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Motivation
• Generating waveforms can be expensive, time-consuming, and a bottleneck for 

practical data analysis applications

– Template bank generation for gravitational wave searches (“curse of dimensionality”)

– Multiple waveform queries for parameter estimation (e.g., with stochastic methods)

– Parameter space mapping, exploration, and discovery (i.e., science!)

– Accessibility to broader scientific communities and the public
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• Goals:  To cheaply and quickly predict gravitational waveforms that are otherwise 
prohibitively expensive to mass-produce.

– Numerical relativity waveforms of compact binary coalescences
• Can take weeks to months to complete one simulation and corresponding waveform
• 3 points only in each of the 7 parameter dimensions requires 2187 simulations!

– Extreme Mass Ratio Inspirals (EMRIs)

– Continuous gravitational waves
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Reduced-Order Modeling (ROM)
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Overview

Reduced Basis

Empirical 
Interpolation

Surrogate

Rapid waveform generation

Reduced-Order 
Quadratures

Rapid integral evaluation

Dual compression in time/frequency

Compression in parameter space

Offline

Online
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Reduced Basis
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Basic Idea

Output:
1) “Most relevant” parameters and waveforms
2) A nested/hierarchical basis
3) Maximum projection errors 

converge (super-)exponentially

Can find a linear approximation space that is nearly optimal
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Reduced Basis

• Nonspinning PN inspirals [Field et al, PRL (2011)]
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Some results and lessons learned

integral of the signal with any template h ~!j
in the original

bank. Explicitly, hs; h ~!j
i ¼ P

ihs; eii"ij. In this way, using

the reduced bases is equivalent to using the original wave-
form space but with many fewer matched filtering integrals
to compute for a given signal. Hence, using RB yields no
increase in the false alarm rate.

Catalogs for compact binary inspirals.—We discuss our
results for constructing reduced bases for ‘‘chirp’’ gravita-
tional waveforms for binary inspirals without spins [13,14].
We use the 2nd order post-Newtonian accurate waveforms
in the stationary phase approximation, which are known in
closed form, so that the parameter space is two-dimensional
(the binary’s masses). For simplicity, we take the coales-
cence time and phase to be constant for each waveform.

Figure 1 shows results for the greedy error using a re-
duced basis model for inspirals of binary neutron stars
(BNS) with mass components in the range ½1–3#M$ (for
Initial LIGO with a lower frequency cutoff at 40 Hz)
compared with the standard metric template placement
method [5]. After a slowly decaying region, the reduced
basis model gives very fast exponential convergence decay,
which can be fitted by "2N ¼ ae%bNp

with a¼9:65&10%4,
b ¼ 0:598, p ¼ 1:25. The metric method yields approxi-
mately linear decay for a two-dimensional parameter space.
As already mentioned, this decay becomes slower as the
dimensionality P of the parameter space increases. The fast
decay of the reduced basis model allows a representation of
the whole set of gravitational waves for these sources and
mass ranges towithinmachine precision.We have found the

same feature in all mass ranges that we have explored. This
leads to the rather remarkable finding that for all practical
purposes the set of relevant gravitational waveforms in
compact parameter regions appears to be finite dimensional.
When increasing the number of samples x in the training set
we find the following fit for the number of RB for machine

precision error, N¼aþbx%1=2þcx%1 with a ¼ 921,
b ¼ %2090, c ¼ %9:18& 105 for the case of Fig. 1. In
particular, in the limit x ! 1 only 921 bases are needed to
represent, within numerical accuracy, the full space of
waveforms H for this range of masses for BNS inspirals.
Figure 2 shows the chosen parameter values in the chirp

mass vs symmetric mass ratio plane and a density plot of
the number of RBs. The histograms highlight that most
values are picked for (nearly) equal mass systems of low
chirp mass.
Table I shows the number of RB that we need to repre-

