

Machine Learning for Astronomy

Rob Fergus

Dept. of Computer Science, Courant Institute, New York University

Overview

- High-level view of machine learning
 - Discuss generative & discriminative modeling of data
 - Not exhaustive survey
 - Try to illustrate important ML concepts
- Give examples of these models applied to problems in astronomy
- In particular, exoplanet detection algorithms

Generative vs Discriminative Modeling

- Key distinction in machine learning
- E.g toy classification dataset with labels (red=class 1, blue=class 2)

Generative vs Discriminative Modeling

- Given new point x
- Want to compute p(C|x)

Posterior

Generative Modeling

- Top-down interpretation of data
 i.e. adjust model parameters to fit observed data
- E.g. Gaussian model, estimate $\theta = \{\mu_c, \Sigma_c\}$ that maximizes likelihood of data: $p(x|c, \theta)$

Generative Modeling

- Given new point, we can compute $\frac{p(x|c=1,\theta_1)}{p(x|c=2,\theta_2)}$
- Combine with prior to give posterior
- Likelihood ratio defines decision surface

Discriminative Modeling

- Model posterior directly (no model of data density)
- Fit decision surface directly $\frac{p(C=1|x)}{p(C=2|x)}$
- Bottom-up model: input=x, output=class prediction

Principal Components Analysis (PCA)

- Example of generative model (objective: compression)
- Observed data points: $x_n \in R^D$, n = 1, 2, ..., N
- Hidden manifold coords.: $z_n \in \mathbb{R}^M$, n = 1, 2, ..., N
- Hidden linear mapping: $\tilde{x}_n = W z_n + b$ $W \in R^{D \times M}$ $b \in R^{D \times 1}$

$$J(z, W, b | x, M) = \sum_{n=1}^{N} \|x_n - \tilde{x}_n\|^2 = \sum_{n=1}^{N} \|x_n - W z_n - b\|^2$$

• Find global optimum via eigendecomposition of sample covariance matrix

Principal Components Analysis (PCA)

C. Bishop, Pattern Recognition & Machine Learning

$$J(z, W, b | x, M) = \sum_{n=1}^{N} ||x_n - \tilde{x}_n||^2 = \sum_{n=1}^{N} ||x_n - W z_n - b||^2$$

Probabilistic Principal Components Analysis (PPCA)

• Data is linear function of low-dimensional latent coordinates, plus Gaussian noise.

$$p(x_i \mid z_i, \theta) = \mathcal{N}(x_i \mid Wz_i + \mu, \Psi) \qquad p(z_i \mid \theta) = \mathcal{N}(z_i \mid 0, I)$$

$$p(x_i \mid \theta) = \mathcal{N}(x_i \mid \mu, WW^T + \Psi) \qquad \stackrel{\text{low rank covariance}}{\underset{parameterization}{\Psi}{=} \sigma^2 I}$$

Support Vector Machines (SVMs) [Cortes; Vapnik; Schölkopf; others]

- Classic discriminative approach
- Formal notion of margin m, to aid generalization
- "Kernel trick" to give non-linear decision surfaces

Comparison

Generative Models

- + Labels not essential
- + Unsupervised or supervised
- Models whole density
- + Interpretable result
- Can be hard to specify model structure

Discriminative Models

- Need labels
- Supervised only
- Model only fits decision surface
- + Fast to evaluate
- + Can be very powerful

Detour

Deep Neural Networks for Natural Image Classification

Deep Learning

- Big gains in performance in last few years on:
 Vision
 - Audition
 - Natural language processing
- Three ingredients:
 - 1. Discriminative neural network models (supervised training)
 - 2. Big labeled datasets
 - 3. Lots of computation

Computer Vision

- Image Recognition
 - Input: Pixels
 - Output: Class Label

Convolutional Neural Networks

- LeCun et al. 1989
- Neural network with specialized connectivity structure

Convolutional Neural Network

- Krizhevsky et al. [NIPS2012]
 - 8 layer Convolutional network model [LeCun et al. '89]
 - Trained on 1.2 million ImageNet images (with labels)
 - GPU implementation (50x speedup over CPU)

- 7 hidden layers, 650,000 neurons, 60,000,000 parameters
- Trained on 2 GPUs for a week

Big Image Datasets

- Stanford Vision group [Deng et al. 2009]
 - ~14 million labeled images, 20k classes
 - Images gathered from Internet
- Human labels via Amazon Turk

- Microsoft + academic collaboration
- 2 million objects in natural settings
- Human labels via Amazon Turk

Powerful Hardware

- Deep neural nets highly amenable to implementation on Graphics Processing Units (GPUs)
 Mainly matrix multiply, 2D convolution operations
- Latest generation nVidia GPUs (Pascal) deliver 10 TFlops / card
 - Faster than fastest super-computer in world in 2000

ImageNet Performance over time

[Russakovsky et al. IJCV 2015]

