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1.EXECUTIVE SUMMARY

For greenhouse gas (GHG) observations to more effectively inform climate management
strategies, we must be able to better identify the timing, location, and magnitude of surface
emissions and removals. Making atmospheric composition data actionable requires improved
traceability to surface fluxes. For this, we need better observation of the vertical distribution of
trace gases and better modeling of vertical atmospheric mixing. Uncertainty in vertical
transport and mixing has been especially problematic because of two factors: (1) long tracer
lifetimes can lead to accumulation of vertical mixing errors over time and space, and (2)
covariance of vertical mixing with surface fluxes confounds attribution of trace gas data to
surface fluxes. These problems are exacerbated by the presence of clouds and wind shear,
which can obscure the origin of trace gases.

A new generation of models and space-based GHG and wind remote sensing techniques
is emerging. These tools show promise for observing and simulating the small scales at which
vertical mixing occurs, with near-global coverage. Spaceborne GHG missions will continue to
close spatial and temporal sampling gaps, increasingly target collocated species (CO3, CHa4, CO,
NOy), and vertical gradients (via multi-spectral lidar and spectrometers) for improved sectoral
attribution of carbon emissions and removals. Wind missions leveraging passive and active
techniques to track the motion of cloud and trace gas spatial features, cloud liquid and ice
hydrometeors (radar and lidar), and air/particulates (lidar) are improving our ability to track
vertical and horizontal motion within and around clouds. High-resolution numerical weather
prediction and climate models and machine learning-driven forecasting that resolve deep
convection and permit shallow convection are improving the statistics of vertical mixing at
regional scales. The combination of wind and GHG observations with high-resolution models
will strengthen our knowledge of GHG mixing, connecting surface exchange to atmospheric
abundances.

To provide scientific guidance on how to bring these modeling and observing tools
together for more accurate GHG and air quality climate data, the Earth science community
needs to move beyond single instrument teams to tackle integrated science challenges. We
recommend the development and coordination of a joint meteorology and atmospheric
composition program, whose goal is to vastly improve GHG source and sink quantification while
simultaneously advancing our understanding of vertical atmospheric mixing.

We envision a three-tiered model-observation integration approach to reduce
uncertainty in vertical mixing based on existing and future observations:

e Diagnosis—Comparing models to observations to identify process uncertainty,
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e Optimization—Assimilation of observations into models to optimize parameters and
state, and

e Prediction—Forward and inverse simulation using calibrated model ensembles.

A key component of this approach is the development of testbeds to inform vertical
mixing, building on coordinated programs such as the European Union-led Carbon Atmospheric
Tracer Research to Improve Numerics and Evaluation (CATRINE) project. These
recommendations are supported by the National Academies Earth Science Decadal Survey
Midterm findings to expand collaboration opportunities, and to more actively engage the
modeling communities.

2.INTRODUCTION: PROVIDING ACTIONABLE INFORMATION
FROM GRIDDED SURFACE FLUXES

The science and stakeholder communities need to clearly understand how gases in
Earth’s atmosphere exchange with the surface, are modified by chemistry, and are
redistributed by the winds to guide climate policies and to understand the changing carbon
cycle. To provide guidance on how to bring modeling and observing tools together for
actionable greenhouse gas (GHG) data, representatives from the GHG and Winds communities
convened in October 2024 for a five-day workshop. Our discussions led to the conclusion that
the Earth Science community needs to move beyond single-instrument teams to tackle
integrated Earth science problems, including those related to the carbon cycle and air quality.
We recommend the development and coordination of a joint meteorology and atmospheric
composition program whose goal is to vastly improve GHG source and sink quantification while
simultaneously advancing our understanding of vertical air movement. In this report, we
provide a framework by which we can classify actionable problems according to relevant spatial
scale. We highlight areas that need particular attention and outline what effective cross-
disciplinary community support could look like.

2.1 BACKGROUND

The global carbon cycle encompasses the interactions among physical, biological and
human-driven processes within the Earth system that leads to flows of carbon between land,
ocean, and atmospheric reservoirs. Natural flows remain in quasi-steady state in the absence of
external forcing. Humans have perturbed the natural cycle is through fossil fuel combustion,
which has led to a rapid and massive redistribution of carbon from underground, where it is
stored in solid, liquid, and gaseous state, to the atmosphere, where it is stored in gaseous state
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and acts as a GHG. Fossil fuel emissions act as an external force by changing the concentration
of carbon dioxide (CO2) and methane (CH4) in the atmosphere, affecting the amount of total
energy received at the surface. The Earth system is responding to this forcing by creating
carbon sinks, which remove a fraction (~50%) of this excess CO; through increased storage in
the land and ocean (Friedlingstein et al., 2025). The magnitude and sign of this response is
dependent on environmental conditions such as air temperature and rainfall, which change
daily and seasonally with weather, and also decadally, with changes in energy input from CO;
and other GHGs.

Managing the excess CO; in the atmosphere to meet climate targets involves a
combination of activities. We must be able to accurately identify the location, magnitude, and
change in surface land-atmosphere carbon flux at different spatial and temporal scales.
Advancements in this area serve to distinguish different processes, avoid misattribution, and
effectively inform mitigation efforts. This relies fundamentally on measurements of
atmospheric CO,. While these data can be combined with other evidence of carbon cycle
change, for example, from biomass and forest inventories, to reveal further information about
the carbon cycle at local to global scale (Walker et al., 2021), we must first ensure the reliable
and appropriate use of atmospheric CO; to estimate carbon flux in time and space and at the
scale of interest. Atmospheric CO; data are used in two distinct ways in combination with wind
data to estimate and monitor changes in the carbon cycle, leading to two vastly different
temporal and spatial scales of flux estimation.

On the ecosystem time (hours to decades) and space (leaves to communities, ~1 km)
scale, carbon fluxes are estimated using careful and collocated observation of trace gases and
winds. Site-level monitoring of carbon fluxes using eddy covariance methods has been
occurring across multiple networks at a global scale for decades (Baldocchi, 2020). This
approach has been foundational to our understanding of the terrestrial biosphere across
climate and ecological space and the response of carbon fluxes to environmental and biological
forcing.

On the regional to global scale, carbon fluxes are inferred using in-situ and remote
sensing measurements of atmospheric concentrations from ground, airborne, and spaceborne
platforms. This approach (described in Chapter 3) uses trace gas concentration measurements
at certain times and locations, together with wind information (from data and models) at all
times and locations, to infer the spatial and temporal distribution of surface carbon fluxes. For
global scale flux estimation (~10,000 km), this approach has leveraged long records of
atmospheric concentrations from flasks collected at locations globally since the mid-20th
century (Mund et al., 2017). Regional scale carbon fluxes (~100-1,000 km) can be inferred from
in-situ records collected more or less continuously at tower and aircraft locations within
continental interiors (closer to carbon sources and sinks) since the early 21st century.




Tracing Greenhouse Gases: A Blueprint for a Joint Meteorology and Atmospheric Composition Program

While tower data contain information at a global scale, space-based remote sensing has
greatly improved our ability to study the Earth’s carbon cycle at regional scale (~1000 km) and
fill spatial gaps in the in-situ network. The era of space-based remote sensing of atmospheric
trace gases was ushered in by the pioneering efforts of the Greenhouse gases Observing
SATellite (GOSAT) and NASA’s Orbiting Carbon Observatory 2 (OCO-2) in the 2010s. These
satellites, which fall into a class of satellite missions called Global GHG Mappers (CEOS-CGMS
Joint Working Group on Climate Greenhouse Gas Task, 2024), demonstrated that high-
precision, column-integrated CO, concentration measurements were not just possible, but
highly complementary to in-situ data in terms of spatial coverage, continuity, and linking
regional scale processes to global change. Science teams devoted to the application of these
instruments have made progress toward improving trace gas retrievals and applying these
observations for inference of carbon fluxes over large regions, best demonstrated by the OCO-2
Model Intercomparison Project.?

Trace gas methods do not currently take full advantage of opportunities enabled by
existing atmospheric wind measurements and vice versa. Generally speaking, eddy covariance
methods require collocated measurements of atmospheric trace gas and wind fluxes to infer
surface carbon fluxes at the same location of the measurements. Trace gas concentration
methods also require wind data, but do not necessarily need or benefit from collocated
measurements. Incorporating a more focused view of air movement is required to more
reliably trace observed concentrations to their point of origin. Conversely, observations of trace
gases can provide additional information about air movement useful in studying wind
movement.

2.2 COMMUNITY APPROACH

The GHG science community is now at an inflection point: single mission science teams,
focused on a single satellite and/or observable geophysical quantity, are no longer sufficient to
address our scientific and decision-making needs. Following the continued success of GOSAT
and OCO-2, the number and type of space-based GHG observations is growing in response to
the variety of scientific needs, most prominently in the anthropogenic GHG emission sector
(e.g., Meijer et al., 2022; Thorpe et al., 2023). This brings the promise of a rich set of tools for
studying the Earth’s sources and sinks of trace gases.

This also brings risk in that more and/or new data does not guarantee improved
understanding. We can minimize this risk by following three steps:

1 https://gml.noaa.gov/ccgg/OCO2_v10mip/
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First, we must acknowledge that the Earth Observation program of record is vast and
full of untapped information. Critical and proven measurements of atmospheric wind
movement and GHGs need to be identified and continued. The drive to explore new
technologies should be coupled with attention to maintaining critical observational
infrastructure. Likewise, we must consider unmet stakeholder needs. We must connect today's
needs with existing capabilities through improved production and delivery of actionable
information.

Second, the ability to process new and existing wind and GHG data into actionable
information should leverage the expanding suite of sensor platforms and technologies, when
possible, to augment capabilities from a single sensor. This includes multi-sensor systems for a
single observable at multiple scales. For example, combining Global GHG Mappers optimized
for spatially distributed surface carbon fluxes with facility-scale plume monitors with increased
sensitivity to more intense point sources (CEOS-CGMS Joint Working Group on Climate
Greenhouse Gas Task, 2024) can help better characterize local emissions from background
conditions (e.g., (Nelson et al., 2024). Borrowing from examples provided in Section 2.1, GHG
concentration measurements must be combined with reliable information on atmospheric
winds to more accurately estimate carbon fluxes at regional to global scale from spatially
distributed diffuse carbon sources and sinks.

This brings us to the third step: the ability to accurately monitor and attribute global
carbon sources and sinks from Global GHG Mappers requires the use of atmospheric transport
models. As stated above and reiterated here, more observations and/or measurements do not
necessarily translate to improved understanding of the carbon cycle, until and unless the
modeling tools at our disposal are able to 1) leverage the disparate datasets, 2) optimally use all
available information, and 3) allow more robust simulation and prediction of trace gas
structure. Most likely, GHG and wind observations will remain incomplete (in coverage,
frequency, and quality) and require models to fill gaps in space and time, and ultimately link
observed concentrations to upwind surface flux through inversion methods (e.g., Byrne et al.,
2023). Likewise, models are imperfect. Uncertainty in vertical transport and mixing confounds
attribution of trace gas data to surface fluxes (Parazoo et al., 2012) (Schuh et al., 2023).
Significant investment in multiple modeling frameworks is needed to keep pace with the
growing Program of Record (PoR). Continued development of high-resolution models that
resolve deep convection, and combine wind and GHG observations, can strengthen our
knowledge of GHG mixing and traceability.

We recommend the establishment of a focused science team with the mission to drive
the synthesis of multi-platform atmospheric science. We are calling for a new era of
coordinated community science-leveraging expertise from diverse remote sensing and
modeling communities. At present, there is no coherent scientific program whose agenda
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brings together the growing constellation of space-based measurements of GHGs, winds, and
ground-based and airborne counterparts. This team should support development of the
emerging suite of space-based carbon cycle science observations and the necessary modeling
suite for the timely translation of data to well-informed action.

