Planetary Materials and their Response to Tidal Deformation

Christine McCarthy
Assistant Research Professor
Outline:

- Composition and P/T state of interiors
- How materials deform at these conditions (timescales, mechanisms, T/T_m)
- Overview of lab studies
- Comparison of icy vs. rocky worlds (scaling)
- How material properties influence global-scale properties/dynamics
Fig. 2. The temperature-depth profiles for a typical old oceanic upper mantle (age of 80 Myrs) and for continents. For continents, two geotherms are shown corresponding to typical shield and Archean craton. Geotherms below 100 km are considered in the present study. The green region represents the temperature-depth data from mantle xenoliths, and the orange region corresponds to the temperature-depth profiles inferred from the inversion of seismic surface wave data from continental upper mantle.

[Karato, 2010]
Interiors: Io

Thermal structure of Io from Schubert et al. Mantle is dry peridotite very near to Tm
Interiors: Europa

[Tobie et al., 2003]
Strength envelopes:
From rheology of relevant minerals and T,P profiles

[Kohlstedt et al., 1995]
Strength envelopes:
From rheology of relevant minerals and T,P profiles

[Kohlstedt et al., 1995]

[Dombard and McKinnon, 2006]
Homologous temperature

OLIVINE
- Temperature (K): 200, 650, 1000, 1500, 1900, 2173
- Homologous Temperature T/Tm: 0.1, 0.3, 0.5, 0.7, 0.9

ICE
- Temperature (K): 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260
- Homologous Temperature T/Tm: 0.1, 0.3, 0.5, 0.7, 0.9, 1.0

Dry GRANITE
- Temperature (K): 150, 460, 800, 1100, 1380, 1533
- Homologous Temperature T/Tm: 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
Homologous temperature

OLIVINE
- Earth’s mantle
- Homologous Temperature T/Tm: 0.1, 0.3, 0.5, 0.7, 0.9
- Temperature (K): 200, 650, 1000, 1500, 1900, 2173

ICE
- Europa icy shell
- Homologous Temperature T/Tm: 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
- Temperature (K): 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240, 260

Dry GRANITE
- Earth’s cont. crust
- Homologous Temperature T/Tm: 0.1, 0.3, 0.5, 0.7, 0.9, 1.0
- Temperature (K): 150, 460, 800, 1100, 1380, 1533
Deformation of polycrystalline materials occurs by motion of:

• 1D: point defects
• 2D: dislocations
• 3D: grain boundaries

(more than one happening at any given time, under different conditions and timescales; one or more may dominate. They have different “signatures”.)

ALSO influenced by:
melt and second phases

A polycrystalline viscoelastic solid, warts and all
Viscoelasticity:
Deformation at a range of time scales
Viscoelasticity: Deformation at a range of time scales

Maxwell time $\tau_M = \eta/M_u$
Viscoelasticity

How do we measure viscosity and elasticity in the lab?

Steady-state viscosity

\[\eta_{SS} \]

Creep experiments

\[\eta = \frac{\sigma}{\dot{\varepsilon}} \]

Elastic Modulus \(k \) or \(E_U \)

[Oscilloscope, piezoelectric disk, function generator, source, elastic wave, sample]
Viscoelasticity

Viscous behavior; strain rate is proportional to stress:
\[\sigma = \eta \dot{\varepsilon} \]

Steady-state viscosity \(\eta_{SS} \)

Elastic behavior is instantaneous elasticity and instantaneous recovery. Follows Hooke’s Law:
\[\sigma = E \varepsilon \]

Elastic Modulus \(k \) or \(E \)

Simplest form of viscoelasticity is the Maxwell model:
\[J(t) = \frac{t}{\eta_{SS}} + \frac{1}{k_E} \]
Viscoelasticity: in between the two extremes?

- Viscous: tectonics, glacial loading
- Anelastic: tidal deformation, seismic waves
- Elastic: ultrasonic

Time since loading (Years):
- 10^{-15}Hz
- 10^{-10}Hz
- 10^{-5}Hz
- 1Hz
- 10^6Hz

Frequency (Hz):
- 10^{-12}
- 10^{-4}
- 1
Viscoelasticity

Time domain

\[J(t) = \frac{\varepsilon(t)}{\sigma} = \frac{t}{\eta_{SS}} + F(t) + \frac{1}{k_E} \]