sent, for different overlap error tolerances, inspirals of
BNS and stellar size binary black holes (BBH, with mass
components in the range ½3–30#M$). The limit x ! 1 is
not taken here for simplicity so the RB values listed in
Table I are slightly underestimated.
Sensitivity to nonstationary noise.—The PSD of any

ground-based interferometer will fluctuate in time due to
changes in environmental noises and other factors. Since
the PSD weights the inner products used to construct the
reduced basis, one might worry that a new RB needs to be
constructed for any variation in the PSD.
Remarkably, we find indications that the RB constructed

assuming a fiducial PSD is highly robust against rather
large perturbations. From a histogram of the sensitivity of
the LIGO interferometers during a portion of LIGO’s fifth
science reported in [15], we conclude that a 20% increase

FIG. 1 (color online). Error in approximating the space of
waveforms by a discrete catalog for BNS inspirals with Initial
LIGO. For reduced basis, the error is the square of the greedy
error (3) while for metric placement the error is (1%MM) with
MM the minimal match. The lower panel shows the extrapola-
tion of the maximum number of RBs generated for an infinitely
large training space. The fit shown (red) excludes the two points
with largest x, which change the asymptotic value by 0.2.

FIG. 2 (color online). The points show the parameter values
chosen for the catalog of BNS and Initial LIGO. The density
of parameter values is shown using a coloramp as well as
histograms.
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m1,m2 2 [1, 3]M�

fmin = 40Hz

• The reduced basis asymptotes to span 
the continuum of waveforms, not just the 
training set.
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Reduced Basis
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Some results and lessons learned

• Precessing PN inspirals [Blackman et al, PRL (2014)]

measure the quality of the RB approximation itself, we do
not extremize the mismatch with respect to the relative
phase and time shift between h and happ.
It is not obvious that the basis generated using (9) from

the minimally rotating frame and φ domain will be accurate
for inertial frame waveforms expressed in the time domain.
We find that the φ domain, precessing basis is highly
accurate for representing time-domain, inertial-frame
waveforms. The right panel in Fig. 1 shows the mismatch
(þ) from using the first 10, 20, and 50 basis functions to
represent more than 107 randomly chosen waveforms as
in (1). The corresponding maximum mismatches are 0.016,
1.1 × 10−4, and 4.1 × 10−8, respectively.
The table below shows that, for a given error, the number

of RB waveforms needed to accurately represent the
subspace of W with the indicated dimension d grows
approximately linearly with d, not exponentially. The first
three dimensions are the mass ratio q (1D), with the z
components of the first (2D) then second spins (3D)
included.

Basis size
Error 1D 2D 3D 7D

≲10−2 4 6 7 13
≲10−4 4 7 8 20
≲3 × 10−8 6 15 23 50

Figure 2 shows the first 90 parameters selected by our
greedy algorithm and presented according to which
component—time, minimally rotating waveform, quatern-
ion—is the dominant contribution to the total representa-
tion error in the left panel of Fig. 1. The spins’ components
are taken at the initial time where the inertial and minimally
rotating frames are equal. The mass ratios dominate the
endpoints of the considered interval in (1). Both spins’
magnitudes tend to be in [0.8,0.9]. The projections of the
spins onto the initial orbital angular momentum seem to be
anticorrelated, at least when the waveform contribution to
(9) is dominant. The x-y components of the spins tend to lie
on a circle for the smaller mass m2; there is less clear
structure for m1.
From inspiral to coalescence.—We test whether the

parameters selected from the inspiral regime result in an
accurate RB when including merger and ringdown. This
issue has immediate relevance for building a RB for
expensive numerical relativity simulations of precessing
BBH mergers that, in turn, has important ramifications for
data analysis applications with gravitational wave detectors
and for modeling merger simulations [11].
Currently, we can answer the above question for spin-

ning but nonprecessing BBH coalescences, which involves
only the three parameters q, j~χ1j, and j~χ2j, for which an
effective-one-body (EOB) semianalytical model [26] of
IMR is available [27,28]. We first used our greedy

