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Foreword

At last, here it is. For some time now, the world has needed a text providing both a 
new theoretical foundation and practical guidance on how to approach the challenge 
of biodiversity decline in the Anthropocene. This is a global challenge demanding 
global approaches to understand its scope and implications. Until recently, we have 
simply lacked the tools to do so. We are now entering an era in which we can real-
istically begin to understand and monitor the multidimensional phenomenon of bio-
diversity at a planetary scale. This era builds upon three centuries of scientific 
research on biodiversity at site to landscape levels, augmented over the past two 
decades by airborne research platforms carrying spectrometers, lidars, and radars 
for larger-scale observations. Emerging international networks of fine-grain in-situ 
biodiversity observations complemented by space-based sensors offering coarser-
grain imagery—but global coverage—of ecosystem composition, function, and 
structure together provide the information necessary to monitor and track change in 
biodiversity globally.

This book is a road map on how to observe and interpret terrestrial biodiversity 
across scales through plants—primary producers and the foundation of the trophic 
pyramid. It honors the fact that biodiversity exists across different dimensions, 
including both phylogenetic and functional. Then, it relates these aspects of biodi-
versity to another dimension, the spectral diversity captured by remote sensing 
instruments operating at scales from leaf to canopy to biome. The biodiversity com-
munity has needed a Rosetta Stone to translate between the language of satellite 
remote sensing and its resulting spectral diversity and the languages of those explor-
ing the phylogenetic diversity and functional trait diversity of life on Earth. By 
assembling the vital translation, this volume has globalized our ability to track bio-
diversity state and change. Thus, a global problem meets a key component of the 
global solution.

The editors have cleverly built the book in three parts. Part 1 addresses the theory 
behind the remote sensing of terrestrial plant biodiversity: why spectral diversity 
relates to plant functional traits and phylogenetic diversity. Starting with first prin-
ciples, it connects plant biochemistry, physiology, and macroecology to remotely 
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sensed spectra and explores the processes behind the patterns we observe. Examples 
from the field demonstrate the rising synthesis of multiple disciplines to create a 
new cross-spatial and spectral science of biodiversity.

Part 2 discusses how to implement this evolving science. It focuses on the pleth-
ora of novel in-situ, airborne, and spaceborne Earth observation tools currently and 
soon to be available while also incorporating the ways of actually making biodiver-
sity measurements with these tools. It includes instructions for organizing and con-
ducting a field campaign. Throughout, there is a focus on the burgeoning field of 
imaging spectroscopy, which is revolutionizing our ability to characterize life 
remotely.

Part 3 takes on an overarching issue for any effort to globalize biodiversity obser-
vations, the issue of scale. It addresses scale from two perspectives. The first is that 
of combining observations across varying spatial, temporal, and spectral resolutions 
for better understanding—that is, what scales and how. This is an area of ongoing 
research driven by a confluence of innovations in observation systems and rising 
computational capacity. The second is the organizational side of the scaling chal-
lenge. It explores existing frameworks for integrating multi-scale observations 
within global networks. The focus here is on what practical steps can be taken to 
organize multi-scale data and what is already happening in this regard. These frame-
works include essential biodiversity variables and the Group on Earth Observations 
Biodiversity Observation Network (GEO BON).

This book constitutes an end-to-end guide uniting the latest in research and tech-
niques to cover the theory and practice of the remote sensing of plant biodiversity. 
In putting it together, the editors and their coauthors, all preeminent in their fields, 
have done a great service for those seeking to understand and conserve life on 
Earth—just when we need it most. For if the world is ever to construct a coordi-
nated response to the planetwide crisis of biodiversity loss, it must first assemble 
adequate—and global—measures of what we are losing.

Woody Turner
Earth Science Division
NASA Headquarters, 
Washington, DC, USA

Foreword
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Chapter 1
The Use of Remote Sensing to Enhance 
Biodiversity Monitoring and Detection: 
A Critical Challenge for the Twenty-First 
Century

Jeannine Cavender-Bares, John A. Gamon, and Philip A. Townsend

1.1  �Introduction

Improved detection and monitoring of biodiversity is critical at a time when Earth’s 
biodiversity loss due to human activities is accelerating at an unprecedented rate. 
We face the largest loss of biodiversity in human history, a loss which has been 
called the “sixth mass extinction” (Leakey 1996; Kolbert 2014), given that its mag-
nitude is in proportion to past extinction episodes in Earth history detectable from 
the fossil record. International efforts to conserve biodiversity (United Nations 
2011) and to develop an assessment process to document changes in the status and 
trends of biodiversity globally through the Intergovernmental Science-Policy 
Platform on Biodiversity and Ecosystem Services (Díaz et  al. 2015) have raised 
awareness about the critical need for continuous monitoring of biodiversity at mul-
tiple spatial scales across the globe. Biodiversity itself—the variation in life found 
among ecosystems and organisms at any level of biological organization—cannot 
practically be observed everywhere. However, if habitats, functional traits, trait 
diversity, and the spatial turnover of plant functions can be remotely sensed, the 
potential exists to globally inventory the diversity of habitats and traits associated 
with terrestrial biodiversity. To face this challenge, there have been recent calls for 
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a global biodiversity monitoring system (Jetz et al. 2016; Proença et al. 2017; The 
National Academy of Sciences 2017). A central theme of this volume is that remote 
sensing (RS) will play a key role in such a system.

1.2  �Why a Focus on Plant Diversity?

Plants and other photosynthetic organisms form the basis of almost all primary pro-
ductivity on Earth, and their diversity and function underpin virtually all other life 
on this planet. Plants—collectively called vegetation—regulate the flow of critical 
biogeochemical cycles, including those for water, carbon, and nitrogen. They affect 
soil chemistry and other properties, which in turn affect the productivity and struc-
ture of ecosystems. Given the importance of plant diversity for providing the eco-
system services on which humans depend—including food production and the 
regulating services that maintain clean air and freshwater supply (Millennium 
Ecosystem Assessment 2005; IPBES 2018a)—it is critical that we monitor and 
understand plant biodiversity from local to global scales, encompassing genetic 
variation within and among species to the entire plant tree of life (Cavender-Bares 
et al. 2017; Jetz et al. 2016; Turner 2014).

Of the 340,000 known seed plants on Earth and the 60,000 known tree species 
(Beech et al. 2017), 1 out of every 5 seed plants and 1 out of every 6 tree species are 
threatened (Kew Royal Botanic Gardens 2016). Vulnerability to threats ranging 
from climate change to disease varies among species and lineages because of 
evolved differences in physiology and spatial proximity to threats. Across all conti-
nents, the largest threat to terrestrial biodiversity is land use change due to farming 
and forestry, while climate change, fragmentation, and disease loom as ever-
increasing threats (IPBES 2018a; b; c; d). Many plant species are at risk for extinc-
tion due to a combination of global change factors, including drought stress, exotic 
species, pathogens, land use change, altered disturbance regimes, application of 
chemicals, and overexploitation.

1.3  �The Promise of Remote Sensing to Detect Plant Diversity

Different plants have evolved to synthesize different mixes of chemical compounds 
arranged in contrasting anatomical forms to support survival and growth. In addi-
tion, the structures of plant canopies correspond to different growth strategies in 
response to climate, environment, or disturbance. Differences among individual 
plants, populations, and lineages result from contrasting evolutionary histories, 
genetic backgrounds, and environmental conditions. Because these differences are 
readily expressed in aboveground physiology, biochemistry, and structure, many of 
these properties can be detected using spectral reflectance from leaves and plant 
canopies (Fig. 1.1). Plant pigments absorb strongly electromagnetic radiation in the 
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visible wavelengths (400–700 nm), while other chemical compounds and structural 
attributes of plants that tend to be conserved through evolutionary history affect 
longer wavelengths. The patterns of light absorbed, transmitted, and reflected at dif-
ferent wavelengths from vegetation reveal leaf and canopy surface properties, tissue 
chemistry, and anatomical structures and morphological attributes of leaves, whole 
plants, and canopies. Thus, technological advances for assessing optical properties 
of plants provide profound opportunities for detecting functional traits of organisms 
at different levels of biological organization. These advances are occurring at mul-
tiple spatial scales, with technologies ranging from field spectrometers and airborne 

Fig. 1.1  (a) The chemical, structural, and anatomical attributes of plants influence the way they 
interact with electromagnetic energy to generate spectral reflectance profiles that reveal informa-
tion about plant function and are tightly coupled to their evolutionary origins in the tree of life. 
(Adapted from Cavender-Bares et al. 2017.) Imaging spectroscopy offers the potential to remotely 
detect patterns in diversity and chemical composition and vegetation structure that inform our 
understanding of ecological processes and ecosystem functions. Examples are shown from the 
Cedar Creek Ecosystem Science Reserve long-term biodiversity experiment. (b) The image cube 
(0.5 m × 1 m) at 1 mm spatial resolution (400–1000 nm) detects sparse vegetation early in the 
season in which individual plants can be identified. The “Z-dimension” (spectral dimension) illus-
trates different spectral reflectance properties for different scene elements, including different spe-
cies. At this spatial resolution, plant diversity is predicted from remotely sensed spectral diversity 
(Wang et al. 2018). (c) AVIRIS NextGen false color image of the full experiment at 1 m spatial 
resolution (400–2500 nm). Each square is a 9 × 9 m plot with a different plant composition and 
species richness. Wang et al. (2019) mapped chemical composition and a suite of other functional 
traits and their uncertainties in all of the experimental plots. By combining spectral data at different 
scales, proximal and remote imagery can be used to examine the scale dependence of the spectral 
diversity–biodiversity relationship in detail (e.g., Wang et al. 2018; Gamon et al. Chap. 16) 
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systems to emerging satellite systems. As a consequence, there is high potential to 
detect and monitor plant diversity—and other forms of diversity—across a range of 
spatial scales, and to do so iteratively and continuously, particularly if multiple 
methods can be properly coordinated.

