Interactive Exploration Robots
Human-robotic collaboration and interactions

Terry Fong
Intelligent Robotics Group
NASA Ames Research Center
terry.fong@nasa.gov

irg.arc.nasa.gov
What’s changed since Apollo?

- Kaguya
- Chandrayaan
- LRO
- Space Station
- Phoenix
- Robonaut 2
- LCROSS
- Rosetta

Human-robotic collaboration and interactions for space exploration
Human-Robot Teams

Many forms of human-robot teaming
- “Robot as tool” is only one model
- Humans and robots do not need to be just co-located or closely coupled
 ▶ Distributed teaming is also important

Concurrent, interdependent operations
- Human-robot interaction is still slow and mismatched (compared to human teams)
- Easy for robots to slow down the human
 ▶ Loosely-coupled teaming (in time and space) should also be employed

Distributed teams
- Require coordination and info exchange
- Require understanding of (and planning for) each teammate’s capabilities
Interactive Exploration Robots

PART 1
Humans on Earth
Robot in space

PART 2
Humans on Earth
Robot on the Moon

PART 3
Humans in orbit
Robot on planet

PART 4
Real-time telerobotics

Human-robotic collaboration and interactions for space exploration
Humans on Earth / Robot in space
Extra-Vehicular Activity (EVA)

- Not enough crew time to do everything (only 1-2 EVAs per year)
- Crew must always carry out “Big 12” contingency EVA’s if needed
 - Maintain electrical power system
 - Maintain thermal control system
- Prep & tear down: up to 3 hr per EVA

Intra-Vehicular Activity (IVA)

- Crew spends a lot of IVA time on maintenance (40+ hr/month)
- Routine surveys require 12+ hr/month
 - Air quality, lighting, sound level, video safety, etc.
- Crew must always carry out contingency IVA surveys
 - Find and repair leaks, etc.
Space Station Robots

Space Station Remote Manipulator System (Canadarm2)

Human-robotic collaboration and interactions for space exploration
Space Station Robots

Special Purpose Dexterous Manipulator ("Dextre")

Human-robotic collaboration and interactions for space exploration
Space Station Robots

Robonaut 2

SPHERES

Astrobee (concept)
Smart SPHERES

Smart SPHERES Network Setup

- JEM
 - Android Smartphone
 - Communications Test Application
 - Node 2
 - DTN Gateway SSC
 - Linux Service Partition Load
 - OPS LAN
 - OCA - USB
 - TDRSS

- JSC Building 30
 - OCA LAN
 - SPHERES WS
 - RedHat Linux Install
 - Java-based GUI
 - DTN Gateway
 - RedHat Linux Install
 - OCA Ground Router
 - White Sands
Space Station Interior Survey (2012)

December 12, 2012
Crew: Kevin Ford, Expedition 33 Commander

2x speed
Humans on Earth / Robot on another world
Mars Rovers

Mars Exploration Rover on Mars (artist concept)

Curiosity at “Big Sky”
Mission
• Characterize the nature and distribution of lunar polar volatiles
• Demonstrate in-situ resource utilization: process lunar regolith

Key Points
• Class D / Category 3 Mission
• Launch: ~2021
• Duration: 6-14 Earth days
• Direct-to-Earth communications
• Real-time subsurface prospecting

Rover
• Mass: 300 kg (including payload)
• Size: 1.4m x 1.4m x 2m
• Max speed: 10 cm/s
• Speed made good: 0.5 cm/s
Human-robotic collaboration and interactions for space exploration

RP Mission Animation
Goals

- **Prospecting.** Mature prospecting ops concept for NIRVSS and NSS instruments in a lunar analog field test
- **Real-Time Operations.** Improve support software by testing in a setting where the abundance / distribution of water is not known a priori
- **Science on Earth.** Understand the emplacement and retention of water in the Mojave Desert by mapping water distribution / variability
Prospecting Rover and Instruments

Sample Evaluation
Near Infrared Volatiles Spectrometer System

Resource Localization
Neutron Spectrometer System
Real-time Operations (NASA Ames)
Mojave Volatiles Prospector
Mojave Desert, California
October 2014
Human-robotic collaboration and interactions for space exploration
Human-robotic collaboration and interactions for space exploration
Exploration Ground Data System (xGDS)
Humans in space / Robot on the ground
“Fastnet” Lunar Libration Point Mission

Orion MPCV at Earth-Moon L2 (EM-L2)
- 60,000 km beyond lunar farside
- Allows station keeping with minimal fuel
- Crew remotely operates robot
- Does not require human-rated lander

Human-robot conops
- Crew remotely operates surface robot from inside flight vehicle
- Crew works in shirt-sleeve environment
- Multiple robot control modes
Human-robotic collaboration and interactions for space exploration
Human-robotic collaboration and interactions for space exploration
Robot Interface (Supervisory Control)

Human-robotic collaboration and interactions for space exploration
Assessment Approach

Metrics

• **Mission Success**: % task sequences: completed normally, ended abnormally or not attempted; % task sequences scheduled vs. unscheduled
• **Robot Utilization**: % time robot spent on different types of tasks; comparison of actual to expected time on; did rover drive expected distance
• **Task Success**: % task sequences per session and per task sequence: completed normally, ended abnormally or not attempted; % that ended abnormally vs. unscheduled task sequences
• **Contingencies**: Mean Time To Intervene, Mean Time Between Interventions
• **Robot Performance**: expected vs. actual execution time on tasks

Data Collection

• **Data Communication**: direction (up/down), message type, total volume, etc.
• **Robot Telemetry**: position, orientation, power, health, instrument state, etc.
• **User Interfaces**: mode changes, data input, access to reference data, etc.
• **Robot Operations**: start, end, duration of planning, monitoring, and analysis
• **Crew Questionnaires**: workload (Bedford Scale), situation awareness (SAGAT)

M. Bualat, D. Schreckenghost, et al. (2014) “Results from testing crew-controlled surface telerobotics on the International Space Station”. Proc. of 12th I-SAIRAS (Montreal, Canada)
Real-time Exploration Telerobotics

Telepresence Remotely Operated Vehicle (TROV)

• Benthic ecology survey of McMurdo Sound (Nov-Dec 1993)
• Remote operations from NASA Ames via satellite (832 kbps downlink)
• Virtual environment + telepresence video (head tracked stereo display)

Telepresence ROV (1993)
Real-time Exploration Telerobotics

Marsokhod at Kilauea

- Geologic mapping of Southwest Desert at Kilauea (Feb 1995)
- Remote operations from NASA Ames via satellite (T1 link)
- Virtual environment + telepresence video (stereo display)

Marsokhod at Kilauea (1995)
Lessons from TROV & Marsokhod

Latency

- Latency is **only one factor** for remote exploration: type of science, instruments & data, cost, risk, staffing, robot capabilities, etc.
- Remote (robotic) exploration is not dominated by control latency. **Data collection** (with instruments), **analysis** (many steps), and **decision making** (strategic and tactical planning) are all far more significant.

Spatial displays

- 3D visualizations is essential for most field studies
- **Head-mounted** and **stereo video** displays are **pseudo 3D**, not true 3D, which leads to many issues (accommodation errors, etc)
- High levels of **presence** can be achieved even with limited data.

Real-time telerobotics

- Telepresence (immersive real-time presence) is **not a panacea**
- **Manual control** is imprecise and highly coupled to human performance (skills, experience, training)
- **Minimizing risk** is often (far more) important that efficiency.
Intelligent Robotics Group
Intelligent Systems Division
NASA Ames Research Center

irg.arc.nasa.gov