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A nice family portrait...

“The Earth is the cradle of humanity, but mankind cannot stay in the cradle forever.”
Konstantin Tsiolkovsky

“Planets”

“Dwarf
Planets"

But..., is there anybody out there?
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Our Stellar Neighborhood within 100 ly

Location of the Stars with Exoplanets within 100 light years
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Credit: PHL @ UPR Arecibo, Jim Cornmell phl.upr.edu, Jul 2013




The size does matter...

Jupiter ==

...and so does the distance: 7)e¢ tyranny of the diffraction limit. ..




Our Challenge




THE SOLAR GRAVITATIONAL LENS
Largest telescopes to date...

PL
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Largest telescopes in space

Telescope sizes compared

Webb will be the largest astronomical
telescope ever put into space. Spitzer,
the current infrared telescope, is tiny
by comparison, :

14 m
Mirror sizes Q

The size of the mirror makes the Hubble Human Webb Spitzer
biggest difference in a telescope’s 945 inches 255.6inches  33.5inches
light-gathering capability. (2.4 meters) (6.5 meters) (0.85 meters)




THE SOLAR GRAVITATIONAL LENS
1-pixel direct image of an exo-Earth...

PL

The tyranny of the diffraction limit: To make a 1-pixel image of an exo-Earth
at 100 light years, a telescope with a diameter of ~90 km is needed...
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A (10kx10k)-pixels image of our Earth

This 2002 Blue Marble image features land surfaces, clonds, topography,
and city lights at a maximal resolution of 1 km per pixel.
Composed from 4 months data from NASAS Terra satellite by R.Simmon, R.Stockll.




THE SOLAR GRAVITATIONAL LENS
1,000-pixel direct image of an exo-Earth...

SPL

The tyranny of the diffraction limit: To make a 1,000-pixel image of an exo-Earth
at 100 light years, a telescope with a diameter of ~90,000 km is needed...

Earth and the Moon

Accurate Size and Distance Scale

~90,000 km

&8

- 5 )b >b
o

The average distance to the Moon equals 30 Earth diameters.

Diameter of 90,000 km is ~7 diameters of the Earth
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SPL SGL enables direct multipixel imaging

« Solar gravitational lens (SGL) offers:
— Magnification (at 1 um) ~2x10-'" & angular resolution: ~0.5 nanoarsec

« Overcoming the issue of a small target size:
— Consider an exo-Earth @ 30pc (100 Ly.) is ~1.4x10-"" rad;

— A diffraction-limited telescope needed to resolve an object with this size at
such distance must have a diameter of ~90 km;

— To resolve the planet with 1,000 pixels one needs a telescope with a
diameter of 90x10* km (or ~14 Rg), which is impractical...

— Even more challenging is the integration time needed to reach SNR=10:
« a 50 m telescope would need an integration time of t~ 10° years (zodi);
« with SGL’s light amplification (~2x109%) we could do the job in ~3 month.

« Solving the parent start light contamination issue:

— Current exoplanet-imaging concepts detect light of a planet as a single pixel.
Contamination from the parent star (~0.1" off the planet) is a major problem;

« Due to the high angular resolution of the SGL (~0.5 nas), the parent star
is resolved from the planet with its light amplified 0.01 AU away from the
optical axis, making the parent star contamination issue negligible.
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SPL Observing faint targets...

°

- 'Hdbl'z'le'Probés the Early Universe

. ~15ays, 31.2 mag (1-0)

Hubble Utra Déep Field-IR -

A\\ . . AL y '
James Webb Space Telescope. B : . W

10 >20

Redshift (2) '
Time after Present : ) ‘ « . 480 200
million million

the Big Bang billion . i
years years years




THE SOLAR GRAVITATIONAL LENS
Conventional techniques?

SPL

« Overcoming the issue of the long integration times:

— Let’s calculate integration time to get SNR = 10 on the longest baseline for an
interferometer that resolved an object with 1,000 pixels across:

» exo-Earth @ 30pc is an object of 32.4 mag;

« background is 1 exo-zodi of 22 mag/arcsec?;

» 10m space telescope(s) with perfect coronagraphs;
* max baseline ~45,000 km;

* integration time is t, ~400 million years...

