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Overview

* High-level view of machine learning
— Discuss generative & discriminative modeling of data
— Not exhaustive survey

— Try to illustrate important ML concepts

* Give examples of these models applied to
problems 1n astronomy

* In particular, exoplanet detection algorithms



Generative vs Discriminative Modeling

* Key distinction 1n machine learning

* F.g toy classification dataset with labels
(red=class 1, blue=class 2)




Generative vs Discriminative Modeling

* Given new point x

* Want to compute p(CIa:)

Posterior



Generative Modeling

* Top-down interpretation of data

— 1.e. adjust model parameters to fit observed data

* E.g. Gaussian model, estimate 6 = {uc, X.}
that maximizes likelihood of data: p(z|c, §)

23 62)




Generative Modeling

»z|le=1,61)

* Given new point, we can compute p(z|c = 2, 02)

* Combine with prior to give posterior

e J.ikelthood ratio defines decision surface

23 62)




Discriminative Modeling

* Model posterior directly (no model of data density)

- . - C=1
* Fit decision surtace directly al z)
. p(C =2Jz) o
* Bottom-up model: input=x, output=class prediction
® /// _ p(C = 1|z)
* f(z|0) = o(C = 2jz)




Principal Components Analysis (PCA)

* Example of generative model (objective: compression)

* Observed data points: zn€ R, n=12,...,N
e Hidden manifold coords.: =z, € R™, n=12....N
* Hidden linear mapping: Tn =Wz, +b W e RP*M
be RP*!
N N
J(z, W, b|z, M) = Z |n in”2 = Z |Zn — W2y — b”2
n=1 n=1

* Find global optimum via eigendecomposition of
sample covariance matrix



Principal Components Analysis (PCA)
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Probabilistic Principal
Components Analysis (PPCA)

* Data is linear function of low-dimensional latent coordinates,
plus Gaussian noise.

p(x; | 2;,0) = N(z; | Wai + p, ¥) P(Zi|‘9):N(Zi’OJ)
p(:&; | (9) _ N(iE@ | n WWT 4 \I/) low rank covariance

parameterization

U =o0°]

(O N

C. Bishop, Pattern Recognition & Machine Learning



Support Vector Machines (SVMs)

[Cortes; Vapnik; Scholkopf; others]
* Classic discriminative approach

* Formal notion of margin m, to aid generalization

* “Kernel trick” to give non-linear decision surtaces




Comparison

Generative Models

+ T.abels not essential

+ Unsupervised or
supervised

* Models whole density
+ Interpretable result
- Can be hard to specity

model structure

Discriminative Models
- Need labels
- Supervised only

* Model only fits
decision

surface
+ Fast to evaluate

+ Can be very powertul



Detour

Deep Neural Networks for
Natural Image Classification




Deep Learning

* Big gains in performance in last few years on:
— Vision
— Audition

— Natural language processing

* Three ingredients:

1. Discriminative neural network models
(supervised training)

2. Big labeled datasets

3. Lots of computation



Computer Vision

* Image Recognition
— Input: Pixels
— Output: Class Label

Ground Truth lens cap



Convolutional Neural Networks

e [LeCun et al. 1989

* Neural network with specialized
connectivity structure

C3: f. maps 16@10x10
C1: feature maps S4: 1. maps 16@5x5

INPUT B@28x28
S2: f. maps

32x32
B@14x14

C5:layer pg.|aver OQUTPUT
120 a4 af 10

| Futtcuml.ecﬁgn | (Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection



Convolutional Neural Network

* Kirizhevsky et al. [NIPS2012]
- 8 layer Convolutional network model [L.eCun et al. ‘89]

- 'Trained on 1.2 million ImageNet images (with labels)
- GPU implementation (50x speedup over CPU)
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* 7 hidden layers, 650,000 neurons, 60,000,000 parameters
e 'Trained on 2 GPUs for a week



Big Image Datasets

A e * Stanford Vision group [Deng et al. 2009]
| * ~14 million labeled images, 20k classes

s ° Images gathered from Internet
= | * Human labels via Amazon Turk

Microsoft + academic collaboration
* 2 million objects in natural settings

Human labels via Amazon Turk

Common Objects in Context




Powerful Hardware

* Deep neural nets highly amenable to implementation

on Graphics Processing Units (GPUs)