Calls for a global biodiversity observatory (Fig. 1.2) that can detect and monitor 
functional plant diversity from space (Jetz et  al. 2016; Proença et  al. 2017; The 
National Academy of Sciences 2017; Geller et al., Chap. 20) have been met with 
widespread support. Forthcoming satellite missions, including the Surface Biology 
and Geology (SBG) mission in planning stages at the US National Aeronautics and 
Space Administration (NASA) and related missions in Europe and Japan (Schimel 
et al., Chap. 19), will make unprecedented spectroscopic data available to scientists, 
management communities, and decision-makers, but at relatively coarse spatial 
scales. At the same time, rapid progress is being made with field spectroscopy using 
unmanned aerial vehicles (UAVs) and other airborne platforms that are offering 
novel ways to use RS to advance our understanding of the linkages between optical 
(e.g., spectral or structural) diversity and multiple dimensions of biodiversity (e.g., 
species, functional, and phylogenetic diversity) at finer spatial scales (Fig.  1.1). 
These advances present a timely and tremendously important opportunity to detect 
changes in the Earth’s biodiversity over large regions of the planet. One can fairly 
ask whether user communities are ready to make use of the data. Effective interpre-
tation and application of remotely sensed data to determine the status and trends of 
plant biodiversity and plant functions across the tree of life—with linkages to all 
other living organisms—requires integration across vastly different knowledge are-
nas. Critically, it requires integration with in-situ direct and indirect measures of 
species distributions, their evolutionary relationships, and their functions. 
Approaches for integration are the primary focus of this book.

A central requirement to advance monitoring of biodiversity at the global scale 
is to decipher the sources of variation that contribute to spectral variation, both from 
a biological perspective and from a physical perspective. Distinct fields of biology 
have developed a range of methodologies for understanding plant ecological and 
evolutionary processes that underlie these sources of variation. Similarly, radiative 
transfer models have been developed largely based on the physics of light interact-
ing with vegetation canopy elements and the atmosphere. These models have yet to 
capture the full range of plant traits, often preferring to represent “average” vegeta-
tion conditions for a region instead of the variation present, so are not yet ready for 
the task. All of these methods have unique approaches to analyzing complex, mul-
tidimensional data sets, and neither the analytical approaches nor the data structures 
have been brought together in a systematic or comprehensive manner. A common 
language among disciplines (including biology, physiological ecology, landscape 
ecology, genetics, phylogenetics, geography, spectroscopy, and radiative transfer) 
related to the RS of biodiversity is currently lacking. This book provides a frame-
work for how biodiversity, focusing particularly on plants, can be detected using 
proximally and remotely sensed hyperspectral data (with many contiguous spectral 
bands) and other tools, such as lidar (with its ability to detect structure). The chap-
ters in this book present a range of perspectives and approaches on how RS can be 
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integrated to detect and monitor the status and trends of plant diversity, as well the 
biodiversity of other organisms and life processes that depend on plants above- and 
belowground. Biological and computational experts from three disciplines—RS 
and leaf optics, plant functional biology, and systematics—present insights to 

Fig. 1.2  An envisioned global biodiversity observatory in which remotely sensed high spectral 
resolution spectroscopic data from satellites is integrated with biodiversity observations through 
natural history studies, phylogenetic systematics, functional trait measurements, and species distri-
bution data. The figure is adapted from Jetz et al. 2016 based on the National Center for Ecological 
Analysis and Synthesis Working Group “Prospects and priorities for satellite monitoring of global 
terrestrial biodiversity”

1  The Use of Remote Sensing to Enhance Biodiversity Monitoring and Detection…



6

advance our understanding of how to link spectral and other kinds of RS data with 
functional traits, species distributions, and the tree of life for biodiversity detection. 
The authors detail the approaches and conditions under which efforts to detect plant 
biodiversity are likely to succeed, being explicit about the advantages and disadvan-
tages of each. A theme running through many chapters is the challenge of moving 
across spatial scales from the leaf level to the canopy, ecosystem, and global scale. 
We provide a glossary that allows a common language across disciplines to emerge.

Here we explore the prospects for integrating components from each of these 
fields to remotely detect biodiversity and articulate the major challenges in our abil-
ity to directly link spectral data of vegetation to species diversity, functional traits, 
phylogenetic information, and functional biodiversity at the global scale. RS offers 
the potential to fill in data gaps in biodiversity knowledge locally and globally, par-
ticularly in remote and difficult-to-access locations, and can help define the larger 
spatial and temporal background needed for more focused and effective local or 
regional studies. It also may increase the likelihood of capturing temporal variation, 
and it allows monitoring of biodiversity at different spatial scales with different 
platforms and approaches. In essence, it provides the context within which changing 
global biodiversity patterns can be understood. The concept of “optical surrogacy” 
(Magurran 2013)—in which the linkage of spectral measurements to associated pat-
terns and processes is used—may be useful in predicting ecosystem processes and 
characteristics that themselves are not directly observable (Gamon 2008; Madritch 
et al. 2014; Fig. 1.3). In a broad sense, such relationships between various expres-
sions of biodiversity and optical (spectral) diversity provide a fundamental principle 
for “why RS works” as a metric of biodiversity and why so many different methods 
at different scales can provide useful information.

1.4  �The Contents of the Book

The first section of the book presents the potential and basis for direct and indirect 
remote detection of biodiversity.

Cavender-Bares et al. (Chap. 2) present an overview of biodiversity itself, includ-
ing the in-situ methods and metrics for measuring biodiversity, particularly plant 
diversity. The chapter provides a layperson’s overview of the elements, methods, 
and metrics for detecting and analyzing biodiversity and points to the potential of 
spectral data, collected at multiple spatial and biological scales, to enhance the 
study of biodiversity. In doing so, it bridges an ecological and evolutionary under-
standing of the diversity of life, considering both its origins and consequences.

Serbin and Townsend (Chap. 3) describe various approaches for measuring plant 
and ecosystem function using spectroscopy, providing both the historical develop-
ment of past advances and the potential of these approaches looking forward. The 
chapter explains why we are able to retrieve functional traits from spectra, which 
traits can be retrieved, and where spectra show features important for different 
aspects of plant function. It also raises the challenge of scaling plant function from 
leaves to canopies and landscapes.

J. Cavender-Bares et al.
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Morsdorf et al. (Chap. 4) then present the Laegeren forest site in Switzerland as 
a virtual laboratory. They demonstrate how spectroscopy can be operationalized for 
RS of functional diversity to explain plant biodiversity patterns and ecosystem func-
tions. The Laegeren site is one of the best-studied sites in the world for this purpose 
and is used as a case study to explain ground truthing and what can be learned from 
landscape-level detection of functional diversity.

Martin (Chap. 5) summarize the experiences with “spectronomics”—a frame-
work aimed at integrating chemical, phylogenetic, and spectral RS data—using air-
borne imagery to detect forest composition and function in wet tropical forests. In 
these vast, largely inaccessible landscapes that harbor enormous taxonomic varia-
tion, approaches that rely solely on field-based observations are infeasible, illustrat-
ing an essential role for RS.  As pioneers in using spectroscopy to detect plant 
chemistry, function, and biodiversity in tropical forests around the world, these 
researchers highlight some of the major lessons they have learned.

Pontius et al. (Chap. 6) consider how biodiversity can be protected given current 
threats to forest and vegetation conditions and present approaches for detailed and 
accurate detection of forest disturbance and decline. They review current techniques 
used to assess and monitor forest ecosystem condition and disturbance and outline 

Fig. 1.3  Optical methods for detecting the functional, structural, and chemical components of 
vegetation, which are tightly coupled to the genetic and phylogenetic backgrounds of plants, are 
linked to belowground processes and the structure and function of microbial communities 
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a general approach for earlier, more detailed and accurate decline assessment. They 
also discuss the importance of engaging land managers, practitioners, and decision-
makers in these efforts to ensure that the products developed can be utilized by 
stakeholders to maximize their impact.

Meireles et al. (Chap. 7) provide a framework to explain how spectral reflectance 
data from plants is tightly coupled to the tree of life and demonstrate how spectra 
can reveal evolutionary processes in plants. They clarify that many spectral features 
in plants are inherited and are thus very similar among close relatives—in other 
words, they are highly phylogenetically conserved. Simulations reveal that spectral 
information of plants appears to follow widely used evolutionary models, making it 
possible to link plant spectra to the tree of life in a predictive manner. As a conse-
quence, methods developed in evolutionary biology to understand the tree of life 
can now benefit the RS community. The chapter provides evidence that evolutionary 
lineages may be easier than individual species to detect through RS methods, par-
ticularly if they are combined with other approaches for estimating which species 
and lineages have the potential to be present in a given location. A caveat is that 
spatial resolution of satellite spectral data will limit such inferences, but leaf- and 
canopy-level spectra (obtainable from proximal and airborne sensing) can contrib-
ute enormously to our understanding of these fundamental links between spectral 
patterns and gene sequences.

