity in manufacturing.

A bonded joint can carry moments and resist rotation, creating internal stresses and

strains which therefore affect the thermal properties of the lattice. The normalized net
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CTE for a bonded joint lattice has been derived by Steeves et al. [61] and is given by:

ᾱ

α1

= 1 −
(
C1 tan θ − 12

√
3
) (

cos θ +
√

3 sin θ
) (

α2

α1

− 1
)

C1

(√
3 cos θ − sin θ

)
+ 12

(√
3 + 2E1A1

E2A2

) (
cos θ +

√
3 sin θ

) (2.2)

E1, E2 and A1, A2 are the Young’s moduli of elasticity and cross-sectional areas of their

respective constituents, and C1 = A1ℓ
2

1
/I1 where I1 = A1r

2

1
. I1 represents the second

moment of inertia of type 1 members having a radius of gyration r1. Equation 2.2 reveals

that the thermal expansion of a bonded joint lattice is dependent on the mechanical

properties and sizes of the members. Defining r1/L to be the slenderness ratio of type 1

members, it can be shown that as r1/L → 0, Equation 2.2 reduces to Equation 2.1. That

is, as constituent 1 members become more slender, the thermal expansion behaviour of a

bonded joint lattice approaches that of a pinned joint lattice. To illustrate this effect, the

normalized net CTE of a bonded joint lattice is plotted as a function of θ for increasing

values of r1/L in Figure 2.3 while assuming E1A1/E2A2 = 1 and α2/α1 = 2.5. The curve

where r1/L = 0 represents the properties of a pinned joint lattice. It is evident from

Figure 2.3 that bonding the joints of a lattice will effectively increase the net thermal

expansion of the structure. To retain the same value of ᾱ/α1 without changing the

constituents, θ must be increased. The additional skewness required to compensate for

the bonded joints depends on the slenderness ratio of type 1 members. A slight increase

is observed when r1/L = 0.02, however it grows considerably when r1/L = 0.04.

Figure 2.3: Normalized net CTE of a bonded joint lattice plotted as a function of θ for

different values of r1/L (using Equation 2.2), adapted from Steeves et al. [61]
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The theoretical thermal expansion of a bonded joint lattice can also be obtained from

the work by Berger et al. [5]. In their study, they derive an expression which predicts

the CTE of a bonded joint lattice while considering the reduced effective lengths of the

members given flanges at the nodes. By assuming the absence of flanges, the final result

derived by Berger et al. [5] can be simplified to give the following:

ᾱ

α1

=

√
3 − α2

α1

sin θ
(
cos θ +

√
3 sin θ

)

√
3 − sin θ

(
cos θ +

√
3 sin θ

) (2.3)

+
12I1

(
cos θ +

√
3 sin θ

) [√
3 cos θ +

(

3 + 2E1A1ℓ2
E2A2ℓ1

)

sin θ
] (

α2

α1

− 1
)

A1ℓ
2
1

(√
3 cos θ − sin θ

)
cos θ

{(√
3 cos θ − sin θ

)2

+ 12I1

A1ℓ2
1

[
2E1A1ℓ2
E2A2ℓ1

+
(
cos θ +

√
3 sin θ

)2
]}

where Ei and Ai are the Young’s modulus and cross-sectional area of constituent i, and

I1 is the second moment of inertia of type 1 members. Similar to Equation 2.2, the

expression by Berger et al. [5] is dependent on the mechanical properties and sizes of the

members. By plotting Equations 2.2 and 2.3, it is found that they are not equivalent,

however they produce similar curves.

2.1.3 New Lattice Geometry

As an improvement to the design by Steeves et al. [61], features hereby denoted as spacers

are incorporated into the unit cell geometry as proposed by Berger et al. [5]. Spacers

appear at the lattice nodes and provides separation between adjacent unit cells. The

new unit cell geometry and resulting lattice after the addition of spacers is illustrated in

Figure 2.4. As before, the red and blue members represent constituents with high and low

Figure 2.4: Concept of unit cell with a spacer is depicted on the right with the resulting

lattice structure illustrated on the left.
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CTE respectively. Spacers are depicted as triangles in Figure 2.4 for simplicity and are

constructed from the same material as constituent 1 members for ease of manufacturing.

As it turns out, spacers having a low CTE are desirable to minimize their impact on

the overall thermal expansion of the structure. The motivation for incorporating spacers

into the lattice is to circumvent the overlapping of constituent 1 members near the points

where unit cells connect. Due to their non-zero thickness, type 1 members from adjacent

unit cells intersect with one another to create non-ideal lattice nodes. This phenomenon is

clearly illustrated in Figure 2.5 and is increasingly evident for unit cell configurations with

large skewness angles. Overlapped members will augment the rotational resistance at the

lattice nodes and effectively decrease the length of type 1 members, thereby increasing

their slenderness ratio r1/L. As elucidated by Steeves et al. [61] and discussed in the

previous section, bonded joints will increase the net CTE of the lattice but are effectively

pinned joints if r1/L is small. Non-ideal nodes therefore increase the overall CTE of the

structure and are undesirable. By introducing additional material at the lattice nodes

in between unit cells, the intersection of constituent 1 members can be prevented and

thus non-ideal nodes are alleviated. Another advantage of the addition of spacers is that

larger skewness angles are now attainable. For the old geometry, θ = 30◦ is an infeasible

upper limit where type 1 members are completely overlapped. With the introduction of

spacers, skewness angles of 30◦ and above are now achievable.

An analytical solution for the thermal expansion of lattices with spacers has been

Figure 2.5: Lattice by Steeves et al. [62] with a skewness angle of 20◦ using Ti and

Al alloys for type 1 and 2 constituents respectively. An area in which Ti members are

overlapped is highlighted to illustrate the consequence of a non-ideal lattice node.
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derived by Berger et al. [5] to be:

ᾱ

α1

=

√
3 − α2

α1

(
cos θ +

√
3 sin θ

)
sin θ

√
3 −

(
cos θ +

√
3 sin θ

)
sin θ

L

L + H
+

H

L + H
(2.4)

where L and H are the sizes of the original unit cell configuration and spacer respectively.

Equation 2.4 is formulated under the assumption that the bending resistance of the

members is negligible, and is therefore representative of a pinned joint lattice.

2.2 Analytical Study

In this section, the theoretical thermal expansion of a lattice with spacers is derived

from first principles for completeness. Two solutions are obtained under the assumption

of (i) pinned joints, and (ii) bonded joints. The resulting analytical solutions are then

examined and discussed.

2.2.1 Thermal Expansion of New Geometry Assuming Pinned

Joints

Derivation

The introduction of a new feature adds another variable in defining the configuration

and geometry of the unit cell. Thus, it is desirable to derive a new analytical expression

for predicting the thermal expansion of the new geometry. The new formulation will

have the old geometric variables, as well as a new parameter which defines the size of the

spacer. To determine the new expression, the procedure from the original derivation by

Steeves et al. [61] is followed with some additional considerations made for the spacer.

In this derivation, it is assumed that the joints of the lattice are pin connected.

Consider the unit cell shown in Figure 2.6 which serves as a basis for this analysis.

The spacer is assumed to be an equilateral triangular for simplicity, with ℓ3 denoting

the length of its side. L denotes the size of the new unit cell, which includes the length

of the old unit cell plus the spacer. Parameters ℓ1 and ℓ2 denote the length of type

1 and 2 members respectively as before. With the introduction of spacers, the net

thermal expansion of the lattice will now also depend on ℓ3. From geometric relations,
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Figure 2.6: Unit cell with spacer. All parameters defining unit cell geometry are labeled.

the following expressions can be written:

ℓ1 =
L − ℓ3

2 cos θ
(2.5)

ℓ2 = 2ℓ1 sin (30◦ + θ) (2.6)

The trigonometric identity sin (α + β) = sin α cos β + sin β cos α is used to expand

sin (30◦ + θ) and ℓ1 is substituted into ℓ2 to give:

ℓ2 =
L − ℓ3

cos θ
(sin 30◦ cos θ + sin θ cos 30◦)

=
L − ℓ3

2

(

1 +
√

3 tan θ
)

(2.7)

Differentiating Equations 2.5 and 2.7 produces:

dℓ1 =
ℓ1

L − ℓ3

(dL − dℓ3) +
(L − ℓ3) sin θ

2 cos2 θ
dθ (2.8)

dℓ2 =
ℓ2

L − ℓ3

(dL − dℓ3) +

√
3 (L − ℓ3)

2 cos2 θ
dθ (2.9)

Equation 2.9 is rearranged to isolate dθ:

dθ =

[

dℓ2 −
ℓ1

L − ℓ3

(dL − dℓ3)

]
2 cos2 θ√
3 (L − ℓ3)

(2.10)

The expression for dθ is then substituted back into Equation 2.8 to give the following:

dℓ1 =
ℓ1

L − ℓ3

(dL − dℓ3) +
sin θ√

3

[

dℓ2 −
ℓ2

L − ℓ3

(dL − dℓ3)

]

(2.11)

For a temperature change dT , the change in member lengths in a pinned joint lattice

result purely from thermal expansion effects and are given by:

dℓ1 = ℓ1α1dT (2.12)

dℓ2 = ℓ2α2dT (2.13)

dℓ3 = ℓ3α1dT (2.14)
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The overall expansion of the unit cell is then defined as:

dL ≡ LᾱdT (2.15)

Equations 2.12 to 2.15 are substituted back into Equation 2.11 to obtain:

ℓ1α1dT =
ℓ1

L − ℓ3

(LᾱdT − ℓ3α1dT ) +
sin θ√

3

[

ℓ2α2dT − ℓ2

L − ℓ3

(LᾱdT − ℓ3α1dT )

]

Each term is multiplied by dT , therefore this factor drops out. After canceling and

grouping like terms, the expression above becomes:

ᾱ

(
sin θ√

3

ℓ2L

L − ℓ3

− ℓ1L

L − ℓ3

)

= α1

(
sin θ√

3

ℓ2ℓ3

L − ℓ3

− ℓ1ℓ3

L − ℓ3

− ℓ1

)

+ α2

sin θℓ2√
3

(2.16)

Substituting Equation 2.6 into Equation 2.16 and manipulating gives:

ᾱ

(

1

1 − ℓ3
L

)(
sin θ cos θ√

3
+ sin2 θ − 1

)

= α1

(

1
L
ℓ3
− 1

)(
sin θ cos θ√

3
+ sin2 θ − L

ℓ3

)

+ α2

(
sin θ cos θ√

3
+ sin2 θ

)

Solving for ᾱ therefore results in:

ᾱ =
α1

(
ℓ3
L

) (
sin θ cos θ√

3
+ sin2 θ − L

ℓ3

)

+ α2

(
1 − ℓ3

L

) (
sin θ cos θ√

3
+ sin2 θ

)

sin θ cos θ√
3

+ sin2 θ − 1

Finally, using the trigonometric identity sin 2θ = 2 sin θ cos θ and normalizing ᾱ with

respect to α1, the end result becomes:

ᾱ

α1

=
1 − α2

α1

(
1

2
sin (2θ)

) (
1√
3

+ tan θ
)

+
(

ℓ3
L

) (
α2

α1

− 1
) (

1

2
sin (2θ)

) (
1√
3

+ tan θ
)

1 − 1

2
sin (2θ)

(
1√
3

+ tan θ
) (2.17)

Thus, Equation 2.17 gives the theoretical normalized thermal expansion of a pinned

joint lattice with spacers. It can be shown that the result derived here is equivalent to

Equation 2.4, the expression given by Berger et al. [5].

Thermal Properties

The final expression obtained in the derivation above can be re-written in the following

form:

ᾱ

α1

=

(
ᾱ

α1

)

0

+

(
ℓ3
L

) (
α2

α1

− 1
) (

1

2
sin (2θ)

) (
1√
3

+ tan θ
)

1 −
(

1

2
sin (2θ)

) (
1√
3

+ tan θ
) (2.18)
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where
(

ᾱ

α1

)

0

=
1 −

(
α2

α1

) (
1

2
sin (2θ)

) (
1√
3

+ tan θ
)

1 −
(

1

2
sin (2θ)

) (
1√
3

+ tan θ
)

(ᾱ/α1)0
is equivalent to Equation 2.1 which gives the normalized net CTE of a pinned

joint lattice without spacers as derived by Steeves et al. [61]. In Equation 2.18, the

parameter ℓ3/L is the new variable that influences the thermal expansion of the new

geometry. This ratio represents the length of the spacer relative to the total length of the

unit cell and is therefore between 0 and 1. When ℓ3/L = 0, scenario where no spacers

are present, Equation 2.18 simplifies to Equation 2.1 as expected. At the other extreme,

ℓ3/L = 1 is the case where the length of the spacer makes up the entire length of the unit

cell, or when the original lattice is no longer present. It can be shown that when ℓ3/L = 1,

ᾱ/α1 equals unity. In this case, the net thermal expansion of the lattice simply takes on

the CTE of constituent 1, the material from which the spacers are fabricated. Note that

since ℓ3/L is dimensionless, the thermal properties of the lattice are still independent of

unit cell length and is scalable to the application of microscale lattices.

The second term in Equation 2.18 is positive for skewness angles of interest since

α2/α1 is defined to be greater than 1. It can therefore be concluded that the addition of

spacers will increase the net CTE of the lattice. This result is intuitively apparent since

extra material with uncontrolled thermal expansion is incorporated into the structure.

The increase in thermal expansion is quantified and illustrated in Figure 2.7, which uses

Equation 2.18 to plot ᾱ/α1 as a function of ℓ3/L for different values of θ assuming

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

ℓ3 / L

ᾱ
/α

1

 

 

θ = 24°

θ = 27°

θ = 30°

Σ = 2.5

Figure 2.7: Theoretical effect of ℓ3/L on ᾱ/α1 for θ = 24◦, 27◦, and 30◦ assuming α2/α1 =

2.5 (representative of an Al/Ti lattice).
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Σ = 2.5. From this graph it is apparent that the change in ᾱ/α1 as a result of adding

spacers will depend on the skewness angle of the configuration; the net CTE of lattices

with large θ experience a greater increase in CTE for a given an increment in ℓ3/L. This

is because lattices with larger θ have lower net thermal expansion, but ᾱ/α1 approaches

a value of 1 in all scenarios as ℓ3/L → 1. Although spacers result in an increased net

CTE, the elimination of non-ideal lattice nodes and facilitation of larger skewness angles

is of greater advantage. In reality, spacers do not need to be large to serve their function.

ℓ3/L will typically be 0.1 or smaller, accounting for less than 10% of the unit cell length.

For ℓ3/L = 0.1, the increase in ᾱ due to the introduction of spacers is minimal, being

roughly 10% of α1 which for Ti equates to approximately 1 ppm/K.

Equation 2.17 can also be used to determine the appropriate geometric and material

properties of a lattice to give a net thermal expansion of zero. By setting the left-hand

side of the expression to be zero, the numerator of the right side is thus equated to zero

to obtain:

α2

α1

=
1 − ℓ3

L

(
1

2
sin (2θ)

) (
1√
3

+ tan θ
)

(
1 − ℓ3

L

) (
1

2
sin (2θ)

) (
1√
3

+ tan θ
) (2.19)

The combinations of Σ and θ to produce a lattice with zero thermal expansion are thus

plotted using Equation 2.19 in Figure 2.8 for different spacer sizes. To reiterate, the curve

corresponding to ℓ3/L = 0 (solid line) represents a lattice without spacers and is used as

a baseline for comparison. As already noted, spacers increase the net CTE of a lattice,

thus θ or Σ (or a combination of both) must be enlarged to compensate for the positive

change in CTE. It is typically easier to adjust the skewness angle of a lattice rather than

reselect materials to give the desired Σ. Figure 2.8 shows that when ℓ3/L = 0.1, an

20 22 24 26 28 30 32 34
1.5

2

2.5

3

3.5

4

Skewness, θ (degrees)

Σ 
=

 α
2 / 

α 1

 

 
ℓ3/L = 0
ℓ3/L = 0.1
ℓ3/L = 0.2

Figure 2.8: Required Σ and θ to give ᾱ = 0 for different values of ℓ3/L from Equation 2.19.
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additional skewness of approximately 1◦ is required to keep ᾱ = 0. The slight increment

in CTE introduced by the spacers can therefore be easily accounted for through minimal

adjustments of the geometry. Thus, the benefits of relieving overlapped members and

allowing larger skewness outweigh the downsides of incorporating spacers into the unit

cell geometry.

2.2.2 Thermal Expansion of New Geometry Assuming Bonded

Joints

Derivation

In practice, the joints of the lattice will be bonded for simplicity in manufacturing. The

rotational resistance at the joints and inherent stiffness of the members will thus affect

the thermal properties of the unit cell. It is therefore desirable to derive an expression

for the CTE of the new geometry under the assumption that the joints are bonded.