Examples

• From Clarifai.com

Predicted Tags:

food	(16.00%)
dinner	(3.10%)
bbq	(2.90%)
market	(2.50%)
meal	(1.40%)
turkey	(1.40%)
grill	(1.30%)
pizza	(1.30%)
eat	(1.10%)
holiday	(1.00%)

Stats:

Size: 247.24 KB Time: 110 ms

Examples

• From Clarifai.com

Predicted Tags:

ship	(2.30%)
helsinki	(1.80%)
fish	(1.40%)
port	(1.10%)
istanbul	(1.10%)
beach	(1.00%)
denmark	(1.00%)
copenhagen	(0.90%)
sea	(0.80%)
boat	(0.80%)

Examples

• From Clarifai.com

Predicted Tags:

barcelona	(6.50%)
street	(3.00%)
cave	(2.20%)
sagrada	(1.90%)
old	(1.80%)
night	(1.40%)
familia	(1.40%)
jerusalem	(1.40%)
guanajuato	(1.10%)
alley	(1.00%)

Stats:

Size: 278.96 KB Time: 113 ms

Industry Deployment

- Widely used in Facebook, Google, Microsoft
- Face recognition, image search, photo organization....
- Very fast at test time (~100 images/sec/GPU)

[Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face Verification, CVPR'14]

Success of DeepNets

- ConvNets work great for other types of data:
 - Medical imaging
 - Speech spectrograms
 - Particle physics traces
- Other types of deep neural nets (Recurrent Nets) work well for natural language
- But need lots and lots of labeled data!!

End of Detour

Galaxy Morphology Classification

- <u>https://www.galaxyzoo.org/</u>
- Crowd-sourced labels for different galaxy shapes

Figure 1. The Galaxy Zoo 2 decision tree. Reproduced from Figure 1 in Willett et al. (2013).

Galaxy Morphology Classification

[Rotation-invariant convolutional neural networks for galaxy morphology prediction, Dieleman, Willett, Dambre, R. Astron. Soc. March 2015]

- Train ConvNet on Galaxy Zoo data/labels
 - Won Kaggle competition
- Closely matches human performance

Direct Detection of Exoplanets using the S4 Algorithm [Spatio-Spectral Speckle Suppression]

Rob Fergus ¹, David W. Hogg ², Rebecca Oppenheimer³, Doug Brenner³, Laurent Puevo⁴

1 Dept. of Computer Science, 2 Center for Cosmology Courant Institute, New York University

& Particle Physics, Dept. of Physics, New York University 3 Dept. of Astrophysics American Museum of Natural History

4 Space Telescope Science Institute

P1640 Data Cubes

- Each exposure gives 32 wavelength bands (near IR 950-1770nm)
- Speckles are diffraction artifacts
- Move radially with wavelength
- Planet stationary

Use Polar Representation

- Speckles become diagonal structures
- Planet is vertical
 - Key to separating the two
- Assume: independence to angle and exposure

Three versions of S4

- 1. S4 Detect [Generative, PCA-based detection model]
- 2. DS4 Detect [Discriminative, SVM-based detection model]
 - [Munandet, Schölkopf, Oppenhiemer, Nilsson, Veicht]
- 3. S4 Spectra [Generative, spectra estimation model]
- All use same representation
- Just different ML approach
- Lots of related algorithms (KLIP, LOCI etc.)

Leave-Out Strategy for Detection (S4 Detect & DS4)

- Separate slices within annulus into train/test
- Train new model for each location

1. S4 Detect

S4 Detect PCA Model

• Trained for each location

Eigenvectors

S4 Detect Summary

- Build PCA basis on training set
- Fit PCA model to test patches
- Companion should appear in residual
- Correlate residual with (fixed) companion model

2. DS4 Detect

DS4 Detect Summary

- Generate training set
 - Discriminative models need labeled examples
 - Negative examples: take directly from data
 - Positive examples: add artificial companion (different spectra)

- Train Support Vector Machine (SVM)
- Use SVM on test patches to estimate p(companion | patch)

S4 Detect vs DS4 Comparison

Method	Data	Algorithm	Detection
S4	Background data (speckle)	Principle Component Analysis (Unsupervised learning)	Correlation between residual and template
DS4	Background data + artificially generated data	Support Vector Machine (Supervised learning)	Prediction value of the model

S4 Detect vs DS4 Detect

Relative brightness of companion vs speckle flux

 S_4

3. S4 Spectra

True Generative Model for Spectra

- S4 Detect: spectrum of planet fixed (white)
- Now spectra is unknown -- Treat as latent variable

- Radius
- Observed data = PCA speckle model +
 Fixed (spatial) planet model with latent spectra
- Gaussian noise assumption

S4 Spectra Algorithm

Spectra of Fake Insertions

• Insert T4.5 standard 2MASS J0559-1404 at same strength as real companions into HR8799 data

Spectra of HR8799 system

Finding Planets in Kepler 2.0 data

2000

- 4000

Foreman-Mackey, Montet, Hogg, et al. (arXiv:1502.04715)

