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• High-level view of  machine learning
– Discuss generative &  discriminative modeling of  data
– Not exhaustive survey
– Try to illustrate important ML concepts

• Give examples of  these models applied to 
problems in astronomy

• In particular, exoplanet detection algorithms

Overview



Generative vs Discriminative Modeling

• Key distinction in machine learning
• E.g toy classification dataset with labels 

(red=class 1, blue=class 2)



Generative vs Discriminative Modeling

• Given new point x
• Want to compute

• Alternatively:
Posterior                   Likelihood       Prior

Discriminative
approaches

compute this

Generative
approaches

compute this

Bayes rule



Generative Modeling
• Top-down interpretation of  data

– i.e. adjust model parameters to fit observed data
• E.g. Gaussian model, estimate

that maximizes likelihood of  data:   

+

+



Generative Modeling
• Given new point, we can compute 
• Combine with prior to give posterior
• Likelihood ratio defines decision surface

+

+



Discriminative Modeling
• Model posterior directly (no model of  data density)
• Fit decision surface directly
• Bottom-up model: input=x, output=class prediction



Principal Components Analysis (PCA)
• Example of  generative model (objective: compression)
• Observed data points: 
• Hidden manifold coords.:
• Hidden linear mapping: 

• Find global optimum via eigendecomposition of  
sample covariance matrix



Principal Components Analysis (PCA)



Probabilistic Principal 
Components Analysis (PPCA)

• Data is linear function of  low-dimensional latent coordinates, 
plus Gaussian noise.



Support Vector Machines (SVMs)
• Classic discriminative approach
• Formal notion of  margin m, to aid generalization
• “Kernel trick” to give non-linear decision surfaces

r

m

[Cortes; Vapnik; Schölkopf; others]



Comparison
Generative Models

+ Labels not essential
+ Unsupervised or 
supervised
• Models whole density
+ Interpretable result
- Can be hard to specify 
model structure

Discriminative Models
- Need labels

- Supervised only
• Model only fits 

decision 
surface

+ Fast to evaluate
+ Can be very powerful



Detour

Deep Neural Networks for 
Natural Image Classification



Deep Learning

• Big gains in performance in last few years on:
– Vision
– Audition
– Natural language processing

• Three ingredients:
1. Discriminative neural network models 

(supervised training)
2. Big labeled datasets
3. Lots of  computation



Computer Vision

[Krizhevsky et al. NIPS 2012]

• Image Recognition

– Input: Pixels

– Output: Class Label

Ground Truth

Model 
Predictions



Convolutional Neural Networks

• LeCun et al. 1989

• Neural network with specialized 
connectivity structure



Convolutional Neural Network

• 7 hidden layers, 650,000 neurons, 60,000,000 parameters
• Trained on 2 GPUs for a week

• Krizhevsky et al. [NIPS2012] 
- 8 layer Convolutional network model [LeCun et al. ‘89]
- Trained on 1.2 million ImageNet images (with labels)
- GPU implementation (50x speedup over CPU)



Big Image Datasets

[Deng et al. CVPR 2009] 

• Stanford Vision group [Deng et al. 2009]
• ~14 million labeled images, 20k classes
• Images gathered from Internet

• Human labels via Amazon Turk 

• Microsoft + academic collaboration
• 2 million objects in natural settings

• Human labels via Amazon Turk 



Powerful Hardware

• Deep neural nets highly amenable to implementation 
on Graphics Processing Units (GPUs)
– Mainly matrix multiply, 2D convolution operations

• Latest generation
nVidia GPUs (Pascal)
deliver 10 TFlops / card
– Faster than fastest 

super-computer
in world in 2000



ImageNet Performance over time
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Examples
• From Clarifai.com



Examples
• From Clarifai.com



Examples
• From Clarifai.com



Industry Deployment

• Widely used in Facebook, Google, Microsoft
• Face recognition, image search, photo 

organization….
• Very fast at test time (~100 images/sec/GPU)

[Taigman et al. DeepFace: Closing the Gap to Human-Level Performance in Face 
Verification, CVPR’14]



Success of  DeepNets

• ConvNets work great for other types of  data:
– Medical imaging
– Speech spectrograms
– Particle physics traces

• Other types of  deep neural nets (Recurrent 
Nets) work well for natural language

• But need lots and lots of  labeled data!!



End of  Detour



Galaxy Morphology Classification

• https://www.galaxyzoo.org/

• Crowd-sourced
labels for 
different galaxy
shapes

F igur e 1. T he Galaxy Zoo 2 decision t ree. Reproduced from Figure 1 in W illet t et al. (2013).



