Fluorescence and Photosynthesis

Joe Berry, Carnegie Institution for Science
Dept. of Global Ecology, Stanford, CA
• Chlorophyll fluorescence is the emission of light by chlorophyll molecules that have previously absorbed light.

• It occurs because the chlorophyll molecule is capable of storing the energy of a photon in an excited electronic state - often referred to as an "exciton."

• Emission of a new photon is one of the ways that the chlorophyll exciton can return to its ground state. While this energy storage can last only a few nano seconds at most, it is this ability to store energy that makes photosynthesis possible.

• Fluorescence and photochemistry are closely linked processes that co-occur, and fluorescence has long been used as a probe for the initial events in photosynthesis.
• The chlorophyll in photosynthetic organisms is bound in a highly organized state in protein complexes which include a photochemical reaction center and associated chlorophylls that function as an antenna to collect light to drive the photochemical reaction.

• There are two types of reaction centers, PS I and PS II in leaves. Most of the fluorescence comes from PS II.

The concept of how excitons are processed in photosynthetic systems is undergoing something of a revolution.

Until recently it was thought that excitons were localized on individual chlorophyll molecules and moved around by jumping from molecule to molecule eventually reaching a reaction center by a random walk.

In contrast recent experimental evidence indicates that excitons may be delocalized by a phenomenon known as quantum coherence.

The coherent exciton has properties of a wave sloshing around the whole space of a chlorophyll protein complex sampling the available routes for de-excitation.

Evolution knows about quantum mechanics.

Figure 1 | Two-dimensional electronic spectra of FMO. Selected two-dimensional electronic spectra of FMO are shown at population times from $T = 0$ to 600 fs demonstrating the emergence of the exciton 1–3 cross-peak (white arrows), amplitude oscillation of the exciton 1 diagonal peak (black arrows), the change in lowest-energy exciton peak shape and the oscillation of the 1–3 cross-peak amplitude. The data are shown with an arcsinh coloration to highlight smaller features; amplitude increases from blue to white (for a three-dimensional representation of the coloration see Fig. 3a).
Kautsky is the “father of the field”, but he also fostered the impression that fluorescence is very complicated.
Think of Photosystem 2 as a sophisticated IC.
All that is needed to observe fluorescence is an appropriate pair of filters.

- a short pass filter to condition the light reaching the leaf so that it has no light in the band where chlorophyll fluoresces

- a second filter, a long pass filter that blocks the incident light but will pass the fluorescence.
GOSAT is a complex retrieval system, but it makes a simple measurement.

- Nadir view and approximately solar noon under clear sky.
- Photosynthesis is at near its peak daily value and steady, (forget about the Kautsky effect).
- The “glow” is highly specific for plants doing photosynthesis,

\[
F_s = I_0 \cdot \text{FPAR} \cdot \theta_F \cdot \epsilon \\
\text{GPP} = I_0 \cdot \text{FPAR} \cdot \theta_P \\
\text{GPP} = F_s \frac{\theta_P}{\theta_F \cdot \epsilon}
\]
<table>
<thead>
<tr>
<th>Land Cover Type</th>
<th>Dataset</th>
<th>r^2 Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrubland</td>
<td>MPI-BGC</td>
<td>0.80</td>
</tr>
<tr>
<td>Deciduous broadleaf</td>
<td>MODIS</td>
<td>0.74</td>
</tr>
<tr>
<td>Evergreen broadleaf</td>
<td>MODIS</td>
<td>0.74</td>
</tr>
<tr>
<td>Needleleaf forest</td>
<td>CASA</td>
<td>0.52</td>
</tr>
<tr>
<td>Cropland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grassland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Savannas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additional Information:

- **GPP** (gC/m²/d) vs. $F_s/(Wm^{-2} \mu m^{-1}sr^{-1})$ for different datasets.
- **LAI** ($r^2 = 0.64$) vs. $F_s/cos(SZA)/(Wm^{-2} \mu m^{-1}sr^{-1})$.
- **NDVI** ($r^2 = 0.46$) and **FPAR** ($r^2 = 0.46$) for visual analysis.