To begin the derivation, the original unit cell configuration with length L∗ is first

analyzed since the spacers do not affect its thermal expansion. By taking advantage of

symmetry, only one sixth of the structure is considered as shown in Figure 2.9. The

interaction between the two members illustrated in this figure, under the appropriate

boundary conditions, is sufficient to describe the overall behaviour of the unit cell. Due to

symmetry, there can be no rotations at nodes 1, 2, and 3, and the displacements of these

nodes are required to move along the symmetric boundaries. From these constraints,

there exists only 4 active degrees of freedom: d1y, d2y, d3x, and d3y. To determine the

Figure 2.9: One sixth of unit cell under consideration for deriving the thermal expansion

of a bonded joint lattice. Dashed lines indicate symmetric boundaries. Type 1 and 2

members are illustrated in blue and red respectively.
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net thermal expansion of the unit cell, the stiffness matrix of the structure is constructed

and thus an analytical solution for the vertical displacement of node 1 for a given change

in temperature is obtained.

In this analysis, frame and truss elements are used to model type 1 and 2 members

respectively. Figure 2.10 (a) illustrates the degrees of freedom for a frame element of

length L and arbitrary rotation θ. The nodal displacements and forces for a general

frame element in global coordinates are related by the following expression:

[

f1x f1y m1 f2x f2y m2

]T

= kframe

[

d1x d1y φ1 d2x d2y φ2

]T

where kframe is the stiffness matrix of the frame element and has the form:

kframe =

















k1c
2 + 12k2s

2 (k1 − 12k2)cs −6k2Ls −k1c
2 − 12k2s

2 (12k2 − k1)cs −6k2Ls

k1s
2 + 12k2c

2 6k2Lc (12k2 − k1)cs −k1s
2 − 12k2c

2 6k2Lc

4k2L
2 6k2Ls −6k2Lc 2k2L

2

k1c
2 + 12k2s

2 (k1 − 12k2)cs 6k2Ls

k1s
2 + 12k2c

2 −6k2Lc

symm 4k2L
2

















In the stiffness matrix above, k1 = EA/L, k2 = EI/L3, c = cos θ, and s = sin θ. The

terms A, E, and I in k1 and k2 represent the cross-sectional area, Young’s modulus, and

second moment of area of the frame element. The nodal forces and displacements for a

simple 1-D truss element as illustrated in Figure 2.10 (b) are correlated via ktruss, the

stiffness matrix of a truss element, through the relation:

[

f1x

f2x

]

=
EA

L

[

1 −1

−1 1

]

︸ ︷︷ ︸

ktruss

[

d1x

d2x

]

Figure 2.10: Schematic diagram of (a) a frame element of length L and arbitrary rotation

θ (x′ and y′ represent local coordinates), and (b) a 1-D truss element.
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where A and E are the cross-sectional area and Young’s modulus of the truss element.

From kframe and ktruss, the reduced stiffness matrices of members 1 and 2 are defined

to be k
1

and k
2

respectively and are formulated as follows:







f1y

f3x

f3y







=







k11c
2 + 12k12s

2 (k11 − 12k12)cs −k11c
2 − 12k12s

2

k11s
2 + 12k12c

2 (12k12 − k11)cs

symm k11c
2 + 12k12s

2







︸ ︷︷ ︸

k
1







d1y

d3x

d3y







(2.20)

f3x = k21
︸︷︷︸

k
2

d3x (2.21)

where k11 = E1A1/ℓ1, k12 = E1I1/ℓ
3

1
, k21 = 2E2A2/ℓ2, c = cos(30◦ + θ), and s =

sin(30◦ + θ). The subscripts on E, A, and I indicate the constituent to which the

mechanical property belongs. Taking k
1

and k
2

from Equations 2.20 and 2.21, the

global stiffness matrix of the unit cell, κ, is constructed:







f1y

f3x

f3y







=







k11c
2 + 12k12s

2 (k11 − 12k12)cs −k11c
2 − 12k12s

2

k21 + k11s
2 + 12k12c

2 (12k12 − k11)cs

symm k11c
2 + 12k12s

2







︸ ︷︷ ︸

κ







d1y

d3x

d3y







(2.22)

To find the displacement of the nodes as a result of thermal expansion, forces are

applied to the members to emulate changes in ℓ1 and ℓ2 that arise from an increment in

temperature. Using the global stiffness matrix of the structure, an analytic solution for

d1y is formulated and subsequently used to give an expression for the net CTE of the unit

cell. To determine the forces equivalent to the effect of thermal expansion, mechanical

strain (ǫ) and thermal strain (ǫT ) definitions are equated to one another to give:

ǫ = ǫT

σ

E
= αdT

F = EAαdT

Summing and resolving the forces at the nodes give:

f1y = E1A1α1dT cos(30◦ + θ) (2.23)

f3x = E1A1α1dT sin(30◦ + θ) + E2A2α2dT (2.24)

f3y = −E1A1α1dT cos(30◦ + θ) (2.25)
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Substituting Equations 2.23–2.2.2 into Equation 2.22 results in the following:







E1A1α1dTc

E1A1α1dTs + E2A2α2dT

−E1A1α1dTc








=








k11c
2 + 12k12s

2 (k11 − 12k12)cs −k11c
2 − 12k12s

2

k21 + k11s
2 + 12k12c

2 (12k12 − k11)cs

symm k11c
2 + 12k12s

2















d1y

d3x

d3y








The above system can be reduced to 2 equations by noting that d3x =
√

3d3y, and that

the third row is equivalent to the first:
2

6

4

E1A1α1dTc

E1A1α1dTs + E2A2α2dT

3

7

5
=

2

6

4

k11c
2 + 12k12s

2
√

3(k11 − 12k12)cs − k11c
2
− 12k12s

2

(k11 − 12k12)cs
√

3(k21 + k11s
2 + 12k12c

2) + (12k12 − k11)cs

3

7

5

2

6

4

d1y

d3y

3

7

5
(2.26)

Solving Equation 2.26 for d1y gives the following expression after some manipulation:

d1y =
E1A1α1

ˆ√

3ck21 + 12k12

`√

3c + s
´˜

− E2A2α2

ˆ

k11c
`√

3s − c
´

− 12k12s
`√

3c + s
´˜

√

3 (k11k21c
2 + 12k12k21s

2 + 12k11k12)
dT (2.27)

From the geometry of the unit cell, the lengths of the members can be written as:

ℓ1 =
L∗

2 cos θ
, ℓ2 =

L∗

cos θ
sin (30◦ + θ)

Thus, k11, k12, and k21 can be expressed in the following form:

k11 =
2 cos θE1A1

L∗ (2.28)

k12 =
2 cos θE1A1

L∗C1

(2.29)

k21 =
2 cos θE2A2

L∗s
(2.30)

where C1 = A1ℓ
2

1
/I1. Equations 2.28–2.30 are substituted back into Equation 2.27 to

obtain the following expression:

d1y =
α1

[√
3C1c + 12E1A1

E2A2

s
(√

3c + s
)]

− α2

[
C1s

(√
3s − c

)
− 12s2

(√
3c + s

)]

√
3

(

C1c2 + 12s2 + 12sE1A1

E2A2

)
L∗dT

2 cos θ
(2.31)

From the geometry of the unit cell the net CTE, ᾱ∗, is given by:

ᾱ∗ =
1

L∗
dL∗

dT

=
1

L∗

√
3d1y

dT
(2.32)

Thus, combining Equations 2.31 and 2.32 and normalizing ᾱ∗ with respect to α1 gives:

ᾱ∗

α1

=

[√
3C1c + 12E1A1

E2A2

s
(√

3c + s
)]

− α2

α1

[
C1s

(√
3s − c

)
− 12s2

(√
3c + s

)]

C1c2 + 12s2 + 12sE1A1

E2A2

1

2 cos θ
(2.33)
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Using the following trigonometric identities:

cos (30◦ + θ) =

√
3 cos θ

2
− sin θ

2
, sin (30◦ + θ) =

cos θ

2
+

√
3 sin θ

2

the terms c and s in Equation 2.33 are expanded. After some manipulation, the following

simplified formula is obtained:

ᾱ∗

α1

= 1 −

[

C1 tan θ
(
sin (2θ) +

√
3 cos (2θ)

)
− 12

(
cos θ +

√
3 sin θ

)2
] (

α2

α1

− 1
)

C1

(√
3 cos θ − sin θ

)2
+ 12

(
cos θ +

√
3 sin θ

) (

cos θ +
√

3 sin θ + 2E1A1

E2A2

) (2.34)

The expression in Equation 2.34 describes the thermal expansion of the original unit

cell configuration with bonded joints. When plotted and compared to Equation 2.3, the

bonded joint solution obtained from the result by Berger et al. [5], it is found that they

are identical.

To determine the net CTE of the new geometry, the thermal expansion contribution

from the spacers is now considered. Since the spacers do not influence the CTE or

stiffness of the original lattice geometry, the thermal expansion of the new configuration

is simply a sum of the two components. Consider the new lattice geometry as shown

in Figure 2.11. It is clear from this figure that the new unit cell length is L = L∗ + ℓ3,

where L∗ and ℓ3 are the lengths of the original unit cell and spacer respectively. The

subsequent relation is thus derived:

dL = dL∗ + dℓ3 (2.35)

Figure 2.11: Illustration of new geometry consisting of original unit cell plus a spacer.



Chapter 2. Analytical and Numerical Study of Spacers 24

From the definition of thermal expansion, the following expressions are obtained:

ᾱ =
1

L

dL

dT
(2.36)

ᾱ∗ =
1

L∗
dL∗

dT
(2.37)

α1 =
1

ℓ3

dℓ3

dT
(2.38)

Combining Equations 2.35–2.38 gives:

ᾱ =
1

L∗ + ℓ3

dL∗ + dℓ3

dT

= ᾱ∗
(

1 − ℓ3

L

)

+ α1

ℓ3

L

Normalizing ᾱ with respect to α1 therefore results in:

ᾱ

α1

=
ᾱ∗

α1

(

1 − ℓ3

L

)

+
ℓ3

L
(2.39)

Finally, substituting ᾱ∗/α1 from Equation 2.34 into Equation 2.39 gives:

ᾱ

α1

= 1 −

[

C1 tan θ
(
sin (2θ) +

√
3 cos (2θ)

)
− 12

(
cos θ +

√
3 sin θ

)2
] (

α2

α1

− 1
) (

1 − ℓ3
L

)

C1

(√
3 cos θ − sin θ

)2

+ 12
(
cos θ +

√
3 sin θ

) (

cos θ +
√

3 sin θ + 2E1A1

E2A2

) (2.40)

The thermal expansion of a bonded joint lattice with spacers is therefore predicted by

Equation 2.40.

Thermal Properties

The analytical solution for the normalized CTE of a bonded joint lattice with spacers

is given by Equation 2.40 as derived above. Examining this expression reveals that the

addition of spacers increases ᾱ/α1 as expected and observed with the assumption of

pinned joints. The spacers’ influence on ᾱ is similar to the case where the joints of the

lattice are pinned. In the limit that ℓ3/L equals 1, ᾱ becomes α1. On the other extreme

where ℓ3/L = 0, Equation 2.34 which describes the thermal expansion of the original

unit cell with bonded joints is recovered. Since the thermal expansion of the spacer and

original configuration are independent of one another, the total CTE of the lattice is

simply a linear combination of both components. As ℓ3 increases, so does the thermal

expansion of the system. By designing the original unit cell to have a negative thermal

expansion, the net CTE of the overall structure can be averaged to equal zero [5]. To

offset the increment in CTE due to the spacers, either θ or Σ = α2/α1 can be increased.



Chapter 2. Analytical and Numerical Study of Spacers 25

From Equation 2.40, it is evident that ᾱ/α1 is dependent on the mechanical properties

and sizes of the members. With bonded joints, the members cannot rotate freely, thus the

rigidity of the members will restrict the movement of the nodes. As a result, the bonded

joints increase the net CTE of the lattice because the thermal expansion of the members

are not ideally accommodated. The dimensionless parameter E1A1/E2A2 which appears

in the denominator represents the ratio between the stiffness and cross-sectional areas of

type 1 and 2 constituents. This value is typically close to 1 and has little influence on

the overall expression. The term C1, however, is many orders of magnitude larger and

is a dominant factor. C1 is defined as A1ℓ
2

1
/I1, where I1 = A1r

2

1
and r1 is the radius of

gyration of type 1 members. For a lattice with spacers, the slenderness ratio of type 1

members is more conveniently defined to be r1/ℓ1 instead of r1/L, since L now includes

the length of the spacer. As elucidated by Steeves et al. [61] and discussed in Section 2.1.2,

when constituent 1 members become infinitely slender, the joints in a bonded lattice are

effectively pinned. This is a consequence of the stiffness going to zero as the members

become thinner. Combining the definition of C1 with the second moment of area gives

C1 = (ℓ1/r1)
2. Thus as r1/ℓ1 → 0, C1 → ∞, and Equation 2.40 is found to reduce to

Equation 2.17, the expression for a pinned joint lattice with spacers.

Figure 2.12 plots ᾱ/α1 as a function of θ using Equation 2.40 for different combinations

of r1/ℓ1 and ℓ3/L to illustrate the influence of spacers and bonded joints. The resulting

curves are also compared to a baseline configuration (blue dashed line) in which there
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Figure 2.12: ᾱ/α1 plotted as a function of θ for (a) ℓ3/L = 0.1 and (b) ℓ3/L = 0.2 and

different values of r1/ℓ1.
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are no spacers and the joints are pin connected (Equation 2.1). In Figure 2.12 (a), the

curves for a lattice with ℓ3/L = 0.1 are contrasted with the reference configuration. When

r1/ℓ1 = 0, the unit cell is effectively pin-jointed, thus the thermal expansion behaviour

is close to that of the baseline. The deviation between the two results is due to the

thermal expansion contribution from the spacers. As the slenderness ratio of the type 1

member increases, the CTE increases and the curves begin to diverge quickly from the

baseline properties. Only slight differences are noted when r1/ℓ1 goes from 0 to 0.03,

but a significant increase is observed between r1/ℓ1 = 0.03 and 0.06. Similar trends and

behaviour are noted in Figure 2.12 which plots the normalized CTEs of a lattice with

ℓ3/L = 0.2. The curves in this scenario show greater differences when compared to the

baseline since the spacers are larger and cause a greater increase to the overall CTE of

the structure.

2.3 Numerical Investigation

To validate the analytical solutions derived in Section 2.2, a FE study is performed to sim-

ulate the thermal expansion of a bi-material lattice. Models are created using ABAQUS

[15], a FE software package developed by Dassault Systèmes. Following the design by

Steeves et al. [61], the simulated lattice is constructed from Al and Ti constituents. The

aspect ratio of the Ti members is defined to be AR = ℓ1/h1, where h1 is the width of

the struts. Six families of unit cells with different combinations of configurations are

studied in this investigation with ℓ3/L = 0.1 and 0.2, and AR = 25, 12.5, and 6.25. For

each family of unit cells, the skewness angle is varied between 17–31◦ in 2◦ increments

to determine the variation in ᾱ as a function of θ. The numerical results obtained from

simulation are then compared to those predicted by Equations 2.17 and 2.40.

2.3.1 Finite Element Model

Two dimensional models are used to replicate the unit cell since the lattice structures

are planar in nature. An exemplary FE model is illustrated in Figure 2.13 for a unit cell

having ℓ3/L = 0.1, AR = 12.5, and θ = 25◦. The red and blue meshes represent the

Al and Ti constituents respectively. Both constituents are assumed to behave elastically

with isotropic mechanical and thermal behaviour. Table 2.1 summarizes the material

properties of Al and Ti used in the FE simulations. By taking advantage of symmetry,
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Table 2.1: Mechanical and thermal properties of materials used in FE simulations.

Material Young’s modulus, E (GPa) Poisson’s ratio, ν CTE, α (ppm/K)

Al 70 0.35 24.0

Ti 116 0.32 9.4

only one sixth of the unit cell is considered while applying the appropriate boundary

conditions [61]. Nodes that lie on the lines of symmetry AB and BC are constrained to

displace along those lines. The intersection of the two lines of symmetry, point B, repre-

sents the centre of the unit cell, therefore this point is fixed. A periodic boundary exists

along the centroid of the spacer as depicted by the dashed line AD in Figure 2.13. Nodes

on the periodic boundary are allowed to displace in both the x and y directions, subject

to the constraint that the slope of AD be fixed. A total of 1,620 linear quadrilateral

plane stress elements (500 for Al part and 1120 for Ti part) are used in the analysis. To

simulate a bonded joint configuration, the degrees of freedom of the nodes at the material

interface are tied together. The non-linear geometry setting is activated to account for

non-linearities arising from large displacement and contact problems.

To determine the thermal expansion of a given unit cell, the modeled structure un-

dergoes a temperature change of +180 K. After the Al and Ti members have expanded,

the vertical displacement of point A is used to calculate the net CTE of the structure.

Figure 2.13: ABAQUS model and boundary conditions used to simulate one sixth of a

unit cell where ℓ3/L = 0.1, AR = 12.5, and θ = 25◦. Red and blue meshes represent Al

and Ti members respectively.
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The distance from A to B, ℓAB, is related to the total length of the unit cell through the

geometric relation ℓAB = L/
√

3. Thus, the net coefficient of thermal expansion is given

by:

ᾱ =
1

ℓAB

dℓAB

dT

In this study, the material properties are not a function of temperature, thus the net

CTE is also assumed to be independent of temperature. Thus, given the displacement of

point A ∆AB, due to a temperature change ∆T , the net CTE is approximated by:

ᾱ =
1

ℓAB

∆ℓAB

∆T
(2.41)

2.3.2 Results and Comparison

The resulting configuration of a unit cell with ℓ3/L = 0.1, AR = 12.5, and θ = 25◦

after thermal expansion has occurred is depicted in Figure 2.14. As before, the red and

blue meshes represent the Al and Ti constituents respectively. The displacements in this

figure are exaggerated by a factor of 40 to clearly illustrate the expansion and bending

of the members. Due to the bonded joint configuration, the rotation of the Ti strut is

restricted, thus it is forced to bend due to the change in member lengths which result

from thermal expansion effects. Using the displacement of point A, the overall CTE of

the unit cell is obtained via Equation 2.41. This calculation is repeated for different

Figure 2.14: Unit cell with ℓ3/L = 0.1, AR = 12.5, and θ = 25◦ after thermal expansion.