2.3 CONNECTING INFORMATION WITH ACTION

Inverse modeling is the primary tool for using atmospheric GHG observations from
spaceborne and in-situ data to estimate net surface-atmosphere fluxes. Emissions of carbon
become entangled into the existing pool of atmospheric carbon through a combination of rapid
and gradual mixing by the global atmospheric circulation, eventually causing increases in the
concentration of CO> globally. Inverse methods must untangle these emissions through
observational and process knowledge of the evolving atmospheric state. These analyses
guantify the fluxes that best explain the observed quantities by fitting the data to simulated
observations from models, often regularized by an initial flux estimate and understanding of
the spatial and temporal scales of flux variability (i.e., a prior) generated by inventories or
process-based models (Rodgers, 2000).

The accuracy to which a GHG observation can be traced to a surface emission or
removal degrades with time as atmospheric mixing evolves and atmospheric trace gas gradients
become more diffuse. The process of estimating GHG sources and sinks is akin to unmixing
cream from a cup of coffee—the more time the cream is given to mix with the coffee, the more
uniform the coffee appears, and the more difficult it becomes to determine when and where
the cream was poured into the cup. Providing accurate GHG flux information, improving our
scientific understanding, assessing the efficacy of the carbon cycle, and facilitating mitigation
efforts will require: (1) quantifying net fluxes at high spatial and temporal resolutions, and (2)
combining dense and frequent observations sensitive to surface process with high-fidelity
transport models representing diverse mixing processes.

Currently, estimates from data assimilation and inverse models that leverage
atmospheric trace gas observations and atmospheric transport information are not a primary
tool for connecting information with organizations taking action on the ground. Local to
international bodies are left to rely primarily on trace gas inventories, or “bottom-up”
accounting. Many studies have shown that while inventories provide precise information, this
information is often not accurate and should take better advantage of the huge amount of
additional information available from space-based and in-situ observing platforms that are
interpreted “top-down” because they provide an empirical constraint on total emissions (e.g.,
Task Force on National Greenhouse Gas Inventories [TFI], 2019); Alvarez, 2018; Ciais, 2022;
Crisp et al., 2022; Petrescu et al., 2021).
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Top-down methods that rely on facility-scale plume monitors (e.g., PRISMA; Cusworth et
al., 2021) and targeted or repeated sampling by Global GHG mappers (He et al., 2024; e.g.,
0CO0-2/3, Lin et al., 2023; Li, 2024; Nelson et al., 2024) to estimate emissions from point sources
and urban regions are gaining traction as reliable and necessary tools for Measurement,
Monitoring, Reporting, and Verification (MMRYV) (CEOS-CGMS Joint Working Group on Climate
Greenhouse Gas Task Team, 2024). However, because methods relying on Global GHG Mappers
to estimate spatially distributed fluxes often cannot currently provide precise information, they
are not part of the ongoing effort for MMRYV and related actions, and as such, there is limited
incentive to support top-down methods on scales that would enable their use for this purpose.

For the trace gas observation and modeling community to provide actionable
information for climate mitigation, emissions verification, and the design of management
strategies, we must be able to provide trace gas flux estimates for point source and diffuse
emissions at local to regional scales (1-500 km). Part of the challenge is the current generation
of models are not well equipped to ingest all available information. As a community, we need
to identify use cases and corresponding scales where top-down methods are most effective and
complementary to inventories. Then, we can develop a modeling framework that can leverage
the full quantity and diversity of available data to support action at scale and with high accuracy
and precision.

Here we will define the inverse problem, its challenges, and opportunities to address
these challenges at different scales (Chapter 3). A new generation of models and space-based
GHG and wind remote sensing tools show promise for observing and simulating the small to
regional scales at which vertical and horizontal mixing occur, with near-global coverage. We will
outline the current and future state of wind (Chapter 4) and GHG (Chapter 5) observations,
providing insights into current capabilities and limitations for tracking atmospheric transport,
and deliver improved sectoral attribution of carbon emissions and removals. Chapter 5 will
summarize global modeling capabilities and priorities for improving the statistics of vertical
mixing at regional scales. We synthesize findings in Chapter 7 and discuss how the combination
of wind and GHG observations with high-resolution models will strengthen our knowledge of
both.

3.ScCALE DRIVES APPROACH

Trace gas modelers work at different scales to attribute carbon exchange to processes
relevant to policy and MMRYV, as well as to quantify natural exchanges of GHGs. The
measurement needs for both trace gas and winds are a function of the trace gas flux that must




Tracing Greenhouse Gases: A Blueprint for a Joint Meteorology and Atmospheric Composition Program

be quantified, as well as the dominant atmospheric transport processes. We define three key
scales, both in terms of spatial extent (i.e., the size of the domain in which fluxes are estimated)
and resolution (the scale at which fluxes are being estimated within the domain), in the context
of trace gas emission and transport processes that are observable from satellites, and that are
important to different communities of trace gas modelers, but currently have unmet needs in
the Program of Record (see Figure 3.1):

(1) Local Scale: 1-10 km spatial extent, representing primarily anthropogenic processes
dominated by point source (e.g., power plants, livestock facility) or fugitive (e.g., landfill leak)
emissions or removals (e.g., carbon capture). Local scale requires carbon flux resolutions of 10—
100 m to capture point emissions and removals. These scales are influenced by boundary layer
turbulent transport nested within large-scale atmospheric flows. Deep convective mixing (i.e.,
caused by clouds and weather systems) does not need to be quantified.

(2) Small Region Scale: 10-500 km spatial extent, representing anthropogenic (e.g.,
transportation), managed (e.g., agricultural) and natural (e.g., forests) processes across cities,
states, and small countries, comprised of spatially distributed and diffuse carbon sources and
sinks. The small region scale requires carbon flux resolutions of 1-100 km to capture multiple
spatially distributed area fluxes. The regional scales are influenced by both boundary layer
turbulence and mesoscale (2—200 km) motions. Often deep convective mixing (i.e., caused by
clouds and weather systems) does not need to be quantified.

(3) Large Region Scale: > 500 km spatial extent, representing mixed natural and
anthropogenic processes over larger regions with similar political, vegetation, and climatic
influence, and driven by diffuse carbon sources and sinks. The large region scale requires
carbon flux resolutions of 100-500 km to capture multiple dominant large area fluxes. Winds at
these scales are primarily driven by synoptic (~1000 km) dynamics, associated with large
weather systems (e.g., extratropical cyclones and jets). Deep convective mixing (i.e., clouds,
weather systems) must be quantified accurately.
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Large
Regional
Scale

Figure 3.1. Scale requirements for GHG flux estimation. There are three primary scales with unmet GHG
needs based on current and planning GHG observing systems: Local Scale (/eft), Small Region Scale (middle),
and Large Region Scale (right). The local scale represents a system dominated by a single surface location
(e.g., oil facility, afforestation project, CO, removal technology) and localized transport (boundary layer
turbulence) process. The small regional scale represents a system consisting of multiple surface-based
sources or sinks and transport processes, largely confined to the atmospheric boundary layer. The large
regional scale consists of multiple natural and anthropogenic surface sources and sinks and horizontal and
vertical mixing processes that encompass the entire troposphere.

Credit: Keck Institute for Space Studies/Victor Leshyk

3.1 LOCAL SCALE

The local scale is defined by trace gas sources originating from a single, specific location,
typically at the scale of individual (< 1 km) or multiple (< 10 km) industrial facilities (e.g., power
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plants, cement factories, landfill) (see “Local Scale” in Figure 3.1). This can include point source
emissions from fossil fuel factories, fugitive emissions from landfills and oil and gas facilities, or
negative emissions by CO, removal (CDR; e.g., Carbon, Capture, Utilization and Storage, or
CCUS). In meteorological terms, the local scale refers to a blend of microscale and local scale in
which atmospheric mixing is confined primarily to layers near the surface and/or within the
atmospheric boundary layer (ABL). In trace gas modeling terms, the local or “plume” scale
accounts for the direct effect of point source emissions or removals within an unmixed or
poorly mixed volume of air. The plume scale is relevant for detecting point source emissions or
removals of air pollutants, particulate matter, and GHG emissions. This scale is well observed
for both GHGs and winds only in select locations and for limited applications.

Use Case Example: Detecting and Mitigating Fugitive Emissions

The rate of growth in global CO; emissions has been in decline over the last decade
following efforts to enact climate policy, shift to clean energy, and mitigate leaks from oil and
gas facilities. While this represents progress, emissions of both CO, and methane (CHa) continue
to rise. CO; removal projects can help slow the growth of GHGs, but until these projects are
implemented at scale, decarbonization and leak mitigation remain a necessary path to support
net zero emissions goals. Recent work has shown that mitigation of CHa super-emitters (such as
landfills and oil and gas facilities), which make up a sizable contribution to total emissions over
large basins, can have significant benefits through specific isolation and remediation of
relatively few sources (Cusworth et al., 2022). High spatial resolution airborne and spaceborne
instruments have been extremely valuable for detecting, quantifying, and mitigating emissions
and leaks from single and multiple point sources (Cusworth et al., 2022; Nelson et al., 2024;
Thorpe et al., 2023).

Opportunities and Challenges

Classic atmospheric measurement techniques include eddy covariance (for area fluxes,
1-2 km?) and spaceborne facility-scale plume monitors (for point sources, < 1 km?). These
atmospheric measurements rely on the mixing of gases into the atmosphere via atmospheric
turbulence, and are effective while the plumes are still being mixed into the ABL. Plume
dispersion from point source emissions is currently well observed from space for large sources
of CH4 and CO; from active facility-scale plume monitors such as GHGSat, Earth Surface Mineral
Dust Source Investigation (EMIT), and CarbonMapper (e.g., Cusworth et al., 2022). These
instruments are highly sensitive to facility scale point sources but observe a very small fraction
of the Earth’s surface. MethaneSat, which lost contact with mission operations in June 2025,
offered a wider swath (200 km) for improved mapping of global oil and gas fields. While facility-
scale plume monitors are improving detection of local CH4 plumes, the ability to precisely
detect CO; plumes from less intense, or more diffuse, leaks, emissions, and removals, for
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example from landfills or direct air capture, represent an important measurement challenge
moving forward.

Flux estimation approaches, including Gaussian plume models, large eddy simulation
(LES), and integrated mass enhancement (IME), are facilitated by the relatively high contrast in
concentration inside the plume compared to ambient conditions. Accurate measurements of
wind speed and direction are needed to both identify the plume characteristics and estimate
the emission size. Measurements of surface buoyancy, atmospheric static stability and wind
shear are necessary to characterize the details of turbulent vertical and horizontal transport.
Coarser resolution wind products combined with Lagrangian modeling methods might be
sufficient for a similarly coarse source estimation. Gridded observation-constrained model
winds (e.g., from NOAA'’s High-Resolution Rapid Refresh, HRRR) with grid spacings of 3 km
horizontally can be corrected to capture smaller scales using observed/modeled plume shape.
More challenging cases include emissions or removals with smaller magnitudes or that occur in
the presence of relatively large biogenic fluxes. In each case, discriminating emissions from
their background becomes critical. An additional challenge lies in quantifying plume altitude
and emission injection height, which can vary significantly due to the high dependence on
meteorological conditions (particularly temperature and wind). Together, with the vertical
gradient in horizontal wind speed, uncertainty in injection height induces uncertainty in the
point source emissions contributing to the plume.

3.2 SMALL REGION SCALE: 10-500 KM EXTENT, 1-100 KM RESOLUTION

The small region scale is defined by multiple point and diffuse GHG emissions. Regional
domains of 10-500 km often encompass heterogeneous landscapes and multiple trace gas
source or sink processes (see “Small Regional Scale” in Figure 3.1). Common examples of areas
of interest include oil and gas basins, urban areas with a mix of fossil fuel emissions and
biospheric exchange, agricultural areas, and countries comprising multiple natural, managed
and anthropogenic sectors. The goal of constraining processes at small region scale is to ensure
that, when extrapolated over areas and sectors of interest, all processes, emissions, and
removals are accounted for, and bottom-up models and inventories are accurate.