Madritch et al. (Chap. 8) link aboveground plant biodiversity and productivity to 
belowground processes. They explain the functional mechanisms—which can be 
revealed by remotely sensed spectral data—that influence interactions of plant hosts 
with insects and soil organisms, in turn influencing ecosystem functions, such as 
decomposition and nutrient cycling. The chapter provides an example of using the 
concept of surrogacy, in which the biochemical linkage of spectral measurements to 
associated patterns and processes aboveground is used to provide estimates of soil 
and microbial processes belowground that are not directly observable via RS.

The next three chapters focus on linking satellite-based remotely sensed data to 
biodiversity prediction. Pinto-Ledezma and Cavender-Bares (Chap. 9) present an 
example of how currently available satellite-based RS products can be used to gener-
ate next-generation species distribution models to predict where species and lineages 
are likely occur and the habitats they may have access to and persist in under altered 
climates in the future. They compare RS-based methods for generating predictive 
models with widely used approaches that use meteorologically derived climate vari-
ables. They demonstrate the advantages of RS-based models in regions where meteo-
rological data is only sparsely available. Such predictive modeling that harnesses 
species occurrence data and temporal information about the biotic environment may 
make spectral methods of species and evolutionary lineage detection more tractable.

Building on the availability of satellite RS data with near-global coverage to pre-
dict biodiversity, Record et al. (Chap. 10) explore how RS illuminates the relationship 
between biodiversity and geodiversity—the variety of abiotic features and processes 
that provide the template for the development of biodiversity. They introduce a variety 
of globally available geodiversity measures and examine how they can be combined 
with biodiversity data to understand how biodiversity responds to geodiversity. 
The authors use the analogy of the “stage” that defines the patterns of life to some 
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degree, often measured as habitat heterogeneity, a key driver of species diversity. They 
illustrate the approach by examining the relationship between biodiversity and geodi-
versity with tree biodiversity data from the US Forest Inventory and Analysis Program 
and geodiversity data from remotely sensed elevation from the Shuttle Radar 
Topography Mission (SRTM). In doing so, they outline the challenges and opportuni-
ties for using RS to link biodiversity to geodiversity.

Paz et al. (Chap. 11) present an approach for using RS data to predict patterns of 
plant diversity and endemism in the tropics within the Brazilian Atlantic rainforest. 
They examine how RS environmental data from tropical regions can be used to sup-
port biodiversity prediction at multiple spatial, temporal, and taxonomic scales.

Bolch et al. (Chap. 12) summarize the range of approaches that can be used to 
optimize detection of invasive alien species (IAS), which pose severe threats to 
biodiversity. These approaches emphasize the ability to detect individual plant spe-
cies that have distinct functional properties. The chapter presents current RS capa-
bilities to detect and track invasive plant species across terrestrial, riparian, aquatic, 
and human-modified ecosystems. Each of these systems has a unique set of issues 
and species assemblages with its own detection requirements. The authors examine 
how RS data collection in the spectral, spatial, and temporal domains can be opti-
mized for a particular invasive species based on the ecosystem type and image anal-
ysis approach. RS approaches are enhancing studies of the invasion processes and 
enabling managers to monitor invasions and predict the spread of IAS.

The next three chapters of the book explore how components of diversity can be 
detected spectrally and remotely with a focus on optical detection methods and 
technical challenges. Lausch et al. (Chap. 13) delve into the complexity of monitor-
ing vegetation diversity and explain how no single monitoring approach is sufficient 
on its own. The chapter introduces the range of Earth observation (EO) techniques 
available for assessing vegetation diversity, covering close-range EO platforms, 
spectral approaches, plant phenomics facilities, ecotrons, wireless sensor networks 
(WSNs), towers, air- and spaceborne EO platforms, UAVs, and approaches that 
integrate air- and spaceborne EO data. The chapter presents the challenges with 
these approaches and concludes with recommendations and future directions for 
monitoring vegetation diversity using RS.

Ustin and Jacquemoud (Chap. 14) provide the physical basis for detecting the 
optical properties of leaves based on how they modify the absorption and scattering 
of energy to reveal variation in function. The chapter provides considerable detail 
on how the combination of absorption and scattering properties of leaves together 
creates the shape of their reflectance spectrum. It also reviews and summarizes the 
most common interactions between leaf properties and light and the physical pro-
cesses that regulate the outcomes of these interactions.

Schweiger (Chap. 15) describes a set of best practices for planning field campaigns 
and collecting and processing data, focusing on spectral data of terrestrial plants 
collected across various levels of measurements, from leaf to canopy to airborne. 
These approaches also generally apply to RS of aquatic systems, soil, and the atmo-
sphere and to active RS systems, such as lidar, thermal, and satellite data collection. 
Schweiger discusses how goals for data collection can be broadly classified into 
model calibration, model validation, and model interpretation.
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The final chapters of the book move to the issues of temporal and spectral scale 
and integration across scales. Gamon et al. (Chap. 16) present a thorough examina-
tion of the challenges in spectral methods for detecting biodiversity posed by issues 
of spatial, temporal, and spectral dimensions of scale. They explain why the size of 
the organism relative to the pixel size of detection has consequences for spectral 
detection of different components of biodiversity and draw on a rich history of lit-
erature on scaling effects, including geostatistical approaches for sampling across 
spatial scales. The chapter emphasizes the importance of developing biodiversity 
monitoring systems that are “scale-aware” as well as the value of an integrated, 
multi-scale sampling approach.

Schrodt et al. (Chap. 17) outline how environmental and socioeconomic data can 
be integrated with biodiversity and RS data to expand knowledge of ecosystem 
functioning and inform biodiversity conservation decisions. They present the con-
cepts, data, and methods necessary to assess plant species and ecosystem properties 
across spatial and temporal scales and provide a critical discussion of the major 
challenges.

Fernández et  al. (Chap. 18) provide a framework for understanding Essential 
Biodiversity Variables (EBVs) to integrate in-situ biodiversity observations and RS 
through modeling. They argue that open and reproducible workflows for data inte-
gration are critical to ensure traceability and reproducibility to allow each EBV to 
be updated as new data and observation systems become available. The chapter 
makes the case that the development of a globally coordinated system for biodiver-
sity monitoring will require the mobilization of and integration of in-situ biodiver-
sity data not yet publicly available with emerging RS technologies, novel biodiversity 
models, and informatics infrastructures.

Schimel et al. (Chap. 19) discuss the prospects and pitfalls for RS of biodiversity 
at the global scale, focusing on imaging spectroscopy and NASA’s Surface Biology 
and Geology mission concept.

Finally, Geller et al. (Chap. 20) provide an epilogue to the book and present a 
vision for a global biodiversity monitoring system that is flexible and accessible to 
a range of user communities. Such a system will require a coordinated effort among 
space agencies, the RS community, and biologists to bring information about the 
status and trends in biodiversity, ecosystem functions, and ecosystem services 
together so that different data streams inform each other and can be integrated. The 
chapter explains that the Group on Earth Observations Biodiversity Observation 
Network (GEO BON), the International Long Term Ecological Research Site 
(ILTER) network, the US National Ecological Observatory Network (NEON), and 
a variety of sponsors and other organizations are working to enhance coordination 
and to develop guidelines and standards that will serve this vision.

Indeed, a rapidly advancing global movement has emerged with a shared vision 
to develop the capacity to monitor the status and trends in the Earth’s biodiversity. 
The authors of this book have sought to contribute to that shared vision through 
their varied perspectives and experiences. Collectively, the chapters present a range 
of approaches and knowledge that can transform the ability of humanity to detect 
and interpret the changing functional biodiversity of planet Earth.

J. Cavender-Bares et al.
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1.5  �The Origins of the Book

Before closing, we offer a note of acknowledgment on how this book came into exis-
tence. The editors, who themselves have contrasting backgrounds spanning several 
disciplines, were collaboratively funded, starting in 2013, by the US National Science 
Foundation (NSF) and the NASA Dimensions of Biodiversity program on the project 
Linking remotely sensed optical diversity to genetic, phylogenetic and functional 
diversity to predict ecosystem processes (DEB-1342872,1342778). We worked 
together in several field sites for 5 years to advance our own understanding approaches 
for remote detection of plant biodiversity. The importance and high potential for 
rapid advances, as well as the need for the involvement of numerous experts, were 
obvious from the start. With support from the National Institute for Mathematical 
and Biological Synthesis (NIMBioS) for the working group on Remote Sensing of 
Biodiversity, we brought together many of the experts represented within the book, 
including a symposium in the fall of 2018 where authors shared their work and pro-
vided feedback to each other. Further interactions were fostered by the National 
Center for Ecological Analysis and Synthesis (NCEAS), annual meetings of the 
NASA Biological Diversity and Ecological Forecasting Program, the Keck Institute 
for Space Studies, the NSF Research Coordination Network on Biodiversity across 
scales, and bioDISCOVERY, an international research program fostering collabora-
tive interdisciplinary activities on biodiversity and ecosystem science. bioDISCOV-
ERY, which is part of Future Earth and is hosted and supported by the University 
Zürich’s University Research Priority Program on Global Change and Biodiversity, 
provided generous financial support for the editing process. Additional financial sup-
port was provided by the NSF RCN (DEB: 1745562) and the Keck Institute for 
Space Studies. Mary Hoff served as technical editor for all of the chapters in the 
book. We express gratitude to all of these institutions and our many colleagues who 
contributed to the conception of this work along the way.
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Chapter 2
Applying Remote Sensing to Biodiversity 
Science

Jeannine Cavender-Bares, Anna K. Schweiger, Jesús N. Pinto-Ledezma, 
and Jose Eduardo Meireles

A treatment of the topic of biodiversity requires consideration of what biodiversity 
is, how it arises, what drives its current patterns at multiple scales, how it can be 
measured, and its consequences for ecosystems. Biodiversity science, by virtue of 
its nature and its importance for humanity, intersects evolution, ecology, conserva-
tion biology, economics, and sustainability science. These realms then provide a 
basis for discussion of how remote detection of biodiversity can advance our under-
standing of the many ways in which biodiversity is studied and impacts humanity. 
We start with a discussion of how biodiversity has been defined and the ways it has 
been quantified. We briefly discuss the nature and patterns of biodiversity and some 
of the metrics for describing biodiversity, including remotely sensed spectral diver-
sity. We discuss how the historical environmental context at the time lineages 
evolved has left “evolutionary legacy effects” that link Earth history to the current 
functions of plants. We end by considering how remote sensing (RS) can inform our 
understanding of the relationships among ecosystem services and the trade-offs that 
are often found between biodiversity and provisioning ecosystem services.
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2.1  �What Is Biodiversity?