Red and blue meshes represent Al and Ti constituents respectively and displacements

are scaled by a factor of 40 for clarity.
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skewness angles between 17–31◦, thus the CTE of each unit cell family is determined as

a function of skewness angle.

Results from the FE analyses are first compared to the CTEs predicted by the an-

alytical expression for a pinned joint lattice as given by Equation 2.17. The six curves

obtained from simulation are plotted under two categories where ℓ3/L = 0.1 and 0.2 in

Figures 2.15 (a) and (b) respectively as shown by the dashed lines. Actual data points

obtained from simulation are indicated by the ‘x’ markers and the theoretical CTEs given

by Equation 2.17 are illustrated by the solid black line. Excellent agreement is found

between the pinned joint expression and FE simulations when AR = 25. The difference

between the predicted CTEs is roughly 0.2 ppm/K when θ = 17◦ and grows to approxi-

mately 0.6 ppm/K when θ = 31◦. The CTEs given by Equation 2.17 are consistently less

than those obtained from FE simulation because the expression was derived under the

assumption of a pinned joint lattice. As elucidated in Section 2.1.2, bonded joints impede

the rotation of the lattice members and has the effect of increasing the overall CTE of the

structure. When AR = 25, the slenderness ratio of the type 1 members is approximately

0.01, thus the effect of having bonded joints in the FE model is small, and minimal

deviations are observed between theory and simulation. However, as the Ti members

become stubbier and the aspect ratio decreases to 12.5 and 6.25, these differences grow

larger and the CTEs from numerical simulation become significantly greater than those
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ℓ3/L = 0.2(b)

Analytical, Pin Joint Theory
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Figure 2.15: Predicted CTE of Al/Ti lattices from FE simulations and pinned joint

theory (Equation 2.17). Results for unit cells with ℓ3/L = 0.1 and 0.2 are illustrated in

parts (a) and (b) respectively.
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calculated from Equation 2.17. Thus, the analytical expression for a pinned joint lattice

can be successfully applied to predict the thermal expansion of lattices where the aspect

ratio of type 1 members is high, but fails to give accurate results as AR becomes small.

To obtain more realistic estimates as the Ti members become thicker, its bending

resistance must be taken into account as considered by Equation 2.40. Recall that the

normalized CTE of a bonded-joint lattice with spacers has the form:

ᾱ

α1

= 1 −

[

C1 tan θ
(
sin (2θ) +

√
3 cos (2θ)

)
− 12

(
cos θ +

√
3 sin θ

)2
] (

α2

α1
− 1

) (

1 − ℓ3
L

)

C1

(√
3 cos θ − sin θ

)2
+ 12

(
cos θ +

√
3 sin θ

) (

cos θ +
√

3 sin θ + 2E1A1

E2A2

)

Additional terms in conjunction to ℓ3/L are now required to plot ᾱ as a function of θ.

Assuming a unit depth in the 2D model and given that I = bh3/12 for a rectangular

beam, it can be shown that C1 = 12AR2. The ratio A1/A2 is determined by dividing the

width of the Ti strut, h1, by the width of the Al member, h2, measured at roughly its

midpoint as illustrated in Figure 2.16. The value of A1/A2 changes primarily as a function

of AR, but is also dependent on the skewness angle. E1/E2 is a constant and is calculated

using the elastic moduli of the lattice constituents. Thus, using Equation 2.40 to predict

the thermal expansion of the lattices simulated in ABAQUS yields the results shown in

Figures 2.17 (a) and (b). Comparing the analytical and FE solutions reveals excellent

agreement for both ℓ3/L = 0.1 and 0.2 when AR = 25. In this instance, the CTEs

calculated from simulation and Equation 2.40 are within 0.5 ppm/K of each other. When

AR decreases to 12.5 or 6.25 however, large discrepancies are still observed between the

theoretical and simulated CTE curves. Although the bonded joint expression correctly

gives an increase in CTE with lower AR, the difference is inadequate to match the results

Figure 2.16: Schematic diagram of unit cell illustrating the widths of Ti and Al members,

h1 and h2 respectively, used to calculate the ratio A1/A2.
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ℓ3/L = 0.2(b)

Analytical, AR = 25
Analytical, AR = 12.5
Analytical, AR = 6.25
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Figure 2.17: Predicted CTE of Al/Ti lattices from FE simulations and bonded joint

theory (Equation 2.40). Results for unit cells with ℓ3/L = 0.1 and 0.2 are illustrated in

parts (a) and (b) respectively.

from the FE study. When the skewness angle is 31◦, the disparity between the solutions

is approximately 1.3 and 3.0 ppm/K when AR is 12.5 and 6.25 respectively. Thus when

the aspect ratio of the Ti struts is high, the analytical expression accurately reproduces

the thermal expansion behaviour observed from simulation, as with Equation 2.17. As

the type 1 members become thicker however, Equation 2.40 fails to give accurate results.

The incongruence among the simulated and theoretical results is attributed to the

difference between the defined length of ℓ2 and its true value in the unit cell model. The

Al members must accommodate the finite thickness of the Ti struts, thus they are shorter

than ideal. As the Ti members become thicker, this discrepancy becomes increasingly

profound. To examine the consequence of this effect, the derivation of ᾱ/α1 for a bonded

joint lattice is reconsidered. Upon substituting ℓ1 and ℓ2 into Equation 2.27, a scaling

factor f is introduced such that:

f ≡ ℓ′
2
/ℓ2 (2.42)

where ℓ′
2

is the true length of the Al members. To derive an expression which takes into

account the actual size of type 2 constituents, all instances of ℓ2 are replaced by fℓ2 and

thus Equation 2.27 becomes:

d1y =
α1

[√
3C1c + 12f E1A1

E2A2
s
(√

3c + s
)]

− fα2

[
C1s

(√
3s − c

)
− 12s2

(√
3c + s

)]

√
3

(

C1c2 + 12s2 + 12sf E1A1

E2A2

)
L∗dT

2 cos θ

(2.43)



Chapter 2. Analytical and Numerical Study of Spacers 32

Following through with the original derivation produces the following result:

ᾱ

α1

= 1 −

[

C1 tan θ
(
sin (2θ) +

√
3 cos (2θ)

)
− 12

(
cos θ +

√
3 sin θ

)2
] (

f α2

α1
− 1

) (

1 − ℓ3
L

)

C1

(√
3 cos θ − sin θ

)2
+ 12

(
cos θ +

√
3 sin θ

) (

cos θ +
√

3 sin θ + 2f E1A1

E2A2

)

(2.44)

The terms α2/α1 and E1A1/E2A2 in Equation 2.44 are now multiplied by the scaling

factor f . This is equivalent to replacing α2 and E2 in the original expression by fα2 and

E2/f respectively. Physically, this is explained by having to scale the thermal expansion

coefficient and Young’s modulus of the type 2 constituents to account for their true

length. Since the Al members are shorter, the effective thermal expansion is lower than

in the ideal scenario. A decrease in ℓ2 also makes the type 2 members stiffer, which is

reflected by an increase in E2.

The scaled theoretical expression for the normalized CTE of a bonded joint lattice

with spacers as given by Equation 2.44 is thus compared to the FE simulations performed

in ABAQUS. To determine ℓ′
2
, the length of the Al member is measured from the mid-

point of contact as illustrated in Figure 2.18. The horizontal distance from point F, the

midpoint of line segment EG, to the vertical line of symmetry is thus equal to half of ℓ′
2
.

f is therefore a function of the thickness of type 1 members, and the skewness angle of

the unit cell. The predicted CTE of the different families of lattices given by the scaled

expression in Equation 2.44 are plotted in comparison to the FE results in Figures 2.19

(a) and (b). Excellent agreement is now observed between the analytical and simulated

CTEs for all combinations of θ, ℓ3/L, and AR. Differences of less than 0.6 ppm/K are

found between the two sets of data. The scaled analytical solution gives more accurate

results for lower values of AR when compared to Equation 2.40 because the scaling factor

Figure 2.18: Method for determining the actual length of the Al members, ℓ′
2
, is identified

in this schematic diagram of the material interface in a unit cell.
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Analytical, AR = 25
Analytical, AR = 12.5
Analytical, AR = 6.25
FE, AR = 25
FE, AR = 12.5
FE, AR = 6.25

Analytical, AR = 25
Analytical, AR = 12.5
Analytical, AR = 6.25
FE, AR = 25
FE, AR = 12.5
FE, AR = 6.25

Figure 2.19: Predicted CTE of Al/Ti lattices from FE simulations and the scaled bonded

joint theory (Equation 2.44). Results for unit cells with ℓ3/L = 0.1 and 0.2 are illustrated

in parts (a) and (b) respectively.

becomes increasingly relevant as the Ti struts become thicker. By adjusting α2 and E2

accordingly, more representative CTEs are obtained. Thus for unit cells where the as-

pect ratio of the type 1 members is relatively low, it is important to consider the effective

length of ℓ2 when estimating the theoretical thermal expansion behaviour.



Chapter 3

Molecular Dynamics Study of

Amorphous Materials

Molecular dynamics simulations are used to study the properties of amorphous materials

in this chapter. To begin, a brief introduction to MD is given in Section 3.1 which

summarizes some applications and basic theory. Inherent limitations and weaknesses of

MD are also discussed in addition to parallel algorithms and codes. Section 3.2 discusses

how molecular dynamics simulations are used to determine the thermal expansion and

recrystallization behaviour of amorphous Al and Ti. The procedures used to quantify

their CTE, recrystallization temperature, and change in volume due to devitrification are

described here in detail.

3.1 Overview of Molecular Dynamics

3.1.1 Background Information and Applications

Molecular dynamics is an atomistic modeling technique in which individual atoms are

simulated and the temporal evolution of a system is tracked by computing the trajectory

of each atom. In contrast, continuum mechanics assumes materials are continuous with

constitutive equations describing their behaviour. This simplified description of materi-

als is generally applicable to length scales on the order of microns and larger [69]. With

a continuum approach, local atomic structures and variations are smeared out, thus the

model breaks down in situations where discrete atomic structure is important. Contin-

uum mechanics is unsuitable for studying microstructure effects such as dislocations, and

34
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crack nucleation [26]. MD, on the other hand, is a powerful tool that can be used to study

microscopic systems such as defects in crystals, fracture mechanisms, and biomolecules

[21]. Since the trajectory of individual atoms are followed, MD simulations can easily

provide snapshots of a system with atomic resolution and detail. Such images would be

infeasible to obtain in a laboratory setting. Extreme conditions, such as high tempera-

tures and pressures, can also be easily simulated on a computer that would otherwise be

expensive or extremely difficult to perform experimentally.

The first reported MD simulation was performed in 1957 by Alder and Wainwright [2]

who studied phase transitions in a hard sphere system where particles interact through

instantaneous collisions. One of the first simulations to use a continuous potential was by

Gibson et al. [28] in 1960 for investigating radiation damage. Over the past 5 decades,

MD simulations have advanced considerably and have become increasingly feasible as

computing power has grown. Early simulations in the 1960s contained only a few hun-

dred atoms, where with current technology, simulations can contain millions to billions

of atoms [69]. MD simulations are widely used today in a variety of research fields

including biochemistry, physics, and nanomaterials. Some specific applications include

studying a self-assembling surfactant-water solution [36], simulation of an atomic force

microscopy (AFM) probe [11], and examining mechanical properties of fivefold twinned

copper nanowires [9].

3.1.2 Governing Equations

In MD simulations, the path traveled by an atom is determined by repeatedly solving its

equation of motion. The dynamics of each particle are governed by classical mechanics,

such as Newton’s second law:

Fi = miai (3.1)

Boldface terms indicate vector quantities and the subscript i denotes the property belong-

ing to the ith atom. In a simulation with N atoms, 3N equations of motion must therefore

be solved to determine the trajectory of the system, one for each atom and coordinate

direction. From Equation 3.1, it is apparent that the acceleration of the ith atom is given

by the forces acting on the atom, divided by its mass. To determine the acceleration,

and hence trajectory, the atomic forces must be known. The driving mechanism and

engine behind MD lies in how the particles interact with one another. The interaction

between atoms is defined via a potential function, which describes the potential energy
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of the system given the coordinates of the atoms: U(r1, · · · , rN). Thus the atomic forces

are given by the negative gradient of the potential with respect to the atom coordinates

as follows:

Fi = −∇ri
U(r1, · · · , rN) (3.2)

With the atomic forces and hence accelerations known, the 3N equations of motion given

in Equation 3.1 are integrated with respect to time to determine the movement of all

particles in the system. An MD code therefore requires an integration scheme to compute

the temporal evolution of a system.

Time integration algorithms are often based on finite difference methods. Predictor-

corrector algorithms by Gear [25] are also used but are not discussed in this overview. The

idea behind finite difference methods is to use discretized timesteps ∆t, and information

at the current time t, to compute quantities at a later time t + ∆t. The most commonly

used integration scheme in MD simulations is the Verlet algorithm [68], which is derived

from a Taylor series expansion about the atomic coordinates at time t:

r(t + ∆t) = r(t) + v(t)∆t + (1/2)a(t)∆t2 + (1/6)b(t)∆t3 + O(∆t4) (3.3a)

r(t − ∆t) = r(t) − v(t)∆t + (1/2)a(t)∆t2 − (1/6)b(t)∆t3 + O(∆t4) (3.3b)

The quantity b(t) represents the third time derivative of the atomic positions. Adding

the above equations together cancels out the third derivative terms and gives:

r(t + ∆t) = 2r(t) − r(t − ∆t) + a(t)∆t2 + O(∆t4) (3.3c)

The error associated with future atomic coordinates in Equation 3.3c is O(∆t4), thus

small timesteps are chosen to give accurate results. Note that r(t + ∆t) depends on

r(t − ∆t) and therefore cannot be evaluated at t = 0. In this situation, the forward

Taylor series expansion (Equation 3.3a) can be used to evaluate the first timestep to

O(∆t3) accuracy. Although velocities are not needed to determine the trajectory, they

are required to compute the kinetic energy and temperature of the system which are

often of interest. Velocities are not computed explicitly using the Verlet scheme but can

be determined from the atomic positions using the following equation:

v(t) =
r(t + ∆t) − r(t − ∆t)

2∆t
(3.4)

Note that Equation 3.4 is only O(∆t2) accurate, and is computed for the current time

rather than t + ∆t.
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The velocity Verlet algorithm [21] is a variation of the original Verlet scheme in which

r(t + ∆t) and v(t + ∆t) are computed using the following equations:

r(t + ∆t) = r(t) + v(t)∆t + (1/2)a(t)∆t2 (3.5a)

v(t + ∆t) = v(t) + (1/2)a(t)∆t + (1/2)a(t + ∆t)∆t (3.5b)

Using the velocity Verlet scheme, no information from time t − ∆t is required, and

velocities are computed explicitly in this scheme for time t + ∆t. With Equation 3.5,

Newton’s equations of motion can be repeatedly integrated for all atoms in the system

to compute its trajectory. The evolution of a simulation is therefore exactly determined

given an initial configuration since the governing dynamics are deterministic.

3.1.3 Interatomic Potentials

As stated in the previous section, the motion of atoms in an MD simulation are governed

by classical mechanics, and the atomic forces are derived from a potential function. The

potential function plays a critical role because it defines the properties and behaviour

of the atomic interaction. It is therefore important to use an interatomic potential that

accurately describes the system of interest. Many classes of potentials are available

to choose from depending on the application. Simplistic potentials are typically only

adequate for describing basic systems. More complicated potentials are more accurate in

reflecting certain physical systems, however there are computational trade-offs. Potential

functions are typically dependent only on the relative positions of the interacting atoms

[21], although some are a function of the bond order or bond angles between atoms [63].

For brevity, only the following potentials will be introduced: (i) pair potentials, and (ii)

empirical many-body potentials.

Pair Potentials

As the name suggests, pair potentials describe the potential energy between two parti-

cles. The total potential of a given particle is thus obtained by summing the pairwise

interaction between all pairs in the system. In practice, a cutoff radius is used to con-

sider only nearby particles and neglect long range interaction forces [63]. Examples of

pair potentials include the Morse potential [47], and Lennard Jones (LJ) potential [34].

