Energetic Processing of Astrophysical Ice Analogs, Investigated via Two-Step Laser Ablation and Ionization Mass Spectrometry

Bryana L. Henderson (3227)
Murthy S. Gudipati (3227)

Motivation: Astrophysical Ices Exposed to Radiation

Can chemistry occur at 100 K? At 5 K? Which reactive intermediates are important?

Method:
1. Recreate these processes in the lab.
2. Detect reaction products and intermediates with a novel mass spectrometry technique that allows for low-temperature analysis.

1. Prepare Ice Analogs and Expose to Space-Like Radiation

Comets and the interstellar medium (ISM) have similar compositions. During a typical lab experiment, we deposit and irradiate water ices containing relevant proportions of CO, CO₂, CH₃OH, H₂O, and NH₃ at temperatures ~100 K.


Our novel two-laser ablation and ionization mass spectrometry technique has several advantages:
- Enables in situ mass spectrometry at low temps (other mass spec methods rely on sample warming and processing)
- Complements and extends IR spectroscopy (where spectral congestion leads to uncertain assignments)

3. Assignment of Reaction Products

Verification by Isotope Exchange

We have identified several new CH₃NO⁺ species by comparing the δ²H (top trace) and δ¹⁴N (bottom trace) precursors in methanol ice samples.

Verification by Volatility Analysis

Non-volatile species are found only in the initial ablative ejection (2-8 µs). Products found later in the plume’s profile must be volatile (i.e., small or relatively nonpolar). Our technique can provide structural information for ambiguous mass components!

4. Summary of UV and e⁻ Radiation Products of CHON Ices at 5 K

Simple ices containing ammonia and methanol produced many new complex organics upon irradiation (even at 5 K). Both UV and electron radiation sources led to the same reaction products in methanol ices, although e⁻ radiation generally led to more H₂O and CO and UV irradiation produced more HCO and CH₃O⁻.

Most of our detected species have been observed in space, but several have not yet been identified in comets. Our findings will help to guide future astronomical observations and investigations of viable low-temperature reaction pathways in astrophysical ices like comets, KBOs, and other cold planetary and interstellar ices.

Compare With Observational Data

Our species detection matches observational datasets for the comet and Kuiper Belt objects.

Compare With IR Spectroscopy Data: HCO⁺ and CH₂CO⁺ Are Key Intermediates

Every carbon-containing precursor we tested generated HCO⁺ and CH₂CO⁺ in water ices. HCO⁺ and CH₂CO⁺ (29 and 31 m/z) have long been identified as important intermediates in these ices (see diagram below), but our low-temp experiments suggest CH₂CO⁺ (34 m/z) plays a more important role than currently thought.

Is CH₃CO⁺ Also a Key Amino Acid Intermediate? (Work in Progress)

We have recently obtained the first mass spectrum of an amino acid encased in ice (right). Exposure to 2h of electron radiation led to a strong signal at 43 m/z. Is this signal due to CH₃COO⁺ as seen above, or to HCNO⁺, which is commonly observed in space? Isotopic verification of the assignment is currently underway.

This work will help to facilitate further observational searches for these species and will help to define the conditions required for production and survivability of complex organics in space.