Surface temperature in °C is represented by the color gradient.
$F_{s} = I_{0} \cdot \text{FPAR} \cdot \theta_{F} \cdot \epsilon$

FPAR

$r^2 = 0.46$

Surface temperature / °C
\[F_s = I_0 \cdot \text{FPAR} \cdot \theta_F \cdot \epsilon \]
\[
\frac{GPP}{F_s} = \frac{I_0 \cdot FPAR \cdot \theta_P}{\theta_F \cdot \epsilon}
\]

\[
GPP = F_s \frac{\theta_P}{\theta_F \cdot \epsilon}
\]

MPI-BGC

\[r^2 = 0.80\]

MODIS

\[r^2 = 0.74\]
• A large part of the variability is due to FPAR.
• Physiology also seems to have an influence; θ_F and θ_P appear to co-vary.
• Calibration experiments are really difficult to do at a realistic scale.

Sun induced fluorescence from above a corn field before, during and after a drought.

Fig. 10. Fluorescence flux (F_s) versus PAR for three days: 214 no water stress, 243 maximal water stress effect, 248 after rainy days, and reversion of water stress.

Leaf-scale experiments with grapes experiencing different levels of drought

Analysis of leaf-scale experiments with 10 species before during and recovery from drought (Galmes et al.) -- data provided by J. Flexas.

\[J_e / J_o \] (actual/potential ETR) \(\approx \) \(\theta_P \)

\[F_s = I_0 \cdot FPAR \cdot \theta_F \cdot \epsilon \]

Why does Fs go up and then down?

Input Light

Output ET

PS II

τ 0.05s

τ 30s

τ 300s

Δ pH, qE

Zeaxanthin, NPQ

Plastoquinone, qP

F↓

F↑
Relative fluorescence yield, F

$$F = -2.3969x^2 + 3.0518x + 0.4262$$

$$x = \frac{J_o}{J_e}$$

$$J_e = A \cdot 4 \cdot \frac{p_i - \Gamma}{p_i + 2\Gamma}$$

(from any model)

$$J_o = I_o \cdot a \cdot \alpha$$

A is CO$_2$ uptake,

p_i is intercellular CO$_2$

a is absorptance

α is quantum yield,

Γ^* is the compensation point
• Leaf-scale calibrations of relative fluorescence yield are routine.

• Variations in absolute yield from leaf to leaf will need to be taken into account.

• Fluorescence can be added to photosynthesis models.

• Scaling from the leaf to the canopy will be tricky, but we are already doing this for GPP.

• Radiation transport in the canopy needs to be included. It already is in SCOPE.

Mechanism controlling fluorescence
The PAM Fluorimeter

[Diagram of PAM Fluorimeter components including LED Driver, Master Pulse Generator, Selective Amplifier, LED Emitter, Photodiode Detector, Pulse Amplifier, Current Pulses, Pulse Signals, Signal, Recording, Filter for λ < 680 nm and λ > 700 nm, Pulsed Measuring Beam, Actinic Light, and Leaf Sample.]
Controls of exciton processing

$\Delta p\text{H}$

xanthophyll cycle

plastoquinone
A hierarchy of controls with different relaxation times

Input Light

Output ET

PS II

F↓ F↑

Plastoquinone, qP

Δ pH, qE

Zeaxanthin, NPQ

\[\tau \quad 0.05s \quad \tau \quad 30s \quad \tau \quad 300s \]
Intense pulses permit separation of qP from qE and NPQ

PS II

Input Light

Output to carbon fixation

ΔpH, qE

Zeaxanthin, NPQ

Plastoquinone, qP

F↓

F↑

τ 0.05s

τ 30s

τ 300s
\[\varphi_{PS2} = \frac{(F'_m - F_s)}{F'_m} = \frac{\Delta F}{F'_m} \]

\[ETR = \varphi_{PS2} \cdot 0.5 \cdot I_o \]

- PAM fluorimeters can be used to calibrate F to the electron transport rate (ETR).