In meteorological terms, small regions are driven by a mix of microscale and mesoscale
circulations, including mixing within the ABL, entrainment of free tropospheric air into the ABL,
free troposphere (FT), and horizontal advection. Transport at these scales, either within the ABL
or through exchange with the FT, often leads to mixing of surface sources and sinks from
multiple processes, making the attribution of carbon fluxes to a particular sector (e.g., vehicle
emissions vs. biospheric uptake) particularly challenging. Equally important for flux estimation
are the concentrations of the gas surrounding the small region area; inversion methods used to
calculate surface exchange require knowledge of enhancement relative to the estimated
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background concentration. These scales represent a critical link between small-scale processes,
which are difficult to observe from space, and global-scale models, which can be
computationally expensive to implement with high resolution. This scale is currently partially
observed with respect to GHG and winds.

3.2.1 Use Case Example 1: Tracking Fossil Fuel Emissions in Urban Regions

On the order of 70% of global fossil fuel emissions originates in cities (Gately & Hutyra,
2017). An important challenge in global decarbonization efforts is determining whether cities
and countries are on track to reduce emissions (e.g., 10% per year) and meet their climate
targets. This requires disentangling and tracking progress across different emission sectors (e.g.,
energy, transportation, municipal) and identifying priorities for further emissions reductions. In
general, fossil emissions have declined across the group of developed countries of the
Organisation for Economic Co-operation and Development (OECD) over the period 2013-2022,
while increasing emissions from non-OECD countries have been the driver for the fossil fuel CO;
increase in recent years (Friedlingstein et al., 2025). The ability to leverage top-down and
bottom-up information to inform progress across different emissions sectors requires
disaggregation of urban emissions to finer temporal and spatial scales.

Because of the many assumptions required to disaggregate emissions, sub-urban and
sub-annual emissions are generally more uncertain compared to urban scale estimates as
emissions become decorrelated from activity levels (Hogue et al., 2016; Oda et al., 2019, 2021,
2023). Recent work leveraging tower, network, and spaceborne observations shows increased
fidelity for estimating urban scale emission rates (Basu et al., 2020; e.g., Duren & Miller, 2012;
Kiel et al., 2021; Lauvaux et al., 2020; Meijer et al., 2023). This fidelity is sensitive to the spatial
and temporal resolution in observational data. For example, McDonald et al. (2014) showed
that the CO; flux inversion for Los Angeles at 10 km does not show any spatial structure in the
fluxes (e.g., freeways and city are mixed in the grid), while the same inversion at 1 km starts
resolving the freeways from the background and at 500 m also resolves the arterial roads along
with the freeway. This type of sectoral-level attribution (i.e., distinguishing emissions between
the transportation and energy sectors) is key for identifying, understanding, and prioritizing
mitigation efforts. Existing and future monitoring efforts have significant potential to reduce
carbon budget uncertainties and to directly inform GHG mitigation and tracking efforts. Key
remaining challenges involve (a) sectoral-level attribution, and (b) long-term trend detection
and quantification across sectors.

3.2.2 Use Case Example 2: Nature-based Climate Solutions

Nature-based climate solutions (NbCS) are actions that seek to protect, sustainably
manage, and restore natural and modified ecosystems for the benefit of people and nature.
Such actions are essential to help mitigate the impacts of climate change and reduce global
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temperatures. Forest-focused, nature-based solutions (F-NBS), such as forest management
through afforestation and reforestation, are particularly important. They removed an estimated
0.5 GtC yr from 2014 to 2023, representing the vast majority of all nature and technology-
based CO; removal (Vaughan et al., 2024). The high readiness level and high GHG mitigation
potential offered by NbCS has led to ambitious restoration commitments, with F-NBS forming
an integral part of many countries’ net-zero commitments and Nationally Determined
Contributions (NDCs) to the United Nations Framework Convention on Climate Change
(UNFCCC) (Gidden et al., 2023). The voluntary carbon market is a key mechanism to channel
carbon finance into forest restoration activities, and monitoring carbon impacts. The motivation
for this is to generate carbon credits, each equivalent to 1 metric ton of CO;, which are sold as
carbon offsets. With carbon credits from forest conservation and restoration projects being
used to offset emissions elsewhere, it is essential they are quantified and regulated using
robust monitoring methods and are linked to real emission avoidance or removals to avoid
over-crediting. In theory, top-down GHG flux estimation based on atmospheric observations
and atmospheric modeling could offer additional valuable insight, but its current limited ability
to detect project-scale emission reduction or removal may restrict its application in mitigation
monitoring.

Opportunities and Challenges

The gap between global-scale carbon monitoring and local action hinders GHG
mitigation efforts and the ability of cities, states, and countries to assess progress toward
meeting emissions goals and climate targets. Currently, spaceborne observations provide
regional coverage but struggle to capture small-scale phenomena, while ground-based
observations can capture these details but implementing extensive monitoring networks
globally is impractical. Therefore, finding a balance between remote sensing and in-situ
observation capabilities is key to addressing the challenges of carbon flux estimation at regional
scales. For small-region source areas, where the time of atmospheric transport across the
region is on the order of a day or less, accurate flux retrievals can often be obtained solely with
measurements within the ABL. Dense measurements, along with high spatial resolution, are
necessary to accurately estimate the spatial structure of emissions and removals. In these
situations, knowledge of the frequency of venting episodes from surface fluxes—along with ABL
height and wind speed and direction—is key, especially in areas with complex terrain and
background influence. An alternative to direct wind measurements is the use of trace gas data
to infer wind patterns within and above the ABL. This may aid in the quality of reanalysis
products used in top-down inversions through DA and/or validation and refinement of vertical
mixing processes.

We are now in a new era of high-resolution global modeling, with kilometer-scale (1-10
km) and hectometer-scale (0.1-1 km) modeling now computationally feasible. Kilometer-scale
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models bring key advantages for estimating GHG transport, as the smaller-scale wind flows
come into sharper focus, though the smaller grid spacing introduces challenges in that we do
not currently have observations to constrain the details of the fine-scale temperature,
moisture, and wind gradients. While hectometer-scale models resolve deep convection and
permit shallow convection, they cannot resolve at subgrid (turbulent) scales that are critical to
ABL-FT exchange (Guichard & Couvreux, 2017). In addition, while hectometer-scale models
resolve fine-scale weather, they may place individual systems (e.g., convective storms) in the
wrong place and/or at the wrong time. Even with these limitations, the flows they resolve
improve statistics on regional scales, and hence the trace gas budget at regional scales too.

3.3 LARGE REGION SCALE: > 500 KM EXTENT, 100-500 KM RESOLUTION

Applications at large region scales span domain sizes of individual biomes up to entire
continents, e.g., diffuse fluxes over agricultural and natural ecosystems and, in some instances,
large urban landscapes (see “Large Regional Scale” in Figure 3.1). Large-scale fluxes over land
and ocean inform our understanding of the global carbon cycle and its mean response over
time to changes in anthropogenic forcing. Large-scale fluxes are diffuse relative to urban or
point source emissions, but still important to quantify for continental to global scale carbon
budget closure. At this scale, atmospheric transport of trace gases is not limited to the ABL.
Exchange of air between the ABL and the FT, driven by synoptic and mesoscale weather events,
lead to deeper mixing of surface fluxes, and in addition to ABL depth and winds, frontal lifting,
lifting due to convergent flows, and cloud convective mixing must all be considered. Estimates
of ABL height, and trace gas vertical gradients are useful tools at this scale, especially when
combined with in-situ measurements that exist in regional networks. This scale is currently
partially observed with respect to GHG and winds. While there are no current missions that
directly address ABL height or vertical gradients, ABL dynamics and regional scale fluxes are
priorities according to a midterm assessment of progress toward implementation of the 2018
NASA Earth Science Decadal Survey (Committee on the Review of Progress Toward
Implementing the Decadal Survey-Thriving on Our Changing Planet: A Decadal Strategy for
Earth Observation from Space et al., 2024)

Use Case Example: From Emissions to Extremes and Early Warning Signals

New synthesis observational-modeling efforts should be aimed towards reducing
uncertainties in the characterization of the global carbon budget by accounting for changing
anthropogenic emissions, as well as changes in the natural sources and sinks and the carbon-
climate feedbacks under continuing climate change. Several studies indicate uncertainties may
be concentrated in highly meteorologically active areas, i.e., along storm tracks. On large scales,
the main uncertainties in the current budgets stem from land-use practices, the terrestrial
northern extra-tropics, as well as the ocean sink (Friedlingstein et al., 2025). In the future, the
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role of extremes, compound extremes (e.g., combination of extreme events), and cascade
(series of extreme events) is likely to play a more important role (Schimel & Carroll, 2024) and
might lead to regional or global tipping points (Romanou et al., 2025). We must meaningfully
extract trends and variability at seasonal, interannual, and decadal scales, but also identify the
impact of climate extremes on the regional and global carbon cycles in terms of magnitude,
reversibility and resilience and possibly identify early warning signals of likely tipping points.

Opportunities and Challenges

Reducing the uncertainties in the GHG transport terms, via advective, turbulent, and
convective processes as they are estimated from gridded analysis products is critical. The Earth
system has many interfaces that attenuate trace gas flows that remain poorly observed, e.g.,:
the air-land-ocean-ice interfaces; interactions over different types of vegetation, soil, or
urban/rural systems; and the interaction between the ABL and the FT. New measurements
targeting critical processes require improved spatial and temporal sampling, increased
precision, and improved traceability to emission and removal processes. In addition to new
observations, we need better data-assimilative models, and prediction systems (coupled and
Earth system models, or ESMs) that are more skillful over a broad range of scales and capture
the growing role of climate extremes.

4.CURRENT AND FUTURE STATE OF WIND OBSERVATIONS

Measurements of winds in the Earth’s atmosphere are made routinely from a variety of
platforms, which can be divided into two broad categories: in-situ and remote sensing. Each
type of measurement has its own set of strengths and limitations. In-situ observations are
made at or near the Earth’s surface over land and ocean, as well as from airborne platforms
including balloons (radiosondes) and aircraft (primarily via sensors located on commercial
flights). In-situ measurements provide direct estimates of wind but are point observations and
their representativeness of larger regions is limited. In addition, in-situ ground and balloon
observations are limited to land, and radiosondes are typically only launched twice per day.
While wind measurements are collected at the ocean surface from buoy measurements, these
are sparse, and primarily available near the coasts. Aircraft in-situ wind observations are limited
to flight lanes and are concentrated most strongly around airports.

Remote-sensing measurements are made from ground via Doppler radar and wind
profilers, and from space via a variety of satellite measurements. Broadly speaking, remote
sensing methods record the amount of energy reaching a sensor following emission from an
artificial or natural energy source, transfer through the atmosphere, and absorption or re-
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emission in the atmosphere. The three primary emission sources include radars/lasers (active),
the Sun (passive shortwave), and the atmosphere (passive thermal). Active and passive
shortwave techniques measure energy reflected from clouds and aerosols, while passive
thermal techniques measure the re-emission of absorbed light by the atmosphere as longwave
radiation. Passive remote sensing measurements have the advantage of much larger spatial
coverage (global, in the case of satellite observations) but are limited by the fact that they
require image processing techniques to convert sequences of spatial fields (e.g., horizontal
images of clouds or trace gases) into estimates of wind. Active measurements rely primarily on
the Doppler shift in radiation reflected from aerosols, clouds, and hydrometeors. This provides
a more direct estimate of wind speed, but only along the direction of sight of the radar or lidar,
and typically over a very limited horizontal region.

A comprehensive list of current and near future wind measurements can be found in
Table 4.1. The primary spaceborne measurement techniques are illustrated in Figure 4.1. When
examining the needs of wind information for GHG applications specifically, and for transport of
pollutants and aerosols more generally, there are some key considerations:
1) Spatial and temporal coverage,
2) directionality—whether vertical, horizontal, or line-of-sight—and

3) uncertainty, including both random error and bias.