The LJ potential is perhaps the most widely used pair potential function and has the
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form:

U(rij) = 4ǫ

[(
σ

rij

)12

−
(

σ

rij

)6
]

(3.6)

where ǫ is the binding energy and σ is the finite distance where the potential is zero. The

term proportional to r−12 describes the repulsion between two atoms due to the Pauli

principle, while the term proportional to r−6 models the attraction originating from van

der Waals interaction [21]. Due to the simple nature of the LJ potential, it is only

suitable for modeling rare gases and fails when trying to simulate covalent or metallic

systems. Although the LJ potential is unable to simulate certain materials, it is widely

used to study fundamental issues in condensed matter physics [21]. In general, pair

potentials are computationally inexpensive and straightforward to implement because of

their simplistic description of atomic interactions. As a consequence, they are unable to

accurately describe certain physical systems and have limited application to the study of

real materials.

Empirical Many-Body Potentials

A many-body potential describes the interaction between three or more particles. These

functions are more complicated than pair potentials, and therefore more expensive to

compute. Empirical many-body potentials are optimized to reproduce values such as

lattice constants, elastic constants, binding energies, and vacancy formation energies

obtained through experiments or quantum mechanical calculations [69]. Examples of

many-body potentials include the embedded-atom method (EAM) potential [16], Finnis-

Sinclair potential [23], and the Tersoff potential [64].

Both the EAM and Finnis-Sinclair potentials are similar in construction and are

commonly used to simulate metallic systems [26]. Under the EAM formulation, the total

energy of the ith atom, Ei, has the form:

Ei = Fα

(
∑

j 6=i

ρβ (rij)

)

+
1

2

∑

j 6=i

φαβ (rij) (3.7)

where Fα is the embedding energy of atom i, ρβ is the electron density function, φαβ is a

pair-wise potential, and rij is the distance between atoms i and j. The subscripts α and

β represent the elements of atoms i and j respectively. The first term in Equation 3.7

describes the multi-body interaction of the particles and represents the energy required

to embed atom i of type α into the system, given the electron density contribution from
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all other atoms in the system (not including itself). The functions Fα, ρβ, and φαβ are

determined through fitting to material properties. The Finnis-Sinclair potential has the

exact same form as the EAM potential, except the electron density becomes a function

of both element types, thus ρβ becomes ραβ in Equation 3.7. Many-body potentials

are more difficult to implement and require extra computational resources because they

consider the interactions between three or more particles. As a result, they are suitable

for simulating a variety of materials where pair-wise potentials would otherwise fail.

3.1.4 Limitations

Although MD simulations are powerful tools, they are subject to some limitations. As

noted in Section 3.1.2, each atom in the system is modeled individually and 3N equations

of motion are integrated to determine the trajectory. As the number of atoms in the

system increases, the computational cost and simulation time will grow. MD simulations

are therefore often limited by the available computational resources. Using empirical

many-body potentials, the upper limit on the number of atoms in a simulation ranges

from 106–109 [69]. Due to the limited number of atoms that can be modeled, system sizes

are generally on the order of nanometers in length. Simulations of large scale systems

are not feasible with the computing power today.

The inherently short time scales accessible by MD simulations is another weakness

of the modeling scheme. It is required that the timestep used in the finite difference

integration scheme be small enough to resolve the vibrational modes of the atoms [69].

Since atoms vibrate at such high frequencies about their lattice positions, timesteps on

the order of femtoseconds (10−15s) must be used. Thus, the temporal evolution of the

system is slow and the total simulated time is limited to nanoseconds or microseconds

[69]. Due to the short timescales achievable by MD simulations, it can be difficult to

study physical processes that occur over longer periods of time. For example, diffusional

processes can occur over a period of minutes or hours, time scales currently inaccessible

by MD.

The temporal and spatial regime accessible by MD simulations is illustrated in Fig-

ure 3.1 along with other modeling schemes [26]. On one end of the spectrum, quantum

mechanics uses a first principles approach, thus it is limited to extremely short time and

length scales because of the massive computational costs. As generalizations and as-

sumptions are made, longer simulation times and sizes can be achieved, however there is
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Figure 3.1: Typical length and time scales accessible by modeling methods, adapted from

Ghoniem et al. [26].

a trade-off in the ability to model certain systems. One of the longest (roughly 1 µs) and

largest (5x109 particles, 0.4 µm) MD simulations were performed by Duan and Kollman

[19] in 1998 and Roth et al. [55] in 2000 respectively. Duan and Kollman [19] studied the

folding of proteins, a phenomenon that occurs over a period of microseconds, while Roth

et al. [55] demonstrated the ability of parallel MD codes and their scalability.

3.1.5 Parallel MD Codes and Scalability

To reduce computing time and facilitate the study of larger systems, parallel MD codes

have been developed so that multiple processors can perform a single simulation. As

noted before, the bulk of the computational work is due to force calculation and time

integration. Since these tasks can be done independently, the work can be distributed

over many computers. A variety of algorithms exist for parallelization which are listed

here in increasing performance, but also difficulty in implementation [54]: (i) atomic

decomposition (AD), (ii) force decomposition (FD), and (iii) spatial decomposition (SD).

The AD algorithm distributes the atoms between the processors, which are responsible

for their atoms throughout the entire simulation no mater where the atoms move. In

the FD algorithm, the force matrix is divided among the computers, and the forces in

each submatrix are computed by their respective processor. Lastly, SD splits the physical

simulation space into P domains for P processors. Computations for all atoms within

each partition are handled by their assigned processor. Out of the three algorithms it
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can be shown that SD is the most effective — for large systems and a balanced workload,

the computational time scales optimally as O(N/P ) for N atoms and P processors [54].

In this research, all MD simulations are performed using LAMMPS (Large-scale

Atomic/Molecular Massively Parallel Simulator) [54], an open source classical MD code

developed and maintained by Sandia National Laboratories under the United States De-

partment of Energy. LAMMPS is an efficient parallel code which implements the SD

algorithm, thus giving O(N/P ) scaling for large and balanced systems. Simulations

are conducted using the General Purpose Cluster (GPC) on the University of Toronto’s

SciNet Consortium [42] to take advantage of the scalability of LAMMPS and the avail-

able computational resources. Scaling tests are conducted on the GPC to determine the

parallel performance of LAMMPS. Strong and weak scaling tests are carried out using a

standard benchmarking input script from LAMMPS. The benchmark problem simulates

a metallic (copper) system using an EAM potential and is therefore representative of the

intended studies. The strong scaling test simulates a total of 4,000,000 atoms for 500

timesteps. In the case of the weak scaling test, 32,000 atoms per core are simulated for

500 timesteps. Figure 3.2 illustrates the results of the benchmark tests performed using

different combinations of connection types and message passing interfaces (MPIs). With

an Ethernet connection, both strong and weak tests show good scaling up until 16 cores

(2 nodes), after which the performance begins to degrade. This is due to the latency in

communication between the nodes and cores over the Ethernet connection. When the

tests are repeated using an InfiniBand connection, excellent scaling is maintained to 512
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Figure 3.2: Results of strong and weak scaling tests plotted in parts (a) and (b) respec-

tively for LAMMPS on SciNet’s GPC.
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cores (64 nodes) and was not tested further. It can therefore be concluded that when

using an Ethernet connection, no more than 16 cores should be used; InfiniBand must

be used with more than 16 cores to maintain scalability. Furthermore, the tests reveal

that IntelMPI has a slight advantage over OpenMPI. Results from these benchmarks are

useful in planning MD simulations by determining the approximate computation time

required for a simulation given the number of processors available.

3.2 Thermal Expansion and Recrystallization of

Amorphous Al and Ti

3.2.1 Literature Review

Thermal Expansion

The application of low CTE lattices at the microscale requires special fabrication tech-

niques. E-beam deposition is used to create thin films of Al and Ti, which are then etched

to form a lattice structure. As a result of the deposition process, it has been determined

by EBSD and XRD experiments that the thin films are amorphous. Consequently, knowl-

edge of the thermal properties of amorphous Al and Ti are needed to successfully design

a micro lattice with zero thermal expansion. The CTEs of polycrystalline Al and Ti have

been thoroughly researched and documented in the literature [70, 59, 30]. There are

however no studies, experimental or simulated, on the thermal properties of amorphous

Al and Ti, thus their CTEs are investigated in this research via MD simulations.

Numerous studies have utilized MD simulations to determine the CTE of various

materials. For example, Timon et al. [65] looked at the thermal expansion of Si and Ge,

and Gan and Chen [24] investigated the CTE of Cu. From their studies, they found the

CTE of Si, Ge, and Cu to be in good agreement with their well known experimental

values, thus proving the predictive capability of MD simulations. From literature review,

it is found that a common procedure is used to simulate the CTE of an element or

compound. In general, the desired atoms and atomic arrangement are created in a

system with periodic boundary conditions in all directions. Images of the simulation

cell are replicated in the x, y, and z directions such that there are no free surfaces.

Furthermore, an atom that passes through one face of the simulation cell will reappear on

the opposite side with the same velocity. Periodic boundary conditions therefore emulate
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an infinite system representing a material in bulk form. To study thermal expansion,

MD simulations are conducted under an isothermal-isobaric (NPT) ensemble where the

number of moles (N), pressure (P), and temperature (T) are conserved. Under these

conditions, the system is allowed to expand and contract as the temperature is controlled.

The material length is thus measured as a function of temperature and the instantaneous

CTE is given by:

α =
1

ℓ

dℓ

dT
(3.8)

where ℓ is the temperature dependent length of the material. Although there have been

numerous investigations on the thermal expansion of materials using molecular dynamics,

there have been no reported studies on amorphous Al and Ti. MD simulations are there-

fore performed following a procedure similar to that found in the literature to determine

the CTEs of amorphous Al and Ti.

Recrystallization

The phenomenon of an amorphous to crystalline transition is well known and can be

initiated by a number of methods such as thermal annealing [45], and mechanical strain

[12]. At sufficiently high temperatures, it is possible that the metastable amorphous

states of Al and Ti will recrystallize due to thermally activated devitrification. It is

therefore important to determine the temperature at which recrystallization occurs to

accurately study and predict the behaviour of the bi-material lattice. Furthermore, it

is known that amorphous structures tend to be less dense than crystalline states [39].

Therefore as a result of devitrification, a material will contract in volume and exhibit a

negative change in length. The amount of shrinkage due to recrystallization must also

be quantified to properly model and predict the lattice behaviour.

MD simulations have been utilized by a number of researchers to investigate the re-

crystallization temperature of various metallic glasses [44, 57, 52]. Amorphous states can

be easily obtained and studied via computer simulations which makes MD an attractive

tool. To create amorphous metals, it is typical to begin with a liquid state of the material

at a temperature well above the melting point. Periodic boundary conditions are em-

ployed in all directions to simulate bulk material under the NPT ensemble. The metallic

liquid is then rapidly quenched to below the glass forming temperature. To obtain metal-

lic glasses for Ti/Al systems, quenching rates on the order of 0.1–1000 K/ps are used [57].

The rapid cooling process prevents the nucleation and growth of crystal structures, thus
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an energetically unfavourable amorphous state can be obtained. Once a glassy metallic

structure has been produced, the temperature of the system is increased at a typical rate

of 1 K/ps [51]. During this process, the total volume and potential energy of the system

is recorded as a function of temperature. When recrystallization occurs, the system will

exhibit a sudden drop in both quantities as the atoms rearrange themselves into a more

orderly and lower energy state [44]. The temperature at which this occurs is therefore

denoted the recrystallization temperature, Tx.

A search of the literature reveals no experimental investigations on the devitrification

of amorphous Al and Ti. Only MD studies exist, although scarce, that analyze the recrys-

tallization temperature and volume change due to recrystallization. A couple of reports

give Tx for amorphous Al, but their results are conflicting. Utilizing non-local pseudopo-

tential theory, Lu and Szpunar [44] gives Tx of Al to be in the range of 550–630 K. In

contrast, Shimono and Onodera [57] finds Tx to be approximately 230 K using the in-

teratomic potential by Oh and Johnson [48]. Given the discrepancy between reported

values, further investigation on the recrystallization of amorphous Al is warranted. Shi-

mono and Onodera [57] also examined the devitrification of amorphous Ti and gives Tx

to be roughly 280 K. The recrystallization temperatures for amorphous Al and Ti given

by Shimono and Onodera [57] are both below room temperature (293 K). However, the

amorphous thin films manufactured through e-beam deposition are known to be stable at

room temperature, thus the values given by Shimono and Onodera [57] are inconsistent

with current observations. Studies on the volume differences between amorphous and

crystalline states for Al and Ti are scant. For Al, one report by Becquart et al. [4] gives

∆V/V = 10 % for a crystalline to amorphous transition at 300 K (or roughly −9 % for

devitrification), although the system studied was under an applied stress. No studies

have been found that analyze and report the volume difference between amorphous and

crystalline Ti. The MD studies in this section shall therefore fill this void and investigate

the resulting volume changes of amorphous Al and Ti due to recrystallization.

3.2.2 Simulation Method

Selecting Interatomic Potentials

Appropriate potential functions must first be chosen to ensure good results from the

MD simulations. Many-body interatomic potentials based on the EAM and Finnis-

Sinclair approach are adopted because they are well suited to modeling metallic systems
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as explained in Section 3.1.3. For both Al and Ti, there are a number of good interatomic

potentials in the literature to choose from. A simple study is therefore conducted to select

the most suitable potential for each material. To model Al, three potential functions are

considered — those by Liu et al. [40] (improved version of original potential by Ercolessi

and Adams [22]), Mendelev et al. [46], and Zope and Mishin [74]. For Ti, the interatomic

potentials by Ackland [1] and Zope and Mishin [74] are evaluated.

The objective of this study is to investigate the thermal expansion and devitrification

of amorphous Al and Ti. The best potential is therefore one that most accurately predicts

these physical properties and phenomena. Since experimental thermal expansion data is

readily available for crystalline Al and Ti, the interatomic potentials that best reproduce

their behaviour are selected as the most suitable candidates. Using each interatomic

potential, the CTE of either Al or Ti is determined via MD simulations and compared

against their experimental values. To simulate the thermal expansion of crystalline Al,

a 20× 20× 20 block of face-centred cubic cells corresponding to 32,000 atoms is created

in LAMMPS. Similarly for Ti, a 20 × 20 × 20 array of hexagonal close-packed unit cells

(also 32,000 atoms) is constructed. Lattice constants of 4.05 Å and 2.95 Å are used

for Al and Ti respectively [74]. The initial crystalline atomic structures of Al and Ti

are visualized using Visual Molecular Dynamics (VMD) [31], a molecular visualization

program, and shown in Figures 3.3 (a) and (b) respectively. The neat and ordered

crystalline atomic arrangements of the two metals are clearly observed in these images.

MD simulations are performed using a velocity-Verlet integration scheme and a timestep

of 1 femtosecond (fs). Periodic boundaries are enforced in all directions to eliminate

Figure 3.3: Initial atomic configurations of crystalline Al and Ti in figures (a) and (b)

respectively. Black lines indicate the edges of the periodic simulation cell.
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surface effects and thus emulate bulk material. At the beginning of the simulations, the

system is equilibrated at 50 K for 100 picoseconds (ps). The isobaric-isothermal ensemble

is employed with zero external pressure acting on the system and the simulation box

is allowed to expand anisotropically. After the system is in an equilibrium state, the

temperature of the system is increased from 50 K to 1000 K at a rate of 1 K/ps. During

heating, the size of the simulation box in the x, y, and z directions (ℓx, ℓy, and ℓz) are

recorded and subsequently used to calculate the thermal expansion of the material. The

CTE is calculated as the mean thermal expansion in each direction and is given by:

α(T ) =
1

3
[αx(T ) + αy(T ) + αz(T )]

=
1

3

[
1

ℓx(T )

dℓx(T )

dT
+

1

ℓy(T )

dℓy(T )

dT
+

1

ℓz(T )

dℓz(T )

dT

]

(3.9)

In Equation 3.9, the derivatives of the box lengths with respect to temperature are

required to compute the CTE. To obtain this information, cubic polynomials are used to

approximate the simulation data. Given a polynomial interpolant, it is straightforward

to evaluate ℓi(T ) and dℓi(T )/dT at any temperature, where i is x, y, or z.

As an example, the simulation box lengths for Al using the potential by Mendelev

et al. [46] are plotted in Figure 3.4 as a function of temperature. Cubic polynomials used

to fit the raw data are also illustrated as dashed lines for comparison. Thermal expansion

in the x, y, and z directions are practically identical due to its symmetrical face-centred

cubic crystalline structure. ℓx, ℓy, and ℓz are observed to vary and expand smoothly as

the temperature of the system is increased. The fitted polynomials are also shown to
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Figure 3.4: ℓx, ℓy, and ℓz plotted as a function of temperature in figures (a), (b), and (c)

respectively using the potential by Mendelev et al. [46] to simulate the thermal expansion

of Al. Raw and fitted data are shown as solid and dashed lines respectively.
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accurately represent the data obtained from simulation. Similar observations are noted

when using the potentials by Liu et al. [40] and Zope and Mishin [74] to simulate the

thermal expansion of crystalline Al. When modeling and simulating crystalline Ti, the

thermal expansion in the x, y, and z directions differ from one another because of its

anisotropic hexagonal crystal structure. The changes in length are however still found to

be smooth functions of temperature and are well represented by cubic polynomials.