Galaxy Morphology Classification

• Train ConvNet on Galaxy Zoo data/labels
– Won Kaggle competition

• Closely matches human performance

[Rotation-invariant convolutional neural networks for galaxy morphology prediction, 
Dieleman, Willett, Dambre, R. Astron. Soc. March 2015]



Direct Detection of Exoplanets
using the S4 Algorithm
[Spatio-Spectral Speckle Suppression]

Rob Fergus 1, David W. Hogg 2, 
Rebecca Oppenheimer 3, Doug Brenner 3, Laurent Pueyo 4

3  Dept. of Astrophysics
American Museum
of Natural History

2  Center for Cosmology 
& Particle Physics, 
Dept. of Physics,

New York University

1  Dept. of Computer Science,
Courant Institute, 
New York University

4 Space Telescope
Science Institute



P1640 Data Cubes

• Each exposure gives 32 wavelength bands
(near IR 950-1770nm)

• Speckles are 
diffraction artifacts

• Move radially with 
wavelength

• Planet stationary



Use Polar Representation

• Speckles become diagonal structures
• Planet is vertical

– Key to separating the two
• Assume: independence to

angle and exposure 
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Three versions of  S4

1. S4 Detect [Generative, PCA-based detection model]

2. DS4 Detect [Discriminative, SVM-based detection model]
• [Munandet, Schölkopf, Oppenhiemer, Nilsson, Veicht]

3. S4 Spectra [Generative, spectra estimation model]

• All use same representation
• Just different ML approach

• Lots of  related algorithms (KLIP, LOCI etc.)

[Fergus et al., Astrophysical Journal, under review]



• Separate slices within annulus into train/test
• Train new model for each location 

Leave-Out Strategy for Detection 
(S4 Detect & DS4)

Machine   



1. S4 Detect

[Fergus et al., Astrophysical Journal, under review]



S4 Detect PCA Model

• Trained for each location



S4 Detect Summary 
• Build PCA basis on training set
• Fit PCA model to test patches
• Companion should appear in residual
• Correlate residual with (fixed) companion model



2. DS4 Detect

[Fergus et al., Astrophysical Journal, under review]



DS4 Detect Summary 
• Generate training set

– Discriminative models need labeled examples
– Negative examples: take directly from data
– Positive examples: add artificial companion (different spectra)

• Train Support Vector Machine (SVM) 
• Use SVM on test patches to estimate p(companion|patch)  

Negative Example
(image patch with no planet)

Positive Example
(fake companion

realistic brightness 
and spectra)



S4 Detect vs DS4 Comparison

Method Data Algorithm Detection

S4 Background data 
(speckle)

Principle Component 
Analysis (Unsupervised 
learning)

Correlation between 
residual and template

DS4
Background data + 
artificially generated 
data

Support Vector Machine 
(Supervised learning)

Prediction value of  the 
model



S4 Detect vs DS4 Detect 
Relative brightness of  companion vs speckle flux



3. S4 Spectra



True Generative Model for Spectra

• S4 Detect: spectrum of  planet fixed (white)

• Now spectra is unknown
-- Treat as latent variable

• Observed data = PCA speckle model
+

Fixed (spatial) planet model with latent spectra

• Gaussian noise assumption
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S4 Spectra Algorithm

Observed dataReconstruction

Estimated Speckles Estimated Planet

Speckle Basis

Estimated Spectrum

Planet Shape 
(white)

Radius

W
av

el
en

gt
h

+

*Basis 
Weights
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1.43
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Speckle Model

Planet
Model



Spectra of  Fake Insertions
• Insert T4.5 standard 2MASS J0559-1404 at same strength as real 

companions into HR8799 data



Spectra of  HR8799 system
[R Oppenheimer et al., The Astrophysical Journal, April 2013.]



Finding Planets in Kepler 2.0 data
Foreman-Mackey, Montet, Hogg, et al. (arXiv:1502.04715) 
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t ime [BJD - 2456808]

− 4000
− 2000

0
2000
4000 raw: 301 ppm

• Generative model of  K2 data
• Simultaneous fit of:

– Planet: physics & geometry
– Star: Gaussian Process 
– CCD Noise: Poisson distribution
– Space-craft: Data-driven linear model

• 36 plant candidates, 18 confirmed planets



Finding Planets in Kepler 2.0 data
Foreman-Mackey, Montet, Hogg, et al. (arXiv:1502.04715) 

Raw data
+ synthetic planet transit

PCA fit with
few components   systematics remain

PCA fit with
lots of  components  systematics removed, 

but transit signal attenuated 

Simultaneous fit  systematics removed, 
transit signal preserved.