Biodiversity encompasses the totality of variation in life on Earth, including its 
ecosystems, the species generated through evolutionary history across the tree of 
life, the genetic variation within them, and the vast variety of functions that each 
organism, species, and ecosystem possess to access and create resources for life to 
persist. Changes in the Earth’s condition, including the actions of humanity, have 
consequences for the expression of biodiversity and how it is changing through time.

2.2  �The Hierarchical Nature of Biodiversity

Since Darwin (1859), we have understood that biodiversity is generated by a pro-
cess of descent with modification from common ancestors. As a result, biological 
diversity is organized in a nested hierarchy that recounts the branching history of 
species (Fig. 2.1a). Individual organisms are nested within populations, which are 
nested within species and within increasingly deeper clades. This hierarchy ulti-
mately represents the degree to which species are related to each other and often 
conveys when in time lineages split (Fig. 2.1a).

Evolution results in the accumulation of changes in traits that causes lineages to 
differ. The degree of trait divergence between taxa is expected to be proportional to 
the amount of time they have diverged from a common ancestor. As a consequence, 
distantly related taxa are expected to be phenotypically more dissimilar (Fig. 2.1b). 

Fig. 2.1  (a) The hierarchical organization of biodiversity. Species (triangles) are nested within 
phylogenetic lineages (clades) due to shared ancestry. All species within a lineage have common 
ancestor (filled circles). (b) Differences in the phenotypes (or trait values) of species (triangles) 
tend to increase with time since divergence from a common ancestor, shown by the orange circle. 
The divergence points at which species split are shown in the simulation, and the filled circles 
indicate the common ancestor of each lineage

J. Cavender-Bares et al.
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Since spectral signals are integrated measures of phenotype, spectra should be more 
dissimilar among distantly related groups than among close relatives (Cavender-
Bares et al. 2016b; McManus et al. 2016; Schweiger et al. 2018). This expectation 
can be seen from models of evolution in which traits change over time following a 
random walk (Brownian motion process; Fig. 2.1b) (O’Meara et al. 2006; Meireles 
et al., Chap. 7). In cases of convergent evolution—where natural selection causes 
distant relatives to evolve similar functions in similar environments—however, phe-
notypes can be more similar than expected under Brownian motion.

This hierarchy of life is relevant to RS of plant diversity because certain depths 
of the tree of life may be more accurately detected than others at different spatial 
resolutions and geographic regions. For example, it could be easier to detect deeper 
levels in the hierarchy (such as genera or families) in hyper-diverse communities 
than in shallow levels (such as species) because deep splits tend to have greater trait 
divergence. Meireles et  al. (Chap. 7) further explain why and how phylogenetic 
information can be leveraged to detect plant diversity.

2.3  �The Making of a Phenotype: Phylogeny, Genes, 
and the Environment

The phenotype of an organism is the totality of its attributes, and it is quantified in 
terms of its myriad functions and traits. The phenotype of an organism is a product 
of the interaction between the information encoded in its genes—the genotype—
and the environment over the course of development. Understanding the relative 
influence of gene combinations, environmental conditions, and ontogenetic stage is 
an active area of investigation across different disciplines (Diggle 1994; Sultan 
2000; Des Marais et al. 2013; Palacio-López et al. 2015).

Although genotypes often play a critical role in determining phenotypic out-
comes, many processes can result in mismatches between genotype and phenotype. 
One of the most well documented of these processes is known as phenotypic plastic-
ity—when organisms with the same genotype display different phenotypes, usually 
in response to different environmental conditions (Bradshaw 1965; Scheiner 1993; 
Des Marais et al. 2013). Plasticity can also result in distinct genotypes developing 
similar phenotypes when growing under the same environmental conditions.

A similar story can be told about the relationship of phenotypic similarity and 
phylogenetic relatedness. As we have seen earlier, closely related taxa are expected 
to be more similar to each other than distantly related taxa. However, convergent 
evolution can lead to plants from different branches of the tree of life to evolve very 
similar traits—such as succulents, which are found within both euphorbia and very 
distantly related cacti taxa.

The fact that phenotypes can be, but not necessarily are, directly related to 
specific genotypes and phylogenetic history should be considered when remotely 
sensing biodiversity. Only phenotypes can be remotely sensed directly. Genetic and 
phylogenetic information can only be inferred from spectra to the degree that 
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absorption features of plant chemical or structural characteristics at specific wave-
lengths relate to phenotypic information. However, the effects plant traits have on 
spectra are only partially understood. Identifying the regions of the spectrum that 
are influenced by specific traits is complicated by overlapping absorption features 
and subtle differences in plant chemical, structural, morphological, and anatomical 
characteristics that simultaneously influence the shape of the spectral response 
(Ustin and Jacquemoud, Chap. 14).

2.4  �Patterns in Plant Diversity

One of the most intensively studied patterns in biodiversity is the latitudinal gradi-
ent, in which low-latitude tropical regions harbor more species, genera, and families 
of organisms than high-latitude regions. In particular, wet tropical areas tend to 
reveal higher diversity of organisms than colder and drier climates (Fig.  2.2). 
Humboldt (1817) documented these patterns quite clearly for plant diversity. 
Naturalists since then have sought to explain these patterns.

Tropical biomes have existed longer than more recent biomes, such as deserts, 
Mediterranean climates, and tundra, which expanded as the climate began to cool 
some 35 million years ago. Tropical biomes also cover more land surface area than 
other biomes. Tropical species thus have had more time and area (integrated over 
the time since their first appearance) for species to evolve and maintain viable popu-
lations (Fine and Ree 2006). Lineages that originally evolved in the tropics may also 
have been less able to disperse out of the tropics and to evolve new attributes adapted 
to cold or dry climates—due to phylogenetic conservatism—restricting their ability 
to diversify (Wiens and Donoghue 2004). However, not all lineages follow this lati-
tudinal gradient. Ectomycorrhizal fungi, for example, show higher diversity at tem-
perate latitudes, where they likely have higher tree host density (Tedersoo and Nara 
2010). Moreover, other measures of diversity do not necessarily follow these pat-
terns. Variation in functional attributes of species, for example, follow different pat-
terns depending on the trait (Cavender-Bares et al. 2018; Echeverría-Londoño et al. 
2018; Pinto-Ledezma et al. 2018b). Specific leaf area, one of the functional traits 
that is highly aligned with the leaf economic spectrum (discussed below), shows 
higher variation at high latitudes than low latitudes across the Americas. In contrast, 
seed size shows higher variation at low latitudes (Fig. 2.2b).

At regional scales, variation in the environment, as discussed by Record et al. 
(Chap. 10), sets the stage for variation in biodiversity because species have evolved 
to inhabit and can adapt to different environments, which allows them to partition 
resources and occupy different niches created by environmental variation. Thus, 
habitat diversity begets biodiversity, and remotely sensed measures of environmen-
tal variation have long been known to predict biodiversity patterns (Kerr et al. 2001).

Land area is another long-observed predictor of species diversity, first described 
for species within certain guilds on island archipelagoes (Diamond and Mayr 1976). 

J. Cavender-Bares et al.
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These observations led to the generalization that richness (number of species, S) 
increases with available land area (A), giving rise to the well-known species-area 
relationships, in which the log of species number increases linearly with the log of 
the area available:

Fig. 2.2  Map of the Americas showing plant species richness, phylogenetic diversity, and func-
tional diversity. Species richness and phylogenetic and functional diversities were estimated based 
on available information from the Botanical Information and Ecology Network (BIEN) database 
(Enquist et al. 2016, https://peerj.com/preprints/2615/). Distribution of functional diversity (trait 
mean) for three functional traits (d–f) was log-transformed for plotting purposes. (a) Species rich-
ness; (b) phylogenetic diversity; (c) first principal component of functional trait means; (d) specific 
leaf area (mm2/mg); (e) plant height (m); and (f) seed mass (mg). Diversity metrics were calculated 
from an estimated presence-absence matrix (PAM) for all vascular plant species at 1 degree spatial 
resolution (PAM dimension = 5353 pixels × 98,291 species) using range maps and predicted dis-
tributions. Functional diversity is based on the first principal component of a principal component 
analysis (PCA) of species means for the three functional traits

2  Applying Remote Sensing to Biodiversity Science
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log logS z A c� � � � � � � ,

	
(2.1)

or simply,

	 S cAZ= , 	 (2.2)

where c is the y-intercept of the log-log relationship and z is the slope.

