What Causes Radar Reflections?

Dan Lalich
The Short Answer

- Radar reflections are caused by an abrupt change in subsurface permittivity.
- Permittivity is a complex number, the real part is called the dielectric constant.
- The higher the permittivity contrast between two materials, the brighter the reflection.

$$R = \left| \frac{n_1 - n_2}{n_1 + n_2} \right|^2$$
Radar Reflections in Ice: Earth

- Bed contact and debris bands
- Density variation
- Ice crystal orientation
- Small impurity content, particularly affecting conductivity (e.g. from volcanic acids)
Radar Reflections in Ice: Mars

- SHARAD is too low resolution to see density variation in the near-surface
- No flow means crystal orientation probably isn’t a factor
- Uniformly low conductivity, no recent volcanic activity, etc.
- But we know the PLD are dusty...
Dust Content and Permittivity

Bramson et al. 2015
We Have a Resolution Problem

- Layers can be 10s of cm thick, but SHARAD’s vertical resolution is ~8.5 m at best

MacGregor et al. 2011
Reflectors and Marker Beds

• Some evidence suggests marker beds might be responsible for SHARAD reflections in the NPLD

Christian et al. 2013
Problems

• Radar reflections don’t necessarily have to correspond to one layer, and interference is an issue
• We have been unable to correlate specific layers with specific reflectors
• What about the SPLD?
• It’s unlikely that all reflectors represent the same type of layer/boundary
Summary

- Reflections are caused by changes in permittivity
- Different processes for Earth vs. Mars
- PLD reflectors are likely caused by changes in dust content
- NPLD reflectors might correspond to marker beds
- Lots of problems still, mostly linked to disparate resolutions
Optical Layers

- Albedo can be unreliable
- Most successful method is combination of albedo and protrusion

Fishbaugh et al. 2010