36 plant candidates, 18 confirmed planets



Comparison

Generative Models
+ Labels not essential
+ Unsupervised or 
supervised
• Models whole density
+ Interpretable result
- Can be hard to specify 
model structure

Discriminative Models
- Need labels

- Supervised only
• Model only fits 

decision 
surface

+ Fast to evaluate
+ Can be very powerful



Final Thoughts

• Generative models feasible for many astronomy 
problems
– Well understood signal formation process

• Discriminative models very powerful for other tasks 
where input features must be learned too

• Use machine learning to help design the 
coronograph itself
– To maximize discriminability of  planet vs speckles



Depth from Defocus using a Coded Aperture 

• Using generative model of  natural images to 
design shape of  aperture mask
– Maximize discriminability 

between different defocus blur 

Modified Canon lens PSF

Single input image (shallow D.o.F)

Inferred 
depth map

[Levin, Fergus, Durand, Freeman, SIGGRAPH 2007]





“Unified” Generative Model of  Astronomical Images

• Unified
Bayesian 
model

• Propagate
uncertainty
from pixels

• Physics-
informed
priors

Hogg & Fergus, NSF #1124794 “CDI: A Unified Probabilistic Model of Astronomical Imaging”



Detection of  Planets

HR 8799 Input      |         S4 Output map



Algorithm Overview
• Exploit radial motion of  speckles (vs wavelength)

– Build model in polar domain
– Speckle motion is now 1D



Joint Radius-Wavelength Model
• Speckles are diagonal structures
• Planet is vertical

– Key to separating the two
• Assume: independence to

angle and exposure 
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S4 Graphical Model

yj
i

pixel j

exposure i

xiW

zi

Speckle

basis
Pixel j
from 

cube i

Speckle coeffs.

s

pi

μi

g

Planet position

Planet shape

Planet 

spectrum

ϕCoeff.

prior

Speckle image: Planet image:

Assume Gaussian distributions,

yields overall cost:



Approach

• Build statistical model of  speckles
– Physical model of  optics too complex 

• Few exposures of  a given star (5-10)
– Little data from which build model

• Need to exploit problem structure to yield 
more samples of  speckles



Spectral Estimation Error

• Function of  radius & companion brightness



Spectra of  HR8799 system



Comparison with Existing Spectrum of  
HR8799b



Astronomy & Computer Vision

• Both fields concerned with images
– Astronomy images simpler than 

natural scenes
– Some hope that generative models

could work

• Much work in vision on learning statistical models of  
natural scenes
– Use as statistical priors for ill-posed or low S/N problems
– Lots of  ways to apply these to astronomy images



Single Image Blind Deconvolution

Original Output

R. Fergus, B. Singh, A. Hertzmann, S.T. Roweis & W.T. Freeman, SIGGRAPH 2006

• Uses prior on image gradients to regularize problem



Close-up

Original Naïve Sharpening Our algorithm 



Online Blind Deconvolution

Hirsch, Harmeling, Sra & Schölkopf, Astronomy & Astrophysics 2011

• Remove blur due to atmospheric turbulence
• Alterative to “lucky imaging” (keep best few %)
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Plan
• Generative vs Discriminative modeling [12 mins]

– PCA & PPCA
– SVMs
– Deep Nets

• Examples of  G & D modeling [10 mins]
– Galaxy Zoo
– Kepler DFM

• Examples of  G &D modeling for direct imaging of  
exoplanets [20 mins]
– S4 Detect
– S4 Discriminative
– S4 Spectra



Project 1640

Hinkley et al. 2011c (PASP, 123, 74) [Slide: R. Oppenhiemer]

• Hale Telescope @ Palomar, CA

• Integral Field Spectrometer, Coronagraph, Adaptive Optics



Integrated Field Spectrometer

Monochromatic 1330nm 
light source

Broadband 
white light 
source

Hinkley et al. 2011c (PASP, 123, 74)[Slide: R. Oppenhiemer]



Data Matrix

Annulus width (~20) 
*

# wavelengths (~30) 
*

Patch width in angle (~3)

(#angles – held out zone)  *  #exposures 

(~30-300)                    (~10)        

# samples 

# dimensions 



Residual Error of  PCA Model



Planet Model

• Use model of planet

• Obtained from 
instrument calibration
(spatially invariant)

• Spectra fixed:
assume white
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Correlation with Planet Model

• Correlation between planet model & residual error

Radius
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Residual (with planet) Residual (no planet)



Data Cubes
• Each exposure gives 32 wavelength bands

(near IR 950-1770nm)

• Speckles are 
diffraction artifacts

• Move radially with 
wavelength

• Planet stationary



Leave-Out Strategy

• Separate slices within
annulus into train/test

• Build speckle model 
on train slices
– Lots of  them:

~ #exposures * #angle
– Use patches with small

extent in angle

• Use model to 
reconstruct test slices



Evaluation

• 10 exposures of  star HR8799 from June 2012 

• Compare to leading astronomy algorithms:
– LOCI (Local Combination Of  Images)

Lafrenière et al. , The Astrophysical Journal, 660:770-780, May 2007

• Models speckles as linear combination of speckles
from other wavelengths/exposures

– KLIP: Detection and Characterization of Exoplanets and Disks using 
Projections on Karhunen-Loeve Eigenimages, Remi Soummer et al., 
arXiv:1207.4197, July 2012

• PCA-based but does not exploit radius-wavelength structure



PCA Residuals for HR8799



Spectra of  HR8799 Planets