— Mainly matrix multiply, 2D convolution operations

* Latest generation

nVidia GPUs (Pascal)
deliver 10 TFlops / card

— Faster than fastest

super-computer
in world 1n 2000




ImageNet Performance over time
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Examples

e From Clarifai.com

Predicted Tags:
food (16.00%)
dinner (3.10%)
bbq (2.90%)
market (2.50%)
meal (1.40%)
turkey (1.40%)
grill (1.30%)
pizza (1.30%)
eat (1.10%)
holiday (1.00%)
Stats:

Size: 247.24 KB
Time: 110 ms




Examples

e From Clarifai.com

Predicted Tags:

ship

helsinki

fish

port

istanbul
beach
denmark
copenhagen
sea

boat

2.30%
1.80%
1.40%
1.10%
1.10%
1.00%
1.00%
0.90%
0.80%
0.80%

L | p— L L g | pmu | L g— . p——, L g—
e R i e e



Examples

e From Clarifai.com

Predicted Tags:
barcelona (6.50%)
street (3.00%)
cave (2.20%)
sagrada (1.90%)
old (1.80%)
night (1.40%)
familia (1.40%)
jerusalem (1.40%)
guanajuato (1.10%)
alley (1.00%)

Stats:

Size: 278.96 KB
Time: 113 ms




Industry Deployment

* Widely used in Facebook, Google, Microsoft

* Face recognition, image search, photo
organization....

* Very fast at test time (~100 images/sec/GPU)

Cc1: M2: C3: L4: L5: L6:
‘ cgjgta;fvgckhgrt_odazJpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x9x9x16 16x7x7x16 16x5x5x16
Detection & Localization @152X152x3 @142x142 @71x71 @63x63 @55x55 @25x25 @21X21

[ Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face
Verification, CVPR’14]
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Success of DeepNets

* ConvNets work great for other types of data:
— Medical imaging
— Speech spectrograms

— Particle physics traces

* Other types of deep neural nets (Recurrent
Nets) work well for natural language

e But need lots and lots of labeled data!!



End of Detour




Galaxy Morphology Classitication

* https://www.galaxyzoo.org/

15 the galaxy simply smooth and rounded,
with no sign of a disk?

How munded is it?

e Crowd-sourced

Could this be a disk viewed edge-on?

Does the galaxy have a bulge at its centre?
If so, what shape?

labels for
different galaxy

lsthere anythmg ndd’

-

I —|

How tightly wound do the spiral arms appear? <

shapes

Is the odd feature a ring, or is the @ 6
galaxy disturbed or irregular? '

il

How many spira* arms are there?

ol ]

Is there a sign of a bar feature through
the centre of the galaxy’

Is there any sagn of a spiral
arm pattern?

How prominent is the central bulge,
compared to the rest of the galaxy?

Figure 1. The Galaxy Zoo 2 decision tree. Reproduced from Figure 1 in Willett et al. (2013).



classification accuracy
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Galaxy Morphology Classification

[Rotation-invariant convolutional neural networks for galaxy morphology prediction,
Dieleman, Willett, Dambre, R. Astron. Soc. March 2015]

* Train ConvNet on Galaxy Zoo data/labels
— Won Kaggle competition

* Closely matches human performance

@@@ Q3: bar, 2449 examples
average accuracy 90.16%

Q1: smoothness, 6144 example
average accuracy 87. 79% /s

O | 1 Il Il
0.0 0.2 0.4 0.6 0.8 1.0

agreement / confidence agreement / confidence

f@@@@

1. input 2. rotate 3. crop . convolutions 5. dense 6. predictions



Direct Detection of Exoplanets
using the 54 Algorithm

[ Spatio-Spectral Speckle Suppression]

Rob Fergus !, David W. Hogg 2,

Rebecca Oppenheimer 3, Doug Brenner ) Laurent Pueyo *

1 Dept. of Computer Science, 2 Center for Cosmology 3 Dept. of Astrophysics 4 Space Telescope
Courant Institute, & Particle Physics, American Museum Science Institute
New York University Dept. of Physics, of Natural History

New York University



P1640 Data Cubes

Each exposure gives 32 wavelength bands
(near IR 950-1770nm)

Speckles are

diffraction artifacts

Move radially with

wavelength

Planet stationary



Wavelength

Use Polar Representation

* Speckles become diagonal structures

. . Wavelength
e Planet 1s vertical

— Key to separating the two

* Assume: independence to
angle and exposure

o
Angle ()

—
=

o
Wavelength

R
5 10 15 20 25 30 5 10 15 20 25 30 H;{;P E“r
Radius Radius Ius ( :'




1.