- Generative model of K2 data
- Simultaneous fit of:
 - Planet: physics & geometry
 - Star: Gaussian Process
 - CCD Noise: Poisson distribution
 - Space-craft: Data-driven linear model
- 36 plant candidates, 18 confirmed planets

Finding Planets in Kepler 2.0 data

Foreman-Mackey, Montet, Hogg, et al. (arXiv:1502.04715)

Comparison

Generative Models

- + Labels not essential
- + Unsupervised or supervised
- Models whole density
- + Interpretable result
- Can be hard to specify model structure

Discriminative Models

- Need labels
- Supervised only
- Model only fits decision surface
- + Fast to evaluate
- + Can be very powerful

Final Thoughts

- Generative models feasible for many astronomy problems
 - Well understood signal formation process
- Discriminative models very powerful for other tasks where input features must be learned too
- Use machine learning to help design the coronograph itself
 - To maximize discriminability of planet vs speckles

Depth from Defocus using a Coded Aperture

[Levin, Fergus, Durand, Freeman, SIGGRAPH 2007]

- Using generative model of natural images to design shape of aperture mask
 - Maximize discriminability between different defocus blur

Single input image (shallow D.o.F)

Modified Canon lens

Inferred depth map

"Unified" Generative Model of Astronomical Images

- Unified Bayesian model
- Propagate uncertainty from pixels
- Physicsinformed priors

Detection of Planets

HR 8799 Input

S4 Output map

Algorithm Overview

- Exploit radial motion of speckles (vs wavelength)
 - Build model in polar domain
 - Speckle motion is now 1D

Joint Radius-Wavelength Model

- Speckles are diagonal structures
- Planet is vertical
 - Key to separating the two
- Assume: independence to angle and exposure

Approach

- Build statistical model of speckles
 Physical model of optics too complex
- Few exposures of a given star (5-10)
 Little data from which build model

• Need to exploit problem structure to yield more samples of speckles

Spectral Estimation Error

• Function of radius & companion brightness

Spectra of HR8799 system

Comparison with Existing Spectrum of HR8799b

CLOUDS AND CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HR8799b

Astronomy & Computer Vision

- Both fields concerned with images
 - Astronomy images simpler than natural scenes
 - Some hope that generative models could work

- Much work in vision on learning statistical models of natural scenes
 - Use as statistical priors for ill-posed or low S/N problems
 - Lots of ways to apply these to astronomy images

Single Image Blind Deconvolution

R. Fergus, B. Singh, A. Hertzmann, S.T. Roweis & W.T. Freeman, SIGGRAPH 2006

Uses prior on image gradients to regularize problem
 Original
 Output

Close-up

Original

Naïve Sharpening

Our algorithm

Online Blind Deconvolution

- Remove blur due to atmospheric turbulence
- Alterative to "lucky imaging" (keep best few %)

Hirsch, Harmeling, Sra & Schölkopf, Astronomy & Astrophysics 2011

Plan

- Generative vs Discriminative modeling [12 mins]
 - PCA & PPCA
 - SVMs
 - Deep Nets
- Examples of G & D modeling [10 mins]
 - Galaxy Zoo
 - Kepler DFM
- Examples of G &D modeling for direct imaging of exoplanets [20 mins]
 - S4 Detect
 - S4 Discriminative
 - S4 Spectra

Project 1640

- Hale Telescope @ Palomar, CA
- Integral Field Spectrometer, Coronagraph, Adaptive Optics

[Slide: R. Oppenhiemer]

Integrated Field Spectrometer

Monochromatic 1330nm light source

[Slide: R. Oppenhiemer]

Hinkley et al. 2011c (PASP, 123, 74)

Broadband

white light

source

Data Matrix

Annulus width (~20) *
wavelengths (~30)

*

Patch width in angle (~3)

samples

dimensions

Residual Error of PCA Model

Planet Model

- Use model of planet
- Obtained from instrument calibration (spatially invariant)
- Spectra fixed: assume white

Correlation with Planet Model

• Correlation between planet model & residual error

Residual (with planet)

Residual (no planet)

Data Cubes

- Each exposure gives 32 wavelength bands (near IR 950-1770nm)
- Speckles are diffraction artifacts
- Move radially with wavelength
- Planet stationary

Leave-Out Strategy

- Separate slices within annulus into train/test
- Build speckle model on train slices
 - Lots of them:
 - ~ #exposures * #angle
 - Use patches with small extent in angle
- Use model to reconstruct test slices

Evaluation

- 10 exposures of star HR8799 from June 2012
- Compare to leading astronomy algorithms:
 - LOCI (Local Combination Of Images) Lafrenière et al., The Astrophysical Journal, 660:770-780, May 2007
 - Models speckles as linear combination of speckles from other wavelengths/exposures
 - KLIP: Detection and Characterization of Exoplanets and Disks using Projections on Karhunen-Loeve Eigenimages, Remi Soummer et al., arXiv:1207.4197, July 2012
 - PCA-based but does not exploit radius-wavelength structure

PCA Residuals for HR8799

Spectra of HR8799 Planets