Each consideration has critical implications for the transport of gases, and a review of the
current capabilities and gaps helps illuminate the needs for future wind measurements.
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Figure 4.1. Depiction of spaceborne remote sensing techniques for wind. Five methods are illustrated,
including (left to right) (1) scatterometer- and polarimeter-based measurements of wind-driven surface
waves, (2) tracking the motion of clouds, (3) Doppler wind lidar (DWL) measurements of scattering by
molecules, aerosols, and clouds, (4) radar reflectivity measurements of cloud vertical mass flux, and (5)
tracking the motion of trace gases such as water vapor. Credit: Keck Institute for Space Studies/Victor Leshyk

4.1 SPATIAL AND TEMPORAL COVERAGE

4.1.1 In-Situ Wind Data

As noted above, the spatial coverage of in-situ measurements is limited to locations
over land, ocean buoys, and along air routes. Measurement locations are typically limited to
places in proximity to population centers. Lack of economic resources and/or political
constraints on data sharing further limit data availability. The result is a concentration of in-situ
data over land, over ocean near coasts, and in regions with high population and economic
wealth. This is clearly depicted in Figure 4.2, which shows the distribution of land and ocean
surface observations circa 2017, along with 24 hours of commercial aircraft observations from
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Table 4.1. Summary of current and planned wind observation capabilities. A link to this review of wind observation capabilities can be found at
https://care-weather.notion.site/11a2b1716e9080529486f24007cf6ca3?v=7da66531d99b4f28b90f2cdd4d4183ce. References cited in brackets in
the Instrument column are listed in Appendix D of this report.

Comparison of Wind Measurement Instruments and Products.

Instrument Description Ct. Type Accuracy Res.(uy) Refresh Coverage Date Range Status
Doppler Shift
ALADIN on Aeolus [1]. Doppler LIDAR measuring laser reflections of 1 Speed Im's — 1 week 80° S to 85° N, 2018-2023, End of Life
2] atmospheric molecules and particles. 16-26 km Alt 2030+
2m's — 2-16 km Alt
1m's — 0-2 km Alt

Earthcare [3], [4] Vertical winds obtained from a profiling Doppler radar. 1 Speed 1.3 m/s 0.5 km 2.5weeks -87° to 87° 2024+ Operational

Wivern [5]. |6] Dual-polarized conically-scanning Doppler radar 1 Speed 2m's — 36 hours Global TED Funded
measuring line-of-sight winds.

Object Tracking

AIRS on Aqua [T]-{9] Motion vectors from consecutive spectral IR polar water 1 Speed 7m's 41 km 3.3 hours Poleward of 70° 2002+ Operational
vapor soundings.

GOES [10]. [11] Feature tracking of time resolved visible/IR images 1 Speed 7.5 mv/s 2 km 15 mins Lat -80° to 80°, 1978+ Operational
(radiances) or retrievals (water vapor). Lon 150° to 360°

IASI[9]. [12]-]16] Pair of infrared sounding interferometers flying one after 2 Speed 7 m/s 20 km 12 hours Poleward of 2018+ Operational
the other in 50 min succession. +/-50°

INCUS[17].[18] Time-differenced profiling radar and radiometer 3 Speed 4.2 m/s 3.1 km — — 2026-2028 Funded
measuring convective updrafts in tropical storms.

Sentinel-3 SLSTR [11]. Thermal infrared radiometer. 2 Speed 3.04 mfs 5 km 22 hours Lat -88° to 88° 2016+ Operational

[19]

Surface Stress

ASCAT on Active scatterometers (radars) observing the ocean surface 2 Speed 2m's 6 km 18 hours 10-m above 1991+ Operational

MetOP [20]-[26] from multiple look angles. Direction 20° ocean, global

CYGNSS [27]-[30] GNSS receiver measuring specular reflection of GNSS 1 Speed 2m/s 25 km — 38° 510 38°N 2016+ Operational
signals reflected off of Earth’s surface.

Sentinel-1 SAR [31], [32]  Active radar observing fine resolution wind speed and 1 Speed 1.6m/s 1 km 6 days 10-m above 2014+ Operational
inferring direction from streaks in the waves. ocean, global

Sentinel-3 SAR altimeter measuring ocean wind speed at nadir. 2 Speed 1.5 m/s 3 km 2 weeks 10-m above 2016+ Operational

SRAL [33-]36] ocean, global

SSM/T (DMSP) [37]-[39]  Microwave radiometer observing wind speed over the 19 Speed 2m/s 25 km 18 hours -88° to 887 1987+ Operational
ocean surface.

Veery [40] Constellation of active small-satellite scatterometers 12— Speed 1.6 m/s 6 km 1 hour 10-m above Available in Funded
observing the ocean surface from multiple look angles. 36 Direction 11° ocean, global 2026

WindSat [41] Polarimetric microwave radiometer observing the ocean 1 Speed 2m's 25km 36 hours 10-m above 2003-2020 End of Life
surface with a variety of frequencies and polarizations. Direction ~ 2° ocean, global

WSF-M [42]-[44] Polarimetric microwave radiometer observing the ocean 2 Speed 2m's 25 km 2 days 10-m above 2024+ Commissioning
surface with a variety of frequencies and polarizations. Direction ~ 30° ocean, global
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October 2022. Note that surface observations are only representative of conditions
within the lowest few tens of meters in stable (e.g., nighttime) conditions and up to ~1 km in
well-mixed (e.g., daytime) conditions. In-situ observations of winds > 1 km above the surface
are extremely sparse.

4.1.2 Remotely Sensed Wind Data From Satellites

Wind can be measured remotely using three fundamental methods: Doppler shift
measurement, feature tracking, and measurement of stress at a fluid interface. These methods
are summarized in Figure 4.1. The Doppler shift (e.g., Methods 3 and 4 in Figure 4.1) is
measured using active sensors (radars and lidars) that measure the frequency shift of
transmitted signals reflected from moving particles in the air. Many remote sensing systems
can track motion (e.g., Methods 2 and 5 in Figure 4.1) by observing a body of air at multiple
points in time, then using feature identification and tracking techniques to provide a motion
vector between the two points. Finally, at the air-sea interface, wind stress deforms the ocean
surface (e.g., Method 1 in Figure 4.1), changing the profile of directions to which the signals
transmitted by active sensors are scattered off the surface and the profile of polarizations in
which thermal radiation is emitted from the surface.

Satellite observations generally provide increased sampling in time and space at a global
scale relative to in-situ observations. The most widely available satellite observations over
lower and middle latitudes come from geostationary (GEO) platforms, which provide data at
several different wavelengths in the visible and infrared wavelengths at a cadence of
approximately every 10-30 minutes and on spatial grids of pixels 2—10 km on a side. At
latitudes greater than 45 degrees, distortion of the images due to Earth’s curvature is
increasingly problematic, and the data are generally not deemed to be useful at latitudes
greater than 60 degrees. In contrast, low Earth-orbiting (LEO) satellites sample intermittently (a
few times each day) at low to middle latitudes (< 45 degrees) and more frequently in high-
latitude polar regions and are not susceptible to latitude-based image deformation, providing a
natural complement to geostationary data.

Nearly all wind information from GEO and LEO instruments is derived from the
translation of features observed in sequences of images. By comparing two or more images,
and identifying spatial patterns in each image, the translation of features can be converted to
wind velocity vectors. These feature-tracking winds are commonly referred to as atmospheric
motion vectors (AMVs) and are derived by tracking cloud features and also estimates of trace
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Figure 4.2. Depiction of the global distribution of (A) surface in-situ observations over land, (B) radiosonde
observations, and (C) surface and profile observations over ocean from profiling floats, data buoys, ship
based measurements, moorings, and tide gauges (from Lindstrom, 2018). Observation locations are valid as
of 2017. (D) Distribution of 24 hours of observations from commercial aircraft from 31 October 2022.
Credit: WMO and Linstrom (2018).

gas (e.g., water vapor) concentrations. All current and planned GEO missions, and the majority
of LEO missions, rely on passive measurements of radiation from the Earth’s surface and
atmosphere, for which feature tracking is the only option for wind retrieval. There are well-
known sources of systematic error in AMVs, which we discuss in more detail in Section 4.2.

Several LEO instruments observe wind actively, via measurement of the Doppler shift in
frequency.

Doppler winds are only available along the line of sight of the sensor, meaning that, in
most cases, they provide only a single component of the 3D wind. Doppler wind lidar (DWL)
transmits and receives in UV, visible, and near-infrared wavelengths and has been shown to be
successful from aircraft for decades. Recently, the European Space Agency (ESA) operated the
first spaceborne Doppler wind lidar on the Aeolus mission (2018—-2023). Lidar provides vertical
high-resolution information, but only along a narrow track. In addition, because optical
wavelengths are rapidly attenuated in clouds, DWL wind estimates are only available in cloud-
free regions. Due to the expense of spaceborne lidar, very few instruments operate at a time,
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and, in fact, until the European Organisation for the Exploitation of Meteorological Satellites
(EUMETSAT) launches an Aeolus follow-on in the 2030s, there are no planned spaceborne DWL
observations.

ESA recently launched the first-ever spaceborne Doppler radar mission EarthCARE (Earth
Cloud, Aerosol, and Radiation Explorer), which measures only the vertical component of wind,
and only inside of clouds. Early results appear promising, but it should be noted the relatively
high frequency of the EarthCARE radar (94 GHz) limits its observations to those regions that do
not contain heavy rainfall. Two other Doppler radar concepts are currently in development: the
Atmosphere Observing System (AOS) storm platform, which would feature a low-frequency
(13.6 GHz) Doppler radar aimed at vertical motions within precipitating regions; and the Wind
VElocity Radar Nephoscope (WIVERN) concept from ESA, which features a 94 GHz scanning
Doppler radar providing information on both horizontal and vertical winds inside of clouds. In
addition to Doppler shift, motions can be obtained from active radar sensors via time
differences in the reflected signal. The forthcoming Investigation of Convective Updrafts
(INCUS) mission, launching no earlier than September 2026, will provide estimates of vertical
mass flux from a triplet of spaceborne radar-reflectivity observations spaced 30, 90, and 120
seconds apart.

Current and near-future satellite wind observations can be summarized as follows:
1) The vast majority of wind observations are of horizontal wind components;
2) the vast majority of vertical transport occurs within clouds; and

3) in-cloud vertical motion estimates require active spaceborne measurements that are
necessarily limited in space and time.

It is unlikely a sufficient number of active spaceborne instruments will be launched in
the next decade or longer. As such, the community will lack observations of vertical mixing in
clouds globally or with regularity needed to constrain trace gas transport in atmospheric plume
or inverse models. It is necessary, and more practical, to make better use of the limited active
and passive horizontal and vertical wind data at our disposal. Data fusion and/or data
assimilation (DA) approaches discussed in Sections 4.2 and 4.3, respectively, are a promising
way to exploit multiple synergistic pieces of information from different remote sensing
techniques (passive and active) and platforms (GEO and LEO).

4.2 WIND MEASUREMENT UNCERTAINTIES

The utility of any measurement is at least in part a function of its error, with sources and
magnitudes of error depending on the measurement type. Sensors used in in-situ
measurements are calibrated before deployment so that their error versus a reference is low;
however, as sensors age, they may become biased. In addition, any in-situ measurement is only
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sensitive to the immediate air it is exposed to. If, for example, there is significant spatial
variability in the true wind field, then an in-situ wind measurement may not be representative
of more than a very small region. If the aim is to characterize the properties of the flow field
over a broader region than the immediate sphere of sensitivity of the in-situ measurement,
then there will be an error of representativeness in the in-situ measurement. Such errors are
challenging to quantify, as they depend on the state of the atmosphere.