2.

3.

Three versions of S4

S4 Detect [Generative, PCA-based detection model]

DS4 Detect [Discriminative, SVM-based detection model]
*  [Munandet, Schélkopf, Oppenhiemer, Nilsson, Veicht]

S4 Spectra [Generative, spectra estimation model]

All use same representation
Just ditferent ML approach

Lots of related algorithms (KLIP, LOCI etc.)



Leave-Out Strategy for Detection
(54 Detect & DS4)

* Separate slices within annulus into train/test

e Train new model for each location

For R = Ryin : Rinax
Construct training data Dg
For 0 =10, : 0nar

Dr(f) = Dr — xq
Train on Dg(6)
Predict on ¢

End D
End X
Construct prediction map /
0 -
H?ﬂ(l

Prediction Map Construction

Polar Transformation

Machine  Learning



1. S4 Detect



S4 Detect PCA Model

e Trained for each location

Eigenvectors

Spectrum of patches

1 | 1 1 1 1
30 40 50 &0 70 B0
Principal component number




54 Detect Summary

Build PCA basis on training set
Fit PCA model to test patches
Companion should appear in residual

Correlate residual with (fixed) companion model

(a) Criginal patch (b) Reconstruction (K=30) (c) Residual (d) Companion model

5
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20
5 10 15 20 5 10 15 20 15 20 5 10 15 20
Radius Radius Radius Radius
(@) Qriginal patch (f) Reconstruction (K=30) (g) Residual {h) Companion model
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Radius Radius Radius Radius



2. DS4 Detect



DS§S4 Detect Summary

* (Generate training set
— Discriminative models need labeled examples
— Negative examples: take directly from data

— Positive examples: add artificial companion (different spectra)

5

Positive Example *
(fake companion

Negative Example

(image patch with no planet)
realistic brightness

and spectra)

25

2 4 6 8 10 12 2 4 6 8 10 12

* Train Support Vector Machine (SVM)
* Use SVM on test patches to estimate p(companion | patch)



54 Detect vs DS4 Comparison

Method Data

Algorithm

Detection

S4

Background data
(speckle)

Principle Component
Analysis (Unsupervised
learning)

Correlation between
residual and template

DS§4

Background data +
artificially generated
data

Support Vector Machine
(Supervised learning)

Prediction value of the
model




S4 Detect vs DS4 Detect

Relative brightness of companion vs speckle flux

1% 2% 4%

DS4 (linear)

DS/} (RBF)

54




3. 54 Spectra



True Generative Model for Spectra

S4 Detect: spectrum of planet fixed (white)

Now spectra is unknown

-- Treat as latent variable

Wavelength

Radius

Observed data = PCA speckle model
_I_

Fixed (spatial) planet model with latent spectra

(Gaussian noise assumption



a%
)

S4 Spectra Algorithm

-

1
12 14 16 1% 20 22

Estimated Spectrum

@ m
anet ohape

(white)

Planet

N K “
Reconstruction served data




Spectra of Fake Insertions

* Insert 'T4.5 standard 2MASS J0559-1404 at same strength as real
companions into HR8799 data

Location of HR8799b Location of HRE799¢

T
Ground Truth
- Estimated |

T T
—— Ground Truth
—=— Estimated

Nomalized I';_ (arb, units)
Namalized 1; {ar. units)

P
ol 1 1 L L L 1 1 0
1000 1100 1200 1300 1400 1500 1600 1700 1000 1100 1200 1300 1400 1500 1600 1700
Wavelength (nm Wavelength (nm
Lok Lok,
T T T T

T T T T
| —— Ground Truth|| 1= R ETEETUT P, cehe i ——— Giround Truth
Estimatad : : AT : Estimated

Nomnallzed I'l (arb. units)
Namalized 13 (arb. units)

; 'i‘

2 e
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Spectra of HR8799 system

Normalized f, + Const. (arb. units)

