Primordial Black Hole Dark Matter

Raphael Flauger

Dark Matter in Southern California 2017, Caltech, August 30, 2017
Introduction

We have compelling evidence that dark matter exists...
Introduction

... but we don’t know whether dark matter consists of

• WIMPs
Introduction

... but we don’t know whether dark matter consists of

- WIMPs
- axions
- SIDM
- neutrinos
- ...
- primordial black holes
LIGO

LIGO has detected gravitational waves from binary black hole mergers
The detected black holes are perhaps more massive than expected.
LIGO and Dark Matter

Could LIGO be seeing mergers of primordial black holes that make up all the dark matter?

(Bird, Cholis, Muñoz, Ali-Haïmoud, Kamionkowski, Kovetz, Racanelli, Riess, 2016)

• Expected rates agree with the rates estimated by LIGO.

• Consistent with observational constraints on primordial black holes at the time of writing.
LIGO and Dark Matter

Merger rates

\[\sigma = \pi \left(\frac{85 \pi}{3} \right)^{2/7} R_s^2 \left(\frac{v_{pbh}}{c} \right)^{-18/7} \]

\[\Gamma \sim V n^2 \sigma v_{pbh} \]
LIGO and Dark Matter

Merger rates

\[\sigma = \pi \left(\frac{85 \pi}{3} \right)^{2/7} R_s^2 \left(\frac{v_{pbh}}{c} \right)^{-18/7} \]

\[\Gamma \sim V n^2 \sigma v_{pbh} \sim V (\rho / M_{pbh})^2 \sigma v_{pbh} \]
LIGO and Dark Matter

Merger rates

\[\sigma = \pi \left(\frac{85 \pi}{3} \right)^{2/7} R_s^2 \left(\frac{v_{pbh}}{c} \right)^{-18/7} \]

\[\Gamma \simeq V n^2 \sigma v_{pbh} \simeq V \left(\frac{\rho}{M_{pbh}} \right)^2 \sigma v_{pbh} \]

For Milky Way like halo

\[\Gamma \simeq 1.1 \times 10^{-4} \rho_{0.002} v_{pbh-200}^{-11/7} \text{ Gpc}^{-3} \text{ yr}^{-1} \]

much smaller than rate \(2-53 \text{ Gpc}^{-3} \text{ yr}^{-1} \) inferred by LIGO.
LIGO and Dark Matter

Merger rates

\[\sigma = \pi \left(\frac{85 \pi}{3} \right)^{2/7} R_s^2 \left(\frac{v_{pbh}}{c} \right)^{-18/7} \]

\[\Gamma \simeq V n^2 \sigma v_{pbh} \simeq V (\rho/M_{pbh})^2 \sigma v_{pbh} \]

For Milky Way like halo

\[\Gamma \simeq 1.1 \times 10^{-4} \rho_{0.002} v_{pbh-200}^{-11/7} \text{ Gpc}^{-3} \text{ yr}^{-1} \]

much smaller than rate \(2-53 \text{ Gpc}^{-3} \text{ yr}^{-1} \) inferred by LIGO.

In substructure as high as

\[\Gamma \simeq 700 \text{ Gpc}^{-3} \text{ yr}^{-1} \]

More refined estimates appear consistent with LIGO rates.

(Bird, Cholis, Muñoz, Ali-Haïmoud, Kamionkowski, Kovetz, Racanelli, Riess, 2016)
LIGO and Dark Matter

Constraints

adapted from Carr, Kühnel, Sandstad, 2016
LIGO and Dark Matter

Constraints

adapted from Carr, Kühnel, Sandstad, 2016
LIGO and Dark Matter

Constraints

adapted from Carr, Kühnel, Sandstad, 2016
Brandt, 2016
Niikura et al., 2017
CMB Constraints

Spectral distortions

\[e^- \quad p \quad \text{He} \]

\[\gamma \quad \text{dark matter} \]

\[\nu \quad \text{cosmological constant} \]

- Coulomb interactions
- Compton scattering
- Double-Compton scattering
- Bremsstrahlung

lead to black body spectrum
CMB Constraints

Spectral distortions

• photon number changing processes freeze out below

\[z < \text{few} \times 10^6 \]

injection of photons/energy generates \(\mu \)

• energy is no longer efficiently exchanged below

\[z < 10^5 \]

intermediate and \(\gamma \)-distortions

Accretion onto primordial black holes predominantly generates \(\gamma \)-distortion

(Ricotti, Ostriker, Mack, 2007)
CMB Constraints

Spectral distortions

easily compatible with FIRAS bound

\[y < 1.5 \times 10^{-5} \text{ at } 95\% CL \]
Anisotropies

Accretion onto primordial black holes heats the plasma and ionizes hydrogen.

(Aloni, Blum, Flauger, 2016)
Modified ionization history leads to modified temperature and polarization anisotropies

(Aloni, Blum, Flauger, 2016)
IV. SUMMARY

We have reanalyzed the CMB constraints on primordial black holes playing the role of cosmological dark matter. We find that primordial black holes with masses $m_{BH} > 5 M_{\odot}$ are disfavored. This limit is subject to large and difficult to quantify theory uncertainty arising from the treatment of accretion and accretion luminosity of the BHs. Assuming, for concreteness, the same accretion prescription as in the earlier analysis of Ref. [1], our limit is weaker despite the fact that we use Planck CMB data of far superior quality compared to the WMAP3 data considered in [1].
CMB Constraints

Anisotropies

Caveat

• the accretion rate is very uncertain

Accretion as modeled by Ricotti, Ostriker, Mack

\[M_{\text{pbh}} < 5M_{\text{sol}} \]

Accretion as modeled by Ali-Haïmoud, Kamionkowski

\[M_{\text{pbh}} < 100M_{\text{sol}} \]

Accretion as modeled by Poulin et al.

\[M_{\text{pbh}} < 2M_{\text{sol}} \]
Primordial black holes can form

- during inflation if $\epsilon \approx 0$ because

$$\Delta_{\mathcal{R}}^2(k) = \frac{H^2(t_k)}{8\pi^2\epsilon(t_k)}$$

e.g.
Formation

Primordial black holes can form

• during inflation if $\epsilon \approx 0$ because
• during reheating
• during a phase transition
• ...

Even though there are several mechanisms that can lead to formation of primordial black holes, none naturally predicts 30 solar masses.
Conclusions

• The idea that LIGO might have seen gravitational waves from black holes that make up the dark matter is intriguing.

• It seems disfavored by data, but a firm conclusion would require a better understanding of accretion onto these black holes.

• Assuming a nearly monochromatic initial mass function, what is the expected mass function at late times?

• The idea is testable as it predicts high eccentricities, absence of EM counterpart, low spin, origin in low mass halos, a stochastic gravitational wave background
Thank you