

EXOPLANETS

DEBRA FISCHER TYLER MCCRACKEN COLBY JURGENSON DAVID SAWYER

1992: Most stars do not form with planets.

Our Sun is unusual.

2015: Practically all Sun-like stars have planets

Small rocky planets far out-number gas giants Rocky planets do not require metal-rich stars (like gas giants) Gas giants are a more recent addition to planetary architectures Rocky planets began forming around stars > 11 Gyr

animation credit: Xavier Dumusque

animation credit: Xavier Dumusque

Kepler-detected exoplanets

Got densities??

Kepler showed us that if we can reach a detection precision of 1 - 10 cm/s, a bounty of exoplanets exists. We are guaranteed of success.

> In addition to serving as a primary detection technique, RV measurements support space missions. The measurement of exoplanet masses dramatically improves the efficiency and productivity of space missions.

- Business as usual is not very interesting.
- Improving precision is game-changing.

What a difference precision makes!

This is not single measurement precision; this is long term (RMS) precision.

In the next decade, we are trying to achieve another *factor of ten* improvement in precision.

The Future of the Doppler Technique

Yale Exoplanet Instrumentation Group

- Fiber-coupling of light to the spectrometer
 Wavelength calibration
- Distinguishing stellar noise from Doppler shifts
- Stable instrument design

1. Instrumental stability

Vacuum chamber: control pressure and temperature

2. Detectors

STA detectors:

- 10K devices are built with single photolithography block.
- Also get an extra "9" in the CTE

Example of the pixel image blocks required to create a 2k x 2k pixel CCD with exaggerated random position errors relative to the reference frame.

3. Wavelength Calibration

Thermally stabilized etalon

- regularly spaced emission lines
- quasi-constant amplitude
- covers all orders of the spectrum

•		•	•					٠						 					1				1						1.						
																	•														•				
						•																													
																																		_	
															•																				
				•										 		•				 								•							
							-			 		 		 						 	•														
					 			•••	 	 		 		 		 	•			 	-											•			
	•				 				 	 •	•	 	•			 •••				 ••									-						
			•	•	 				 	 		 		 		 		•		 			•••				•••	•••				•			
																						Ν	/il	di	(7,1	าล	176	<u>o</u> l:	2.6		De	20	e.	

Wildi, Chazelas, Pepe 2012 Proc. SPIE 8446

3. Wavelength Calibration

Actively stabilized F-P etalon

- regularly spaced calibration lines
- quasi-constant amplitude
- 20 GHz mode spacing
- covers all orders of the spectrum

Yale Exoplanet Lab

Jung et al. 2014 Optics Express

3. Wavelength Calibration

Wavelength Calibration: Menlo LFCs

Menlo Systems Laser Frequency Comb 400nm - 1 micron 25 GHz comb Intensity flat to 3dB

4. Astrophysical noise

Line-bisector analysis

4. Astrophysical noise

Issue is no longer a matter of designing an instrument for Doppler precision, but designing one that can distinguish stellar signals, which will have a color dependence, from Doppler shifts.

Planet Whisperer code: PCA+Dictionary learning for sparse data sets (like neural nets)

Spronck et al. 2010

Spot position (in fiber radii)

6. Analysis errors

Challenging for NIR spectroscopy from the ground

6. Analysis errors

Single measurement precision: 15 cm/s Long term measurement (RMS noise): 25 cm/s

EXPRES at the DCT: 100 Earths Project Commissioning in summer 2017

100 Earth Project Next generation spectrometer

- optimal engineering for extreme stability of instrument
- double scrambling of the light into the spectrometer
- Menlo LFC wavelength calibrator
- choose the right stars to survey (low noise?)
- solve for stellar signals ("noise")

LFC applications for exoplanet detection Enabling, not just improving.

- 1. wavelength calibration to 1 cm/s
- 2. ideal diagnostic of instrumental PSF (SLSF)
- 3. allows for deconvolution to recover higher fidelity spectrum
- 4. detector characterization
 - stitching errors in CCD fabrication
 - intrapixel QE variations
 - pixel dimension non-uniformity