Creep compliance

Laplace transform

Complex compliance

\[\sigma(t) = \sigma_0 \exp(i\omega t); \varepsilon(t) = \sigma_0 J^* \exp(i\omega t) \]

\[J^*(\omega) = J_1(\omega) + iJ_2(\omega) \quad \omega = 2\pi f \]

\[Q^{-1} = \frac{J_2}{J_1} \quad \text{-Loss compliance} \]

\[\text{-Storage compliance} \]

\[E = \frac{1}{\sqrt{J_1^2 + J_2^2}} \]
Mechanical models for dissipation

Burgers Model

\[J(t)^{\text{Burgers}} = \frac{\varepsilon(t)}{\sigma} = \frac{t}{\eta_{SS}} + \frac{1}{k_2} \left[1 - \exp\left(\frac{-t}{\tau}\right) \right] + \frac{1}{k_E} \]

Extended Burgers Model

\[J(t) = \frac{\varepsilon(t)}{\sigma} = \frac{t}{\eta_{SS}} + \frac{1}{k_E} \Delta \int_{\tau_m}^{\tau_M} \left[1 - e^{-\frac{\tau}{\tau_\text{m}}} \right] D(\tau) d\tau + \frac{1}{k_E} \]

Andrade Model

\[J(t)^{\text{And}} = \frac{\varepsilon(t)}{\sigma} = \frac{t}{\eta_{SS}} + \beta t^m + \frac{1}{k_E} \]
Mechanical models for dissipation

- **Burgers Model**
 - Steady state
 - ηSS
 - Instantaneous
 - transient
 - k
 - E
 - d
 - SS
 - d
 - i
 - 0
 - k
 - i
 - 0
 - d
 - 1
 - k
 - 1
 - d
 - 1
 - k
 - 1
 - J
 - 1
 - B
 - (ω) = \frac{1}{k_E} + \frac{k_2}{k_2 + \eta_2 \omega^2}
 - J
 - 2
 - B
 - (ω) = \frac{\eta_2 \omega}{k_2 + \eta_2 \omega^2} + \frac{1}{\eta_{SS} \omega}

- **Extended Burgers Model**
 - Steady state
 - ηSS
 - Instantaneous
 - transient
 - k
 - 1
 - k
 - E
 - Δ
 - D
 - (τ)
 - dτ
 - \left(1 + \omega^2 \tau^2\right)
 - J
 - 1
 - EB
 - (ω) = \frac{1}{k_E} \left[1 + \Delta \int_0^\infty D(\tau) d\tau / \left(1 + \omega^2 \tau^2\right)\right]
 - J
 - 2
 - EB
 - (ω) = \frac{\omega}{k_E} \Delta \int_0^\infty \tau D(\tau) / \left(1 + \omega^2 \tau^2\right) + \frac{1}{\eta_{SS} \omega}
 - D(τ) = \frac{\alpha \tau^{-(1-\alpha)} H(\tau - \tau_m) H(\tau_M - \tau)}{\tau_M^{\alpha} - \tau_m^{\alpha}}

- **Andrade Model**
 - ηSS
 - Instantaneous
 - transient
 - k
 - E
 - J
 - 1
 - And
 - (ω) = \frac{1}{k_E} + \beta \Gamma (1 + m) \omega^{-m} \cos \left(\frac{m \pi}{2}\right)
 - J
 - 2
 - And
 - (ω) = \beta \Gamma (1 + m) \omega^{-m} \sin \left(\frac{m \pi}{2}\right) + \frac{1}{\eta_{SS} \omega}
Mechanical models for dissipation

Burgers Model

Extended Burgers Model

Andrade Model

\[\eta_{SS} \]

\[k \]

\[\eta_{1} \]

\[k_1 \]

\[\eta_{1} \]

\[k_1 \]

\[\int \eta_t \]

\[\int k_t \]

Steady state

Transient

Instantaneous

[Cooper, 2002]
Burgers vs. Andrade: work equally well

Fig. 7a, b Andrade and extended Burgers model fits (Table 2) to a the modulus dispersion and b the dissipation information extracted from microcreep record 890-5 at 1300 °C. The alternative rheologies fit the data (indicated by the plotting symbol) equally well but diverge substantially in the description of Q^{-1} at much shorter and longer periods.

[Tan, Jackson and Fitz Gerald, 2001]
Deformation of polycrystalline materials occurs by motion of:

- **1D:** point defects
- **2D:** dislocations
- **3D:** grain boundaries

Distinct length and timescales gives a peak in spectra. Point defect motion makes peaks.

Figure:
- Snoek-type and Zener relaxation in Fe – Si – Al alloys
- Attenuation in single crystal ice with Debye peak at ~150K due to proton rearrangement [after Tatibouet et al., 1981]
Deformation of polycrystalline materials occurs by motion of:

• 1D: point defects
• 2D: dislocations
• 3D: grain boundaries

Distinct length and timescales gives a peak in spectra. Grain boundary diffusion displays a broad distribution.