2.5  �Functional Traits, Community Assembly, 
and Evolutionary Legacy Effects on Ecosystems

2.5.1  �Functional Traits and the Leaf Economic Spectrum

There is a long history of using functional traits to understand ecological pro-
cesses, including the nature of species interactions, the assembly of species into 
ecological communities, and the resulting functions of ecosystems. Species with 
different functions are likely to have different performance in different environ-
ments and to use resources differently, allowing them to partition ecological 
niches. They are thus less likely to compete for the same resources, promoting 
their long-term coexistence. An increased focus on trait-based methodological 
approaches to understanding the relationship between species functional traits 
and the habitats or ecological niches was spurred by the formalization of the leaf 
economic spectrum (LES) (Wright et al. 2004). The LES shows that relationships 
exist among several key traits across a broad range of species and different cli-
mates (Reich et al. 1997; Wright et al. 2004) and that simple predictors, such as 
specific leaf area (SLA, or its reciprocal leaf mass per area, LMA) and leaf nitro-
gen content, represent a major axis of life history variation. This axis ranges from 
slow-growing (“conservative”) species that tolerate low-resource environments to 
fast-growing (“acquisitive”) species that perform well in high-resource environ-
ments (Reich 2014). Variations in relatively easy-to-measure plant traits are 
tightly coupled to hard-to-measure functions, such as leaf lifespan and growth 
rate, which reveal more about how a plant invests and allocates resources over 
time to survive in different kinds of environments. High correlations of functional 
traits provide strong evidence for trait coordination across the tree of life. The 
variation in plant function across all of its diversity is relatively constrained and 
can be explained by a few major axes of trait information (Díaz et  al. 2015). 
Conveniently, traits such as SLA and N are readily detectable via spectroscopy. 
Other traits—such as leaf lifespan or photosynthetic rates—that are harder to 
measure but are correlated with these readily detectable traits can thus be inferred, 
permitting greater insight into ecological processes.

J. Cavender-Bares et al.
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2.5.2  �Plant Traits, Community Assembly, and Ecosystem 
Function

Considerable evidence supports the perspective that plant traits influence how spe-
cies sort along environmental gradients and are linked to abiotic environmental filters 
that prevent species without the appropriate traits from persisting in a given location. 
Traits thus influence the assembly of species in communities—and consequently, the 
composition, structure, and function of ecosystems. Variation in traits among indi-
vidual plants and species within communities indicates differences in resource use 
strategies of plants, which have consequences for ecosystem functions, such as pro-
ductivity and resistance to disturbance, disease, and extreme environmental condi-
tions. Moreover, the distribution of plant traits within communities influences 
resource availability for other trophic levels, above- and belowground, which affects 
community structure and population dynamics in other trophic levels. A major goal 
of functional ecology is to develop predictive rules for the assembly of communities 
based on an understanding of which traits or trait combinations (e.g., the leaf-height-
seed (LHS) plant ecology strategy, sensu Westoby 1998) are important in a given 
environment, how traits are distributed within and among species, and how those 
traits relate to mechanisms driving community dynamics and ecosystem function 
(Shipley et al. 2017). This predictive framework requires selecting relevant traits; 
describing trait variation and incorporating this variation into models; and scaling 
trait data to community- and ecosystem-level processes (Funk et al. 2017). Selecting 
functional traits for ecological studies is not trivial. Depending on the question, indi-
vidual traits or trait combinations can be selected that contribute to a mechanistic 
understanding of the critical processes examined. One can distinguish response 
traits, which influence a species response to its environment, and effect traits, which 
influence ecosystem function (Lavorel and Garnier 2002). These may or may not be 
different traits. Disturbance or global change factors that influence whether a species 
can persist within a habitat or community based on its response traits may impact 
ecosystem functions in complex ways (Díaz et al. 2013). Plant traits are at the heart 
of understanding how the evolutionary past influences ongoing community assembly 
processes and ecosystem function (Fig. 2.3). Traits also influence species interac-
tions, which contribute to continuing evolution. Remotely sensed plant traits, if 
detected and mapped (Serbin and Townsend, Chap. 3; Morsdorf et al., Chap. 4) at the 
appropriate pixel size and spatial extent (Gamon et al., Chap. 16), can provide a great 
deal of insight into these different processes (Fig. 2.4).

2.5.3  �Phylogenetic, Functional, and Spectral Dispersion 
in Communities

The rise of phylogenetics in community ecology was based on the idea that func-
tional similarity due to shared ancestry should be predictive of environmental 
sorting and limiting similarity. These processes depend on physiological tolerances 
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in relation to environmental gradients and intensity of competition as a consequence 
of shared resource requirements (Webb 2000a, 2002). The underlying conceptual 
framework was formalized in terms of functional traits in individual case studies 
(Cavender-Bares et al. 2004; Verdu and Pausas 2007). The tendency to oversimplify 
the interpretation of phylogenetic patterns in communities, whereby phylogenetic 
overdispersion was equated with the outcome of competitive exclusion and phylo-
genetic clustering was interpreted as evidence for environmental sorting, led to a 
series of studies investigating the importance of scale (Cavender-Bares et al. 2006; 
Swenson et al. 2006) and the role of Janzen-Connell-type mechanisms, i.e., density-
dependent mortality due to pathogens and predators (Gilbert and Webb 2007; Parker 
et al. 2015). Further developments revealed that the relationship between patterns 
and ecological processes is context-dependent—in particular, with respect to spatial 
scale (Emerson and Gillespie 2008; Cavender-Bares et  al. 2009; Gerhold et  al. 
2015). Later studies revisited assumptions about the nature of competition and 
expected evolutionary and ecological outcomes (Mayfield and Levine 2010). 
Likewise, interpreting spectral dispersion will depend on the spatial resolution and 
pixel (grain) size of remotely sensed imagery relative to plant size (Marconi et al. 
2019) as well as on the consideration of specific spectral regions and their func-
tional importance. When traits and spectral regions are highly phylogenetically 
conserved (see Meireles et al., Chap. 7), trait, phylogenetic, and spectral data pro-
vide equivalent information. However, when some traits and spectral regions are 

Fig. 2.3  Plant traits that have evolved over time influence how plants assemble into communities, 
which shapes ecosystem structure and function. Traits reflect biogeographic and environmental 
legacies and evolve in response to changing environments. They play a central role in ecological 
processes influencing the distribution of organisms and community assembly. A range of traits influ-
ence the way plants reflect light, such that many traits can be mapped continuously across large 
spatial extents with imaging spectroscopy. The remote detection of plant traits provides incredible 
potential to observe and understand patterns that reveal information about community assembly, 
changes in ecosystem function, and how legacies from the past shape community structure and 
ecosystem processes today. (Reprinted from Cavender-Bares et al. 2019, with permission)

J. Cavender-Bares et al.
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conserved, but others related to species interactions or with the abiotic environment 
vary considerably among close relatives, there is the potential to tease apart spectral 
signals that may relate to species interactions.

Spatial patterns of spectral similarity and dissimilarity also have the potential to 
provide meaningful information about ecological processes and the forces that 
dominate community assembly at a particular scale. For example, to the extent that 
spectral similarity of neighboring plants can be determined, high spectral similar-
ity might indicate that functionally and/or phylogenetically similar individuals are 
sorting into the same environment, while spectral dissimilarity might indicate that 
quite distinct individuals are able to coexist if they exhibit complementarity by 
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Fig. 2.4  (a) Biological processes change with spatial and temporal scale as do the patterns they 
give rise to. (Adapted from Cavender-Bares et al. 2009.) Detection and interpretation of those pat-
terns will shift with spatial resolution (pixel size) and extent (b–e). (a) At high spatial resolutions 
(1 cm pixel size)—that allow detection of individual herbaceous plants and their interactions—and 
relatively restricted spatial extents in which the abiotic environment is fairly homogeneous, spec-
tral dissimilarity among pixels may indicate complementarity of contrasting functional types. (b) 
The grain size sufficient to detect species interactions is likely to shift with plant size. For example, 
the interactions of trees in the Minnesota oak savanna and their vulnerability to density-dependent 
diseases, such as oak wilt (Bretziella fagacearum), can be studied at a 1 m pixel size. (c) At some-
what larger spatial resolution (30 m pixel sizes) and extent, environmental sorting—which includes 
interactions of species with both the biotic and abiotic environments—may be detected by compar-
ing spectral similarity of neighbors and comparing mapped functional traits to environmental 
variation. Images adapted from Singh et al. (2015). The ability to detect change through time may 
be especially important in understanding species interactions and ecological sorting processes in 
relation to the biotic and abiotic environment. (d) At the global scale, it may be possible to detect 
the evolutionary legacy effects. For instance, regions with similar climate and geology can differ 
in vegetation composition and ecosystem function as a consequence of differences in which lin-
eages evolved in a given biogeographic region and their historical migration patterns. Shown are 
mapped values of %N and NPP based on Moderate Resolution Imaging Spectroradiometer 
(MODIS) data. (Adapted from Cavender-Bares et al. 2016a)
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partitioning resources. Approaches that use spectral detection of patterns that 
might be interpreted within this framework will need to pay close attention to the 
pixel-to-plant size ratio—or the grain size at which biological diversity varies 
(Gamon et al., Chap. 16; Serbin and Townsend, Chap. 3; Schimel et al., Chap. 19)—
as well as to the spatial extent at which density-dependent processes and environ-
mental sorting pressures are strongest. Often these processes are expected to 
dominate at different spatial scales, such that competition and Janzen-Connell-type 
mechanisms operate at very local scales, while environmental sorting may be more 
important at landscape scales. Other factors, such as the geographic locations and 
environmental conditions under which lineages diversified, may impact spectral 
patterns of phylogenetic, functional trait, and spectral similarity at continental 
scales (Fig. 2.5). At the same time, spectral similarity will be driven by similar 
ecological forces, since both genetic and phylogenetic compositions, as well as 
environmental factors, drive phenotypic variation that can be spectrally detected.

