Keck meeting

Caveat!!!
Background: biological and chemical cycles in the world’s oceans

\[
\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{CH}_2\text{O} + \text{O}_2
\]
Significant puzzles about ocean carbon fluxes
North Atlantic subtropical gyre at Bermuda: what enables DIC drawdown in the upper 50 m?

Annual cycle of dissolved inorganic carbon (mmol m$^{-3}$) at Bermuda; upper 250 m

- 7 mmol m$^{-3}$ NO$_3^-$ required for observed DIC drawdown
- Throughout growing season, [NO$_3^-$] << 1
- Where does N come from?
 - Nitrogen fixation
 - NO$_3^-$ mining by vertically migrating phytoplankton
 - Vertical mixing? But this introduces dissolved inorganic carbon
- AUV’s could examine the footprint of this process...
Influence of synoptic meteorological events on ocean carbon fluxes

- Calm weather
 - Shallow, well-lit mixed layer
 - Mature ecosystem develops
 - Grazing ~ production; low export
- Storm comes through
 - Mixed layer deepens, light and productivity fall
- Calm weather ensues
 - Mixed layer shoals
 - Productivity rises in high-light environment
 - Period of high export
 - Mature community develops...
- *Is there any validity to this scenario?*
 - AUV’s could monitor physical forcing and the biogeochemical response
- Alternative
 - Iron deposition as remote continental airmass passes over ocean region
 - Primary productivity and export production spike
Fate of carbon exported from the mixed layer or euphotic zone - 1

- Fluxes of sinking particles decrease very rapidly with depth
Fate of carbon exported from the mixed layer or euphotic zone - 2

- P1 and P3 occupied for ~5 days; productivity is very high (50-150 mmol m\(^{-2}\) day\(^{-1}\)) (Cassar et al., 2011)

- And sediment trap fluxes:

<table>
<thead>
<tr>
<th>Site</th>
<th>Depth m</th>
<th>Total POC flux (\mu)mol m(^{-2}) d(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>140</td>
<td>6141.9</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>10,280.9</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>10,567.2</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td>8103.2</td>
</tr>
<tr>
<td>P2</td>
<td>140</td>
<td>9508.2</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>5928.5</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>5578.3</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td>5196.5</td>
</tr>
<tr>
<td>P3</td>
<td>140</td>
<td>752.3</td>
</tr>
<tr>
<td></td>
<td>190</td>
<td>988.9</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>568.0</td>
</tr>
<tr>
<td></td>
<td>290</td>
<td>549.1</td>
</tr>
</tbody>
</table>

Mixed layer NCP S. of Tasmania, summer, 2007
AUV studies of shallow remineralization of sinking organic matter

• Optical studies of individual particles
 – Composition
 – Sinking rate
 – Vertical flux
 – Lateral advection
 – Change in properties with depth to characterize breakdown
Patch experiments

Objective: track an upper ocean ecosystem for 1-2 weeks and observe its biogeochemical evolution in response to physical forcing

Standard shipboard mode
- Inject a patch of SF_6
- Inject iron or not, depending on objectives
- Continuously measure SF_6 to identify THE patch
- Make physical and biogeochemical observations: O_2, DIC, nutrients, optical properties, flux terms (gross photosynthesis, net community production, respiration)
- Characterize evolution of ecosystem in response to physics and biogeochemical dynamics

Possible AUV modes
- Ultra mode: AUV’s inject tracer, measure tracer to track patch
- Dynamics mode:
 - Team of AUV’s identify dynamical feature (ring), tracks feature
- Minimalist mode: AUV’s identify surface feature from heterogeneity
GasEx III patch experiment, Atlantic Subantarctic
Figure 6. Time series of surface, underway \(\Delta O_2/Ar \) measurements during patch 2 from 22 March to 6 April 2008. Gray bars indicate local night. Red line segments indicate measurements inside the patch when underway SF\(_6\) concentrations were greater than 75 fmol L\(^{-1}\) during 22–27 March, greater than 25 fmol L\(^{-1}\) during 27 March to 1 April, or greater than 10 fmol L\(^{-1}\) during 1–6 April. Black points show discrete, mixed layer \(\Delta O_2/Ar \) measurements. Straight lines show linear regressions of 1 h binned averages of in-patch data with slopes and errors indicated.
Figure 2. Time series of surface, underway $\Delta O_2/Ar$ measurements during patch 1. Gray bars indicate local night. Red line segments indicate measurements inside the patch when underway SF$_6$ concentrations were greater than 30 fmol L$^{-1}$. Black points show discrete $\Delta O_2/Ar$ measurements. Straight line shows linear regression of 1 h binned averages of in-patch data with slope and error indicated. Underway $\Delta O_2/Ar$ measurements of patch 1 ended on 13 March to repair a fault in the system.
Summary of questions

- Sources of nutrients in the subtropical gyre?
- Evolution of local ecosystems in response to synoptic forcing
- Evolution of local ecosystems in response to other physical forcing and biogeochemical variability
- Seasonal net carbon production in the mixed layer and euphotic zone
- Biology and dynamics of sinking particles

Minority view: for ocean biogeochemistry, new sensors can be more important than command and control, depending on experiment

- High precision DIC, NO$_3^-$, O$_2$, total gas content
- Optical sensors for flow cytometry, fast repetition rate fluorometry...
Background: biological and chemical cycles in the world’s oceans

\[\text{CO}_2 + \text{H}_2 \text{O} \xleftrightarrow{\text{CH}_2 \text{O} + \text{O}_2} \]

- **NCP** = photosynthesis-respiration
- \(C_{\text{org}} \) is not stored in euphotic zone; NCP \(\sim \) export
- \(\text{O}_2 \) flux to the atmosphere = \(\text{O}_2 \) supersat * gas transfer velocity
- Correct for physical supersaturation based on Ar supersat
- Sea-air \(\text{O}_2 \) flux = carbon NCP and export

Mixed layer

- 1% light level

Carbon export

Dark ocean

Time period accessed by \(\text{O}_2 \) balance \(\sim \) 1 week
Some details regarding the calculation of net community production

- O_2 in the mixed layer is supersaturated as because of physical processes
 - Measure Ar supersaturation and correct O_2 supersaturation accordingly
- Some assumptions:
 - Steady state
 - No mixing with water below the mixed layer
- Estimate gas transfer velocity and calculate O_2 efflux to atmosphere
Other sources of information about rates of NCP and carbon export

- Seasonal drawdown of dissolved inorganic carbon or nutrients (seasonal timescale)
- Sediment traps
 - 234Th/C ratios and fluxes
 - 15NO$_3^-$ assimilation