Equation 3.9 is applied to the simulation data acquired from each interatomic poten-

tial to calculate the CTE of crystalline Al and Ti as a function of temperature. Results

determined via MD simulation are then plotted and compared to one another as shown in

Figure 3.5. Experimental CTEs of crystalline Al [70, 30] and Ti [59, 30] are also plotted

as dashed lines to serve as references in determining which potential best predicts their

thermal expansion. Figure 3.5 (a) plots the thermal expansion of Al predicted from MD

simulations and compares the results to the two experimental sources. The simulated

CTEs using the potentials by Liu et al. [40] and Zope and Mishin [74] both underes-

timate those given by experimental data, the former more so than the latter. On the

other hand, the results obtained with the potential due to Mendelev et al. [46] slightly

overestimate the CTE of Al, but by a smaller margin. It is therefore determined that the

interatomic potential by Mendelev et al. [46] best replicates the thermal expansion of Al,

and is selected as the potential of choice in the subsequent simulations. In Figure 3.5 (b),

the CTEs of Ti obtained via MD simulations are compared to those from experiments.
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Figure 3.5: Simulated (solid lines) and experimental (dashed lines) CTEs plotted as a

function of temperature for Al and Ti in figures (a) and (b) respectively.
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From this plot it is seen that the potential by Zope and Mishin [74] produces results that

closely match the experimental results by Sirota and Zhabko [59]. CTEs determined by

Ackland [1] have the correct overall trend, however the differences between the empirical

data are in general larger. The outcome from this simple study reveals that the inter-

atomic potential by Zope and Mishin [74] gives the best correlation to experimental data,

and is thus used to model Ti in the following simulations.

Thermal Expansion

Using the potentials by Mendelev et al. [46] and Zope and Mishin [74] to define the

atomic interactions for Al and Ti respectively, amorphous structures are created by

rapidly quenching each material from its liquid state as other MD studies have done

[52, 44]. Like before, 32,000 atoms in a 20 × 20 × 20 unit cell array are simulated with

periodic boundary conditions in all directions and a timestep of 1 fs is used. Under NPT

dynamics, liquid Al and Ti are equilibrated at 1500 K and 2500 K respectively (well above

their melting points) for 100 ps. After equilibration, the metallic liquids are cooled at

a rate of 100 K/ps to a final temperature of 50 K. Rapid cooling of the liquid prevents

the nucleation and formation of crystal structures, thus amorphous states are obtained.

Immediately after cooling, the system is equilibrated further for 50 ps. Following equili-

bration of the quenched state, the potential energy of the system is minimized to remove

any internal stress in the material created from the rapid cooling process [67]. Mini-

mization is performed using a built-in function in LAMMPS that iteratively adjusts the

atomic coordinates to minimize the potential energy using a conjugate gradient optimiza-

tion algorithm. Since the atomic arrangements are sufficiently disordered, minimization

does not create crystal structures and thus the energy of the system is driven to a lo-

cal minimum. The resulting amorphous structure is verified by visualizing the atomic

coordinates and examining the radial distribution function (RDF) of the system. After

minimization, the amorphous states of Al and Ti are heated at a rate of 1 K/ps and

ℓx, ℓy, and ℓz are recorded at regular intervals. During the entire process, the size of

the simulation box is allowed to expand and contract anisotropically under zero external

pressure. Using the same method as described previously, the CTEs of amorphous Al

and Ti are calculated according to Equation 3.9. Due to the instability of amorphous

structures and variability in phase space sampling, the results from 10 simulations are

used to determine mean CTE values. The inputs into the 10 simulations are identical
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except for the random number seed which is used to generate the initial velocities of the

atoms under a Boltzmann distribution. For each of the 10 simulations, a random number

seed is chosen between 1,000 and 100,000 using a random number generator.

Recrystallization

In examining the recrystallization behaviour of amorphous Al and Ti, the same inter-

atomic potentials used in the study of thermal expansion are employed — the potentials

by Mendelev et al. [46] and Zope and Mishin [74] are used to model Al and Ti respec-

tively. To obtain amorphous phases of Al and Ti, the same procedure as described before

is used. Liquid Al and Ti is rapidly quenched at a rate of 100 K/ps to 50 K and sub-

sequently equilibrated. Following equilibration, the potential energy of the system is

minimized to remove unnatural atomic configurations. The temperature of the system

is then increased at a rate of 1 K/ps under an isobaric-isothermal ensemble. During

heating, the total potential energy and volume of the system is recorded as a function

of temperature. When devitrification occurs, a sudden drop in potential energy will be

noted at a particular temperature when the metastable amorphous phase transforms into

a more energetically favourable crystalline state [44, 51]. The temperature at which an

abrupt decrease in potential energy is observed is thus denoted as Tx. Similar trends will

be noted with the volume versus temperature profiles of amorphous Al and Ti. During

initial heating, the volume of the material will expand until Tx is reached. When devitri-

fication occurs, a decrease in volume will be observed as the amorphous states transform

into a more compact crystalline state. The amount of shrinkage due to recrystallization

is therefore quantified by comparing the volume of the amorphous material at Tx to the

volume of its crystalline counterpart at a higher temperature Tx2. The volume of crys-

talline material at Tx2 is selected in order to emulate complete recrystallization over a

long period of time. A volumetric expansion coefficient due to devitrification, βr, is thus

defined to describe the contraction in volume over the course of the phase transition:

βr =
1

Va,x

Vc,x2 − Va,x

Tx2 − Tx

(3.10)

where Va,x is the volume of the amorphous material at Tx, and Vc,x2 is the volume of

the crystalline material at Tx2. Equation 3.10 therefore gives a linear approximation

of the change in volume between Tx and Tx2. A linear expansion coefficient due to

recrystallization, αr, can be related to βr assuming the material has isotropic thermal
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expansion. Considering a cube of material with volume V and side length ℓ, the volume

after an increase in temperature, ∆T , is:

V + ∆V = (ℓ + ∆ℓ)3

= ℓ3 + 3ℓ2∆ℓ + 3ℓ∆ℓ2 + ∆ℓ3 (3.11)

Substituting ℓ3 = V and ∆ℓ = αrℓ∆T into Equation 3.11 and rearranging gives:

0 = (3αr − βr) + 3α2

r∆T + α3

r∆T 2 (3.12)

Thus, given βr and ∆T , αr can be calculated by solving Equation 3.12. As before, the

results from 10 simulations are averaged to obtain sufficient statistical sampling. Thus,

mean values are obtained for Tx and Va,x for determining βr and αr.

Since the initial conditions and heating rates are identical for the exploration of

thermal expansion and recrystallization, the same set of simulations are used for both

analyses. In fact, the two investigations are related since the CTEs of amorphous Al and

Ti are only determined up to Tx. Thus, Tx of amorphous Al and Ti determined from the

study of recrystallization is required in the investigation of thermal expansion.

3.2.3 Results and Discussion

Amorphous States

The atomic structures of liquid Al and Ti cooled at a rate of 100 K/ps are visualized using

VMD to confirm that amorphous materials have been obtained. Figure 3.6 illustrates the

atomic configurations of Al and Ti in parts (a) and (b) respectively after quenching and

Figure 3.6: Atomic configurations of Al and Ti shown in figures (a) and (b) respectively.

Edges of the periodic simulation cell are illustrated by the black lines.
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minimization. For both elements, the atoms are in a disorder state with no crystalline

structures visible. This is in contrast to Figure 3.3 where atoms are neatly arranged and

crystal lattices are clearly observed. From these images it is clear that the quenched

states of Al and Ti are non-crystalline. In addition to visualization, the RDFs of the

amorphous materials are analyzed. The RDF, also known as g(r), is commonly used

to characterize atomic structures [51]. It measures from any given atom, the number

of other atoms found at a distance r, normalized by the number of atoms that would

be found in a uniformly distributed system. By this definition, g(r) approaches 1 as r

becomes large. Typical RDFs of amorphous Al and Ti at 300 K are shown in Figures 3.7

(a) and (b) respectively and compared to the RDFs of their crystalline states (shown

in dashed lines). For a crystalline material, numerous sharp and well defined peaks are

observed because the atoms sit and oscillate about their lattice positions. The locations

of these peaks in the RDF represent the distances of the neighbouring atoms. With

amorphous states, the peaks are broader and located at different values of r. The first

peak of the RDF, which illustrates the distance of the nearest neighbour, is shifted to

the left when compared to the crystalline phase. This phenomenon has been observed by

Celik et al. [10] in their study of local structures in amorphous Al. Another characteristic

of g(r) for amorphous materials is the split second peak as seen in Figure 3.7. The second

peak is much broader than the first, with two apexes observed. This double peak is a

common characteristic and feature of amorphous materials and has been noted by other

researchers [43]. Thus it is confirmed that amorphous Al and Ti have been successfully

created by the quenching process.
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Figure 3.7: RDFs of amorphous and crystalline states of Al and Ti at 300 K are shown

in figures (a) and (b) respectively.



Chapter 3. Molecular Dynamics Study of Amorphous Materials 52

Thermal Expansion

Following the methodology described in Section 3.2.2, the CTEs of amorphous Al and Ti

are calculated from the change in ℓx, ℓy, and ℓz as the system is heated. The variation in

ℓi as a function of T in a typical simulation of amorphous Al is illustrated in Figure 3.8.

Raw data from simulation are represented by the thin lines, while the cubic polynomial

interpolants are plotted by bold lines. Information up until the temperature of recrys-

tallization is used for fitting since only the CTE of the amorphous states are of interest.

Using the entire set of data would also result in a poor fit due to the abrupt changes

in size caused by the transition in phase. Prior to recrystallization, it is observed from

Figure 3.8 that ℓi does not vary smoothly as the temperature increases. This is in con-

trast to the results in Figure 3.4 which show smooth changes for crystalline Al. Pressure

fluctuations are inherent to MD simulations due to the use of statistical ensembles to

control macroscopic quantities. The variation in simulation size is thus a manifestation

of the fluctuations in pressure, compounded by the fact that amorphous materials are

metastable. When amorphous Al is heated from 50 K, the system is in general found to

increase in the x, y, and z directions. Above a certain temperature however, a sudden

overall decrease in the simulation size is observed. This phenomenon is a consequence of

amorphous Al transitioning into a denser crystalline state. Once the amorphous phase

has completely crystallized, the thermal expansion resumes that of a crystalline mate-

rial. It can be seen in Figure 3.8 that past 600 K, the lengths of the simulation box

grow steadily with increasing temperature. Although not shown here, the simulation of

amorphous Ti reveals similar characteristics and patterns in the data as described here
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Figure 3.8: Variation in simulation cell size as amorphous Al is heated from an initial

temperature of 50 K at a rate of 1 K/ps.
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for Al.

In this study, the CTEs of amorphous Al and Ti are calculated between 100 K and Tx

at 50 K intervals. For Al and Ti, Tx has been established to be roughly 450 K and 550 K

respectively — details in determining their recrystallization temperatures are given later

in this section. Using Equation 3.9, the CTE at a given temperature is calculated and

then averaged over the 10 simulations to obtain the results plotted in Figures 3.9 and

3.10 for Al and Ti respectively. The variation in CTEs obtained from MD simulation

is shown by error bars about the mean values, illustrating plus and minus one standard

deviation. CTEs of crystalline Al and Ti from literature and MD simulations in this

work are also plotted for reference and comparison.

Figure 3.9 illustrates the CTEs of amorphous and crystalline Al. Experimental data

for the thermal expansion of crystalline Al are taken from the study by Wilson [70] and

the American Institute of Physics Handbook [30]. The two experimental sources give

results that are in very close agreement with each other. No studies have been found

that give the CTE of amorphous Al. From this work, the computer simulated thermal

expansion of crystalline Al produces results that are in accordance with experimental

data. The trend of increasing thermal expansion with temperature is correctly reproduced

by the interatomic potential, and the predicted CTEs are slightly higher than those

reported from experiment. A difference of approximately 3 ppm/K at room temperature

is observed, which decreases with higher temperature. This deviation is minimal in

comparison to a previous MD study by Alper and Politzer [3] which overestimates the
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Figure 3.9: CTE of amorphous Al plotted as a function of temperature. Crystalline

CTEs from simulation and literature are also shown for comparison.
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thermal expansion of crystalline Al by factors of 1.5–2.0. The disparity between MD

and experimental results is explained by the limited description provided by empirical

interatomic potentials. A comparison between the thermal expansion of amorphous and

crystalline Al derived from MD simulations reveals a number of different features. From

Figure 3.9, it is apparent that for both phases of Al, the CTEs are similar at temperatures

below 250 K — the CTE of amorphous Al is however a few ppm/K lower. At temperatures

above 250 K, the predicted thermal behaviour between amorphous and crystalline Al

are very different. For crystalline Al, the CTE shows an increasing trend with higher

temperatures, while in the case of amorphous Al, the CTE drops off rapidly. At 300 K,

the CTE of amorphous Al is approximately 10 ppm/K lower than that of crystalline Al,

and decreases to -10 ppm/K at 450 K. This decrease in thermal expansion is attributed to

thermally activated recrystallization in which the amorphous atomic structure transforms

into a more favourable and denser crystalline state. Since each simulation begins with

varying initial atomic velocities, the trajectories of the system will differ. The variation

between simulations is illustrated by the error bars representing plus and minus one

standard deviation of the ten CTEs calculated at each temperature. In general, there is

more spread in the simulated results at higher temperatures. At 350 K and below, the

standard deviation is approximately 1.0–2.4 ppm/K. For 400 K and higher, the standard

deviation grows significantly as simulations produce drastically different results. The

increased variability at high temperatures can be explained by the unstable manner in

which amorphous Al transitions to a crystalline phase. Furthermore, pressure fluctuations

inherent to MD simulations are found to create prominent volume fluctuations in the

system, particularly near Tx because of the metastable amorphous state of Al. These

factors affect the polynomial fitting of simulation data, which causes variations in α

since it is sensitive to the slopes of the cubic interpolant. As a result, large variations in

the predicted CTE near Tx are observed.

The CTE of Ti in both crystalline and amorphous states are illustrated and contrasted

in Figure 3.10. Two sources in the literature have been found that give the experimental

CTE of crystalline Ti as a function of temperature, those from a study by Sirota and

Zhabko [59] and the American Institute of Physics Handbook [30]. Once again, no stud-

ies have been found which investigate and quantify the thermal expansion of amorphous

Ti. The two experimental sets of data show good agreement with one another. Both

sources give similar CTEs and an increasing trend with higher temperature. Sirota and

Zhabko [59] reports values that are slightly lower than those from the American Institute
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Figure 3.10: CTE of amorphous Ti plotted as a function of temperature. Crystalline

CTEs from simulation and literature are also shown for comparison.

of Physics Handbook, but the differences are no greater than 1.2 ppm/K. Using the po-

tential by Zope and Mishin [74], the thermal expansion of crystalline Ti shows excellent

conformance with both experimental sources as seen in Figure 3.10. Results are very

close to the experimental CTEs given by Sirota and Zhabko [59], but are slightly lower

than those from the American Institute of Physics Handbook [30]. The disagreement

between the simulated and experimental CTEs is once again attributed to the limited

accuracy of the interatomic potential. Comparing MD results between amorphous and

crystalline Ti reveals that the CTE of amorphous Ti is consistently higher than that of

its crystalline state. Differences between 2.3–3.2 ppm/K over the simulated temperature

range of 100–550 K are observed. The CTE of amorphous Ti remains more or less steady

as the temperature approaches Tx, unlike amorphous Al where a sudden decrease in

thermal expansion is observed. The difference in behaviour can be explained by compar-

ing the volumes of Al and Ti in both their amorphous and crystalline states. At 300 K,

the atomic volumes of amorphous and crystalline Al are 18.18 and 16.73 Å3/atom respec-

tively, corresponding to a negative 8 % change in volume. This value is comparable to the

9 % predicted by Becquart et al. [4]. Amorphous and crystalline Ti have atomic volumes

of 17.83 and 17.80 Å3/atom respectively, a difference that is extremely small. A large

discrepancy in atomic volume, and therefore density, is found between the two phases of

Al. This disparity is minimal when comparing the two states of Ti. Thus as amorphous

Ti recrystallizes, the decrease in volume is much smaller when contrasted with the phase

transition of Al. This is evident from Figure 3.11 which illustrates the atomic volume
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Figure 3.11: Atomic volume versus temperature profiles of amorphous (a) Al and (b) Ti

during recrystallization. Each line represents one of the ten simulations performed.

versus temperature profiles of amorphous Al and Ti during recrystallization. In the case

of Al, a negative change of roughly 0.6 Å3/atom is observed, while very slight differences

are noted for Ti. Furthermore, the MD simulations show that the process of devitrifi-

cation for Ti takes place gradually over a greater temperature range and is less abrupt

than that of Al. As a result of these two factors, the thermal expansion of amorphous

Ti does not exhibit an extreme and sudden decline near Tx. Another consequence of the

gentle amorphous to crystalline transition is noted in the variation between simulations

as illustrated by the error bars in Figure 3.10. For amorphous Ti, the standard deviation

in CTE ranges between 0.2–0.7 ppm/K, much lower than that of amorphous Al. The

variability in results are also more or less constant throughout the simulated tempera-

ture range and do not increase as temperatures approach Tx, unlike the behaviour noted

for amorphous Al.