2.6  �Evolutionary Legacy Effects on Ecosystems

Ecological communities are formed by resident species (incumbents) and colonizer 
species. Incumbents may have originated in the study region (or at least have had 
considerable time to adapt to their biotic and abiotic environment), whereas colo-
nizers evolved elsewhere and subsequently dispersed into the region. However, the 
processes that determine species distributions and the assembly of ecological com-
munities are complex. Species within communities experience unique combinations 

Fig. 2.5  Evolutionary legacy effects as a consequence of biogeographic origin. Two lineages are 
shown that have contrasting origins, one from the tropics and one from high latitudes. Both diversi-
fied and expanded to colonize intermediate latitudes such that their descendants sometimes co-
occur. Lineages with ancestors from contrasting climatic environments likely differ in functional 
traits that reflect their origins and thus may assemble in contrasting microenvironments within the 
local communities where they co-occur. (Adapted from Cavender-Bares et al. 2016a)

J. Cavender-Bares et al.
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of evolutionary constraints and innovations due to legacies of their biogeographic 
origins and the environmental conditions in which they evolved (Cavender-Bares 
et al. 2016a; Pinto-Ledezma et al. 2018a). Historical contingencies play a role in 
which lineages can take advantage of opportunities to diversify following climate 
change or other disturbances and environmental transitions. The rate of species 
range expansion and contraction and the evolution of species functional traits that 
allow species to establish and persist in some regions or under particular environ-
mental conditions but not elsewhere are shaped by biogeographic history (Moore 
et  al. 2018). For example, when species from two distinct lineages—one that 
evolved in tropical climates and the other that evolved in temperate climates—colo-
nize a new environment, they are predicted to persist in contrasting microhabitats as 
a consequence of niche conservatism (Ackerly 2003; Harrison 2010; Cavender-
Bares et al. 2016a). These evolutionary legacies—collectively referred to as “his-
torical factors” (Ricklefs and Schluter 1993)—operate at different spatial and 
temporal scales that leave their imprints on species current functional attributes and 
distributions and consequently on ecosystem function itself (Fig. 2.4c, Cavender-
Bares et al. 2016a). RS approaches can help reveal how the deep past has influenced 
current biodiversity patterns and ecosystem function by decoupling climate and 
geological setting from ecosystem function. Current and forthcoming RS instru-
ments (Lausch et al., Chap. 13; Schimel et al., Chap. 19) enable the monitoring of 
plant productivity, dynamics of vegetation growth, seasonal changes in chemical 
composition, and other ecosystem properties independently of climate and geology. 
These technologies thus provide opportunities to detect how biodiversity is sorted 
across the globe and to determine how variable ecosystem functions can be in the 
same geological and environmental setting. Both are important for developing 
robust predictive models of how lineages respond to current and future environmen-
tal conditions with important consequences for managing ecosystems in the 
Anthropocene.

2.7  �Quantifying Multiple Dimensions of Biodiversity

Several major dimensions of biodiversity have emerged in the literature that capture 
different aspects of the variation of life. Taxonomic diversity focuses on differences 
between species or between higher-order clades, such as genera or families. 
Estimating the numbers and/or abundances of different taxa across units of area 
captures this variation. Phylogenetic diversity captures the evolutionary distances 
between species or individuals, represented in terms of millions of years since 
divergence from a common ancestor or molecular distances based on accumulated 
mutations since divergence. Functional diversity focuses on the variation among 
species as a consequence of measured differences in their functional traits, fre-
quently calculated as a multivariate metric but also calculated for individual trait 
variation. Spectral diversity captures the variability in spectral reflectance from veg-
etation (or from other surfaces), either measured and calculated among individual 
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plants or, more commonly, calculated among pixels or among other meaningful 
spatial units.

Biodiversity metrics can have different components, including (1) taxonomic 
units; (2) abundance, frequency, or biomass of those units and their degree of even-
ness; and (3) the dispersion or distances between those units in trait, evolutionary, 
or spectral space. Myriad metrics quantify the major dimensions and components of 
diversity. Here we briefly describe several frequently used metrics; the equation for 
each metric  and the source citation that provides the  full details are given in 
Table 2.1.

Table 2.1  A brief summary of metrics that are commonly used to estimate the diversity of different 
facets/dimensions of plant diversity

Metric Equation Definition Reference

Whittaker 
alpha

α Number of species found in a 
sample or particular area, 
generally expressed as species 
richness

Whittaker 
(1960)

Whittaker beta γ/α Variation of species composition 
between two samples. Can be 
interpreted as the effective 
number of distinct compositional 
units in the region

Whittaker 
(1960)

Whittaker 
gamma

γ Overall diversity (number of 
species) within a region

Whittaker 
(1960)

Shannon’s H
−

i

S

i ip p
�
�

1

ln
Metric that characterizes species 
diversity in a sample. Assumes 
that all species are represented in 
the sample and that individuals 
within species were sampled 
randomly

Shannon 
(1948)

Simpson’s D 1

1

2

i

S

iP��

Metric that characterizes species 
diversity in a sample. Contrary to 
Shannon’s H, Simpson’s D 
captures the variance of the 
species abundance distribution

Simpson 
(1949)

Faith’s PD
(phylogenetic 
diversity)

e z T

e
 � �
�� Sum of the lengths of all 

phylogenetic branches (from the 
root to the tip) spanned by a set 
of species

Faith (1992)

PSV 
(phylogenetic 
species 
variability)

ntrC C

n n
c

��
�� �

� �
1

1 ,
Measures the variability in an 
unmeasured neutral trait or the 
relative amount of unshared edge 
length

Helmus 
(2007)

PSR 
(phylogenetic 
species 
richness)

nPSV The deviation from species 
richness, penalized by close 
relatives

Helmus 
(2007)

(continued)
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Table 2.1  (continued)

Metric Equation Definition Reference

PSE 
(phylogenetic 
species 
evenness)

mdiag C M MCM

m mmi

( )� �
�

�
2

PSV metric modified to account 
for relative species abundance or 
simply abundance-weighted PSV

Helmus 
(2007)

qPD(T) 
(phylogenetic 
branch 
diversity)

� �

�
�

�

�
�

�

�
�
�

�

�
�
�

�

�

i
B

i
i

q q

L x
a

T1

1

1

Hill number (the effective total 
branch length) of the average 
time of a tree’s generalized 
entropy over evolutionary time 
intervals

Chao et al. 
(2010)

qD(T) 
(phylogenetic 
Hill numbers)

q PD T

T

� ��

�
�
�

�

�
�
�

Effective number of species or 
lineages

Chao et al. 
(2010)

FRic 
(functional 
richness)

Quickhull algorithm Quantity of functional space 
filled by the sample. The number 
of species within the sample 
must be higher than the number 
of functional traits

Barber et al. 
(1996), 
Villeger 
et al. (2008)

FEve 
(functional 
evenness) i

S

iPEW
S S

S

�

�

� �
�
�
�

�
�
� � �

�
�

1

1 1
1

1
1

1
1
1

min ,
Quantifies the abundance 
distribution in functional trait 
space

Villeger 
et al. (2008)

FDiv 
(functional 
divergence)

�
�
d dG

d dG

�
�

Metric that measures the spread 
of species abundance across trait 
space

Villeger 
et al. (2008)

qD(TM) 
(functional 
trait 
dispersion)

1 + (S − 1) × qE(T) × M′ Metric that quantify the effective 
number of functionally distinct 
species for a given level of 
species dispersion

Scheiner 
et al. (2017)

βsor (Sørensen 
pairwise 
dissimilarity)

b c

a b c

+
+ +2

Compares the shared species 
relative to the mean number of 
species in a sample. Bray-
Curtis dissimilarity is a special 
case of Sørensen dissimilarity 
that accounts for species 
abundance

Sørensen 
(1948), 
Baselga 
(2010)

βsim (Simpson 
pairwise 
dissimilarity)

min

min

b c

a b c

,

,

� �
� � �

Similar to Sørensen 
dissimilarity but independent of 
species richness

Simpson 
(1943), 
Lennon et al. 
(2001), 
Baselga 
(2010)

βjac (Jaccard 
index)

a

a b c+ +

Metric that compares the shared 
species to the total number of 
species in all samples

Jaccard 
(1900)
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2.7.1  �The Spatial Scale of Diversity: Alpha, Beta, and Gamma 
Diversity

Diversity metrics are designed to capture biological variation at different spatial 
extents. Alpha diversity (α) represents the diversity within local communities, which 
are usually spatial subunits within a region or landscape. Whittaker first defined beta 
diversity (β) as the variation in biodiversity among local communities and gamma 
diversity (γ) as the total biodiversity in a region or a region’s species pool 
(Whittaker 1960).

	
�

�
�

� ,
	 (2.3)

where β is beta diversity, γ gamma diversity, and α alpha diversity.
Other authors have defined beta diversity differently (see Tuomisto 2010), 

including using variance partitioning methods (Legendre and De Cáceres 2013).