[R Oppenheimer et al., The Astrophysical Journal, April 2013.]
———

HRB8799 b

NH, CH,
CH, C0,°

1600 1800



Finding Planets in Kepler 2.0 data

Foreman-Mackey, Montet, Hogg, et al. (arXiv:1502.04715)

. 4000}

e (Generative model of K2 data 2000
0

e Simultaneous fit of: |

— Planet: physics & geometry
— Star: Gaussian Process
— CCD Noise: Poisson distribution

— Space-craft: Data-driven linear model

* 30 plant candidates, 18 confirmed planets

e W‘WWWWWW

mwwwwMMNW«M i

10 20 30 40 50 60 70 80
time [BJD - 2456808]

bl

stars: n =1, -

G .
»Jq/m]mm\ NWl PEREE A TN = N A,
U + M\ L + &? ! t ;

planet star space craft detector signal



Finding Planets in Kepler 2.0 data

Foreman-Mackey, Montet, Hogg, et al. (arXiv:1502.04715)

T T

4 5;: A ﬁ.{.’g‘.‘"‘ !'~. vA g\ﬁ‘- ;fsr. .

LS

i
I j Raw data
. + synthetic planet transit

L ATV I N T peA it with

few components = systematics remain

(1) 10 BLCs Y depth: 3.2 ppt |
O #’ " e °

1 PCA fit with
1 lots of components = systematics removed,
but transit signal attenuated

relative brightness [ppt]

41 (¢) 150 ELCs Y depth: 2.7 ppt |

T T T T

ol | Simultaneous fit = systematics removed,

transit signal preserved.

—4r (d) conditional ¥ depth: 3.7 ppt |

63 64 65 66 67
time [BJD - 2456808|

36 plant candidates, 18 confirmed planets



Comparison

Generative Models

+ T.abels not essential

+ Unsupervised or
supervised

* Models whole density
+ Interpretable result
- Can be hard to specity

model structure

Discriminative Models
- Need labels
- Supervised only

* Model only fits
decision

surface
+ Fast to evaluate

+ Can be very powertul



Final Thoughts

* Generative models feasible for many astronomy
problems

— Well understood signal formation process

* Discriminative models very powerful for other tasks
where input features must be learned too

* Use machine learning to help design the
coronograph itself

— To maximize discriminability of planet vs speckles



Depth from Defocus using a Coded Aperture

[Levin, Fergus, Durand, Freeman, SIGGRAPH 2007]

* Using generative model of natural images to
design shape of aperture mask

Single input image (shallow D.o.F)

— Maximize discriminability
between different defocus blur

Modified Canon lens

Inferred

depth map







“Unitied” Generative Model of Astronomical Images

e Unified
Bayesian
model

* Propagate

uncertainty

from pixels P N
* Physics- = N

informed

priors &G \ mage

Telescope r Galaxy



Detection of Planets

1M
¢

HR 89 Input | S4 Output map



Algorithm Overview

Exploit radial motion of speckles (vs wavelength)

— Build model in polar domain
— Speckle motion is now 1D

Mean image

FoH12

£ 410

Mean image

Angle (8)

510 QOR

Radius (r)



Wavelength

Joint Radius-Wavelength Model

* Speckles are diagonal structures

e Planet is vertical

* Assume: independence to

o

—
=

o

— Key to separating the two

angle and exposure

5 10

15
Radius

20

25

30

Wavelength

Wavelength

5

10

15
Radius

20

Angle ()

510 EGR

Radius (r)



S4 Graphical Model

Speckle coeffs. Planet
CocfF. i S
prior
Spec.kl ; Planet shape
basis
Pixel j
Speckle image: from . . Planet image:
cube i P ixel J
exposure 1

Assume Gaussian distributions, ’

yields overall cost: |




Approach

* Build statistical model of speckles

— Physical model of optics too complex

* Few exposures of a given star (5-10)
— Little data from which build model

* Need to exploit problem structure to yield
more samples ot speckles



Spectral Estimation Error

* Function of radius & companion brightness

RMS Spectral Extraction Error

0.5

1.5

no

Companion intensity (rel.%)

20 25 30 35 40 45 50
Location of companion



Spectra of HR8799 system

Normalized f, + Const. (arb. units)