- Biochemical - stomatal conductance models can be used to relate ETR to CO$_2$ fixation.

- Some remaining problems:
 - At the canopy scale, changes in FPAR and fluorescence yield (θ_F) are entangled.
 - Canopy scale calibrations will be difficult for tall vegetation. Need to be several canopy heights above the canopy to reproduce the satellite geometry.
 - Recent advances in xanthophyll cycle remote sensing have caught my interest.
At steady-state, the feedback process with the larger τ dominates. It can be seen.
Remote sensing the xanthophyll cycle

\[\text{EPS} = \frac{(Z + 0.5A)}{(V + A + Z)} \]

\[\text{PRI} = \frac{(R_{570} - R_{531})}{(R_{570} + R_{531})} \]
Fluorescence and Xanthophyll by Canopy Remote Sensing.

\[\text{PRI} = \frac{R_{570} - R_{531}}{R_{570} + R_{531}} \]
The PRI provides independent information on the level of non-photochemical quenching.

It works best in "difference mode". There is a lot of natural background variability in the reflectance in this region - cancels out in \(\Delta \text{PRI} \).

(AMSPEC II) The tower-mounted, automated, multiangular spectroradiometer system takes advantage of changes in sun-leaf/shade-leaf fraction to get \(\Delta \text{PRI} \).

hot spot cold spot

(a) $y = 0.0733x - 0.0861$
$R^2 = 0.6276$

(b) $y = 0.0306x - 0.047$
$R^2 = 0.2446$
FIGURE 8 Image composites for DF-49 (A) and SOA (B), observed over 15-minute intervals. The photographs have been stitched from 104 (DF-49) and 108 (SOA) individual observations using a normalized cross-correlation approach.
Fig. 5. Difference between maximum (south) and minimum (north) PRI (ΔPRI) for different ε and Q strata for the directionally corrected case (zenith angle of 62°). Higher stress levels (low ε) cause differences between sunlit and shaded parts of the canopy to be more distinct. Also ΔPRI is increasing with increasingly clear skies.
Remote sensing of the PRI is potentially synergistic with sun induced fluorescence.

- Fs is influenced both by changes in FPAR and physiological feedbacks on fluorescence yield.
- PRI is largely influenced by the physiological component.
- The AMSPEC measurements can be used to construct the full BRDF function for the canopy permitting one to predict what a satellite would see without having to reproduce the geometry.
- We should combine these measurements on the same tower-based sensor package.
Conclusions

• There is strong empirical evidence that Fs gives useful information on the rate photosynthesis.

• It is sensitive to the combined influence of changes in canopy optics and physiology.

• Calibration and validation at the scale of the GOSAT measurement footprint is challenging, but we have a well developed theoretical understanding at the leaf scale - at least as good as we have for GPP.

• I can’t over emphasize the importance of an independent check on GPP. We have work to do.
Input Light

PS II

F↓ F↑

+ Δ pH, qE

Plastoquinone, qP

Zeaxanthin, NPQ

τ 0.05s

τ 30s

τ 300s

Output to carbon fixation

Monday, August 27, 12
\[A \approx \min \left\{ \frac{J_E}{J_C}, \frac{J_C}{J_S} \right\} \]

\[J_E = a \times \alpha \times Q_p \frac{p_i - \Gamma_*}{p_i + 2 \Gamma_*} \]

\[J_C = \frac{V_m (p_i - \Gamma_*)}{p_i + K_c (1 + [O_2]/K_o)} \]

\[J_S = \frac{V_m}{2} \]

\[J_i = a \alpha_r f Q_p \]

\[J_c = p_i \left(k_p - \frac{L}{p_i} \right) / P \]

\[J_e = V_{\text{max}} \]

\[\theta J_P^2 - J_P (J_E + J_C) + J_E J_C = 0 \]

and

\[\beta A^2 - A (J_P + J_S) + J_P J_S = 0 \]