— Assume the interferometer is phased to < A/20 during the integration and the
coronagraph suppresses the parent star to below the exo-zodi level:

« To image with 1,000 pixels (pixel = 47 mag), a million baselines are needed;

« If only 2 of 10m telescopes are available, multiply the above t, by a million to
get integration time of t~ 4e14 years;

» |f more telescopes added, decrease integration time by # telescopes...
« Integration time decreases rapidly with D > 10m as ~ D%;
— Array of 103 of 100 m telescopes would take t = 4e14/1e7 ~40 million years

1-m telescope at SGL (zodi & solar corona brightness): SNR =10 in ~ few months
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Original gravity lens derivation (Einstein c.1911)
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Precision alignment between a Lens and the Earth is very unlikely...
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SPL Gravitational deflection of light before GR

= 0.877 (%) arcsec
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AR st fasle o ed: ipse i
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The Huntington Library, Pasadena, CA




The First Test of
General Theory of Relativity

Gravitational Deflection of Light:

Solar Eclipse 1919:

2(1 +v)GM 1+ R .
agr(b) = ( CZI)) SN 1.75( 5 7)( b®) arcsec Deflection = 0: possible outcomes
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Campbell’s telegram to Einstein, 1923 Einstein and Eddington, Cambridge, 1930
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Gravitational Deflection of Light
is a Well-Known Effect Today

Galaxy Cluster Abell 2218 HST « WFPC2
NASA, A. Fruchter and the ERO Team (STScl) *« STScl-PRC00-08
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SPL Our solar system and tests of gravity
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JPL 40+ Years of Solar System Gravity Tests

Techniques for Gravity Tests:

Radar Ranging: . - -
—Planets: Mercury, Venus, Mars The NObel PI'IZC mn PhYSlCS
—s/c: Mariners, Vikings, Pioneers, 2017

Cassini, Mars Global Surveyor,
Mars Orbiter, etc.
—VLBI, GPS, etc.

Laser:
—SLR, LLR, interplanetary, etc.

()

Dedicated Gravity Missions:

—LLR (1969 - on-going!!)
— GP-A,76; LAGEQOS,’76,'92; GP-B, 04; N Nobel Media. 1. N
LARES,'12; MicroSCOPE,’16, ACES, Rainer Weiss Barry C. Barish Kip S. Thorne

‘1 8; LlGO,’1 6; eLISA, 2030+(7) Prize share: /2 Prize share: 1/4 Prize share: /4
"for decisive contributions to the LIGO detector

New Engineering Discipline - ) o
Applied General Relativity: and the observation of gravitational waves"

P

— Daily life: GPS, geodesy, time transfer; ( ,
— Precision measurements, deep-space navigation & nas-astrometry (Gaia) w

General relativity is now well tested. Can we use it to build something?
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THE SOLAR GRAVITATIONAL LENS

Eshleman V.R., Science 205, 1133 (1979)

Gravitational Lens of the Sun: Its Potential for
Observations and Communications over Interstellar Distances

Abstract. The gravitational field of the sun acts as a spherical lens 1o magnify the
intensity of radiation from a distant source along a semi-infinite focal line. A space-
craft anywhere an that line in principle could observe, eavesdrop, and communicate
over interstellar distances, using equipment comparable in size and power with what
ix now wsed for interplanetary distances. If one neglecis coronal effects, the maxi-
mum magnification factor for coherent radiation is inversely proportional o the
waveleagrh, belfag 100 million ar | millimerer, The principal difficulvies are that the
nearest point on the focal half~line is abour 550 fimes the sun-earth distance, sepa-
rate spacecrdfl would be needed 1o work with each stellar system of interest, and the
solar corona would severely limit the intensity of coherent radiagtion while also re-

siricting operations to relatively short wavelengths.

About 40 years ago, Einstein (/) pub-
lished a short note in Science on the fo-
cusing of starlight by the gravitational
field of another star. He emphasized the
improbability of observing this phenom-
enon by the chance alignment of fwo
stars and the earth. From concepts based
on current technology and trends, how-
ever, it appears that gravitational focus-
ing of eleciromagnetic radiation might be
emploved, by design, for highly direc-
tional observations and communications
over interstellar distances.