Local slip at planer segments
Local stress concentration and relaxation
Global slip (creep)

No slip
Grain boundary

elastic larger time scale viscous
How can we identify the mechanism of attenuation in experiments?

- Look at the spectra. Are there peaks (i.e. narrow relaxation times) or a broad bands (distribution of relaxation time)?
- Look at the apparent thermal and grain size dependences. Can you find internal scaling? How does the activation energy and gs-dependence compare to steady-state processes?
- Look at the microstructure.
Viscoelasticity
How do we measure anelasticity in the lab?

[custom apparatus used in many Jackson, Faul, Farla papers; described in Jackson and Paterson, 1993]

[custom apparatus used in Gribb and Cooper, 1998; 2000; Sundberg and Cooper, 2010]
Viscoelasticity

How do we measure anelasticity in the lab?

Large standing Instron with cryostat used at Brown

Table top Instron with cryostat used at JPL
Viscoelasticity

How do we measure anelasticity in the lab?

\[Q^{-1} = \tan \delta = \frac{J_2}{J_1}; \]
\[E = \left(\frac{\sigma_0}{\varepsilon_0} \right) \]

Phase lag = \(\delta \)

\[\text{normalizd stress and strain} \]

\[\text{angle (}\omega t\text{)} \text{ [radians]} \]

\[\text{stress} \]

\[\text{time} \]
Viscoelasticity

How do we measure anelasticity in the lab?

Control grain size, T, impurities etc.

Analogue samples: borneol ($\text{C}_{10}\text{H}_{18}\text{O}$)

[Takei, Fujisawa, McCarthy, JGR116, 2011]
Comparison of forced oscillation rigs

P-T comparison of rigs

- **Confining pressure (MPa)**
 - Ice rigs
 - Takei
 - Cooper
 - Gueguen

- **Temperature (degC)**
 - 0 to 2000

ε-f comparison of rigs

- **Strain amplitude resolution**
 - 10^{-9} to 10^{-7}

- **Frequency (Hz)**
 - 10^{-5} to 10^{5}
Empirical Observations:

comparison of multiple studies

Q^{-1} data from different Ts, different materials, different testing geometries
Empirical Observations: Normalization by Maxwell frequency comparison of multiple studies

\[f_M = \frac{E_U}{\eta} \]

- Previous studies:
 - Gueguen, 1989 (single)
 - Tan et al, 2001 (olivine)
 - Jackson et al, 2002 (olivine)
 - Gribb & Cooper, 1998 (olivine)
 - McCarthy et al, 2011 (borneol)
 - Sundberg & Cooper, 2010 (dunite)
 - Berckhemer et al, 1983 (syn. forsterite 1mm)
Empirical Observations:
Normalization by Maxwell frequency
how we can compare apples to oranges

- Europa tidal forcing
 - $f = 4 \times 10^{-5}$
 - $f_M = 9 \times 10^9 \text{Pa/} 10^{14} \text{Pa s}$
 - $= 9 \times 10^{-5} \text{Hz}$

- Seismic Earth
 - $f = 1-100 \text{Hz}$
 - $f_M = 10^{11} \text{Pa/} 10^{20} \text{Pa s}$
 - $= 10^{-9} \text{Hz}$

Previous studies:
- Gueguen, 1989 (single)
- Tan et al, 2001 (olivine)
- Jackson et al, 2002 (olivine)
- Gribb & Cooper, 1998 (olivine)
- McCarthy et al, 2011 (bornite)
- Sundberg & Cooper, 2010 (dunite)
- Berckhemer et al, 1983 (syn. forsterite 1mm)
Maxwell curve approach: take a description of the HTB and normalize by Maxwell frequency for the material or planetary setting of your choice

\[
\frac{1}{f_M} = \tau_M(d,T,P) = J_U(T,P) \cdot \eta_0 \left(\frac{d}{d_r} \right)^{-p} \exp \left[\frac{U}{R \left(\frac{1}{T} - \frac{1}{T_r} \right)} \right] \exp \left[\frac{V \left(\frac{P}{T} - \frac{P_r}{T_r} \right)}{R} \right]
\]

