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CRTS

ZTF

Gaia

LSST 
simulated

From snapshots to (slow) movies of the sky

SDSS, Pan-STARRS, ASAS-SN, Skymapper, … (just in the optical) SKA



4 individual exposures, separated by 10 

Most (but not all!) are flaring dwarf stars (UV Ceti) 

Catalina Real-time Transient Survey (CRTS)
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2008 TC3 discovered by CSS on 7 Oct 2008

Low cost ‘sample return mission’



Area: ~ 47 deg2   
(576M pixels) 

Rate: 3760 deg2 / hour 
Depth (5σ): r ~ 20.5 mag. 
Filters: 3 (g, r, i) 
Public survey:  
~ 15k deg2/3 nights

ZTF 

LSST 

moon 

Zwicky 
Transient 
Facility



DR1 MSIP (public) data 
ztf.caltech.edu

Time series for over a billion sources

http://ztf.caltech.edu


Variability tree: Many nodes have further subdivisions

Scheduling follow-up and brokers

100K alerts/night



A Variety of Classification Methods

Bayesian Networks 
Can incorporate heterogeneous and/or 

missing data 
Can incorporate contextual data, e.g., 

distance to the nearest star or galaxy 
Probabilistic Structure Functions 

A new method, based on 2D [Δt1, Δm] 
distributions 

Now expanding to data point triplets:  
Δt12 , Δm12 , Δt23 , Δm23 , giving a 4D 
histogram 

Random Forests 
Ensembles of Decision Trees 

Feature Selection Strategies 
Optimizing classifiers 

Machine-Assisted Discovery
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mag

Time (3000+ days)

CRTS

Kepler - small area 
non-sparse

~100 days

L Walkowicz
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Sparse Data



ZTF J153932.16+502738.8 Burdge et al, Nat 24 Jul 2019

hot primary ≈ 0.6 M 
WD (likely C-O), 
cool secondary ≈0.2 M 
WD (likely He).

light curves from CHIMERA, ZTF, KPED (Kitt Peak)
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Compute features (statistical measures) for each light curve: 
amplitudes, moments, periodicity, etc.

Converts heterogeneous light curves into homogeneous 
feature vectors in the parameter space

Apply a variety of automated classification methods

Djorgovski

Statistical features Streaming updates!



beyond1std 
skew 

Amplitude 

freq_signif 

freq_varrat 

freq_y_offset 

freq_model_max_delta_mag 
freq_model_min_delta_mag 

freq_model_phi1_phi2 

freq_rrd 

freq_n_alias 

flux_%_mid20 
flux_%_mid35 
flux_%_mid50 
flux_%_mid65 
flux_%_mid80 

linear_trend 

max_slope 

MAD 

median_buffer_range_percentage 

pair_slope_trend 

percent_amplitude 

percent_difference_flux_percentile 
QSO 
non_QSO 

std 

small_kurtosis 

stetson_j 
stetson_k 

scatter_res_raw 

p2p_scatter_2praw 

p2p_scatter_over_mad 

p2p_scatter_pfold_over_mad 
medperc90_p2_p 

fold_2p_slope_10% 
fold_2p_slope_90% 

p2p_ssqr_diff_over_var 

Many features   
- not all are independent 

Adam Miller 
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Labeled data, versus continuous variables

classification

clustering

dimensionality reduction

regression

labels,  
>10K,  

discreet

We will concentrate on supervised classification



Sci Ref Diff

Change/event detection (ZTF)



Brokers



‘braai’ the real-bogus separator

Duev et al.
Also demonstrated with TPUs



Encoder Decoder

Image subtraction for hunting transients without subtraction

arXiv:1710.01422

Encoder/decoder



Deep Learning with AStreaks

Duev et al.



light curve with n points

n * (n-1)/2 points

(dmdt) Image representation

Area equalized pixels

23 x 24
output grid

Mahabal, Sheth et al., 2017 
1709.06257



Effect of earthquakes

LIGO Putting the instrument in safe mode in case of an adverse event



POP+SRCL+MITCH

Nearly clean separation of lock-loss events in GW detectors using cavity channels

• t-SNE 
•UMAP

Unsupervised  
classification



When we're learning to see, nobody's telling us what the right 
answers are - we just look. Every so often, your mother says 
"that's a dog", but that's very little information, You'd be lucky 
if you got a few bits of information - even one bit per second 
- that way. The brain's visual system has 10^14 neural 
connections, And you only live for 10^9 seconds. So it's no 
use learning one bit per second. You need more like 10^5 bits 
per second. And there's only one place you can get that 
much information: from the input itself, Geoffrey Hinton, 1996

We may need more unsupervised learning (combined with not-so-easy-validation)

Reuters

Human on the loop, 
transfer learning 

and all that



ZTF ~0.1 LSST

2022

42!



Volume: TB -> PB -> EB -> ZB

Velocity: Real-time analysis/publishing/follow-up (partly 
‘Volatility’ too). Variability on ms to s to days

Variety: 400 classes - multiband images; time series; spectra; 
polarization; …

….

Veracity: error-bars; fuzzy classifications

Astronomy’s continuing battle with bigdata

ZTF: 1.4TB/day 
SKA: EB/day
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Consistency - pure GGN

Solid or PSN  
(Part Solid Nodule)

Diff. axial levels - PSN 
(by consensus)

Consistency - solid

Per-cystic or cystic

Axial Axial Coronal Coronal 
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Segmentation 
LUNA16/Kaggle1 trained 
model predicts cancer 

Extract bounding  
boxes of nodule NLST Dicom Slices: 

~1000 Patients 

Fangzhou, L. (2017)

GRT123

Domain adaptation and transfer learning
Accuracy 87% on GRT1 
Repeat on NLST data 

Retrain final layer with NLST data to improve

Explainability/Interpretability!