Uncertainties in spaceborne wind estimates are even more complicated.
Representativeness error is a factor, and, as with in-situ data, may be due to a satellite pixel size
that is much smaller than the feature of interest. However, much more often the converse is
true: the satellite pixel size is larger than the desired resolution of the field of interest. In
addition to representativeness error, there may be errors in the conversion from the satellite
measurement (e.g., voltage on a sensor) and the quantity of interest. For example, obtaining
feature-tracking winds from the movement of clouds relies on: (1) sufficient texture in the
cloud image, and (2) accurate assessment of the height of the cloud top (so that the wind may
be assigned to the proper vertical location). In the case of tracking trace gas features, there are
additional uncertainties associated with possible errors in the trace gas estimates themselves.
Posselt et al. (2019) conducted a synthetic data experiment, converting water vapor from a
numerical weather model into wind vectors by applying a feature tracking method. The authors
guantified the uncertainty in the resulting AMVs by comparing the wind estimates to the
“true” wind from the model. They found the uncertainties in the wind estimates were state-
dependent, with errors that increase as a function of decreasing water vapor content and water
vapor spatial gradient (Figure 4.3). They also found the errors peaked when the wind flow was
oriented parallel to lines of constant water vapor content. In this case, there may be no
apparent movement of the water vapor distribution while there is non-zero wind.

Uncertainties in active Doppler wind measurements are often more straightforward
than those for AMVs. This is because the Doppler shift is directly related to wind magnitude and
is a function of the signal-to-noise ratio of the observation. In the case of DWL, Doppler
information from a range of sequential laser pulses can be averaged adaptively to optimize
sensing properties. For example, in a relatively low signal-to-noise region (e.g., low aerosol
content), one can choose to either retain high resolution and large noise, or to average a larger
number of pulses to obtain lower uncertainty at the expense of spatial resolution. Because DWL
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Figure 4.3. Difference between wind estimates from feature tracking and the “true” (modeled) wind
(tracked - true) at the 850-hPa pressure level as a function of (A) water vapor content, (B) wind speed, (C)
water vapor gradient, and (D) the angle between the wind direction and the water vapor gradient. Color
shading represents the percentage of the total number of grid points that have a particular value of wind
speed difference. Black vertical lines in (D) indicate the position of the +90 -degree angles. Adapted from
Figure 6 of Posselt et al. (2019). © American Meteorological Society. Used with permission.

is @ more direct measurement of wind, it has high value as an anchor measurement, even
though its coverage is low.
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Errors in measurements can be mitigated by exploiting synergy among diverse
measurement sources and techniques. For example, uncertainties in DWL wind estimates
derive from entirely different sources than errors in AMVs. It is, therefore, feasible to use the
spatially and temporally limited DWL wind measurements to correct for uncertainties in AMVs.
Nguyen et al., (2024) conducted a set of simulation experiments in which they estimated AMVs
from time sequences of modeled water vapor fields, and simulated DWL observations from
modeled aerosol and atmospheric pressure. Using three months of simulated observations,
they trained a random forest model on the differences between DWL and AMVs where there
were intersections. They then used this model to modify the AMVs, correcting for bias in the
observations. The result was a nearly complete removal of the bias in the AMV wind estimates
(Figure 4.4).

850mb 700 mb 500 mb 300 mb
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Figure 4.4. Bias in three months of AMV estimates at various vertical pressure levels
before bias correction (orange) and after lidar-based bias correction (blue). Adapted
from Figure 4 of Nguyen et al. (2024).

4.3 DATA ASSIMILATION

In-situ and spaceborne observations offer diverse, albeit incomplete, information on
wind structure and dynamics at global scale across a range of environments. The ability to use
this information to support GHG flux estimation needs represents an important but challenging
opportunity, requiring improvements in wind coverage, retrieval, and uncertainty estimation.

Data assimilation (DA) could offer a more practical, short-term (next decade) route to
improving GHG transport. Through DA, high-resolution space-based observations (see Table 4.1
and discussion above) of wind profiles and surface winds over land and ocean (via
scatterometers) can provide strong constraints on modeled horizontal flows. Incorporating new
observations, both ground-based and space-borne, into a DA system could provide a strong
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constraint on wind flows down to scales of a few tens of kilometers and should improve
forecasting and reanalysis of GHG budgets at the regional scale.

A successful DA framework already underway is the European Destination Earth
(DestinE) flagship initiative? funded by the European Commission, involving ESA, EUMETSAT,
the European Centre for Medium-Range Weather Forecasts (ECMWF), Copernicus, and others.
DestinE aims to produce a digital twin of the Earth system at kilometer scales—essentially a
highly accurate reanalysis product—to provide a single monitoring and modeling system to aid
the development of mitigation measures and adaptation strategies. This involves improving
modeling accuracy as well as developing higher-resolution DA that can make effective use of
new higher-resolution space-based sensing and ground-based observational networks.

5.CURRENT AND FUTURE STATE OF GREENHOUSE GAS
OBSERVATIONS

GHG observations, like their wind counterparts, can be divided into in-situ and remotely
sensed measurements. CO,, CH4, carbon monoxide (CO) and other GHGs have unique
absorption features across shortwave and thermal infrared spectral regions. Remotely sensed
trace gas concentrations are made from surface, aircraft, and satellite-based instruments. In-
situ observations are based on measurements of GHG concentration within a sample of air
collected or observed from surface, tower, balloon, and airborne platforms. These point
measurements can be made continuously in place and in real time in the field, using infrared
gas analyzers, or in a lab, by collecting air in glass containers and analyzing the gases at a later
time but with increased precision. A second class of in-situ methods relies on collocated
measurements of wind and GHG fluctuations within a few meters to hundreds of meters above
the surface to provide continuous estimates of land-atmosphere gas exchange over an area of
land smaller (< 100 km2) than possible from in-situ and remote sensing concentration data, but
limited in spatial extent (e.g., Pastorello et al., 2020).

A condensed summary of existing trace gas in-situ observations and remote sensing
products is shown in Table 5.1 and Figure 5.1, respectively. We will focus here on CO; and CHa.
When determining how to best apply the extensive, ongoing trace gas observations, our
considerations include (1) spatial and temporal resolution and revisit, and (2) uncertainty and
bias in the measurement. Reviewing our current ability to detect trace gases and where these

2 https://destination-earth.eu/
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approaches have blind spots will indicate where future efforts can be directed for the biggest

impact.

Table 5.1. Example of in-situ and remote sensing measurements of carbon and some non-carbon GHG flux

and concentration datasets and methods.

Dataset

Methods

Citation

FLUXNET surface measurements
Integrated Carbon Observation System
(ICOS)

The NOAA Global Greenhouse Gas
Reference Network (GGGRN)

In-situ measurement of GHG flux and
concentration: Eddy covariance
towers, tall towers, surface flasks

Heiskanen et al. (2022);
Pastorello et al. (2020);
Schuldt et al. (2024)

The NOAA Global Greenhouse Gas
Reference Network (GGGRN)

In-situ measurement of GHG
concentration: Aircraft, balloon,
AirCore

Karion et al. (2010);
Schuldt et al. (2024)

Advanced Global Atmospheric Gases
Experiment (AGAGE) flask network

In-situ measurement of chemically and
radiatively important atmospheric
gases

Prinn et al. (2018)

TCCON network

COllaborative Carbon Column Observing
(COCCON) network

Network for the Detection of Atmospheric
Composition Change (NDAAC)

Ground-based Remote sensing of
GHG concentration: Lidar, Microwave
Radiometers, Fourier-Transform Infra-
Red (FTIR)

De Mazicére et al. (2018);
Frey et al. (2019);
Laughner et al. (2024)
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Figure 5.1. Summary of satellite-based remote sensing products comparing spectral
resolution and pixel size. Gray text indicates the satellite is not yet launched.
Credit: Institute for Atmospheric Physics/Julia Marshall

5.1 SPATIAL AND TEMPORAL COVERAGE

Trace gases are trace because 99.96% of the atmosphere consists of nitrogen, oxygen,
and argon, leaving a fractional amount (0.04%) to trace gases, including carbon-based GHGs
(CO;, CHa, CO), non-carbon GHGs (H20, NOy), aerosols, and pollutants that nevertheless have an
outsized impact on air quality and climate. The requirements for space-based sensors to
monitor trace gas variability and estimate surface flux depend on the species and class of
emissions. This is illustrated by the diverse range of space-based sensors and trade space
between spectral and spatial resolution (Figure 5.1).

Facility-scale plume monitors such as MethaneSat, GHGSat, CarbonMapper, NASA's
Earth Surface Mineral Dust Source Investigation (EMIT), and the Italian Space Agency’s
PRecursore IperSpettrale della Missione Applicativa (PRISMA) are sensitive to GHG sources
(most notably CHa) at facility scale (~10—-100 m) due to emissions and leaks from oil and gas
facilities, landfills, and livestock facilities. Fine spatial resolutions (< 60 m) offered by facility-
scale plume monitors can improve sampling of smaller plumes, with improved sampling in
cloudy areas without the need for high spectral resolution (Cusworth et al., 2019;
Jongaramrungruang et al., 2021; Thorpe et al., 2023; Wilzewski et al., 2020). Work is needed to
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study trade-offs between spectral resolution and precision/accuracy for both CO; and CHa. In
general, facility-scale plume monitors offer limited spatial coverage, requiring a constellation of
instruments for improved sampling.

High-emission CO; point sources such as fossil fuel-fired power plants emitting more
than 8 MtCO,/yr (~900 tCO,/hr) can be quantified through a combination of high precision
(0.25% relative to background, or 1 ppm) and high spatial resolution (~1-10 km) (CEOS-CGMS
Joint Working Group on Climate Greenhouse Gas Task Team, 2024). OCO-2, which has a spatial
resolution of approximately 2 km and precision of ~1 ppm, meets this requirement. In some
cases, OCO-2 could be considered “plume resolving” in its ability to detect point sources with a
width in tens of kilometers and a length of potentially hundreds of kilometers, depending on
wind speed.

0OCO-2 also falls into the class of Global GHG Mappers designed to map CO; and CHs
sources and sinks across small to large regions (~50-500 km). Global GHG Mappers have high
spectral and spatial resolution (< 1-2 nm spectral, < 10 km spatial) relative to facility-scale
plume monitors, providing the capability to map diffuse area emissions (less intense than point
sources, but spread over a larger area), for example, in urban areas and large forested regions.
However, our current ability to map GHG concentrations contiguously in time and space, even
at low spatial resolution, is limited. First-generation Global GHG Mappers (OCO-2, GOSAT, and
0CO0-3) sample infrequently (3-16 days) with significant spatial gaps. More recent sensors, such
as ESA’s Tropospheric Monitoring Instrument (TROPOMI), ESA’s Greenhouse Gases Observing
Satellite-2 (GOSAT-2), and Japan’s Global Observing SATellite for Greenhouse gases and Water
cycle (GOSAT-GW) and future sensors, such as the Copernicus Anthropogenic Carbon Dioxide
Monitoring constellation (CO2M), sample more frequently (three days) and offer improved
spatial mapping through wide swaths, but are limited by coarse footprints. Recent and planned
passive and lidar missions including the Carbon Dioxide Monitoring Mission (MicroCarb)
(Cansot et al., 2023; launched 2025), CO2M (Meijer et al., 2023), and the Methane Remote
Sensing Lidar Mission (MERLIN) (Ehret et al., 2017) are expected to enhance coverage and
precision at urban, regional, and global scale.

Current passive sensors are complicated in their sensitivity to altitude. OCO-2 and OCO-
3 measure three wavelengths of near-infrared light. An inverse model with many pressure
levels is used to infer the relationship between escaping photons and GHG concentration, and
the dry molar mixing ratio of CO; for the entire air column is reported. GOSAT has a Fourier
transform infrared (FTIR) spectrometer that provides additional information to infer CO;
concentrations on multiple pressure levels, however with insufficient degrees of freedom of
signal (DOFs < 2) to discriminate between CO; concentrations in the lower versus upper
troposphere. The translation of total column concentrations obtained from trace gas
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observations into a vertically resolved product is non-trivial and is necessary to separate surface
exchange from horizontal transport.