Moduli and viscosities of Earth and planetary materials pretty well known

\[\dot{\varepsilon} = A \frac{\sigma^n}{d^p} \exp \left(\frac{-E_A + PV}{RT} \right)\]

\[\dot{\varepsilon} = \dot{\varepsilon}_{\text{diff}} + \left(\frac{1}{\dot{\varepsilon}_{\text{basal}}} + \frac{1}{\dot{\varepsilon}_{\text{gbs}}} \right)^{-1} + \dot{\varepsilon}_{\text{disl}}\]
The fine print: problems with Master curve approach

- Some disagreement about d-dependence
- A peak at high frequency overlays the HTB
- Melt effect on GBS known, but “squirt” not well known
- Water effect not well known
- Dislocation effect not well constrained

\[\tau_M(d,T,P) = J_U(T,P) \cdot \eta_0 \left(\frac{d}{d_r} \right)^{-p} \exp \left[\frac{U}{R} \left(\frac{1}{T} - \frac{1}{T_r} \right) \right] \exp \left[\frac{V}{R} \left(\frac{P}{T} - \frac{P_r}{T_r} \right) \right] \]

[Jackson, Faul, Skelton, 2013]
The fine print: problems with Master curve approach

- Some disagreement about d-dependence
- A peak at high frequency overlays the HTB
- Melt effect on GBS known, but “squirt” not well known
- Water effect not well known
- Dislocation effect not well constrained

\[\text{Composite creep function} \]

\[
J(t) = J_U + \frac{t}{\eta_{ss}} + \left(J_U \Delta (1 - e^{-\frac{t}{T_{gbs}}}) \right) + At^n
\]

= A + B + C + D

[Sundberg and Cooper, 2010]
Effect of melt on GBS and master curve

\[Q^{-1}(f, d, T, P, \phi) = Q^{-1}\left(\frac{f}{f_M}\right) \]

[McCarthy and Takei, GRL38, 2011]
The fine print: problems with Master curve approach

- Some disagreement about d-dependence
- A peak at high frequency overlays the HTB
- Melt effect on GBS known, but “squirt” not well known
- Water effect not well known
- Dislocation effect not well constrained

[Jackson et al., 204; Faul et al., 2004]
The fine print: problems with Master curve approach

- Some disagreement about d-dependence
- A peak at high frequency overlays the HTB
- Melt effect on GBS known, but “squirt” not well known
- Water effect not well known
- Dislocation effect not well constrained

This study used samples pre-deformed in the dislocation creep regime (longitudinal and torsional)

In both cases, the Q^{-1} was greater than the prediction (of diffusion-GBS)

[Farla et al., 2012]
Defining J_1 and J_2

\[\sigma(t) = \sigma_0 e^{i\omega t} \]
\[\varepsilon(t) = \sigma_0 J^* e^{i\omega t} \]

Complex compliance
\[J^*(\omega) = J_1 - iJ_2 \]

Relation between Q and E and J_1 and J_2
\[Q^{-1} = \frac{J_2}{J_1} \]
\[E = \frac{1}{\sqrt{J_1^2 + J_2^2}} \]

From Q and E to J_1 and J_2
\[J_1(\omega) = \frac{1}{E(\omega)\sqrt{1 + (Q^{-1}(\omega))^2}} \]
\[J_2(\omega) = Q^{-1}(\omega)J_1(\omega) \]
Defining J_1 and J_2

\[J_1(\omega) = J_U + \int_{\tau=0}^{\tau=\infty} X(\tau) \frac{1}{1 + (\omega \tau)^2} \frac{d\tau}{\tau} \]

\[J_2(\omega) = \int_{\tau=0}^{\tau=\infty} X(\tau) \frac{\omega \tau}{1 + (\omega \tau)^2} \frac{d\tau}{\tau} + \frac{1}{\omega \eta} \]

 elasticity anelasticity viscosity

Well approximated by:

\[J_1(P) + \frac{P}{\pi^2 \eta} = J_1(P_R) + \frac{2}{\pi} \int_{\ln P_R}^{\ln P} J_2 \ d\ln P \]

\[J_2(\omega) = \frac{\pi}{2} X \left(\tau - \frac{P}{2\pi} \right) + \frac{P}{2\pi \eta} \]

From Nowick and Berry
Takeaways

- Material properties are frequency dependent
- Anelastic behavior depends on mechanism (defects)
- Mechanical models can describe behavior of materials (Andrade, Burgers etc.)
- Although “apparent” relationships of Q^{-1} on d, T, P, Φ etc. exist, these are related through viscosity, so use Maxwell freq. scaling to compare apples to oranges.
- The “high temperature background” observed in labs is also observed in seismic studies (absorption band). Similitude in experiments suggests same mechanism (GBS). (some of the nuanced differences may come in the “fine print”)