In such use, the gravitational field of
the sun could play several roles. First, it
might be used to reduce fuel and time re-

1 + w», where the refractivity » = g/r at
radius r. A ray 15 deflected through the
angle o = 2g/a, where a is the ray im-
pact parameter and g is the gravitational
radius (g = 2Gm/c®, where & is the
gravitational constant, s 1% the mass of
the central body, and ¢ is the speed of
hight). It 15 assumed throughout that
<< 1, An observer at position z be-
hind the lens and x from the center line,
a8 illustrated, would see an energy den-
sity lessened by defocusing in the plane
of propagation, but increased by focus-
ing due to the curved limb normal to this
plane. The relative single-ray intensity
I'= F'F.2 where in ray optics F7 =

Mission to the Gravity Lens of the Sun

nel scales along the circumference of &
circle at the ray-impact radius. Using al-
so the wave number k = 2 /h, the maxi-
mum intensification of the coherent sig-
nal is simply

Toax = 2w kg (2

A5 an  approximation, let the focal
“spot” radius x; be the value of © where
I falls to [p/4, so that g =
(2/mkMz 2e1", Thus the angular resolu-
tion for distinguishing two adjacent co-
herent  sources by a corresponding
change in intensity is /2 radians. (The
first null off the center line is at x = #?
%/2, and the first sidelobe is twice this
distance with intensity fp../7%.) The
periapsis or minimum radius of the ray
relative to the center of mass isa — g, or
essentially o, and thizs must be greater
than ry, the physical radius of the spheni-
cal mass. Thus wmg,, = Zgir, and the
focal line begins at 75, = rg2g.

Mow consider the focusing al 2 ™ 2,
of mcoherent radiation from a uniformly
bright, circular, extended source of radi-
us r, and distance z, == z. This is the
problem considered by Emstein (/') and
more completely by others, notably
Liebes (4}, The gain factor A of the gravi-
tational lens for the intensity observed

Frvan  ihas  dee  seediacideasl] demoees  soen

Kraus J.D., Radio Astronomy, Cygnus-Quasar Books, Powell, Ohio, 6-115 (1986)

Maccone C., many papers, 1999-present

Turyshev & Andersson, MNRAS 341, 577 (2003)




THE SOLAR GRAVITATIONAL LENS
The Solar Gravitational Lens (KISS study, 2015)

SPL

The Interstellar Medium

Heliosphere Hydrogen Wall Interaction Zone Interstellar Medium

Heliopause The Local Interstellar Cloud « - The G Cloud

A

Interstellar Wind

Voyager 1 Spacecraft
Asteroid Belt i ;

Solar Gravity Lens - Rogue

\ . M ® As Veiwed from the Focal Line : Planets
@ € 3 @Q ¢ € T =
-

> : LN
Planets not o scale . ) 7 3 . Alpha Centauri
Kuiper Belt . .

Objects Voyager 2

Spacecraft

&N

Termination Shock Bow Shock/Wave

2

nterstellar Wind
|

10 AU = 1.39 Light Hours 100 AU = 13.9 Light Hours 1000 AU = 138.6 Light Hours 10,000 AU = .16 Light Years 100,000 AU = 1.58 Light.Years
] ] P ] 4

shadow region of region of
geometrical optics interference




THE SOLAR GRAVITATIONAL LENS

Optical properties of the SGL: caustic

SJPL

§> —

region of |
geometric optics

Different regions of the SGL

shadow region of interference

: g il
o

Caustic formed behand the Sun
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SPL Focal beam of extreme intensity @/
Herlt & Stephani, IIMP 15, 45 (1976)
» Major brightness increase: po ~\/2r,F = b P> Po
— For small departures from the 4o R2 #ﬂw“ p = po
optical axis, p, magnification Fo=52 e
~— 2y
of the SGL is: - _ AA¢¢ 5 < Po
N 5Tg 19 p [2r, e Z
po(p,z, A) =2 Art= J5(2m—4 ] — = ~
\ 0 A\ p Vo .*. P = Po
focal beam of L/
' i p > pPo
— Max value of G(p, ) is on axis: extreme intensity
~ 2T_9 Alzf """"""""""
Point-spread X 8
function of 2 o
the SGL £
= 4
B 0: XX ‘\\/\} ,\/f‘ '\/\;;
| ‘—(1).4‘ | ‘—(1).2‘ o 0.0 o ‘Oi2 o ‘Oi4‘ |

Distance from the optical axis, p [m]

Gain of the SGL as seen in the image plane as
Turyshev & Toth, Phys. Rev. D 96, 024008 (2017) | a function of possible observational wavelength
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Point spread function & gain of the SGL
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Turyshev & Toth, Phys. Rev. D 96, 024008 (2017)
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The image in a form of the Einstein ring

Credit: ES A, Hubble & NASA Wikimedia
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JPL Properties of the Solar Gravity Lens

-------------------- v Fo &~ 547 AU
"""""" lgj telescope
impact”_|
parameter Fo - ]
i e 0
4 e ————
———————————————— b F(b) foi
____________________ b Ré

« Important features of the SGL (for A =1 um):
— Major brightness magnification: a factor of 10" (on the optical axis);

— High angular resolution: ~0.5 nano-arcsec. A 1-m telescope at the SGL
collects light from a ~(10km x 10km) spot on the surface of the planet,
bringing this light to one 1-m size pixel in the image plane of the SGL,;

— Extremely narrow “pencil” beam: entire image of an exo-Earth (~13,000 km)
at 100 l.y. is included within a cylinder with a diameter of ~1.3 km.