Also protein folding 
Bioinformatics, 

…
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ILSVRC

• 2012: Alexnet (error rate 15.4%) 

• 2013: ZFnet (error rate 11.12%) 

• DeConvNets (Caffe)

https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
Adit Deshpande

 Large Scale Visual  
Recognition Challenge

 31

https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html
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2016 ILSVRC leaderboard

 32

Classification error: 
0.02991
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Natural Adversarial Examples Hendryks et al.  
arXiv:1907.07174v2



Out-of-Distribution Detection Using Neural Rendering Generative Models
Huang et al. 

arxiv: 1907.04572

Latent variable visualization

Reconstruction in presence of 
wrong labels shows how this is 
different from deep-dreaming

Fewer labels could be sufficient
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Interpretability

David Gunning (DARPA/I2O)
https://www.cc.gatech.edu/~alanwags/DLAI2016/(Gunning)%20IJCAI-16%20DLAI%20WS.pdf
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David Gunning (DARPA/I2O)

RF
DL

DT

expectation

[2016]
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Distribution Summaries

Percentile distributions 
over the data:  

max, 93, 84, 69, 50, 
31, 16, 7, min

 37

Interactivity
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https://raghakot.github.io/keras-vis/

A
B A C B

A. Activation Maximization 
• Initial layer filters easy to visualize 
• Generate input image that activates later filters 

B. Saliency Maps 
• Gradient of o/p category wrt input image 
• Understanding attention of the classifier 

C. Class Activation Maps 
• Gradients based on first dense layer 
• Spatial information still intact

Visualization for interpretability

A

Astronomy time-series



Towards the Glass Bead Game

CRTS

ZTF
TNS

Gaia

Pan-STARRS

SKA

babamul

Antares

LSST

ALeRCE

Lasair

braai

TransiNet

Science

Sky surveys opening exciting windows 
A lot more possible than what is presently donesurveys

Data Science/ML

Holy grail

This is just a  
low-dimensional projectionClassification



JPL has established a program focused on building and 
implementing an institution-wide strategy for data science 
• Expanding from archives to enable data analytics as a first class activity 
• Methodology transfer across disciplines 
• Research partnerships with academia, government, and industry

Pilot Title Domain Lead, Organization
Data-driven Model Adaptation: From Theory to Application Robotics and 

Autonomy
Ali Agha, 347

Active Learning and Importance Sampling Applied to Monte 
Carlo Simulations

Science Wayne Chi, 397
Unpacking the black box of Machine Learning for 
Astrobiology

Mission Operations S. Davidoff, 397
Self-improving hybrid retrieval schemes that learn from long-
term mission memory

Science Anthony Davis, 329
Automatic Per-Pixel Classification of UAVSAR Imagery Mission Operations Michael Denbina, 334

Teaching Machines the Way of the CMB Toward efficient 
delensing and component separation.

Science Olivier Dore, 326
The Big Climate Data Pipeline (BCDP): a data processing 
pipeline to support innovative analysis of high-resolution 

Mission Operations Alex Goodman, 398
AutoML for Microwave Instrument Science Engineering Tanvir Islam, 386
Accelerating The Efficiency Of Galaxy Formation Science Jeff Jewell, 398
GFO Data Analytics Mission Operations Lukas Mandrake, 398
Automatic Image Captioning and Annotation Capability for the 
PDS Imaging Node

Science Chris Mattmann, 170
Automatic AI-based Software Vulnerability & Risk Extractions 
for the Mission Lifecycle

Engineering Michael Pajevski, 394
Diagnosing Failures in Scheduling using Visualizations for 
Mars 2020 Simple Planner

Mission Operations Emine Basak Alper 
Ramaswamy, 397Infusion of Astronomical Source Vetting and Variable Star 

Classification Pipelines at MITLL
Science U. Rebbapragada, 

398Speeding up InSAR Unwrapper Using Convolutional Neural 
Network Based Single Image Super Resolution Algorithm

Science Gian Franco Sacco, 398
Enhancing NASA Data Applications in High Societal Impact 
Areas Using IBM Watson

Science Hui Su, 329

Mission-Ready Prototype of an Advanced Bayesian Level-2 for 
SBG

Science David Thompson, 382
Framework for Multi-Mission Rock Detection Pipeline Mission Operations Marshall Trautman, 397
Machine Learning to Understand Cloud Processes across 
Scales and Observing Platforms

Science Qing Yue, 329

Data Science pilots

Mission Operations and Engineering 
Operational Recommendations for Capturing 

History and Infusing Data Science 
(ORCHIDS) – Jack Lightholder, 39 

Science 
Develop automated multi-scale  

    CH4/CO2 event/anomaly detection  
    and classification – Riley Duren, 8X 

2 FY19 DS projects

• NASA AI and Data Science Workshop – March 24-26, 2020 at Caltech 
• 2nd Planetary Informatics and Data Analytics Conference – June 2020 at 

ESA Astronomy Center, Madrid, Spain

Upcoming events

JPL Data Science 
Rich Doyle/Dan Crichton

CD3 Caltech George Djorgovski



Summary

Nature of Astronomy (and other sciences) changing 

Data complexity and not just volume is a challenge 

Data driven science has already emerged 

Extreme caution required when using canned solutions 
(but outlook is positive)

Pertinent questions for this meeting:
• Taking advantage of what exists
• Driving towards use cases
• Identifying datasets that exist
• Transfer learning and data fusion