algorithm to find the parameters for building a RB for
the nonprecessing inspiral PN waveforms using the φ
domain error in (9). We then generated a basis using the
EOB nonprecessing coalescence waveforms evaluated at
those selected parameters. Last, we randomly generated
more than 10d¼3 EOB waveforms and computed the time-
domain inertial frame mismatch from (10). The results of
this study are shown as the solid black curve in the right
panel of Fig. 1. For the first 20 inspiral RB waveforms,
the maximum mismatch of the EOB waveforms is about
3 × 10−5 while for the first 50 it is about 2 × 10−7.
Outlook.—Based on traditional methods to sample the

waveform space, which scale exponentially with dimension
[29–32], it has been perceived that an intractable number of
numerical relativity simulations would be needed to re-
present the space of BBH for any given number of orbits.
We have found evidence that a remarkably small number of
numerical relativity BBH simulations may actually be
needed, if judiciously chosen, to build a high accuracy
RB to represent the whole space of interest.
Based on the nonprecessing EOB results presented

above, performing numerical simulations of BBH mergers
for the first 50–90 parameters selected by our greedy

FIG. 2. Mass ratios (top), x-y components of both spins (second
row), projection of inertial frame spins onto initial orbital angular
momentum unit vector (bottom left), and both spin magnitudes
(bottom right) selected by our greedy algorithm.
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q 2 [1, 10]

||~�1,2|| 2 [0, 0.9]

200 cycles

• The greedy algorithm is highly flexible 
and can adapt to many different types of 
strategies

– Randomly resample the training set after 
each iteration [Blackman et al, PRL (2014)]

– Use an error metric that is suitable to the 
problem and parameterization

– Divide and conquer the training space 
(with random resampling)
[Galley (unpublished)]

• Arrange and transform the training data into a 
form that is smooth with parameter variations 
(i.e., “boring”)
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Reduced Basis

• Nonspinning EOBNR inspiral-merger-ringdown waveforms [Blackman et al, PRL (2015)]
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Some results and lessons learned

q 2 [1, 10]

25-31 cycles before peak amplitude

• Lower-accuracy waveform models (e.g., 
Phenom?, ?EOB?) are helpful to inform for 
which parameters to run expensive 
simulations

Exposing parameters for NR simulations

Obviously, can’t build a training space with NR waveforms

Instead, use Effective One-Body  
model waveform as proxy  
Pan+ PRD (2010)

Also, aligned waveforms’ 
peak amplitude at t=0

• Parameters selected by greedy algorithm 
are robust
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Basic Idea
Empirical Interpolation
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• Empirical interpolation is similar to the standard interpolation problem but constructed using the 
application-specific reduced basis instead of a generic basis (e.g., Chebyshev polynomials)

– Interpolation nodes are selected by another greedy algorithm that minimizes the interpolation error

Barrault et al (2004)
Maday et al (2009)

2) Empirical interpolation (offline) Barrault+ (2004);  
Maday+ (2009)

q

t

RB approximation:

At n time subsamples of data,   
the coefficients can be solved

Find the interpolation nodes through 
another greedy algorithm that 
minimizes the interpolation error
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Basic Idea
Empirical Interpolation
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• Empirical interpolation is similar to the standard interpolation problem but constructed using the 
application-specific reduced basis instead of a generic basis (e.g., Chebyshev polynomials)

– Interpolation nodes are selected by another greedy algorithm that minimizes the interpolation error

Barrault et al (2004)
Maday et al (2009)

n = 11 , (2, 2) mode

The empirical interpolant nodes for the (2,2) mode amplitude:

2) Empirical interpolation (offline) Barrault+ (2004);  
Maday+ (2009)

q

t

RB approximation:

At n time subsamples of data,   
the coefficients can be solved

Find the interpolation nodes through 
another greedy algorithm that 
minimizes the interpolation error
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Surrogate
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Basic Idea