« Collecting area of a 1-m telescope at the SGL's focus:
— Telescope with diameter d, collects light with impact parameters §b=d,;

— For a 1-m telescope at 750AU, the total collecting area is: 4.37x10° m?,
which is equivalent to a telescope with a diameter of ~80 km...
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THE SOLAR GRAVITATIONAL LENS
Do not point at the Sun!!!!
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JPL Effects of gravity & solar plasma @/
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THE SOLAR GRAVITATIONAL LENS

Solar corona brightness
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THE SOLAR GRAVITATIONAL LENS
The instrumental design

e The instrument:

A diffraction-limited high-resolution spectrograph, enabling Doppler
imaging techniques;

 The SGLF telescope needs a coronagraph to block the Sun’s light:

To block the solar light to the level of solar corona;

At 1 um, the gain of the SGL is ~110dB (27.5 mag), so an exoplanet,
which is 32.4 mag object, will become a ~4.9 mag object;

When averaged over a 1m telescope (the gain is ~2x109), it would be
9.2 mag, which is sufficiently bright (even on the solar background);

To derive an image with the SGLF, including solar corona brightness
(the parent star will be resolved), zodiacal light, instrument, and s/c
systematics;

« Perhaps several small spacecraft?

We could rely on a swarm of small spacecraft, lunched together each
moving at a slightly different trajectory parallel to the optical axis.
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Coronagraph study: sun disc & solar corona

SPL

Ext Src: (uniform) Sun disc + Sun corona Occulter mask C, pk = 1.9¢-06; @ E-ring (~1.21 Rsun) =2.0e-07
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JPL Albedo model high resolution map

Deep Space Climate Observatory (NOAA, Feb. 11, 2015):
Earth Polychromatic Imaging Camera (EPIC)

epic_1lb _20160321epic albedo model map (780nm)
0.250degLonx0.125deglLat
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Rotational deconvolution

SPL

epic_1b_20160321 epic map model 1.8degx0.9deg grids (780nm) High SNR allows for

* High-resolution
spectroscopy

lat

Allows reconstruction
of a 2-D albedo map
from annual variation
of the disk-integrated
scattered light using
technique of spin-orbit
tomography (i.e.,
rotational
deconvolution)

normalized albedo
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epic_1lb 20160321 epic map reconstruction
observed every 10 min (144*365 observations)

lat

* Next step is a direct
deconvolution
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Image formation by the SGL

SPL

I(x3,1) = O(x, ) @ PSFgier(xz, 1)

 Igp - impact parameter,
X2| — distance in the image plane,

Accretion disk around a black hole asatest « & — 2D convolution operator.
object for convolution by the PSF of the SGL.

Image obtained after convolution. Photon De-convolved image using the SGL' PSF. Low-
noise is added, corresponding to 100 ph/pixel pass filtering in spatial frequencies is applied

L. Koechlin et al., Exp Astron (2005) 20:307-315
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THE SOLAR GRAVITATIONAL LENS
The a prioriproperties of the target

« We want to image Earth 2.0, around a G star, which is not transiting:
— Once habitability is confirmed (“big TPF” for spectra), the next step is to image it.
* We will rely on astrometry, RV, spectroscopy, and direct imaging to obtain:

orbital ephemeris: to ~mas accuracy and precision;
rotation: from temporal monitoring of the spectroscopy;

atmosphere: temperature, structure, chemical composition, and albedo, from non-
spatially-resolved spectroscopy;

understanding of cloud & surface properties from Doppler imaging.

« This information will help us to point the s/c:

Time to reach 550 AU ~10 years, enough to observe the parent star’s location
~100 times with 1 uas precision, so that its position would be known to 0.1 uas;

The parent star’s position would be known to ~45 km at a distance of 30 pc;
Orbital period to <1% = the semi-major axis is known to ~0.7% (~1 million km);
If face-on, the radial distance to ~1 million km, with tangential error ~6 larger;
Earth’'s diameter is 13,000 km, so we will search the (80 x 500) grid on the sky;
Once SGLFM detects the planet = scan a smaller area to define the “edges”.
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Imaging with SGL

SPL

* Imaging is done on a pixel-by-pixel basis:
— The image of an exo-Earth occupies ~(1.3kmx1.3km) area from the optical axis.
— Each pointing corresponds to a different impact parameter: 1 image < 1 pixel.