5.2 RESPONDING TO KNOWLEDGE GAPS

For nearly three decades, the GHG in-situ and remote sensing communities have
focused on quantifying natural fluxes on land and ocean at monthly to annual time scales and
sub-continental to global spatial scales (Figure 5.2). In essence, this permits us to watch the
“Earth breathe,” a key goal of the original NASA OCO mission. In the intervening years, other
applications have been identified and pursued, namely emissions estimates from point sources
or cities. The OCO missions have identified mismatches between what we want to know
(attribution of anthropogenic vs. natural carbon flux drivers at Small Region Scale, 10-500 km)
versus what we can robustly learn from observations (quantification of net carbon flux at Large
Region Scale, > 500 km). The Small Region Scale remains a critical knowledge gap in GHG flux
estimation, which would greatly benefit from trace gas profiles, preferably resolving the ABL,
mid-troposphere, and upper troposphere. Ultimately, this would bypass the need for
significantly improved representation of model transport, but it is not feasible with the cost of
current technologies and available budgets.

Multiple pieces of vertical information have enabled direct inference of fluxes. In an
aircraft-based mission, Gatti et al. (2021) used the vertical gradient in CO; observed from
aircraft over the Amazon to directly infer the source vs sink dynamics of the local area across
that multiple degrees of freedom are obtained for the lower and upper troposphere. Multi-
spectral information from GOSAT and GOSAT-2 has been used to monitor vertical profiles over
megacities (Kuze et al., 2022); however, these spectrometers currently do not provide sufficient
degrees of freedom (DOFs) and therefore rely on uncertain estimates of covariance between
lower and upper partial columns. Thermal observations of CO, have been made previously from
the Atmospheric Infrared Sounder (AIRS) and Cross-track Infrared Sounder (CrlS), which could,
in principle, be combined with short-wave infrared (SWIR) sensors such as OCO-2 to reconstruct
vertical profiles (Fu et al., 2016); however, current thermal missions were not conceived or
executed with carbon cycle information as a driving priority, and resulting data products are not
useful for this purpose. different times of the year. Two simultaneous observations in different
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spectral bands (e.g., near infrared and thermal infrared) could be used to generate vertical
information, provided

Future satellite missions will need information trade-space analysis to test spectral
resolution with the corresponding instrument response function and instrument noise model to
understand the vertical information of a combined SWIR/thermal infrared (TIR) instrument.
Even after this analysis, simulations are needed to test the required accuracy and precision of
the underlying spectroscopic line parameters needed for the radiative transfer calculations to
ensure they are able to reproduce the observations and satisfy the overall science
requirements. Furthermore, we would need a high-precision requirement for lower
troposphere (LT) and free troposphere (FT) partial column observations to improve the flux
estimation to determine the spectral resolution for the retrieval algorithm.

Shorter temporal scales also permit information about local fluxes. For example, diurnal
observations of the Total Carbon Column Observing Network CO; column concentration
(TCCON XC02) have been shown to reflect local exchange (Keppel-Aleks et al., 2012; Torres et
al., 2019). Multiple satellite revisits per day of a single location would permit assessment of the
mass change over a given location through finite differencing. This would also make up for a
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Figure 5.2. Summary of key carbon cycle processes as a function of spatial and temporal scale.
Credit: Keck Institute for Space Studies/Victor Leshyk
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lack of data due to clouds or high aerosol loading. When occurring in conjunction with
horizontal winds, which could be derived from a feature-tracking approach, the surface flux
could be isolated through mass balance.

Ultimately, the new constraints offered by vertical profiles and/or increased sampling
frequency will feed into inverse models to address flux information gaps at Small Regional
Scale. This additional data load will require ongoing improvements to computational efficiency
as flux resolving capacity of inverse models shifts from 100 km scale to 10 km scale, especially
for addressing global carbon cycle challenges. This will also require advances in commonly used
top-down inversion methods, including 4D variational and ensemble Kalman filter approaches,
to be able to accommodate additional observational constraints and covariation of information
in vertical (LT vs. upper troposphere [UT]) and temporal (sub-daily to daily) dimensions.

Another way to leverage these data is through mass balance approaches (e.g., Gatti et
al., 2021) to independently solve for fluxes over small regions (10s to 100s of km) and to
corroborate inverse estimates derived from traditional column integrated data constraints. A
third approach for using these data, building off work pioneered by Stephens et al (2007), is to
directly validate posterior concentration fields from inverse models, and to benchmark vertical
mixing in atmospheric transport models. This third way of leveraging new vertical and sub-daily
information will be discussed in more detail in the following sections.

6.ATMOSPHERIC TRANSPORT ERRORS REDUCE THE
ACCURACY OF FLUX ESTIMATES

Despite advances in computational resources that enable more complex and higher
resolution atmospheric modeling, the trace gas science community is still missing certain key
driving variables and processes needed to accurately predict trace gas movements. Through
observations targeting key geophysical variables (pressure, temperature, humidity, wind), most
modern atmospheric DA systems provide a constraint on advection by horizontal winds, and
therefore on divergence/convergence patterns. However, this approach does not address
challenges in modeling vertical mixing at subgrid scales, e.g., turbulence and convection, which
move trace gases on scales less than 10-50 km and are represented by simplified
approximations of high-resolution processes (parameterizations). Hence, biases in surface
winds and in the vertical profile of horizontal wind and wind shear remain. Furthermore, to
accurately model the exchange of mass and trace gases between the surface and the free
troposphere requires accurate modelling of ABL processes. Finally, most atmospheric models
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developed for numerical weather prediction (NWP) do not conserve mass, which is problematic
when the trace gas inversion community is using these models to track the movement of mass.

6.1 ADVECTION-HORIZONTAL TRANSPORT

Advection that occurs at mesoscales and larger (> 50 km) is generally represented
explicitly in transport and NWP models. Horizontal winds advect atmospheric trace gases and
aerosols and tend to increase in strength from the ABL through the FT. This means pollution
emitted at the surface will generally be transported away from its source faster if the pollutant
is transported higher in the troposphere (e.g., by convection).

The interaction between vertical (convection) and horizontal (advection) transport
means that, even though models typically simulate horizontal winds reasonably well, errors in
vertical transport can lead to estimates of pollutants being advected horizontally at an incorrect
rate if their vertical distribution is erroneously simulated.

6.2 PARAMETERIZED CONVECTION—VERTICAL TRANSPORT

A striking example of the impact of uncertainties in the representation of convection in
large-scale models is the spread in modeled cloud feedbacks and climate sensitivity.
Uncertainties in the vertical mixing of water vapor prevent us from accurately predicting
cloudiness and rainfall patterns in the current climate, as well as how these may respond to
rising global mean temperatures. These same convective processes, driving vertical mixing and
resultant entrainment and detrainment (mixing between clouds and the surrounding
environment), are critical for trace gas and moisture modelling.

Previous studies (Schuh et al., 2019; e.g., Stephens et al., 2007) have analyzed the
accuracy of vertical mixing and found that modeled vertical GHG profiles may differ significantly
from profiles measured by aircraft, and that differences in models’ vertical profiles correlate
strongly with differences in the distribution of estimated fluxes across large spatial scales.
Follow-up work by Gaubert et al., (2019) found some convergence in the distribution of
posterior fluxes amongst several models, with a strong correlation with the vertical mixing
found only in the Northern Hemisphere summer. Other factors—such as the choice of fossil fuel
prior fluxes—were found to play a significant role in the resulting estimates of land and ocean
fluxes. This exemplifies the sensitivity of inverse flux estimation to biases in both prior
estimates and atmospheric transport.

6.3 ATMOSPHERIC BOUNDARY LAYER: LINKING THE SURFACE TO THE FREE TROPOSPHERE

The ABL is the lowest layer of the troposphere, often around 1-2 km deep during
daylight and much shallower at night. Turbulence and convection are responsible for most of
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the vertical transport of heat, moisture, momentum, gases and pollution throughout the ABL,
and they need to be adequately coupled to surface heterogeneity (Mahrt, 2010).

Even in (deep) convection-resolving or convection-permitting models that run with
horizontal grid spacings of a few kilometers or finer, ABL turbulence and shallow (dry and
moist) convection must be parameterized. Adequate ABL transport schemes have been
developed based on idealized cases (Honnert et al., 2020), but their temporal and spatial
behavior needs to be evaluated versus observations, as well as being compared to results
produced at the finer resolution of state of the art models.

Another key uncertainty is surface-atmosphere interactions, including surface energy
exchange and its interaction with ABL and convective processes. Many studies have focused on
oceans and the influence of air-sea interactions on convective and ABL development (Guichard
& Couvreux, 2017). Land-atmosphere interactions are generally more complicated, as highly
spatially heterogeneous properties of the soil and vegetation exert a significant influence on
ABL development (e.g., Osman et al., 2025). It is not well understood how (small-scale)
heterogeneity in surface fluxes impact transport, initiation of convection, and the vertical
structure of the ABL.

The struggle to accurately simulate the ABL height, especially its evolution throughout
the day and night, limits our ability to interpret surface-based measurements and exploit them
in the context of flux estimation. While ABL height is most accurately simulated during the
afternoon in well-mixed conditions, in-situ trace gas observations from other times of day,
especially at night, are typically not used in flux estimation (Maier et al., 2022). This results in
the majority of in-situ observations never being used for this purpose.

6.4 MAsS CONSERVATION

The interests of atmospheric communities diverge the most when it comes to the
importance of mass conservation. Describing an atmosphere with consistent dry air mass, and
tracer mixing ratios relative to that dry air mass, is critical when simulating long-lived GHGs. In
theory, tracers can be tracked relative to wet air mass, but the fact that water mass is often
poorly tracked, especially in parameterized convection schemes, is often the first difficulty a
modeler encounters. Mass conservation of tracer mass is potentially even more important for
long-term climate simulations, when such errors accumulate over long simulation periods.

In contrast to “free-running” weather forecast or climate models, most transport
models need to regularly ingest atmospheric observations to keep their forecast model from
deviating too far from reality. As the model state is modified to more closely match the
observations, this necessitates, for example, changes in atmospheric mass, density and/or
pressure.
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In response, tracer mixing ratios (mass of tracers per unit mass of dry air) must either be
conserved, implying change in total tracer mass due to the change in dry air mass, or adjusted
to the new atmospheric mass fields, causing undesirable “jumps” in dry tracer mixing ratios.

While there is no perfect solution, the general paradigm for the trace gas transport
modeler has been to try to maintain global tracer mass while preserving as much of the local
dry tracer mixing ratio gradients as possible.

Another fundamental challenge affecting the representation of vertical mixing is the use
of tracer transport models to infer the surface carbon exchange. Tracer transport models are
typically run separately from a parent general circulation model (GCM), which provides the
meteorological drivers. While this can simplify numerical calculations and speed up run time,
there is often a requirement to simulate parameterized vertical mixing, including deep
convection, using reduced complexity, and often reduced time and space resolution, relative to
the parent GCM. For example, the parameterization of multiple subgrid-scale plume structures
with different rates of mixing must often be summarized in a chemical transport model (CTM)
by a single-plume structure with a single rate of mixing, often running at 5-10 times coarser
time and space resolutions (Schuh et al., 2019). The averaging process can lead to bias and
significant loss of information (Kawa et al., 2004). The problem is particularly acute when
applied to convective mixing and long-lived tracers.

Work is needed to gauge convergence of offline transport within a CTM with transport
from the parent GCM as factors relating to (1) representation of convective mass flux (CMF),
and (2) spatial and temporal resolution become better aligned. Past work has demonstrated
difficulty in characterizing this convergence (Parazoo et al., 2012; Prather et al., 2008), though
recent efforts leveraging high time- and space-resolution meteorology via tracer transport
modeling systems such as Goddard Earth Observation System-Chemistry High Performance
(GCHP: Martin et al., 2022) show promise.

6.5 BENCHMARKING MODEL TRANSPORT

Validation and understanding of the behavior of existing and new model schemes
comes from observational data. These are in the form of intermittent field campaigns, as well
as long-running atmospheric observatories that provide the key observables at high temporal
resolution under a wide range of atmospheric conditions. We detail critical observational data
gaps below.