HRB8799 b

1800



Comparison with Existing Spectrum of

HRE&799b

CLOUDS AND CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HR8799b

TRAVIS S. BARMAN'!, BRUCE MACINTOSH?, QUINN M. KONOPACKY?, AND CHRISTIAN MAROIS®

I Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001, USA; barman @ lowell.edu
2 Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
3 National Research Council Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC VOE 2E7, Canada

Received 2011 January 26; accepted 2011 March 20; published 2011 May 5

I, (erb. units)




Astronomy & Computer Vision

* Both fields concerned with images

— Astronomy images simpler than
natural scenes

— Some hope that generative models
could work

* Much work in vision on learning statistical models of
natural scenes
— Use as statistical priors for ill-posed or low S/N problems

— Lots of ways to apply these to astronomy images



Single Image Blind Deconvolution

R. Fergus, B. Singh, A. Hertzmann, S.T. Roweis & W.T. Freeman, SIGGRAPH 2006

* Uses prior on image gradients to regularize problem

Original Output




Close-up

Original Naive Sharpening  Our algorithm




Online Blind Deconvolution

* Remove blur due to atmospheric turbulence

* Alterative to “lucky imaging” (keep best few %bo)

Hirsch, Harmeling, Sra & Schoélkopf, Astronomy & Astrophysics 2011

Observed frame 1/40 Estimated PSF Estimated image
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Plan

* Generative vs Discriminative modeling [12 mins]
— PCA & PPCA
— SVMs
— Deep Nets

* Examples of G & D modeling [10 mins]

— Galaxy Zoo
— Kepler DFM

* Examples of G &D modeling for direct imaging of
exoplanets [20 mins]
— S4 Detect
— S4 Discriminative

— 54 Spectra



Project 1640

 Hale Telescope @ Palomar, CA

* Integral Field Spectrometer, Coronagra

ph, Adaptive Optics

\ !‘: =

[Slide: R. Oppenhiemer]



Integrated Field Spectrometer

Monochromatic 1330nm
light source \

33 pixels

Broadband
white light
source

[Slide: R. Oppenhiemer] Hinkley et al. 2011c (PASP, 123, 74)



Data Matrix

(#angles — held out zone) * #exposures

(~30-300) (~10)

D e EE——

Annulus width (~20)

# wavelengths (~30)

Patch width in angle (~3)




Residual Error of PCA Model

(a) Original patch (b) Reconstruction (k=20) (c) Residual
I T T T

5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30
Radius Radius Radius
(d) Original patch (e) Reconstruction (k=20) (f) Residual

g F " 5

10 10

15 15

20 20

5 10 15 20 295 30 5 10 15 20 25 30 5 10 15 20 29 30
Radius Radius Radius



Planet Model

* Use model of planet

 Obtained from

instrument calibration
(spatially invariant)

* Spectra fixed:
assume white

Wavelength

Radius



Wavelength

Correlation with Planet Model

* Correlation between planet model & residual error

Residual (with planet) Residual (no planet)
5
10
15
20
15 20 25 30 Radius

Radius Radu_]s



Data Cubes

Each exposure gives 32 wavelength bands
(near IR 950-1770nm)

Speckles are

diffraction artifacts

Move radially with

wavelength

Planet stationary



Leave-Out Strategy

* Separate slices within
annulus into train/test

* Build speckle model
on train slices
— Lots of them:

~ Hexposures * Hangle

— Use patches with small
extent in angle

e Use model to
reconstruct test slices

Mean image

20

train

&

2

Angle (B)
2

train
140

310 E{IR

Radius (r) Radius (r)



Evaluation

* 10 exposures of star HR8799 trom June 2012

* Compare to leading astronomy algorithms:

— LOCI (Local Combination Of Images)
Lafreniére et al. , The Astrophysical Journal, 660:770-780, May 2007

* Models speckles as linear combination of speckles
from other wavelengths/exposures

— KLIP: Detection and Characterization of Exoplanets and Disks using
Projections on Karhunen-Loeve Eigenimages, Remi Soummer et al.,

arXiv:1207.4197, July 2012
» PCA-based but does not exploit radius-wavelength structure



PCA Residuals for HR8799

KLIP Algorithm S4 Algorithm

©,




Spectra of HR8799 Planets

Normalized f, + Const. (arb. units)

HRB8799 b

1800