• Surrogate is constructed by fitting for the parameter variation at each empirical interpolation node 
(e.g., time)3) Fitting (offline)

q

t
At each empirical time Ti  fit for the 
parametric dependence in q

So far the approximation is

Putting it together: Surrogate model (online)
Combining the reduced basis, 
empirical interpolation, and fitting 
steps gives a surrogate model for 
NR waveforms of non-spinning 
binary black holes

q

t

• Speed to evaluate a NR surrogate for BBH 
multi-modal waveforms is < 1 sec
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Surrogate
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Basic Idea
At one of these empirical time subsamples, we do a least-
squares fit of the (2,2) NR amplitude and phase data using 
polynomials

n = 11 , (2, 2) mode

Odd m modes exhibit a degenerate feature at equal mass that is fitted 
well by                   plus 5th degree polynomial in 

All 22 simulations,  
(3,3) mode
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Surrogate

• NR surrogates are comprehensively the most accurate BBH waveform models to date
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Some results

Blackman, et al, PRL (2015)

power sensitivity noise curve [54]. The surrogate is more
faithful than both EOB models for all cases considered.
Since SEOBNRv2 only provides ð2;"2Þ modes, it performs
worst for large total masses where additional modes
become important. All models predict the (2,2) mode with
an unfaithfulness <1% for q ∈ ½1; 10% at 115M⊙; however,
the EOB models are limited by the availability of sub-
dominant modes.
Discussion.—We have built a surrogate model for NR

nonspinning BBH merger waveforms generated by SpEC.
On a standard 2015 single core computer, all 77 modes with
2 ≤ l ≤ 8 are evaluated in ≈0.5 sec (≈ 0.01 sec for a
single mode) providing a factor of ∼106−8 speedup com-
pared to SpEC. Importantly, this is achieved with only a
small loss in accuracy. Like other data-driven modeling
strategies, our surrogate is valid only within the training
intervals, namely, q ∈ ½1; 10% and t=M ∈ ½−2570; 100%.
Therefore, within the training intervals, our surrogate
model generates BBH merger waveforms that are equiv-
alent to SpEC outputs up to numerical error and a small
modeling error.
NR surrogates can be used for multiple-query applica-

tions in gravitational wave data analysis such as detector-
specific template-bank (re-)generation and parameter
estimation. Our surrogate and, more generally, the results
of this Letter open up the exciting possibility of performing,
for example, parameter estimation with multimodal NR
waveforms (with hybridization, if needed). Parameter
estimation studies seeking to incorporate model error
may benefit from the surrogate’s relatively straightforward
characterization and assessment of uncertainty from a

combination of the surrogate’s and SpEC’s systematic
and numerical errors. We anticipate NR surrogate modeling
to complement traditional strategies [15–24,26] by
providing unlimited high-fidelity approximations of NR
waveforms with which to calibrate, refine, and make
comparisons. Building NR surrogates of precessing BBH
merger waveforms, which may be modeled from the
parameters specially selected in [55], offers a promising
avenue for modeling the full seven dimensional BBH
parameter space. The surrogate model described in this
Letter is available for download at [56,57].
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t ∈ ½−2750;−2500%M and t ∈ ½50; 90%M. For the full multimodal
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nonzero for all ðθ;φÞ. Left: The shaded regions contain all 22
mass ratios, while the dashed lines maximize over mass ratio. The
vertical grey line is the minimum total mass (≈115M⊙) ensuring
all (2,2) modes start with ≤15 Hz at the end of the first tapering
window. Right: Unfaithfulness for a 115M⊙ binary.
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• Speed-up of surrogate evaluation relative to a 
SpEC non-spinning BBH simulation is ~ 108

– SpEC: 9.3 days on 48 procs
– Surrogate: ~ 10 msec on 1 proc

Fast and accurate reduced-order 
surrogate models

Waveform generation is no longer a 
bottleneck for data analysis!
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RPhenomPv2 it is not straightforward to determine f
ref

such that the spin directions are specified at a time of
4500M before the peak amplitude. Therefore, we instead
choose f

ref

di↵erently: we minimize the mismatches by
varying f

ref

, with an initial guess of twice the initial or-
bital frequency of the NR waveform.