Joint observations of horizontal wind divergence profiles and vertical profiles of trace
gas concentrations within a 10-km region, representing the scale of convective processes, will
provide an entirely new perspective on vertical trace gas transport to clarify the mixing levels in
different meteorological regimes, including the ABL height. Specifically, observations are
needed of moist convective updrafts and mesoscale ascent/descent (George et al., 2023),
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which may be key to understanding the horizontal patterns of moisture and clouds and the way
vertical moisture flux takes place.

The types of observables that are key to improving ABL transport are, to first order,
focused on constraining the heat/moisture/momentum balance and vertical exchange in a
column. The following set of observations could greatly improve our understanding of, and
ability to constrain, ABL transport:

(1) eddy-covariance measurements of heat, moisture, momentum, and gases,

(2) profiles of temperature and water vapor from ground-based hyperspectral infrared
radiometers,

(3) profiles of vertical and horizontal wind from ground-based Doppler wind lidar,

(4) profiles of aerosol backscatter, cloud base height and ABL height from backscatter
lidar,

(5) cloud depth from radar, and
(6) incoming and outgoing shortwave/longwave radiation fluxes.

Ideally, these measurements should be distributed across multiple locations with
different ABL dynamics to sample a spectrum of ABL transport. This can help evaluate tracer
transport in the ABL and inform improved parameterizations.

Errors in the simulation of vertical mixing are exemplified by the difficulty that models
often have in accurately simulating the tropopause height and the age of air in the stratosphere
(Randel & Jensen, 2013). Numerous model intercomparisons have highlighted the persistent
challenge faced by tracer transport models (over multiple decades) in simulating the exchange
of tracers such as sulfur hexafluoride (SF6), CO; and CH4 between the ABL and FT, leading to
systematic errors in the magnitude of vertical tracer gradients (Denning et al., 1999; Patra et al.,
2011; Schuh & Jacobson, 2023; e.g., Stephens et al., 2007). Vertical mixing errors become
amplified for long-lived trace gases such as CO; and CH4 and are difficult to track down due to
changing and poorly quantified surface sources and sinks.

To summarize, combined meteorological and trace gas observations would provide a
rich and urgently needed dataset to better understand the prevalence of convective mixing and
its role in weather, climate, and transport of trace gases. Characterizing vertical mixing—a key
challenge identified by the cloud-climate community—would help validate the vertical mass
flux in a new era of storm-resolving models. Better vertical mixing estimates would also provide
horizontal divergence profiles that can be assimilated into atmospheric models to better meet
air quality and GHG application needs.
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7. SYNTHESIS

The simulation and observation of vertical mixing and trace gas vertical structure are
key gaps for connecting trace gas data to surface fluxes at multiple scales (Chapter 3). It will be
necessary to advance coordinated observational and modeling approaches to address the
vertical mixing problem. Several planned satellite missions will use active remote sensing to
estimate vertical mixing in clouds, which could, in principle, help constrain forward and inverse
simulations of trace gas transport. However, uncertainties in the timing of these missions, along
with their incomplete spatial and temporal coverage, will limit their use in data assimilation
(DA) and for evaluation and improvement of models.

Investigating the carbon cycle at all scales is necessary to quantify critical fluxes
between the Earth system and the atmosphere and to develop process-based models that can
confront conclusions made at larger scales. Scale determines the nature of the necessary
action.

At large regional scale: We prioritize large regions that need to be understood either
because of natural or anthropogenic carbon fluxes that are not well known or due to rapid
change that is critical to the global balance of the carbon cycle (e.g., the arctic tundra).

At small regional scale: We prioritize areas that are not well characterized and likely
contribute an outsized influence on the carbon cycle. These small regions emit large fractions of
the total GHG flux and, when quantified, will reduce uncertainties significantly (e.g., oil and gas
basins).

At local scale: We prioritize point sources that can be used to test and improve
inventories and process-based models (e.g., large cities). The improved process handling can in
turn improve upscaled processes at larger scales.

Only at very local scales are co-located measurements of trace gases and winds
beneficial in driving innovation. Otherwise, coordinating measurements across multiple
platforms can generate applicable data. ABL height, CMF, and trace gas vertical profiles,
combined with model development leveraging ABL and CMF data and model validation against
trace gas profiles, should be top priorities.

7.1 THE PROBLEM

Inferring surface sources and sinks from atmospheric trace gas data depends on
multiple factors including, but not limited to, observational coverage and atmospheric transport
modeling as discussed in Sections 4—6. Other key factors include inversion methodology (e.g.,
variational vs. ensemble Kalman filter approaches), prior estimates of carbon flux and
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associated uncertainties (e.g., process models vs. carbon cycle DA systems), and evaluation
strategies (direct comparison to eddy covariance data vs. indirect comparison to independent
trace gas data).

Single-instrument science teams support development of many of the elements going
into top-down and bottom-up flux estimation methods for individual instruments and
observables, but these teams do not typically address the fundamental problem of transport
error associated with weather and climate centers. The meteorological community often
develops models and benchmarks meteorological fields without considering their impact on
atmospheric transport accuracy, despite their widespread use in trace gas studies. Similarly, the
design of meteorological remote sensing satellites rarely prioritizes their potential to enhance
atmospheric transport modeling, even though uncertainties in wind fields represent the largest
source of error in estimating large point-source emissions.

Research and analysis programs like OCO and MAP are insufficient in scope for
addressing a fundamentally interdisciplinary problem, and insufficient in duration to address a
long-term (5—10 year) research challenge. This gap leads to substantial uncertainties in inferred
sources and sinks, even in regions where trace gas observations are abundant. To address these
challenges, we advocate for a sustained program that fosters long-term collaboration between
meteorological and trace gas communities. Such an initiative would enhance the use of the
growing suite of remote sensing observations to improve atmospheric transport modeling and
ensure that future meteorological satellite missions are designed with the goal of advancing
trace gas transport accuracy.

7.2 DESIGNING A PROGRAM TO INTEGRATE COMMUNITIES

Surface fluxes of trace gases (e.g., of CO; and CHs) are important to understand
ecosystem processes and climate feedbacks. While these fluxes cannot be measured globally,
accurate and high-precision in-situ and space-based atmospheric measurements can be used to
constrain surface fluxes. These measurements are discrete and sparse and are linked to surface
flux using simulations of atmospheric transport. Accurate representation of atmospheric
transport therefore is critical in producing bias-free surface flux estimates. Atmospheric
transport errors are difficult to diagnose as they are usually convoluted with flux errors (Schuh
et al., 2019). This problem is exacerbated due to the lack of measurements of winds and
planetary boundary layer height.

A coordinated ABL and GHG mission could greatly benefit both NWP and GHG
communities. For the GHG community, ABL and wind speed measurements would enable
better characterization of atmospheric transport model errors, and allow for potentially
constraining partial columns, both of which will considerably reduce flux errors. Given the
paucity of ABL measurements, increased wind and ABL would help the NWP community in
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reducing model errors and improving weather forecasts. Another synergistic effect could be in
the domain of seasonal weather forecasting. For example, accurate representation of CO;
fluxes (from increased CO, sampling) would allow for a better representation of the biosphere
and potentially improve drought forecasting via better estimates of energy partitioning from
vegetated ecosystems.

We highlight three pathways by which novel, independent surface- and space-based
observations of vertical mixing (ABL height, horizontal winds, convective mass flux) can help
address transport errors, helping to improve NWP performance while also improving inverse
estimates of surface trace gas fluxes.

First, these measurements can be compared directly to output from NWP models to
evaluate the magnitude and depth of vertical mixing in different regions and latitudes. This
approach can guide development of transport models to meet the needs of NWP and inverse
modeling communities and help minimize model structural errors and regional biases.

Second, as discussed in Section 4.3, DA can provide a near-term approach for improving
vertical transport by providing constraints on horizontal and vertical winds and ABL height.

Finally, observations can be used to quantify random and systematic errors in transport
models, information that can then be used to develop realistic model ensembles. Transport
ensembles enable transport uncertainty to be translated into more realistic uncertainties in flux
estimates.

It may be possible to exploit the existing and potential connections among various
models to improve the joint representation of dynamics and trace gas fluxes and
concentrations. That said, even when models are coupled, coupled DA remains a significant
challenge. We also note the terrestrial ecology and the ocean biogeochemistry and biology
communities have traditionally been represented by separate program elements within NASA
and other US federal agencies and have been responsible in part for developing robust prior
estimates of carbon exchange in natural land and ocean systems from models and remote
sensing. It is unclear how the current reorganization of program elements could lead to new
relationships among previously siloed research and applications areas. Ensuring logical
connections among previously distinct areas of funding is a critical component of this proposed
coordinated community program.

7.3 DESIGNING MODELS TO INTEGRATE DATASETS

The increasing volume of satellite data and resolution of transport models can improve
the accuracy and scale of carbon flux inversion constraints, but presents a challenge due to
computational and structural limitations. Harnessing advanced machine learning, DA, and
computational techniques is crucial for overcoming these limitations. Achieving this requires a
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dedicated program that fosters collaboration between the meteorological and trace gas
research communities and experts in machine learning and high-performance computing.

In terms of computational limitations, operational carbon flux inversion systems
providing carbon flux information at low latency are needed to better inform carbon
management efforts. For this, we should seek to take advantage of new numerical analysis
approaches for multiscale modeling to reduce the cost of solving nonlinear inverse problems
(e.g., multipole methods, Hu & Dance, 2024) and assess how they can improve current
practices.

In terms of structural limitations, the current generation of inventories, mechanistic
models and atmospheric inversions are limited in terms of the observations they can assimilate,
both in terms of type (e.g., atmospheric observations, economic data, land surface properties)
and in terms of the source (e.g., many atmospheric inverse models can only leverage in-situ
observations and/or observations from a single GHG satellite). In addition, they are limited in
the representation of the relationship among variables (e.g., the functional forms used to
represent key processes) and in the parameterization of these processes. As a result, models
tend to have limited skill when estimates are compared against new observation types, such as
when mechanistic models are evaluated against atmospheric constraints (Foster et al., 2024).
Atmospheric constraints can also provide direct insights into mechanisms controlling carbon
fluxes (e.g., Sun et al., 2023). There is, therefore, a large opportunity to develop modeling
frameworks that can more seamlessly incorporate a broader diversity of observations.

Leveraging machine learning for model development provides an opportunity to address
both limitations, because it can handle a larger set of assimilated variables (Wang et al., 2024),
optimize the use of satellite observations in DA models by using information that typically is
discarded due to correlated errors (Howard et al., 2024), and can increase the utility of
observations to constrain, improve models, develop better parameterizations (Geer, 2021).
Machine learning can also be combined with DA in iterative methods to correct errors in the
underlying models (Farchi et al., 2021). Machine learning models for weather forecasting (Lam
et al., 2023) are already being trained at scale to provide fast weather forecasts based on
historical data.

Some models called foundation models (Bodnar et al., 2025) serve both as a starting
point for researchers to train more task-specific models on smaller datasets through a process
called fine-tuning and as feature extractors for downstream tasks. Foundation models can be
thought of as distilled representations of the datasets they were trained on. Practitioners have
observed that deep neural networks learn patterns and features of data that are useful beyond
the tasks they were trained on, allowing foundation models to be adapted to solve new
problems with relative ease. Because foundation models encapsulate large amounts of
information from their training data, they offer a natural approach to DA by acting as proxies
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for the large observational datasets they were trained on. While training foundation models
can be computationally expensive, using them is relatively cheap, offering a promising
approach for integrating extensive historical data into transport models. Several new modeling
efforts (e.g., Earth Al and AlphaEarth) have already preprocessed petabytes of data.

In addition to foundation models, another active area of machine learning research
focuses on constructing scientific models that directly integrate and utilize large datasets to
improve predictions and understanding in various domains. Physics-informed machine learning
(Brunton & Kutz, 2022; Kochkov et al., 2024) is dedicated to building machine learning systems
that incorporate both known physical laws and data to solve problems. Additionally, diffusion
and flow-based generative models are based on principles from fluid dynamics and can
potentially be a useful tool for developing transport models that adhere to physics while
incorporating vast amounts of data.