Recrystallization

The devitrification of amorphous Al and Ti is first confirmed by examining the evolution

of their RDFs and via visualization. Figure 3.12 shows the RDF of Al at 300 K and

800 K (before and after recrystallization), and a visual snapshot of the atoms at 800 K.

The RDF at 300 K clearly shows an amorphous structure as noted by the split second

peak. At 800 K, the profile has changed significantly with the appearance of new peaks

indicating a crystalline atomic structure. Figure 3.12 (b) illustrates the atomic coordi-

nates of Al at 800 K rendered via VMD. The snapshot reveals that the atoms are neatly

arranged in crystalline structures. From this evidence it is therefore confirmed that Al,
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Figure 3.12: RDFs of Al simulation at 300 K and 800 K shown in figure (a). Figure (b)

illustrates the atomic coordinates of Al at 800 K.

beginning from an amorphous state, has recrystallized once sufficiently high temperatures

are reached. Although not shown, similar observations are found for Ti. To pin-point the

phase transition temperatures of Al and Ti, their potential energy versus temperature

profiles as shown in Figure 3.13 are analyzed.

Figure 3.13 (a) illustrates how the potential energy of amorphous Al varies as a func-

tion of temperature. Each solid line represents the data obtained from one of the ten

simulations. As the system is heated from 50 K, the potential energy grows at a roughly

linear rate until the point of recrystallization, where the potential energy suddenly falls

with increasing temperature. This abrupt drop is observed because the metastable amor-

phous structure transforms into a more energetically favourable crystalline state that is

of lower potential energy. In most instances, the potential energy is found to decrease in

multiple steps and in a discontinuous fashion. This behaviour is attributed to the sudden

nucleation and growth of the crystalline phases and the formation of multiple grains in

the system. Grain boundaries introduce additional energy to the system because the

bonds in this region are stretched and the atoms are in a suboptimal state [8]. Further

heating eliminates these boundaries to create larger grains, thus the potential energy con-

tinues to decrease with higher temperatures. Since the recrystallization process varies

for each simulation, the final potential energy after the amorphous to crystalline phase

transition is not necessarily the same and is found to differ slightly. After amorphous

Al has recrystallized, the potential energy once again resumes an approximately linear

increase with temperature. Using the curves in Figure 3.13 (a), Tx is estimated for the

ten simulations. The average value of Tx for amorphous Al is therefore calculated to

be 453.4 K with a standard deviation of 22.7 K and is illustrated by the vertical dashed
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Figure 3.13: Potential energy of amorphous (a) Al and (b) Ti plotted as a function of

temperature. Results from all ten simulations are shown and the average recrystallization

temperature is illustrated by the dashed vertical line.

line. Considerable variability in Tx is noted between the ten simulations as seen in Fig-

ure 3.13 (a). As explained before, this is due to the variation of MD simulations within

the statistical ensemble and the metastable amorphous phase of Al. The predicted Tx

for amorphous Al from this work is compared to the results by Lu and Szpunar [44]

and Shimono and Onodera [57] which give Tx to be 550–630 K and 230 K respectively.

The estimated recrystallization temperature from this work is found to differ from the

previous investigations, but is closer to the range given by Lu and Szpunar [44] being

approximately 100 K lower.

Figure 3.13 (b) plots the potential energy of amorphous Ti as a function of temper-

ature. Similar to the behaviour of Al, an approximately linear correlation between the

potential energy and temperature is observed during initial heating. As temperatures

approach Tx, subtle changes in potential energy are observed. Unlike Al, the potential

energy of the Ti system does not exhibit extreme and abrupt decreases during devitrifi-

cation. In general, a small dip in potential energy is found to occur at Tx, followed by a

large and sudden decrease at elevated temperatures. This behaviour can be explained by

the fact that amorphous Ti tends to crystallize into many small grains as seen through

visualization of the atomic coordinates. Figure 3.14 illustrates a slice of the simulation

cell at 800 K where numerous groups of crystalline atomic structures are visible, each

with different directionalities. The cluster of atoms belonging to one specific orientation

represents a grain. As explained previously, grain boundaries are non-ideal atomic con-

figurations which add potential energy to the system. As the temperature of the system
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Figure 3.14: Slice of Ti simulation box at 800 K revealing multiple grains. Examples of

grain boundaries are identified by the black lines.

is increased, the grain boundaries are eliminated to form larger grains, thus explaining

the drop in potential energy observed at temperatures above Tx. Grain growth is found

to initiate at different temperatures due to the variation between MD simulations. After

amorphous Ti has recrystallized, the potential energy once again resumes a linear in-

crease with temperature, similar to the trend observed with Al. Using the same method

as before, the recrystallization temperature is estimated for the ten simulations using the

potential energy profiles in Figure 3.13 (b). The average Tx for amorphous Ti is thus

determined to be 552.2 K with a standard deviation of 28.1 K and is indicated in Fig-

ure 3.13 (b) by the vertical dashed line. Compared to Tx for amorphous Al derived from

this work, it is approximately 100 K higher, while the standard deviation is of similar

magnitude. The disparity between simulations is once again attributed to the variation

from statistical sampling. MD simulations by Shimono and Onodera [57] predict Tx to

be approximately 280 K for Ti, much lower than the value obtained from this research.

However, both investigations predict Tx of Ti to be greater than that of Al. This trend

is in accordance with intuition because the cohesive energy of Ti is higher than Al, thus

more energy (higher temperature) is required to break the atomic bonds.

Via Equations 3.10 and 3.12, αr for Al and Ti are determined using the volume

versus temperature data from simulation. Figure 3.15 shows the average atomic volume

profiles of amorphous Al and Ti with the volumes of crystalline Al and Ti illustrated for

comparison. It is found that even after recrystallization has occurred, the volume of the

system does not reach that of a perfectly crystalline state and is slightly elevated. As

noted earlier, recrystallization from an amorphous state tends to create multiple grains

and numerous defects which creates distortions in the lattice and affects the density of
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Figure 3.15: Mean atomic volume versus temperature profiles of amorphous and crys-

talline (a) Al and (b) Ti. Data points used to calculate βr are identified.

the material. From the previous analysis, Tx was determined to be roughly 450 K and

550 K for Al and Ti respectively. Using this information, Va,x is extracted from the

amorphous volume curves as depicted in Figure 3.15. From these profiles, it is estimated

that the process of recrystallization occurs over a temperature range of 100 K, thus Tx2

is selected to be equal to Tx + 100 K for both Al and Ti. With the knowledge of Tx2,

Vc,x2 is determined from the crystalline volume curves as shown in Figure 3.15. Table 3.1

summarizes the values identified from the procedure described above which are used to

calculate βr for Al and Ti. Substituting the corresponding numbers into Equation 3.10

gives βr to be −5.94 × 10−4 K−1 and −1.00 × 10−5 K−1 for Al and Ti respectively. The

values of βr are then used in Equation 3.12 to solve for the linear expansion coefficient due

to recrystallization given ∆T = 100 K. Using the fsolve function in MATLAB [32], the

non-linear expression is solved to give αr equal to −2.02×10−4 K−1 and −3.34×10−6 K−1

for Al and Ti respectively. Given the extreme change in volume during the transition

between amorphous and crystalline Al, a large negative linear expansion coefficient due

to recrystallization is computed for Al. The opposite is noted for Ti where a modest

negative value of αr is calculated because of the small transformation in volume during

devitrification.

Table 3.1: Temperatures and atomic volumes for calculating βr for Al and Ti.

Material Tx (K) Va,x (Å3) Tx2 (K) Vc,x2 (Å3)

Aluminum 450 18.175 550 17.095

Titanium 550 17.989 650 17.971



Chapter 4

Mechanical Properties of Al and Ti

Thin Films

The mechanical properties of Al and Ti thin films are examined via experimental nanoin-

dentation and FE simulations in this chapter. Methods for determining the Young’s mod-

ulus and plastic properties of materials from nanoindentation load-displacement curves

are reviewed in Section 4.1. In Section 4.2, the experimental procedure for conducting

nanoindentation on thin Al and Ti films is given, and the analysis of experimental data

is described. The resulting elastic and plastic properties of the films are also discussed.

4.1 Identifying Material Properties via Nanoinden-

tation

Nanoindentation tests are commonly used to derive the mechanical properties of small

scale materials, such as thin films, where traditional tension or compression methods

cannot be used. Typically, a sharp tip is used to indent the surface of a material while

the applied force and indentation depth is measured. From the load-displacement curve,

the elastic modulus and plastic properties of the material can be determined using the

methods outlined in Sections 4.1.1 and 4.1.2.

4.1.1 Young’s Modulus

The Oliver and Pharr [50] model is widely used to analyze nanoindentation data to

determine the elastic modulus of small scale materials and is an improvement on the

61
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procedure proposed by Doerner and Nix [18]. During a nanoindentation experiment,

an indenter tip is penetrated into the material of interest while the applied load and

displacement is continuously measured. Typical curves resulting from such experiments

are illustrated in Figure 4.1 with the important features and quantities identified. Given

the load-displacement data, the Young’s modulus is calculated using the maximum load

Pmax, maximum indentation depth hmax, and the contact stiffness S = (dP/dh) |hmax
. The

underlying assumption of the Oliver and Pharr [50] model is that the contact between the

indenter and material is purely elastic during unloading, and that the unloading curve

can be written in the general form:

P = α (h − hf )
m (4.1)

where P is the applied force, h is the elastic displacement, hf is the final displacement

after unloading, with α and m constants. By assuming the unloading curve follows

a power law, the Oliver and Pharr [50] model differs from the method proposed by

Doerner and Nix [18], which takes the unloading curve to be linear. The contact stiffness

is therefore determined by evaluating the derivative of Equation 4.1 at hmax.

Using Sneddon’s solution for contact between a flat cylindrical indenter and an elastic

half space [60], it can be shown that the contact stiffness is related to the reduced elastic

modulus Er, and projected contact area A, through the following equation:

S =
2√
π

Er

√
A (4.2)

A reduced Young’s modulus is defined to account for deformations arising from the non-

rigid indenter. Er is thus a function of the mechanical properties of the specimen and

Figure 4.1: Schematic of nanoindentation load-displacement curves with key features

identified.
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indenter and is given by:
1

Er

=
1 − ν2

E
+

1 − ν2

i

Ei

(4.3)

where E and ν are the Young’s modulus and Poisson’s ratio of the material of interest,

and Ei and νi are those of the indenter. Although Equation 4.2 is derived under the

assumption of a flat punch indenter, it has been shown by Pharr et al. [53] that it is

equally applicable for indenters described by the revolution of a smooth function. Another

assumption made by Oliver and Pharr [50] is that Equation 4.2 can be applied to surfaces

that are not flat. Since the material is plastically deformed during the loading stage,

there exists a residual impression in the surface upon unloading. Justification for this

assumption is provided through empirical observations [50] and a mathematical analysis

which reveals the load-displacement relationships for an indented or flat surface are the

same if geometric parameters are redefined [53]. By rearranging Equation 4.2, Er can be

written in terms of the contact stiffness and the area of contact. With S known from the

initial slope of the unloading curve, Er can thus be found by determining A. Given the

reduced modulus, the Young’s modulus of the specimen is deduced by substituting the

known mechanical properties of the indenter into Equation 4.3, and assuming a Poisson’s

ratio for the material of interest. It has been found that the result of the indentation

analysis is insensitive to ν, thus a precise value of the Poisson’s ratio of the material is

not required to accurately determine E [18, 73].

In the procedure developed by Oliver and Pharr [50], a three-sided pyramid known

as a Berkovich tip is used in the nanoindentation experiments. Figure 4.2 provides an

illustration of how the indenter tip penetrates into the surface of a material. It can be

seen that the total measured displacement is given by:

h = hc + hs

Figure 4.2: Cross section of indenter and material surface during nanoindentation pro-

cess. The total displacement, h, is comprised of the depth of contact and the surface

displacement represented by hc and hs respectively.
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where hc is the depth of contact, and hs is the displacement of the surface perimeter.

From Figure 4.2, it is evident that A is dependent on hc and the geometry of the indenter.

A function which relates the cross-sectional area to the distance from the tip can be

determined for a given indenter such that:

A = F (hc) (4.4)

Assuming small deformations in the indenter itself, A is calculated using Equation 4.4

and the contact depth at maximum load:

hc = hmax − hs (4.5)

hmax is readily available from the nanoindentation data, while hs can be determined using

Sneddon’s solution for the shape of the deformed surface [60]. The result of Sneddon’s

analysis thus gives:

hs = ǫ
Pmax

S
(4.6)

where ǫ is a constant whose value depends on the geometry of the indenter. For a conical

indenter, ǫ has a value of 0.72, while for a paraboloid of revolution and flat punch,

ǫ = 0.75 and 1 respectively. To determine which value of ǫ is most suitable for a Berkovich

indenter, Oliver and Pharr [50] analyzed the unloading curves of various materials. From

Sneddon’s analysis, it has been shown that the geometry of the indenter is correlated

to the exponent m in Equation 4.1 as summarized in Table 4.1. The experimental

nanoindentation curves obtained by Oliver and Pharr [50] show that m has a mean

value of 1.4, thus it is determined that the Berkovich indenter is best described by a

paraboloid geometry. Consequently, ǫ = 0.75 is used in Equation 4.6 for calculating

hs. A paraboloid indenter, rather than a conical indenter, better simulates a sharp

pyramidal Berkovich indenter due to the concept of an effective indenter shape [49]. The

point of contact is not sharp and singular due to the fact that the indenter is pressed

into a residual impression formed from plastic deformation during loading. Furthermore,

Table 4.1: Indenter shape and associated constants from Sneddon’s analyses.

Geometry ǫ m

Flat punch 1 1

Paraboloid 0.75 1.5

Conical 0.72 2
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elastic recovery during unloading creates a convex curvature on the surface and as a

result, the pressure distribution about the tip is better predicted by a parabolic shape.

Thus, utilizing Equations 4.1–4.6, the elastic modulus of a material can be determined

from the load-displacement data obtained from nanoindentation experiments.

4.1.2 Plastic Properties

Characterizing the plastic properties of thin films via conventional methods, such as mi-

cro tensile, bulge, or cantilever beam deflection tests, requires careful micromachining to

separate the film from the substrate while preserving the integrity of the film [73]. Re-

searchers have therefore developed techniques where the elastic-plastic properties of thin

films can be determined via nanoindentation experiments and finite element modeling

with the substrate intact [73, 37]. In fact, the substrate plays a crucial role in determin-

ing unique material properties. In this work, the method developed by Zhao et al. [73]

is used to extract the plastic properties of Al and Ti thin films, thus the concepts and

procedures are briefly summarized and explained.

In traditional nanoindentation experiments, such as the Oliver and Pharr [50] method,

the maximum depth of penetration must be less than 10% of the film thickness to avoid

the influence of substrate effects [66]. The approach by Zhao et al. [73], however, utilizes

deeper indentations to extract the mechanical properties of thin films. Cheng and Cheng

[13] has shown, using dimensionless functions, that stress-strain relationships cannot be

determined uniquely using only the loading and unloading curves from conical or pyra-

midal indenters. Thus it is possible for two materials with distinct mechanical properties

to share the same load-displacement curves. Zhao et al. [73] proposes a method in which

deep nanoindentation is used to take advantage of the substrate effect. During large pen-

etration depths, the substrate stiffness introduces a new factor which affects the shape

of the loading and unloading curves [72]. Materials that would otherwise have indistin-

guishable nanoindentation curves would thus give distinct profiles as the interaction with

the substrate differs.

Shape Factors

The loading and unloading curves from deep nanoindentation are parameterized by non-

dimensional factors and mapped to material and substrate properties. A typical nanoin-

dentation load-displacement curve is illustrated in Figure 4.3 with the important pa-
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Figure 4.3: Schematic diagram of nanoindentation load-displacement curve with impor-

tant parameters relevant to the analysis by Zhao et al. [73] labeled.

rameters required in the analysis identified. A reduced residual penetration depth dr is

defined when P = 0.1Pmax to avoid errors in determining the true residual displacement

[73]. The unloading work Wu is defined as the area under the unloading curve between

dr and dmax as illustrated by the area in grey. To determine the shape factors and non-

dimensionalize the nanoindentation curves, it is first assumed that the stress-strain curve

of the film can be expressed by a power law of the form:

σ =

{

Efǫ for ǫ ≤ σf/Ef

Rfǫ
nf for ǫ ≥ σf/Ef

(4.7)

where Ef , σf , and nf are the Young’s modulus, yield stress, and work hardening exponent

of the film, and Rf ≡ σf (Ef/σf )
nf to ensure continuity. Thus, the set of three quantities

(Ef , σf , nf ) is sufficient to describe the elastoplastic properties of the film.

Using dimensional analysis, the following independent dimensionless functions can be

constructed to parameterize the loading and unloading curves [73]:

P

σfd2
= Φ

(
Ef

Es

,
Ef

σf

, nf ,
d

h

)

(4.8)

Wu

Ef (d − dr)
3

= Ω

(
Ef

Es

,
Ef

σf

, nf ,
d

h

)

(4.9)

where Φ and Ω are non-dimensional functions, Es is the Young’s modulus of the substrate,

P is the applied load, d is the penetration depth, and h is the thickness of the film.