To transform the time domain waveforms into the
frequency domain, we first taper them using Planck
windows[65], rolling on for t 2 [t

0

, t
0

+1000M ] and rolling
o↵ for t 2 [50M, 70M ] where t

0

= �4500M is the time at
which the parameters are measured, and t=0 is the time
of peak waveform amplitude. We then pad them with
zeros and compute the frequency domain waveforms via
the fast Fourier transform (FFT). For the reference NR
waveform, we obtain 30 random samples of the direction
of gravitational wave propagation (✓,�) from a distribu-
tion uniform in cos ✓ and in �, and we uniformly sample
the polarization angle  between [0,⇡] to obtain

h
 

(t) = h
+

(t)cos(2 ) + h⇥(t)sin(2 ). (65)

For the non-reference waveform, we use the same param-
eters except we add an additional initial azimuthal rota-
tion angle �, a polarization angle  , and a time o↵set,
and we optimize over these three new parameters to yield
a minimum mismatch. Because the waveform models do
not intrinsically depend on the total mass, we first use
a flat noise curve to evaluate the overlap integrals; this
provides a raw comparison between models. We evaluate
Eq. 22 with f

min

being twice the orbital frequency of the
NR waveform at t = �3500M .

The mismatches using a flat noise curve are shown in
the top panel of Figure 17. We find that both the IM-
RPhenomPv2 (green dot-dashed curve) and SEOBNRv3
(solid curve) models have median mismatches of ⇠ 10�2

with the NR waveforms. The mismatches between our
surrogate model and the NR waveforms are given by the
“Training” (solid blue) and “Validation” (dashed pur-
ple) curves and have median mismatches of ⇠ 10�3 with
the NR waveforms; see § VIA for a discussion of train-
ing and validation errors. Finally, NR waveforms of dif-
ferent resolution have median mismatches (solid black
curve) of ⇠ 10�5. In the middle and bottom panels, we
repeat this study while restricting which coprecessing-

frame modes are used. IMRPhenomPv2 contains only
the (2,±2) modes, while SEOBNRv3 also contains the
(2,±1) modes. Obtaining larger mismatches in the top
panel when comparing against all NR modes indicates
these waveform models would benefit from additional
modes. We find that our surrogate performs roughly
an order of magnitude better than the other waveform
models in its range of validity, but still has mismatches
two orders of magnitude larger than the intrinsic resolu-
tion error of the NR waveforms. This suggests that the
surrogate could be improved with additional waveforms
and/or improved model choices. However, we also note
that neither IMRPhenomPv2 nor SEOBNRv3 have been
calibrated to precessing NR simulations.

Since a realistic noise curve will a↵ect mismatches, we

FIG. 17. Mismatches, computed using a flat noise curve,
versus the highest resolution NR waveforms. Histograms are
normalized to show the error fraction per log-mismatch, such
that the area under each curve is the same. A su�cient but
not necessary condition for a mismatch to have a negligible
e↵ect is that the signal-to-noise ratio (SNR) lies below the
limiting SNR ⇢⇤ = 1/

p

2Mismatch given on the top axis [69].
Top: All modes available to each waveform model are in-
cluded, and the NR waveforms use all `  5 modes. Middle:
All coprecessing-frame modes other than (2,±2) are set to
zero in all waveforms. Bottom: All coprecessing-frame modes
other than (2,±1) and (2,±2) are set to zero in all waveforms.
These restricted mode studies are done to compare more di-
rectly with IMRPhenomPv2 and SEOBNRv3, which retain
the coprecessing-frame modes of the middle and bottom pan-
els respectively.

also compute mismatches for total masses M between
20M� and 320M� using the advanced LIGO design sen-
sitivity [68]. In Fig. 18, the lower and upper curves for
each waveform model denote the median mismatch and
95th percentile mismatch. We note that for M < 114�,
some NR and surrogate waveforms begin at f

min

> 10Hz
and the noise-weighted inner products will not cover the
whole advanced LIGO design sensitivity band. The sur-
rogate model errors increase with total mass, indicating
a larger amount of error in the merger phase and less
error in the inspiral phase. Note that our largest system-
atic source of error, the approximate treatment of the
waveform’s dependence on the angle �

�

, is much larger
during the merger than during the inspiral, as discussed
in § IVD and plotted in Fig. 12. This error source arises
from our attempt to model a 5d parameter space with a
4d surrogate model, so it will not be relevant for a full
7d surrogate model. Even with this error, our surrogate
model performs better than the other waveform models
up to 320M� within the surrogate parameter space.

Blackman, et al, PRD (2017)NR nonspinning BBH NR precessing BBH
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• ROMs are accurate within the parameter domain of the training space
– Caution must be taken when extrapolating outside the training space
– Mitigations:

• Increase the domain of the training space
• Find a smoother waveform parameterization so that extrapolation is less severe
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• Offline generation of the training set can take a long time
– Example:  Took 2 years to generate 22 NR training waveforms for the non-spinning BBH surrogate
– Mitigations:  

• Progress with time: Took ~2 years to generate 276 NR training waveforms for the precessing BBH 
surrogate [Blackman et al, PRD (2017)]

• Adjust the training space sampling strategy and waveform parameterization for the Reduced Basis 
greedy algorithm

Short-comings and mitigations

• Reduced-Order Quadratures rely on the linearity of the waveform itself
– Smart (i.e., nonlinear) parameterizations for RB construction are not helpful here
– Mitigations:

• None but one can still use a surrogate (if needed) for rapid waveform generation in the integrand

• ROM works best on a training set of Cinfinity functions
– Can still work on Cn functions but yields a less compact reduced basis (e.g., EOBNRv2)
– Mitigation: Try to transform the to reduce the impact of finite continuities
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Summary and Outlook
• Reduced-order modeling has proven to be a uniquely powerful tool for rapid 

waveform generation
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• Data analysis problems that weren’t possible a few years ago are now feasible

• Reduced Basis greedy algorithm outputs a gold mine of information that could be 
used

– Detection? Estimate quickly a prior on parameters?
– What can we use for LISA?

• Surrogate modeling is also effective in other applications relevant for LISA
– (Scalar) Self-force evaluation, consistent orbital evolution, and waveform generation
– EMRI waveform surrogates?
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Summary and Outlook
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• RomPy is a Python code used to build generic reduced-order surrogate models

– Python2
– Example iPython notebooks
– Stable but more development desired
– Python3 and C++ back-end (for speed) in progress

bitbucket.org/chadgalley/rompy

• Numerical Relativity surrogate model waveform data are available at

– Nonspinning BBHs
– Nonprecessing BBHs
– Precessing BBHs

www.black-holes.org



Backup
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• Speed up the computation of match integrals and likelihoods
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Basic Idea
Reduced-Order Quadratures

• Quadrature weights wi can be computed once the data is available: “Start-up” phase

• Once weights are computed, the integral is evaluated as a simple quadrature

Example: Given a surrogate waveform:

Example: Overlap integral

Z f
max

f
min

df
h(f ;~�)d⇤(f )

Sn(f )
=

NRBX

i=1

Hi (Fi ;~�)

 Z f
max

f
min

df
Bi (f )d⇤(f )

Sn(f )

�

=
NRBX

i=1

Hi (Fi ;~�)wi

h(f ;~�) =
NRBX

i=1

Bi (f )Hi (Fi ;~�)
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Surrogate

• Not aligning the training set waveforms at peak amplitudes results in a much larger reduced basis 
size and little robustness, e.g., to different time samplings of the waveforms
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Lessons learned

If peak amplitudes are not aligned then basis is neither compact 
nor robust to sampling effects

Generally, arranging and transforming the data into a form that is 
smooth with parameter variations is very helpful for building a 
compact basis.  
Blackman, Szilagyi, CRG, Tiglio PRL (2014)
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