— Between the adjacent pixels the impact parameter changes, brings light from
adjacent surface areas on the planet = a raster scan moving the spacecraft;

— To build a (103x103) pixels image, we would need to sample the image pixel-by-
pixel, while moving in the image plane with steps of ~1 km/103 = 1 m:

» Pointing: Inertial navigation and 3 laser beacon spacecraft in heliocentric
orbit in the plane of the Einstein’s ring (for precision pointing & comm).

— Contamination from the parent star is negligible for an SGL scenario.

* Exoplanet imaging requires several key technologies that are challenging:
— determination of an exoplanet astrometric orbit at ~10 nas,
— motion & stabilization of the s/c over millions of pointings with limited power.

« Perhaps even spectroscopy or even spectro-polarimetry of the exoplanet?

— Potentially a spectrally resolved image over a broad range of wavelengths:
atmosphere, surface material characterization, biological processes.



SPL

Center of the Sun shoun as dots monthly from

THE SOLAR GRAVITATIONAL LENS
The solar wobble
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Trajectories (Measure vs Control)

SPL

Pointing precision (between three objects):
— Needs to be maintained to ~ few uas for proper operation of the SGL.
— Knowledge is needed at 1 uas level, control is at the ~100 uas.

— The motion is unfortunately complex (1-m of motion at 600 AU ~ 1 uas
of angle seen from Earth)

Simple motions (straight lines):
— Motion of the target star around the galaxy; the Sun around the galaxy
More complex motions:
— Motion of the exoplanet around its host star (Keplerian)
— Motion of our Sun around the solar system barycenter.
« Dominated by the orbits of Jupiter, Saturn.
* Jupiter = 75 million m motion of the Sun (12yr orbit)
« Saturn = 50 million m of motion of the Sun (29 yr)
 Earth = 450,000 m (1 yr)
Propulsion system must compensate for the reflex motion of the Sun

— Due to most of the planets in the solar system. (perhaps many of the big
asteroids in the main belt) Uranus and Neptune’s motion over a short
time may be just a straight line (need to calculate for sure).




Direct Multipixel Imaging and Spectroscopy of an Exoplanet
with a Solar Gravity Lens Focus (SGLF) Mission

An imaging mission to SGLF appears to be feasible, but needs further study

Concept

» SGLF provides a major gain (~10! at 1um),
resolution of 10-° arcsec in a narrow FOV;

* A 1-m telescope at ~750AU has a collecting
area equivalent ~80 km aperture in space;

* A mission to the SGLF could image Earth 2.0
up to 30pc away with resolution to ~10km to
see surface features;

* A small s/c with electric propulsion (or solar
sails) can reach the SGLF in <35-40 yrs.

Proposed Study and Approach

Define baseline design, sub-syst components;
Define mission science goals & requirements;
Develop system and subsystem requirements;
Study mission architecture and con-ops;
Assessment of feasibility (cluster) small-sats;
Identify technology development needs;

Study instruments & systems: power, comm,
pointing, s/c, autonomy, coronagraph, nav,
propulsion, raster scan in the image plane, etc.

Benefits

A breakthrough mission concept to resolve a
habitable exoplanet at modest cost/time;

« Could find seasonal changes, oceans,
continents, life signatures on an exo-Earth;

« Small-sat & fast exit from the solar system;

« Electric propulsion for raster-scanning the
image using tethered s/c (or cluster);

« SLGF is valuable for other astrophysics and
cosmology targets.

Earth with resolution of (1000 x 1000) pixels.




Comments on NLAC Phase 11 proposal (March 2018):

The concept continues to demonstrate unexplored and exciting
aspects of value to investigate over the Phase I study. Analysis
completed in Phase I is credible. However, unknowns remain
that are not readily determined, thereby warranting further
study.

If successful, the concept will enable wholly new missions, offer
a significant advantage to previously studied work, or provide a
great leap in capabilities for NASA or the greater aerospace
community. Based on results from the Phase I study, the concept
continues to generate enthusiasm for a mission and potential to
build advocacy to support it within NASA or in the greater
aerospace community.