By performing two indentations at different depths, d1 = h/3 and d2 = 2h/3, four

independent equations are obtained to determine the elastoplastic properties of the thin

film. Penetration depths of one and two-thirds the thickness of the film are chosen such

that the substrate effect is profound and distinct, but not too deep to cause delamination
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of the film [73]. Since only three parameters are required to describe the mechanical

properties of the material, only three independent equations are needed to obtain a

unique solution. Thus, one penetration to a depth of two-thirds the film thickness is

sufficient to compute the material properties since the applied load at d1 and d2, P1 and

P2, can be measured on the same loading curve. Equation 4.9 for d/h = 1/3 provides

redundant information and is therefore discarded. The following three non-dimensional

functions are therefore obtained and correlated to the material and substrate properties:

ln

(
P1

σfd2
1

)

= f1 (ξ, η, nf ) (4.10)

ln

(
P2

σfd2
2

)

= f2 (ξ, η, nf ) (4.11)

ln

(

Wu2

Ef (d2 − dr2)
3

)

= h2 (ξ, η, nf ) (4.12)

where ξ ≡ ln (Ef/Es) and η ≡ ln (Ef/σf ). For an indentation to a maximum depth of

d2, the reduced residual displacement is dr2, and the associated unloading work is Wu2.

Forward Analysis

The functions f1, f2, and h2 in Equations 4.10–4.12 have been determined by Zhao

et al. [73] using a series of FE simulations to map the shape factors to the dimensionless

variables. In their simulations, an axisymmetric model is created using ABAQUS with

the substrate width and height 100 times larger than the thickness of the film. The film

is elastoplastic as described by Equation 4.7, and the substrate is assumed to behave

elastically. Both the film and substrate are also taken to behave isotropically. The

Berkovich indenter is modeled as a rigid conical surface with a half apex angle of 70.3 ◦

such that the same area function is retained. Loading and unloading curves obtained via

pyramidal and conical indenters having the same area function have been shown to be

almost identical [73]. In the simulations by Zhao et al. [73], a Poisson’s ratio of 0.3 is

taken for both the film and substrate, and Coulomb friction is assumed with a friction

coefficient of 0.15. The influence of friction on the results are minimal, as a FE study

showed little change in the loading and unloading curves as the coefficient of friction

was varied between 0–0.4 [41]. The parameter Ef/σf is varied between 10 to 4000,

nf between 0 and 0.6, and Ef/Es from 1/8 to 8. These ranges encompass commonly

encountered materials and film-substrate pairings [73]. FE simulations are conducted for

all combinations of parameters and the shape factors of the resulting nanoindentation
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curves are determined. Thus, fitting the FE results to the input material and substrate

properties gives f1, f2, and h2. The forms of these functions are not shown here for

brevity, but can be found in the appendix of the paper by Zhao et al. [73].

Reverse Analysis

To extract the mechanical properties of the film, the elastic modulus of the substrate must

first be known. This information may be found in literature or measured experimentally

via the Oliver and Pharr [50] method. With Es known, a deep indentation is performed

using a Berkovich tip such that dmax = d2 = 2h/3. d1 is equal to 1/3h by definition

and the parameters P1, P2, dr2 and Wu2 are determined from the experimental load-

displacement curve. A total error function, e, is defined as follows:

e =

∣
∣
∣
∣

(

ln

{
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1

}
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)/
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1

)∣
∣
∣
∣
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The values of Ef , σf , and nf that minimize Equation 4.13 are therefore the material

properties of the film.

4.2 Elastic-Plastic Properties of Al and Ti Thin Films

4.2.1 Experimental Method and Analysis

The objective of this study is to characterize the mechanical properties of Al and Ti thin

films in order to accurately model and understand the properties of the bi-material lattice.

The microstructure of the films may deviate from that of their bulk form due to the

manufacturing process, thus altering their mechanical properties. Using nanoindentation

experiments, the elastic-plastic stress-strain curves of Al and Ti films are extracted using

the methods described in the previous section. The experimental method and procedure

for analyzing the results are described here.

A combination of both methodologies by Oliver and Pharr [50] and Zhao et al. [73] are

used to determine the elastic-plastic properties of the thin films. To this end, two types of

nanoindentation experiments must be performed: (i) shallow, and (ii) deep indentations.
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All nanoindentation experiments are conducted with a MTS Nanoindenter G200 system

at the California Institute of Technology. Thermal drift due to temperature variations

is automatically calculated and accounted for by the machine. The Al and Ti films are

created via e-beam deposition to a nominal thickness of 1µm and the thicknesses of the

films are confirmed via a profilometer. For the shallow indentation experiments, a set of

10 penetrations to a maximum depth of 100 nm (10 % of the film thickness) are performed

for each material with a Berkovich indenter to obtain a series of loading and unloading

curves. The set of indentations are performed at different locations spaced 1 mm apart to

provide sufficient sampling of the film. For each indentation, the sample is penetrated at

a constant strain rate of 0.025 s−1. Once the maximum penetration depth is reached, the

applied load is held for a period of 10.48 s before unloading begins. From each data set,

the Young’s modulus is calculated according to the procedure by Oliver and Pharr [50]

described in Section 4.1.1. A mean elastic modulus is therefore taken from the average

of the results.

With the elastic moduli of the films known, the method by Zhao et al. [73] is utilized to

determine their yield stress, and work hardening exponent. In this analysis, the Young’s

modulus of the Si (100) substrate is taken to be 130 GPa [71]. Since there are only

two unknowns to solve for, the problem considered in the original paper by Zhao et al.

[73] can be reduced. The unloading curves obtained via nanoindentation describe purely

elastic contact, thus it does not provide any data regarding the plastic properties of the

film. The loading curve, however, is rich with information as the material undergoes

plastic deformation during the initial indentation. Thus the shape factor which describes

the unloading curve via the elastic recovery and unloading work is no longer used. By

discarding Equation 4.12, the following two dimensionless functions are considered:

ln

(
P1

σfd2
1

)

= f1 (η, nf ) (4.14)

ln

(
P2

σfd2
2

)

= f2 (η, nf ) (4.15)

Note that the parameter ξ = ln(Ef/Es) no longer appears as a variable in f1 and f2

since it is now a known constant. The two functions shown in Equations 4.14 and 4.15

are sufficient to determine σf and nf of the films through the same principles described

in Section 4.1.2. As before, a set of 10 indentations are conducted on both Al and Ti to

a maximum depth of 670 nm (roughly 2h/3). The loading profile follows the same strain

rate and holding period as used with the shallow indentations. The relevant parameters
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P1 and P2 are thus identified from the nanoindentation loading curve and used to calculate

the shape factors. A new reduced error function is defined as follows:

ē =

∣
∣
∣
∣

(

ln

{
P1

σfd2
1

}

− f1 (η, nf )

)/

ln

(
P1

σfd2
1

)∣
∣
∣
∣

(4.16)

+

∣
∣
∣
∣

(

ln

{
P2

σfd2
2

}

− f2 (η, nf )

)/

ln

(
P2

σfd2
2

)∣
∣
∣
∣

Similar to before, the set of (σf ,nf ) that minimizes ē represents the plastic properties

of the film. A genetic algorithm programmed in MATLAB is used to minimize the

function in Equation 4.16 with respect to σf and nf . In this problem, the number of

design variables is 2 and a population size of 40 is used. For convergence, it is required

that the best value of ē over the last 10 iterations have a standard deviation less than

10−10. Since genetic algorithms are probabilistic, the code is executed 10 times to ensure

consistent results. The yield stress and work hardening exponent is determined from each

load-displacement curve and then averaged together to obtain mean values of σf and nf .

4.2.2 Results and Discussion

Figures 4.4 (a) and (b) illustrate the loading and unloading curves produced by indenting

a Berkovich tip to approximately 100 nm on Al and Ti respectively. Each line represents

the data obtained from one of the 10 indentations. Very consistent load-displacement

profiles are observed for Al. The loading curves and unloading slopes between all 10

curves are in excellent agreement with one another. Load-displacement curves for Ti,
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Figure 4.4: Ten load-displacement curves obtained from indenting a thin film of (a) Al

and (b) Ti with a Berkovich tip to a maximum depth of roughly 100 nm.
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however, exhibit large variability between runs due to the reasons unknown at this time.

As the load is kept constant during the holding period, the material exhibits continued

time-dependent deformations known as creep. This phenomenon is typically observed in

nanoindentation experiments [18], but is ignored in the analysis by Oliver and Pharr [50]

and Zhao et al. [73]. Following the method outlined in Section 4.1.1, Pmax, hmax, and

S = dP/dh |hmax
are extracted from each load-displacement curve and used to determine

the average Young’s modulus for both films. The average elastic modulus for Al and Ti is

calculated to be 80 and 135 GPa with a standard deviation of 10 and 23 GPa respectively.

Results from this analysis give Young’s moduli that are slightly larger than bulk Al and

Ti, which have values of 70 and 116 GPa respectively, but are of similar magnitude.

Deep indentations are performed on the metallic and Si film/substrate specimens

to a maximum depth of approximately 670 nm. The resulting loading and unloading

curves for Al and Ti are illustrated in Figures 4.5 (a) and (b) respectively which show

similar characteristics to those obtained from shallow indentations. Creep is once again

observed in both Al and Ti films during the holding period. The load-displacement

curves between the 10 experiments are found to be consistent with each other for both

Al and Ti, with the exception of those shown by dashed lines in Figure 4.5. These

data sets show considerable deviation from the rest, and are therefore treated as outliers

and discarded. The remaining curves are thus used to extract the yield stress and work

hardening exponent of the thin films.
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Figure 4.5: Nanoindentation load-displacement profiles obtained by indenting a thin

film of (a) Al and (b) Ti to a depth of approximately 670 nm. Results from the ten

indentations are shown, with outlying results illustrated in dashed lines.
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Taking Ef = 80 GPa for Al, as determined above, σf and nf are determined via the

procedure described in Section 4.1.2. A genetic algorithm written in MATLAB is used

to minimize the error function given by Equation 4.16, thus an optimal set of (σf ,nf ) is

obtained from each nanoindentation curve. The average yield stress and work hardening

exponent for Al is calculated to be 0.80±0.07 GPa and −0.039±0.025 respectively, with

the range of values indicating plus and minus one standard deviation. Repeating this

analysis for Ti using Ef = 135 GPa gives σf = 2.93± 0.28 GPa and nf = −0.130± 0.028.

Stress-strain relationships resulting from the analysis of each load-displacement curve

are illustrated by the blue lines in Figures 4.6 (a) and (b) for Al and Ti. The thicker

red lines represent the average stress-strain curves having the mean values of σf and nf .

Two interesting characteristics are observed with the determined plastic properties of the

films. First, the yield stresses obtained from the analysis are much higher than those of

pure bulk Al and Ti which typically yield at approximately 20 MPa [14] and 190 MPa [7]

respectively. The flow stresses of the thin films determined from nanoindentation are over

an order of magnitude greater. Another note of interest is the negative work hardening

exponent which indicates the material becomes softer as it is strained. This phenomenon

has been observed in nanocrystalline Al with an average grain size of 150 nm [6]. Note

that negative values of nf were not considered in the study by Zhao et al. [73], therefore

this result is an extrapolation of the data collected from their FE simulations.

To determine whether the determined elastoplastic properties are in fact representa-

tive of the thin films, FE simulations are performed in ABAQUS to mimic the nanoinden-
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Figure 4.6: Stress-strain curves obtained from nanoindentation analysis for (a) Al and

(b) Ti. Blue and red lines represent individual and averaged results respectively.
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tation process. Similar to the study by Zhao et al. [73], a Berkovich indenter is described

as a conical surface whose tip has a half angle of 70.3 ◦ in an axisymmetric model. The

indenter is assumed to behave elastically with E = 1140 GPa and ν = 0.07, the properties

of diamond [37]. A thin film of either Al or Ti is modeled on top of a Si substrate, whose

dimensions are taken to be 100 times the thickness of the film. Si is taken to behave

elastically with a Young’s modulus of 130 GPa as used in the initial analysis. The Al film

is modeled as an elastic-plastic solid with the properties Ef = 80 GPa, σf = 0.80 GPa,

and nf = −0.039, with a stress-strain curve described by Equation 4.7. Similarly, the

parameters Ef = 135 GPa, σf = 2.93 GPa, and nf = −0.130 are used to model a Ti film.

By applying a prescribed displacement to the indenter, the Berkovich tip is pushed into

the films to the desired depth. The total reaction force on the bottom of the substrate

gives the load applied by the indenter. Load-displacement curves from FE simulation are

thus obtained for maximum indentation depths of 110 nm and 670 nm for both Al and

Ti. The resulting curves are then compared to the data from experiments as shown in

Figures 4.7 and 4.8 for Al and Ti respectively.

Shallow load-displacement profiles from experiment and FE analysis are compared

in Figure 4.7 (a) for Al. The nanoindentation curve obtained via simulation appears

wavy during loading due to the discretized meshing. Despite this fact, excellent congru-

ency is found between the experimental and simulated load-displacement curves. Both

the loading and unloading segments are accurately predicted and reproduced using the

elastic-plastic properties of the Al film derived in the previous analysis. In Figure 4.7
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Figure 4.7: Experimental and simulated nanoindentation curves for (a) shallow and (b)

deep indentations on Al.



Chapter 4. Mechanical Properties of Al and Ti Thin Films 74

(b), a comparison is made between the experimental and simulated deep nanoindenta-

tion curves for Al. Once again, an excellent correlation is observed between the load-

displacement profiles during both loading and unloading. A minor discrepancy is noted

in the lower portion of the unloading curve in Figure 4.7 (b), where the FE simulation

predicts slightly less elastic recovery than those observed in experiments. The upper

portion of the curve and initial unloading slope, however, are in excellent agreement.

FE simulations using the extracted elastic-plastic properties of Al are found to produce

load-displacement curves consistent with experiment, despite having extrapolated nega-

tive work hardening exponents. Thus the mechanical properties of the Al film determined

from the reverse analysis have been validated.

Figure 4.8 (a) illustrates the simulated and experimental load-displacement curves

from shallowly indenting a Ti thin film. Although the results from experimental nanoin-

dentation show widespread variation, the FE loading and unloading curve appears to be

situated in the middle. It can therefore be concluded that the solution from simulation

is, on average, representative of the experimental data. Nanoindentation curves due to

deep indentations into the Ti film are also compared in Figure 4.8 (b). Good agreement

is noted between the experimental and simulated profiles upon initial loading. At larger

displacements however, the results begin to deviate slightly. At a given indentation depth,

forces predicted from the FE simulation are larger than those recorded from experiments.

This difference grows to approximately 5 % at the point of maximum depth and load.
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Figure 4.8: Experimental and simulated nanoindentation curves for (a) shallow and (b)

deep indentations on Ti.
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Unloading profiles from experimental data and FE simulation, however, show excellent

agreement with the slopes matching throughout the entire unloading curve. The slight

discord observed during the loading curve is within the standard deviation and error of

the analysis, compounded with the fact that negative work hardening exponents have

been extrapolated. Overall there is good agreement between the experimental and mod-

eled results, and thus the elastoplastic properties of the Ti thin films are validated from

this FE study.



Chapter 5

New Lattice Configuration with Low

Thermal Expansion

Designs for microscale lattices that have near zero thermal expansion are described and

analyzed in this Chapter. Two lattice configurations having near zero CTE are designed

with the aid of FE simulations under different assumptions and presented in Section 5.1.

An FE study is conducted on the two designs in Section 5.2 to validate and reveal the

response of the lattice to thermal cycling.

5.1 Lattice Design

It is the goal in this section to design a bi-material lattice which exhibits near zero ther-

mal expansion between 150–350 K, a conservative estimate of the expected temperature

range experienced by the mirrors in the space telescope. The ideal configuration should

also exhibit stable long term behaviour and achieve shakedown in a minimal number of

thermal cycles. Due to a recent discovery, there is uncertainty in whether or not the

thin films of Al and Ti are in fact amorphous. There exists the possibility that the

metallic films are nanocrystalline with extremely fine grain sizes that have avoided de-

tection thus far. Due to this unknown, two lattice configurations are designed under

the assumption that the thin films are (i) amorphous, and (ii) nanocrystalline. In both

scenarios, a lattice that is nearly solid has been put forth such that the empty spaces

in the structure are kept to a minimum. The geometry of the proposed unit cell that is

nearly filled is depicted in Figure 5.1 with red and blue structures representing Al and Ti

respectively. In this design, a skewness angle of 30 ◦ is implemented to reduce the void

76
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Figure 5.1: (a) Whole and (b) one sixth of a unit cell geometry with θ = 30 ◦ that is

nearly solid. Red and blue elements represent Al and Ti respectively.

regions in between adjacent unit cells. The Al constituents within the unit cell are also

enlarged such that their shape follows that of the Ti lattice network. Small slits must

be left between the Al and Ti members and in between adjacent cells to ensure there is

no contact during thermal expansion. The configuration of the Al member has minimal

influence on the thermal properties of the lattice given that it only contacts Ti at the

three joints and behaves isotropically. The entire unit cell is depicted in Figure 5.1 (a)

and one sixth of the unit cell modeled in ABAQUS, under the appropriate boundary

conditions, is shown in Figure 5.1 (b). Important geometric parameters of the lattice

which significantly affect its thermal expansion have also been identified and labeled. L

and ℓ3 represent the lengths of the unit cell and spacer as introduced before. The width

of the Ti struts are identified as h, and the half-width of the joints are described by w.

