

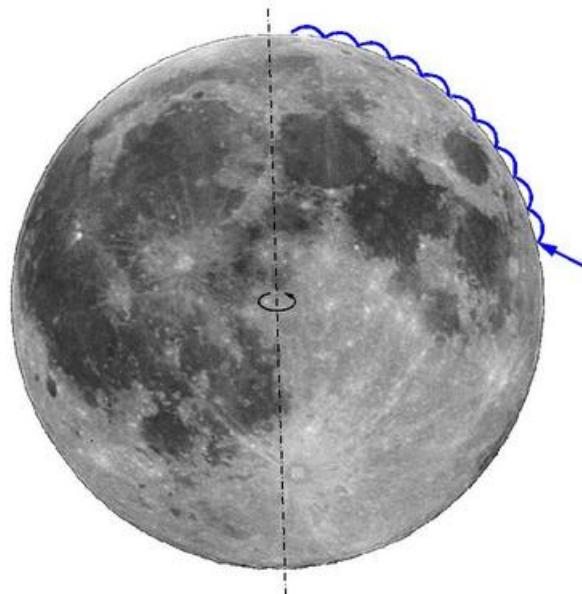
Theories of Water on the Moon

Norbert Schörghofer

University of Hawaii

KISS Workshop, July 2013

Theories of H-Storage on the Moon


Theory	Sub-theory	Comments
Negligible sublimation at low temperature	<i>Watson-Murray-Brown</i> (WMB)	classic theory (1961a,b)
	Buried ice	
	Small shadows	
	Single-source	unequal filling of cold traps
Adsorption		enough H ₂ O?
Ice Pump		enough H ₂ O?
Degassing-limited solar-wind implanted H		<i>Starukhina</i> (2001, 2006) no H ₂ O

Theory	Relevant Variables
Watson-Murray-Brown	T
Small shadows	T
Buried ice	T + diffusivity (grain size)
Single-source	T + source location
Adsorption	T + specific surface area (grain size)
Ice Pump	T + diffusivity (grain size)
Degassing-limited solar-wind implanted H	T + material properties

Conclusion: After temperature (T), grain size may be the most important variable that determines the presence of water.

Theories of Water Transport on the Moon

Watson-Murray-Brown (1961)	Hodges (2002)
Ballistic hops at thermal speed	H_2O chemisorbes on silicate surfaces; no thermal hops
Efficient lateral transport	Little or no lateral transport

Conclusion: Efficiency of lateral transport is unknown.

Note: Hop distance is much larger than any cold trap → uniform filling expected

Major Questions

- What physical effect accounts for the majority of H₂O or H on the Moon? (~7 theories have been proposed + ?)
 - No theory is fully satisfactory
 - Classic effect (shadows cold enough for ice) overpredicts area. There appear to be unfilled PSRs. Why?
 - 3 of 7 theories depend directly on grain size
- Is there efficient lateral transport of H₂O on the Moon? (uncertainties due to the physiochemical interaction of H₂O with space-weathered silicate surfaces)