7.4 BENCHMARKING SUCCESS

A major challenge in applying top-down carbon source and sink estimates to scientific
and policy applications is the lack of rigorous benchmarking across scales.

The primary exception is at local scales (1-2 km?), where significant progress has been
made through the use of eddy covariance data to evaluate net and gross carbon exchange
across a range of ecosystems (forest, agricultural, wetlands), temporal scales (diurnal to
decadal), and regions including Arctic and tropical regions (Baldocchi, 2020; McNicol et al.,
2023; Virkkala et al., 2021). Likewise, controlled-release experiments have seen wide use in the
evaluation of large point-source estimates from aircraft, particularly for CHa (Thorpe et al.,
2016). However, challenges remain, including sparse flux tower coverage of tropical regions,
detection of intermittent point source emissions, and minimizing false negatives.

Evaluation of carbon flux at small (10-500 km) to large (> 500 km) regional scale has
traditionally relied on comparison of estimated carbon fluxes to independent observations from
towers, aircraft, and upward-looking spectrometers through tracer transport model
simulations. Here, estimated carbon fluxes refers to fluxes optimized against tower and/or
spaceborne trace gas data, and independent observations refers to data withheld from
assimilation in the inverse model.

Airborne GHG profiles from research and commercial aircraft can provide an extremely
valuable source of information for independent evaluation of inversion-based flux estimates
and can help to diagnose atmospheric transport model errors that can lead to flux estimation
bias. For example, the NOAA Global Monitoring Laboratory (GML) has sampled atmospheric
GHG profiles up to 12 km altitude every 2—3 weeks using light aircraft at a dozen sites across
the US, Canada, Rarotonga, Brazil, and Africa for over a decade. Likewise, the recent National
Observations of Greenhouse gasses Aircraft Profiles (NOGAP) program samples the atmosphere
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in a near-continuous path around the continental U.S., addressing spatial sampling gaps and
boundary constraints for high-resolution nested and regional inversions. Ground-based
spectrometers from networks such as Total Carbon Column Observing Network (TCCON)
provide accurate and precise measurements of column-average abundance of multiple GHG
species and offer continuous sampling of GHG species throughout daylit hours with clear skies
(Wunch et al., 2017). Finally, long-term ground-based GHG measurements from globally
coordinated networks can help evaluate top-down fluxes globally, regionally, and locally. Long-
running background sites and tall tower networks are critical for monitoring and constraining
global and regional trends, respectively, in CO; and CH4 budgets (Bruhwiler et al., 2014; Byrne
et al., 2023; Peters et al., 2007).

We need to leverage different approaches for using complementary data beyond the
primary GHG concentration for determining source attribution of trace gas emissions
depending on the gas and scale of interest. Atmospheric tracers are used to identify and
separate sources and sinks, only some of which are observed from space or robust surface
networks. For the example of tracking atmospheric carbon, nitrogen oxides (NOx) are produced
from any hot/combustion reaction, CO is produced during the incomplete combustion of
carbon-rich fuels, while hydrogen cyanide (HCN) is commonly associated with wildfire activity
(Byrne et al., 2024; Park et al., 2021). Photosynthesis and other biogenic processes can be
tracked through measurements of solar-induced fluorescence (SIF) and carbonyl sulfide
(Parazoo et al., 2021; Whelan et al., 2020), both close correlates of photosynthesis. Oil and gas
operations are often monitored using co-emitted tracers like ethane (C2Hs) and CH4 (Franco et
al., 2016; Tribby et al., 2022), while agriculture-related emissions are often tracked with
ammonia (NHs). Besides proxies for probing the atmosphere, other data describing the land
surface such as high-resolution land cover types, biomass, and burned area information are
critical for understanding biological and fire activities (Sands et al., 2024).

7.5 RECOMMENDATION: COORDINATED METEOROLOGY AND GHG PROGRAM

With the growing availability of satellite, surface, and aircraft trace gas observations,
there is immense potential for these data to enhance Monitoring, Measurement, Reporting,
and Verification (MMRV) programs and improve our understanding of the global carbon cycle.
However, fully realizing this potential depends on how effectively the scientific community can
integrate and utilize these observations within inverse modeling systems.

To maximize the scientific and policy utility of global and regional top-down inversion
results, we call for a coordinated effort to develop a comprehensive benchmarking program,
leveraging GHG and complementary data, that systematically evaluates and attributes flux
estimates and their uncertainties across scales, from individual point sources to global
assessments.
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A coordinated meteorology and atmospheric composition program focused on
community science, which fosters collaboration among relevant research communities and
ensures that all essential elements for inferring fluxes from trace gas observations are
continuously improved, is critical for sustained, long-term improvements to carbon source and
sink quantification and improved weather prediction.

A key component of this approach is the development of testbeds to inform vertical
mixing, building off programs such as the European-led Carbon Atmospheric Tracer Research to
Improve Numerics and Evaluate (CATRINE) project.? The CATRINE project aims to enhance the
accuracy of atmospheric tracer models for effective emissions monitoring. CATRINE has
recently proposed a protocol for tracer transport simulations at high resolution (< 1°x 1°)
targeting anthropogenic signals. A similar approach has been taken leveraging output from the
OCO Model Intercomparison Project (OCO-MIP; Byrne et al., 2023) to identify uncertainties in
parametric moist convection and boundary-layer diffusivity (Schuh & Jacobson, 2023).

While intercomparisons are essential for identifying vertical mixing errors and
benchmarking high-performing transport models, they do not address the underlying issue
relating to the quality of wind information. We have called for more dedicated efforts at
climate and weather modeling offices to assimilate atmospheric wind data into models for
improved data reanalysis. Another option, proposed by Chevallier et al. (2025), is coupling
atmospheric inversion systems with NWP models. For example, the European Centre for
Medium-Range Weather Forecasts (ECMWF) has focused on the development of anthropogenic
GHG emissions monitoring and verification support capacity. The Global Modeling and
Assimilation Office (GMAO) has undertaken a similar effort with a two-year, global, non-
hydrostatic mesoscale simulation nature run, including simulation of CO, from natural and
anthropogenic sources®. These efforts highlight leadership at key modeling centers and offer a
pathway for broader community collaboration.

These recommendations are supported by the Decadal Survey Midterm Assessment,
which recommended that agencies such as NASA and NOAA seek interdisciplinary engagement
from the Earth system modeling community, and encourage engagement of scientists working
on weather and air quality prediction at sub-seasonal to decadal scales, to more fully leverage
Earth observations to advance model parameterization and predictions.

3 https://www.catrine-project.eu/
4 https://gmao.gsfc.nasa.gov/gmao-products/7km-g5nr/
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APPENDIX A: ACRONYMS

ABL — Atmospheric Boundary Layer

AGAGE - Advanced Global Atmospheric Gases Experiment

AMV — Atmospheric Motion Vector

AOS — Atmosphere Observing System

CATRINE - Carbon Atmospheric Tracer Research to Improve Numerics and Evaluate
CCUS - Carbon, Capture, Utilization and Storage

CDR — Carbon Dioxide Removal

CEOS-CGMS — Committee on Earth Observations Satellites — Coordination Group for
Meteorological Satellites

CHs— Methane

CMF - Convective Mass Flux

CO - Carbon Monoxide

CO; — Carbon Dioxide

COCCON - COllaborative Carbon Column Observing Network

CTM — Chemistry Transport Model

DA — Data Assimilation

DWL — Doppler Wind Lidar

ECMWEF - European Centre for Medium-Range Weather Forecasts
EMIT— Earth Surface Mineral Dust Source Investigation

ESA — European Space Agency

EUMETSAT — European Organisation for the Exploitation of Meteorological Satellites
F-NBS - Forest-focused Nature-Based Solutions

FT - Free Troposphere

FTIR - Fourier-Transform InfraRed Spectroscopy

GCM - General Circulation Model

GEO — Geostationary Orbit

44



Tracing Greenhouse Gases: A Blueprint for a Joint Meteorology and Atmospheric Composition Program

GGGRN - The NOAA Global Greenhouse Gas Reference Network
GHG — Greenhouse Gases

GMAO - Global Modeling and Assimilation Office

GOSAT - Greenhouse gases Observing SATellite

ICOS - Integrated Carbon Observation System

IME - Integrated Mass Enhancement

INCUS - Investigation of Convective Updrafts

KISS - Keck Institute for Space Studies

LEO - Low Earth Orbit

LES - Large Eddy Simulation

LT — Lower Troposphere

MAP — Modeling, Analysis, and Prediction

MMRV — Measurement, Monitoring, Reporting, and Verification
NASA — National Aeronautics and Space Administration

NbCS - Nature-based climate solutions

NDADC - Network for the Detection of Atmospheric Composition Change
NDCs - Nationally Determined Contributions

NOAA — National Oceanic and Atmospheric Administration

NOx - Nitrogen Oxides

NWP — Numerical Weather Prediction

0OCO-2 - Orbiting Carbon Observatory 2

OCO-MIP — Orbiting Carbon Observatory Model Intercomparison Project
OECD - Organisation for Economic Co-operation and Development
TCCON — Total Carbon Column Observing Network

UNFCCC - United Nations Framework Convention on Climate Change
UT — Upper Troposphere

WIVERN - WInd VElocity Radar Nephoscope
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APPENDIX C: LIST OF ILLUSTRATIONS

Figure 3.1. Scale requirements for GHG flux estimation. There are three primary scales with unmet GHG
needs based on current and planning GHG observing systems: Local Scale (/eft), Small Region
Scale (middle), and Large Region Scale (right). The local scale represents a system dominated by a
single surface location (e.g., oil facility, afforestation project, CO, removal technology) and
localized transport (boundary layer turbulence) process. The small regional scale represents a
system consisting of multiple surface-based sources or sinks and transport processes, largely
confined to the atmospheric boundary layer. The large regional scale consists of multiple natural
and anthropogenic surface sources and sinks and horizontal and vertical mixing processes that
encompass the entire troposphere. Credit: Keck Institute for Space Studies/Victor Leshyk ......... 10

Figure 4.1. Depiction of spaceborne remote sensing techniques for wind. Five methods are illustrated,
including (left to right) (1) scatterometer- and polarimeter-based measurements of wind-driven
surface waves, (2) tracking the motion of clouds, (3) Doppler wind lidar (DWL) measurements of
scattering by molecules, aerosols, and clouds, (4) radar reflectivity measurements of cloud
vertical mass flux, and (5) tracking the motion of trace gases such as water vapor. Credit: Keck
Institute for Space Studies/ViCtor LESNYK ........ccuvi i 18

Table 4.1. Summary of current and planned wind observation capabilities.............ccccevvvieiiiiiiiiiii 19

Figure 4.2. Depiction of the global distribution of (A) surface in-situ observations over land, (B) radiosonde
observations, and (C) surface and profile observations over ocean from profiling floats, data
buoys, ship based measurements, moorings, and tide gauges (from Lindstrom, 2018).
Observation locations are valid as of 2017. (D) Distribution of 24 hours of observations from
commercial aircraft from 31 October 2022. Credit: WMO and Linstrom (2018). .......cooovvvvvinnnneen. 21

Figure 4.3. Difference between wind estimates from feature tracking and the “true” (modeled) wind
(tracked - true) at the 850-hPa pressure level as a function of (A) water vapor content, (B) wind
speed, (C) water vapor gradient, and (D) the angle between the wind direction and the water
vapor gradient. Color shading represents the percentage of the total number of grid points that
have a particular value of wind speed difference. Black vertical lines in (d) indicate the position of
the +90 -degree angles. Adapted from Figure 6 of Posselt et al. (2019). © American
Meteorological Society. Used With PErMISSION. ....c..iiiiiiiii e 24

Figure 4.4. Bias in three months of AMV estimates at various vertical pressure levels before bias
correction (orange) and after lidar-based bias correction (blue). Adapted from Figure 4 of Nguyen
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Figure 5.1. Summary of satellite-based remote sensing products comparing spectral resolution and pixel
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Figure 5.2. Summary of key carbon cycle processes as a function of spatial and temporal scale.
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