2.7.2  �Taxonomic Diversity

Species richness is the number of species for a given area. It does not include abun-
dance of individuals within species. However, the relative abundances, frequency, 
and biomass of species within a community matter in terms of capture rarity and 
evenness. Abundance-weighted metric, such as Simpson’s diversity index (D), 
incorporates both richness and evenness. A set of indices based on Hill numbers—a 
unified standardization method for quantifying and comparing species diversity 
across samples, originally presented by Mark Hill (1973)—were refined by Chao 
et al. (2005, 2010). These are generalizable to all of the dimensions of diversity and 
consider the number of species and their relative abundances within a local com-
munity. Hill numbers require the specification of the diversity order (q), which 
determines the sensitivity of the metric to species relative abundance. Different 
orders of q result in different diversity measures; for example, q = 0 is simply spe-
cies richness, q = 1 gives the exponential of Shannon’s entropy index, and q = 2 
gives the inverse of Simpson’s concentration index.

2.7.3  �Phylogenetic Diversity

Phylogenetic diversity (PD) considers the extent of shared ancestry among species 
(Felsenstein 1985). For example, a plant community composed of two species that 
diverged from a common ancestor more recently is less phylogenetically diverse than 
a community of two species that diverged less recently. Faith’s (1992) metric of PD 
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sums the branch lengths among species within a community (from the root of the 
phylogeny to the tip). One feature of this metric is that it scales with species richness 
because as new species are added into the community, new branch lengths are also 
added. Other metrics were subsequently developed that calculate the mean evolution-
ary distances among species independently of the number of species [e.g., mean phy-
logenetic distance (MPD, Webb 2000b; Webb et al. 2002) or phylogenetic species 
variability (PSV), Helmus 2007]. Helmus (2007) developed two more phylogenetic 
diversity metrics that scale either with richness or by incorporating species abun-
dances. Phylogenetic species richness (PSR) increases with the number of species, but 
reduces the effect of species richness proportionally to their degree of shared ancestry. 
Phylogenetic species evenness (PSE) is similar to PSV but includes abundances by 
adding individuals as additional tips descending from a single species node, with 
branch lengths of 0. Chao et al. (2010) defined the phylogenetic Hill number, qD(T), 
as the effective number of equally abundant and equally distinct lineages and phylo-
genetic branch diversity,  qPD(T), as the effective total lineage length from the root 
node (i.e., the total evolutionary history of an assemblage) (Chao et al. 2014).

Phylogenetic endemism is another aspect of biodiversity that can be estimated 
from phylogenetic information and range maps of species (Faith et  al. 2004). 
Phylogenetic endemism can be simply defined as the quantity of PD restricted to a 
given geographic area. This metric thus focuses on geographic areas, rather than on 
species, to discern areas of high endemism based on evolutionary history for con-
servation purposes.

2.7.4  �Functional Diversity

Widely used metrics of functional diversity consider the area or volume of trait 
space occupied by a community of species, the distances of each species to the cen-
ter of gravity of those traits, and the trait distances between species (Mouillot et al. 
2013). Functional attribute diversity (FAD) is a simple multivariate metric calcu-
lated as the sum of species pairwise distances of all measured continuous functional 
traits (Walker et al. 1999). Villeger et al. (2008) developed a series of functional 
diversity metrics that incorporate trait dispersion and distance among species as 
well as species abundances, including functional richness (FRic), functional diver-
gence (FDiv), and functional evenness (FEve).  Building on the framework of 
Villeger et al. (2008), Laliberté and Legendre (2010) developed functional dispersion 
(FDis), a functional diversity metric that is independent of species richness and can 
include species relative abundances (Table 2.1). 

Scheiner’s functional trait dispersion [qD(TM), Scheiner et al. 2017] calculates 
the effective number of species (or units) that are as distinct as the most distinct spe-
cies (or unit) in that community. qD(TM) decomposes diversity estimates into three 
components: the number of units (S), functional evenness [qE(T), the extent to which 
units are equally dispersed], and mean dispersion [M’, the average distance or the 
distinctiveness of these units]. Functional diversity measured as qD(TM) is maxi-
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mized when there are more units in a community that are more equitably distributed 
(or less clumped) and more dispersed (or positioned further apart) in space. Like 
Chao’s approach, qD(TM) includes Hill numbers (q), which allow weighting of 
abundances: small and large q values emphasize rare and common species, respec-
tively. Like many other biodiversity metrics, qD(TM) can be calculated from pair-
wise distances among species or individuals; thus, the metric can be applied to 
estimate different dimensions of biodiversity, including functional, phylogenetic 
(Scheiner 2012; Presley et al. 2014) and spectral components (Schweiger et al. 2018).

Briefly, functional trait dispersion [qD(TM)] is calculated as:

	
q qD TM S E T M� � � � �� �� � ��1 1 ’

	
(2.4)

where:

S = species richness
E(T) = trait evenness
M’ = trait dispersion
q = Hill number

2.7.5  �Spectral Diversity

Like taxonomic, functional, and phylogenetic diversity, spectral diversity can be 
calculated in many different ways.  Spectral alpha diversity metrics include  the 
coefficient of variation of spectral indices (Oindo and Skidmore 2002) or spectral 
bands among pixels (Hall et al. 2010; Gholizadeh et al. 2018, 2019; Wang et al. 
2018, the convex hull volume (Dahlin 2016) and the convex hull area (Gholizadeh 
et al. 2018) of pixels in spectral feature space, the mean distance of pixels from the 
spectral centroid (Rocchini et al. 2010), the number of spectrally distinct clusters 
or “spectral species” in ordination space (Féret and Asner 2014), and spectral vari-
ance (Laliberté et  al. 2019).  Schweiger et  al. (2018) applied qD(TM) to species 
mean spectra and to individual pixels extracted at random from high-resolution 
proximal RS data. The second approach is independent of species identity and uses 
the same number of pixels per community for analysis. In this manner, the problem 
of diversity scaling with the number of species in a community is eliminated, and 
greater differences in reflectance spectra among pixels result in increased spectral 
diversity. Conceptually, spectral diversity metrics are versatile and can be tailored 
to match taxonomic or phylogenetic units, e.g., by using mean spectra for focal 
taxa, or to resemble functional diversity by selecting spectral bands that align with 
known absorption features for specific chemical traits or spectral indices that cap-
ture plant characteristics of known ecological importance. If measured at the 
appropriate scale (see Gamon et al. Chap. 16), spectral diversity can integrate the 
variation captured by other metrics of diversity and similarly predicts ecosystem 
function (Fig. 2.6).
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Fig. 2.6  (a) Aerial photo of the Cedar Creek long-term biodiversity experiment (BioDIV) (Courtesy 
of Cedar Creek Ecosystem Science Reserve). (b) Pairwise phylogenetic and (c) functional distances 
for the 17 most abundant prairie-grassland species in BioDIV are well-predicted by their spectral 
distances based on leaf-level spectral profiles (400–2500 nm). (d) Phylogenetic, (e) functional, and 

(f) leaf-level spectral diversities based on Scheiner’s qD(TM) metric all predict ecosystem productiv-
ity in BioDIV. (g) Independent of information about species identities or their abundances, remotely 
sensed spectral diversity detected at high spatial resolution (1 mm) also predicts productivity. All 
graphs are redrawn from Schweiger et al. 2018. Species abbreviations in b and c are as follows: 
ACHMI = Achillea millefolium L., AMOCA = Amorpha canescens Pursh, ANDGE = Andropogon 
gerardii Vitman, ASCTU = Asclepias tuberosa L., KOEMA = Koeleria macrantha (Ledeb.) Schult., 
LESCA = Lespedeza capitata Michx., LIAAS = Liatris aspera Michx., LUPPE = Lupinus perennis 
L., MONFI = Monarda fistulosa L., PANVI = Panicum virgatum L., PASSMI = Pascopyrum smithii 
(Rydb.) Á. Löve, PETCA = Petalostemum candidum (Willd.), PETPU = Petalostemum purpureum 
(Vent.) Rydb., POAPR  =  Poa pratensis L., SCHSC  =  Schizachyrium scoparium Michx., 
SOLRI = Solidago rigida L., SORNU = Sorghastrum nutans (L.) Nash
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2.7.6  �Beta Diversity Metrics

Whittaker’s 1960 definition of beta diversity (Eq. 2.3) quantified the degree of differen-
tiation among communities in relation to environmental gradients. Under this defini-
tion, beta diversity is defined as the ratio between regional (gamma) and local (alpha) 
diversities (Eq. 2.3) and measures the number of different communities in a region and 
the degree of differentiation between them (Whittaker 1960; Jost 2007). Indices such 
as Bray-Curtis dissimilarity and Jaccard and Sørensen indices evaluate similarity of 
communities based on the presence or abundance of species within them. Metrics of 
similarity used for species have been adapted for phylogenetic and functional trait dis-
tances (Bryant et al. 2008; Graham and Fine 2008; Kembel et al. 2010; Cardoso et al. 
2014) and can equally be applied to spectral information (Gamon et al., Chap. 16).

While the ratio between regional and local communities provides a simple means 
to estimate beta diversity, there are many different ways to calculate taxonomic, 
functional, and phylogenetic beta diversity that can be grouped into pairwise and 
multiple-site metrics (reviewed in Baselga 2010). Notably, beta diversity can be 
partitioned into components that capture species replacement—the “turnover com-
ponent”—caused by the exchange of species among communities and differences in 
the number of species, the “nestedness component,” caused by differences in the 
number of species among communities. The turnover component can be interpreted 
as the difference between two community assemblages that contain contrasting sub-
sets of species from a regional source pool, while the nestedness component repre-
sents the difference in species composition between two communities due to 
attrition of species in one assemblage relative to the other (Baselga 2010; Cardoso 
et al. 2014). Examining these different components of beta diversity for multiple 
dimensions of plant diversity provides a means to discern the role of historical and 
ongoing environmental sorting processes in the distribution of plant diversity at 
continental extents (Pinto-Ledezma et al. 2018b). In contrast to traditional diversity 
metrics, spectral diversity (alpha and beta) is only beginning to receive attention in 
biodiversity studies (Rocchini et al. 2018). Although different approaches have been 
proposed (Schmidtlein et  al. 2007; Féret and Asner 2014; Rocchini et  al. 2018; 
Laliberté et al. 2019), the estimation and mapping of dissimilarities in spectral com-
position (i.e., the variation among pixels) is similar to traditional estimations of beta 
diversity. For example, Laliberté et  al. (2019) adapted the total community 
composition variance approach (Legendre and De Cáceres 2013) to estimate 
spectral diversity as spectral variance, partitioning the spectral diversity of a region 
(gamma diversity) into additive alpha and beta diversity components.

