Probing the Epoch of Reionization with the <u>Tomographic Ionized-carbon</u> <u>Mapping Experiment (TIME)</u>

Jamie Bock Caltech / JPL

CCAT Workshop, Boulder CO 21 September 2012

Large Scale Structure HerMES Lockman Survey Field

Use Maps to Measure Clustering

S > 20 mJy : 1,200/deg² S < 20 mJy : 480,000/deg²

Relationship Between Dark Matter and Galaxies

Halo Clustering Model

Large Scale Structure HerMES Lockman Survey Field

Spatial Power Spectrum of SPIRE Maps

Advantages of Intensity Mapping

Measuring to the Galactic Ensemble

- Luminosity function
- Total photon production
- Large-scale structure

Science Applications

- Galaxy evolution
- Link between dark matter and galaxy formation
- Epoch of Reionization?
- Baryon Acoustic Oscillations?

Observationally Expedient

Does not require a large telescope!

kSZ and Galaxies: SPIRE & mm-wave

Near-IR Fluctuations from the EOR?

Advantages of Line Intensity Mapping

Measuring to the Galactic Ensemble

- Luminosity function
- Total photon production
- Large-scale structure

Science Applications

- Galaxy evolution
- Link between dark matter and galaxy formation
- Epoch of Reionization!
- Baryon Acoustic Oscillations!

Observationally Expedient

- Does not require a large telescope!
- Does require a high-A Ω spectrometer

C+ Theory Predictions

• C+ serves as a tracer of star formation

Gong, Cooray et al. 2012, ApJ 745, 49G

- The clustering signal traces total luminosity
 - -> unlike a flux-limited galaxy survey
- Use C+ to spatially trace SF during the reionization epoch

CO vs C+

CO for EOR studies: Visbal & Loeb 2010, Carilli 2011, Lidz et al. 2011, Gong et al. 2011

CO Foreground Contamination?

Gong et al. 2012, ApJ 745, 49G

TIME: Tomographic Ionized-C Mapping Experiment

Experiment	Units	TIME-Full			TIME-Pilot
Aperture Diameter	m	1	3	10	10
Survey Area	sq. degrees	16			0.01
Total Integration Time	hours	4000			120
Free Spectral Range	GHz	185 - 310			245 - 420
Frequency Resolution	GHz	0.4			0.65
Bolometers	#	20,000			265
Spectral Channels	#	312			265
Spatial Pixels	#	64			1
Beam FWHM	arcmin	4.4	1.5	0.4	0.3
Beams in Survey Area	#	2600	23,000	260,000	200
Noise Equiv. Intensity	MJy√s / sr	2.5			6 – 50
Int. Time per Beam	hours	100	10	1	0.6
$z = 4.5 P_N^{CII}$	(Jy ² /sr ²) Mpc ³ /h ³	-			430 x 10 ⁹
$z = 6 P_N^{CII}$	(Jy ² /sr ²) Mpc ³ /h ³	5.4 x 10 ⁹			100 x 10 ⁹
$z = 7 P_N^{CII}$	(Jy ² /sr ²) Mpc ³ /h ³	4.8 x 10 ⁹			-
$z = 8 P_N^{CII}$	(Jy ² /sr ²) Mpc ³ /h ³	4.4 x 10 ⁹			-

TIME C+ Sensitivity Predictions

JPL

k (h/Mpc)

Gong et al. 2012, ApJ 745, 49G

TIME-Pilot Sensitivity

Goals:

- Measure C+ fluctuation amplitude
- Constrain high-J CO fluctuations by cross-band correlations
- Determine atmospheric noise after spectral template subtraction

Filter-Bank Spectrometer

- Radiation propagates down main feed line
- Resonators respond in narrow bands
- Couple to power detector (MKID or TES)

Credit: Jonas Zmuidzinas See talk by Matt Bradford later today!

Conclusions

EOR Science accessible with a 3-m class dedicated telescope

A moderate pilot experiment can probe C+ signal amplitude at lower z

Develop new filter-band spectrometer technologies for CCAT

Power Spectra in 3 Bands

Prototype device layout.

High Redshift Galaxies in HerMES

New: Galaxies with Red Colors Are they cold or at high redshift (z=4-7)?

*Confusion reduced S(500) – fS(250)

Red Source Abundance Dowell 2011, in prep. Red Source Case Study Riechers 2011, in prep.

Obtain mm-wave redshifts (CO, C+)!!

APEX

ZSPEC: Bolometric spectrometer

CSO

PdBl

CARMA

Use Clustering to Probe Reionization