By tweaking the parameters ℓ3/L, h, and w, a unit cell with θ = 30 ◦ is designed to have

near zero thermal expansion assuming either amorphous or nanocrystalline thin films.

5.1.1 Configuration Assuming Nanocrystalline Films

Working under the assumption that the thin films of Al and Ti are nanocrystalline, a

microscale lattice is designed to have a CTE as close to zero as possible. The thermal

expansion of nanocrystalline Al and Ti are assumed to be the same as their bulk poly-

crystalline forms, and are taken from the American Institute of Physics Handbook [30].

Although the stress-strain curves of the Al and Ti thin films were obtained via nanoin-

dentation experiments in Chapter 4, the films were in an as-deposited state. To be more
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realistic, the material properties of nanocrystalline Al and Ti are taken from literature

where the grain sizes are larger, corresponding to an aged and annealed state. This is

more representative of real world conditions where the metallic films will be subjected to

thermal cycling and high temperatures. The stress-strain curves for nanocrystalline Al

and Ti with an average grain size of roughly 100 nm are taken from the study by Khan

et al. [35] and Sergueeva et al. [56] respectively to model Al and Ti.

The scaled theoretical thermal expansion of a lattice with spacers given by Equa-

tion 2.40 is used as a baseline in this design. Ultimately, however, iterative adjustments

to the geometry through trial and error must be made due to slight discrepancies between

the theoretical and actual joint configurations. The size of the spacer can be altered to

either increase or decrease the net CTE of the lattice. Larger spacers will increase the

overall CTE and vice versa. Adjustments to the width of Ti constituents can be made

to change its aspect ratio. Recall that decreasing the slenderness ratio will soften the

rotational resistance at the joints and lower the CTE of the lattice. Increasing the half-

width of the joints adds to the bending inertia at the expansion joint and decreases the

effective length of the Al members, thereby raising the overall CTE of the unit cell. The

dimensions of the resulting configuration obtained through iteration are summarized in

Table 5.1, and is hereby referred to as the nanocrystalline lattice.

Table 5.1: Dimensions of lattice with near zero CTE assuming nanocrystalline films.

θ (degrees) L (µm) ℓ3/L h (µm) w (µm)

30 10 0.092 0.75 0.27

5.1.2 Configuration Assuming Amorphous Films

If the thin films of Al and Ti are in fact amorphous, their thermal expansion behaviour

will differ from their crystalline forms and recrystallization will result in negative changes

in volume. Although the recrystallization temperature of the films are predicted to be

well above the working temperature range of the mirror, there is a chance that the

lattice will recrystallize when the mirror segments are initially deployed. Since their

orientations are not controlled upon deployment, the lattice may be subjected to direct

sunlight, thus causing sufficiently high temperatures to induce devitrification. In this

analysis it is assumed that through thermal cycling, the amorphous constituents will

undergo complete recrystallization, thus resulting in a nanocrystalline structure. The
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long term thermal properties of the lattice are therefore investigated in this approach.

Information obtained from MD simulations in Chapter 3 are used in conjunction with

FE analyses to study the behaviour of the unit cell and predict its thermal properties.

The amorphous CTEs of Al and Ti are used to describe their thermal expansion prior to

recrystallization, and the linear expansion coefficients due to recrystallization are used

to emulate their behaviour during the phase transition. After the amorphous films have

crystallized, the CTEs of Al and Ti from the American Institute of Physics Handbook

[30] are used to describe their thermal expansion. In this approach, it is also assumed that

the elastic-plastic properties of Al and Ti are independent of temperature, and are taken

to be those of ultra-fine grained Al and Ti as used in the analysis of the nanocrystalline

lattice.

Similar to before, Equation 2.40 is used as a guideline for estimating the thermal

properties of the lattice. Adjustments must be made to the geometry, however, to ac-

count for the recrystallization of amorphous Al and Ti, in addition to the differences

in the joint configuration. Al undergoes large changes in volume due to devitrification,

therefore alterations to the lattice geometry are required to compensate for this distor-

tion. Through an iterative process, the lattice parameters are fine tuned to obtain the

desired changes in net CTE. Table 5.2 summarizes the dimensions of a unit cell that, in

the long term, has nearly zero thermal expansion while assuming recrystallization of the

amorphous constituents. This lattice design is hereby denoted the amorphous lattice.

Table 5.2: Dimensions of lattice with near zero CTE assuming amorphous films.

θ (degrees) L (µm) ℓ3/L h (µm) w (µm)

30 10 0.072 0.55 0.20

5.2 FE Analysis of Lattice

5.2.1 Method

The two configurations presented in Section 5.1 are modeled and analyzed via FE simula-

tions in ABAQUS. Details of the FE model are similar to those described in Section 2.3.

Only one sixth of the unit cell is modeled using the appropriate boundary conditions,

thus saving computational resources and time. Plane stress elements are used to model
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the two constituents, which are taken to behave isotropically. As stated earlier, the

elastic-plastic properties of Al and Ti are taken from Khan et al. [35] and Sergueeva

et al. [56] respectively. It is assumed here that the Al and Ti members are bonded at the

interface, therefore the degrees of freedom of the nodes at the joint are tied together.

To analyze the thermal properties of the unit cell, the temperature is cycled between

150 K and 350 K for 5 iterations to confirm shakedown of the lattice and stable long term

behaviour. It is assumed that the lattice is undeformed and free of stresses at 293 K. The

change in unit cell length dL, is recorded as a function of temperature over the course of

the simulation. This quantity is then normalized with respect to the original length of

the unit cell Lo. The derivative of this curve will therefore give the CTE of the lattice

as a function of temperature. For the nanocrystalline lattice, the material properties

will remain constant throughout the entire simulation. In the case of the amorphous

lattice however, the thermal properties of the constituents will change as they undergo

devitrification. In the analysis of the amorphous lattice, recrystallization is first induced

by cycling the unit cell between 293–673 K.

During the initial heating of the amorphous lattice, the CTEs of Al and Ti constituents

are taken from the results of the MD study in Chapter 3. Once Tx is reached for either

Al or Ti, the material undergoes an amorphous to crystalline transition. In this stage,

the values of αr calculated in Section 3.2 are used to simulate the contraction of Al and

Ti due to devitrification. When the temperature equals Tx2 for either Al or Ti, it is

assumed that the material has completely crystallized. The CTEs of crystalline Al and

Ti from the American Institute of Physics Handbook [30] are therefore used to describe

the thermal properties of both constituents from there forward. In order to accommodate

these changes in material properties, the FE simulation is divided into 5 steps during the

initial thermal cycle as summarized in Table 5.3, with the thermal properties listed for

Table 5.3: Thermal properties of amorphous lattice during initial thermal cycle.

Step Temperature Range (K) Al Ti

1 293–450 Amorphous Amorphous

2 450–550 Transition Amorphous

3 550–650 Crystalline Transition

4 650–673 Crystalline Crystalline

5 673–293 Crystalline Crystalline
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Al and Ti. Once the amorphous lattice has undergone devitrification, the temperature

is varied from 150 K to 350 K for 5 cycles and the same analysis as described for the

nanocrystalline lattice is performed.

5.2.2 Results and Discussion

Nanocrystalline Lattice

Thermal cycling of the nanocrystalline lattice between 150–350 K reveals that the max-

imum stresses within the structure do not exceed the flow stresses for either material,

thus repeatable behaviour is observed over the 5 cycles. The deformed state and stress

distribution within the lattice at 150 K, the temperature with maximum internal stresses,

is illustrated in Figure 5.2. Stress buildup is found in the Ti member due to bending,

and at the material interface due to the mismatch in CTE. A maximum stress of ap-

proximately 126 MPa occurs around the joint, but is below the yield stress of both Al

and Ti. Deformations within the unit cell are subtle and hard to detect, despite having

multiplied the displacements by a factor of 3 for exaggeration. The variation in unit cell

length with respect to temperature is illustrated in Figure 5.3 by the blue line. Small

changes in L are found over the simulated temperature range. Sinusoidal behaviour is

noted because the CTEs of Al and Ti vary over the temperature range of 150–350 K,

thereby changing the ratio α2/α1. A polynomial interpolant is fitted to the curve dL/L0

Figure 5.2: Stresses within the deformed unit cell structure at 150 K are illustrated by

the coloured bands and have units of GPa. The displacements have been exaggerated by

a factor of 3 to clearly show deformations.
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Figure 5.3: dL/L0 and ᾱ of nanocrystalline lattice plotted as a function of temperature

in blue and green respectively between 150–350 K.

versus T , and the derivative is computed to determine the CTE of the lattice as shown

by the green line in Figure 5.3. The CTE of the lattice is found to be very close to zero,

and varies between +0.17 and -0.14 ppm/K over the simulated temperature range. The

variation in ᾱ is again due to the temperature dependent thermal expansion of Al and Ti.

Since Σ = α2/α1 is not constant, it is difficult to create a lattice with exactly zero CTE

over large ranges of temperature. The thermal expansion of the proposed nanocrystalline

lattice, however, is only a fraction of 1 ppm/K in the worst case scenario, and can be

considered a successful lattice design with near zero CTE.

Amorphous Lattice

To examine the thermal properties of the amorphous lattice configuration, the unit cell

is first cycled from 293–673 K to induce recrystallization. Due to the large displacements

in this process, significant internal stresses are created which ultimately lead to plasticity

and permanent deformations in the structure. Figure 5.4 illustrates the evolution of the

displacements and stress distribution within the unit cell during the initial heating cycle.

Snapshots are taken at the beginning of the simulation and at the end of the 5 steps listed

in Table 5.3. Deformations are scaled by a factor of 3 for clarity and stresses within the

unit cell are colour coded by intensity. At the start of the simulation when T = 293 K, the

unit cell is undeformed and thus there are no internal stresses and strains. Between 293–

450 K, amorphous Al and Ti expand according to the CTEs derived from MD simulations.

A slight buildup of internal stresses can be observed near the joint between Al and Ti
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Figure 5.4: Figures (a) to (f) illustrate the evolution of the unit cell as the temperature is cycled between 293 K and 673 K.

Displacements are exaggerated by a factor of 3 to clearly show displacements within the unit cell. The internal von Mises

stresses (in GPa) are indicated by the colour bands whose values are given in the legend on the right.
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in Figure 5.4 (b). Past 450 K, amorphous Al begins to recrystallize, thus from 450–

550 K the Al constituent is shrinking while Ti continues to expand. This mismatch

causes Al to pull inward on the Ti member, causing the bending shown in Figure 5.4

(c). High stresses are seen in Ti due to the large displacements in Al, and large thermal

mismatch is noted at the interface. Between 550 K and 650 K, Al expands as though it

were crystalline while Ti contracts slightly during its transition in phase. As a result of

this behaviour, the stresses created from the previous step are somewhat alleviated as the

geometric discrepancies are lessened as shown in Figure 5.4 (d). At 650 K, amorphous Ti

is assumed to have completely recrystallized. Thus from here forward, both constituents

take on the thermal properties of crystalline materials. Figure 5.4 (e) depicts the unit

cell at T = 673 K, which shows little difference in comparison to the previous state due

to the small change in temperature and lower CTE mismatch. After the heating stage is

complete, the temperature of the unit cell is brought back down to 293 K. Al has a higher

CTE than Ti and therefore contracts at a faster rate. Over the 380 K temperature range,

the Al constituent recedes significantly more than Ti. This mismatch in CTE aggravates

the already distorted unit cell to create even higher stresses at the joint. Large stress

concentrations near the material interface can be seen in Figure 5.4 (f) which illustrates

the unit cell at room temperature after the initial heating cycle. Significant residual

stresses and strains are observed within the unit cell after the lattice has recrystallized.

This is mainly due to the devitrification of Al which shrinks immensely, thus leading to

large distortions and bending in the structure.

Figure 5.5 plots the change in unit cell length versus temperature over the course of

recrystallization. The discontinuous line segments correspond to the different steps in
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Figure 5.5: Plot of dL/L0 during the initial heating cycle from 293–673 K with the 5

stages labeled and arrows indicating the progression in time.
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the analysis where there are abrupt changes in material properties. Arrows and numbers

are used to indicate the direction of increasing time and identify the corresponding step.

During the first step, the thermal expansion of the unit cell is observed to be rather large

since the CTEs of amorphous Al and Ti do not form the ideal ratio of roughly 2.5. As

amorphous Al recrystallizes during step number 2, a very large increase in L is noted.

When the Al member contracts inward, it causes rotations of the Ti members which push

the lattice nodes outward, thereby increasing the overall length of the unit cell. At 550 K,

Al has crystallized and Ti undergoes devitrification, thus a trend reversal occurs. The Ti

constituents rotate in the opposite direction and the lattice nodes are drawn inward. As

a result, the length of the unit cell shrinks as noted by the negative slope of the third line

segment. During steps 4 and 5, Al and Ti constituents behave as crystalline materials,

thus their ratio of CTEs is ideal. As the temperature increases, and decreases, there is

little change in the length of the unit cell and lines 4 and 5 are nearly flat. Their zero

slopes indicate that the unit cell has near zero CTE. Thus, as the unit cell is initially

heated and the constituents recrystallize, the CTE varies between positive and negative

values and is far from zero. The lattice exhibits the property of low thermal expansion

only after the materials have crystallized to give the ideal ratio of CTEs. As a result of

recrystallization however, the unit cell becomes distorted due to extreme changes in the

Al members. The residual stress and strain in the structure causes the unit cell to grow

by approximately 1.5 % from its original length as seen in Figure 5.5.

After the amorphous lattice has recrystallized, the unit cell is cycled between 150 K

and 350 K for 5 iterations to examine its thermal behaviour. The resulting change in unit

cell size as a function of temperature is plotted in Figure 5.6. In this figure, the value of
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Figure 5.6: Plot of dL/L0 versus T over the 5 thermal cycles between 150–350 K.
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dL/L0 at the beginning of the simulation (T = 293 K) is set to zero to show the relative

changes in L after recrystallization. During the first cycle, the temperature is increased

to 350 K and then dropped to 150 K, during which the lattice expands and shrinks.

Upon contraction, large internal stresses develop at the joint which causes further plastic

deformation near the interface. During the next heating cycle, the thermal expansion of

the unit cell is observed to follow a different path from the first. The remaining cycles

after the first show repeatable behaviour, indicating that plastic shakedown has occurred.

Extremely small and constant changes are noted, however, between subsequent cycles

after the first, but are attributed to numerical error and ignored. The stable thermal

behaviour is plotted and analyzed in Figure 5.7. dL/L0 at 293 K is set to zero in this plot

to act as a reference point. Sinusoidal expansion is observed, similar to the behaviour of

the nanocrystalline lattice. Again, this is attributed to the changing thermal properties

of Al and Ti. Like before, the CTE of the lattice is calculated by fitting a polynomial to

the curve dL/L0 versus T and taking its derivative. The resulting CTE of the amorphous

lattice between 150 K and 350 K is illustrated by the green line in Figure 5.7. For the

amorphous configuration, its CTE is observed to vary between +0.19 and -0.13 ppm/K,

similar to that of the nanocrystalline configuration. Thus through iterative designs, an

amorphous lattice which undergoes recrystallization and shakedown has been successfully

proposed which exhibits long term near zero thermal expansion.

Figure 5.7: dL/L0 and ᾱ of amorphous lattice plotted as a function of temperature in

blue and green respectively between 150–350 K.



Chapter 6

Conclusions

6.1 Summary of Research

Materials with low CTE are desired to minimize thermal stresses and strains and preserve

geometric stability. In this thesis, the concepts of low thermal expansion lattices have

been utilized at the microscale to design a thermally stable material for the application

of optical elements in a space telescope. The key and original works of research that have

aided this development are summarized as follows:

1. The influence of spacers on the thermal properties of a unit cell was studied. An

analytical expression for the net CTE of a lattice with spacers was derived for both

pinned and bonded joint configurations, and validated using FE simulations.

2. MD simulations were conducted to study the thermal expansion and recrystalliza-

tion of amorphous Al and Ti. From simulation data, the CTEs of the amorphous

metals were calculated and shown to differ from their crystalline counterparts. The

contraction in length during devitrification and the temperature at which recrys-

tallization occurred were also quantified in this study.

3. The mechanical properties of Al and Ti films have been determined via nanoinden-

tation experiments. Load-displacement profiles produced by a Berkovich indenter

were analyzed to deduce the Young’s moduli and plastic properties of the films.

The extracted mechanical properties were subsequently validated by simulating

the nanoindentation process via FE models and comparing the resulting loading

and unloading curves.

4. Two unit cell configurations assuming different material properties were designed

87
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with the aid of FE simulations. Both lattices have been shown to exhibit near zero

thermal expansion and long term stability, achieving shakedown in one thermal

cycle or less.

6.2 Recommendations for Future Work

Numerous avenues of research remain open for further exploration and study. A few are

listed here as follows:

1. Validate simulated findings in this thesis through experimental means.

2. Study the impact of oxidation on mechanical/thermal properties and reliability of

lattice.

3. Perform a statistical analysis on the thermal properties of the lattice given varia-

tions in the unit cell geometry and material properties.

4. Develop an optimization algorithm which provides the best unit cell design to

achieve the desired net CTE.

5. Investigate the use of different material combinations.
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