2.8  �Links Between Plant Diversity, Other Trophic Levels, 
and Ecosystem Functions

Plant diversity has consequences for other trophic levels, sometimes reducing her-
bivory on focal species (Castagneyrol et al. 2014), but also increasing the diversity of 
insects and their predators in an ecosystem (Dinnage et al. 2012; Lind et al. 2015). 
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The distribution of plant traits within communities influences resource availability 
for other trophic levels above- and belowground, which affects community assembly 
and population dynamics across trophic levels. Diversity of neighbors surrounding 
focal trees can both increase and decrease pathogen and herbivore pressure on them 
(Grossman et al. 2019). Thus, while we know that plant diversity impacts other tro-
phic levels, consistent rules across the globe that explain how and why these impacts 
occur remain elusive. An increasing number of studies reveal that plant diversity 
influences belowground microbial diversity and composition (Madritch et al. 2014; 
Cline et al. 2018). While these relationships are significant, they may explain limited 
variation given the number of other factors that influence microbial diversity and 
potentially due to a mismatch in sampling scales. Ultimately, it appears that chemical 
composition and productivity of aboveground components of ecosystems that can be 
remotely sensed are critical drivers of belowground processes, including microbial 
diversity (Madritch et al., Chap. 8).

Biodiversity loss is known to substantially decrease ecosystem functioning and 
ecosystem stability (Cardinale et al. 2011; O’Connor et al. 2017). Yet, the nature 
and scale of biodiversity-ecosystem function relationships remains a central ques-
tion in biodiversity science. The issue is one that is ready to be tackled across scales 
using RS technology. The long-term biodiversity experiment at Cedar Creek 
Ecosystem Science Reserve (Tilman 1997) (Fig. 2.6), for example, has revealed the 
increasing effects of biodiversity on productivity over time (Reich et al. 2012) and 
that phylogenetic and functional diversity are highly predictive of productivity 
(Cadotte et al. 2008; Cadotte et al. 2009). Remotely sensed spectral diversity also 
predicts productivity (Sect. 2.9). Increased stability has also been linked to both 
higher plant richness (Tilman et al. 2006) and phylogenetic diversity (Cadotte et al. 
2012) in this experiment. Tree diversity experiments show similar effects of increas-
ing productivity with diversity (Tobner et al. 2016; Grossman et al. 2017) (Fig. 2.7), 
and these same trends emerge as the dominant pattern in forest plots globally 

Fig. 2.7  The Forest and Biodiversity (FAB) experiment at the Cedar Creek Ecosystem Science 
Reserve shows overyielding (a)—greater productivity than expected in species-rich communities 
compared to monocultures—also called the net biodiversity effect (NBE). Curves show 90% pre-
dictions from multiple linear regression models (yellow 2013–2014; blue 2014–2015). (Redrawn 
from Grossman et al. 2018.) Photos (b, c) show juvenile trees grown in mixtures with varying 
neighborhood composition. The first phase of the experiment, shown here, includes three 600 m2 
blocks, each consisting of 49 plots (9.25 m2) planted in a grid with 0.5 m spacing
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(Liang et  al. 2016). Hundreds of rigorous biodiversity experiments have been 
designed and conducted to tease apart effects of changing numbers of species (rich-
ness) from effects of changing identities of species (composition) (O’Connor et al. 
2017; Grossman et al. 2018; Isbell et al. 2018). Complementarity among diverse 
plant species that vary in their functional attributes and capture and respond to 
resources differently is the primary explanation for increasing productivity with 
diversity (Williams et al. 2017). Nevertheless, both the nature of biodiversity-eco-
system function (BEF) relationships and their causal mechanisms remain variable 
and scale dependent in natural systems. In the Nutrient Network global grassland 
experiments, in which communities have assembled naturally, the relationship 
between diversity and productivity is variable (Adler et al. 2011). In tropical forest 
plots around the globe, at spatial extents of 0.04 ha or less, the biodiversity-produc-
tivity relationship is strong. However, as scales increase to 0.25 or 1.0 ha, the rela-
tionship is no longer consistently positive and can frequently be negative (Chisholm 
et al. 2013). These varied relationships at contrasting spatial scales may result from 
nonlinear, hump-shaped relationships between biodiversity and ecosystem function 
across resource availability gradients as the nature of species interactions and their 
level of complementarity shift (Jaillard et al. 2014). RS methods—including imag-
ing spectroscopy and LiDAR—that can detect both the diversity and the structure 
and function of ecosystems (Martin, Chap. 5; Atkins et al. 2018) can discern these 
relationships across spatial extents and biomes in natural systems. They thus have 
high potential to enhance our understanding of the scale and context dependence of 
linkages between biodiversity and ecosystem function (Grossman et al. 2018).

2.9  �Incorporating Spectra into Relationships 
Between Biodiversity and Ecosystem Function

Detection of spectral diversity, in particular, offers the potential to contribute to the 
quantification of BEF relationships at large scales (Schweiger et al. 2018) and is 
thus worth discussing in more detail. The variability captured by spectral diversity 
in a given ecosystem depends on the way the spectral diversity is calculated, as 
well as its spatial and spectral resolution (Sect. 2.7.5; Gamon et  al., Chap. 16). 
From a functional perspective, spectral profiles measured at the leaf level depend 
on the chemical, structural, morphological, and anatomical characteristics of leaves 
(Ustin and Jacquemoud, Chap. 14). Variation in spectra and spectral diversity can 
be used to test hypotheses about how specific traits influence ecosystem function, 
community composition, and other characteristics of ecosystems, when using 
spectral bands or spectral indices with known associations with specific plant traits 
(Serbin and Townsend, Chap. 3). Moreover, spectral bands and indices can be 
weighted based on prior information about the relative contribution of individual 
traits to specific ecosystem characteristics. However, while the absorption features 
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of some chemical traits are known, the effects of other, particularly nonchemical, 
plant traits on spectra are less well understood, in part due to overlapping spectral 
features and challenges associated with accurately describing nonchemical traits 
(Ustin and Jacquemoud, Chap. 14). Using the full spectral profile of plants in spec-
tral diversity calculations provides a means to integrate chemical, structural, mor-
phological, and anatomical variation and to acknowledge the many ways plants 
differ from one another.

It is certainly more complicated to decipher the biological meaning of spectral 
diversity calculated from spectral profiles than from measures of biodiversity that 
are based on a specific set of plant traits or spectral bands or indices with known 
links to specific traits. However, the variance that is explained by models based on 
spectral profiles can be partitioned into known and unknown sources of variation. 
This provides a means to assess the relative contribution of traits with known spec-
tral characteristics and traits that are less well understood spectrally or that are of 
yet-unrecognized importance. At the canopy level, when spectra are measured from 
a distance, the question of what spectra and spectral diversity represent is further 
complicated by the influences that plant architecture, soil, and other materials have 
on the spectral characteristics of image pixels (Wang et al. 2018; Gholizadeh et al. 
2018). Again, the degree to which these characteristics matter for a particular eco-
system needs to be evaluated in the particular context of the study. Some ecosystem 
components such as shade, soil, rock, or debris, which influence remotely sensed 
spectra, are biologically meaningful because they influence light availability and 
microclimate and provide resources for other trophic levels.

The association between plant spectra and traits can be illustrated by plotting 
spectral distances against functional distances or dissimilarity, as illustrated using 
species from the Cedar Creek biodiversity experiment (Fig. 2.6d). Given that func-
tional differences among species are expected to increase with evolutionary 
divergence time (Fig. 2.1b), positive relationships are also expected among spectral 
and phylogenetic distances. The observed associations among spectral, functional, 
and phylogenetic dissimilarity (Fig. 2.6a, b) allow biodiversity metrics based on any 
of these dimensions of biodiversity to explain a similar proportion of the total vari-
ability in aboveground productivity (Fig. 2.6c–e), which is known to increase with 
the functional diversity of the plant community in this system (Cadotte et al. 2009). 
The species in the biodiversity experiment at Cedar Creek are relatively functionally 
dissimilar and distantly related, such that spectral, functional, and phylogenetic 
diversity also predict species richness (not shown). One advantage of spectral diver-
sity is that the metric can be calculated from remotely sensed image pixels without 
depending on information about the distribution and abundance of species in an area, 
their functional traits, or phylogenetic relationships (Schweiger et  al. 2018). By 
extracting a random number of high-resolution image pixels in each plant commu-
nity, Schweiger et al. (2018) found that remotely sensed spectral diversity explained 
the biodiversity effect on aboveground productivity about as well as spectral diver-
sity calculated using leaf-level spectra (Fig. 2.6).
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2.10  �Links Between Biodiversity and Ecosystem Services

Humans benefit from ecosystem functions and biodiversity. The benefits we derive 
from nature, often called ecosystem services, are a product of the biodiversity—
assembled over millions of years—and ecosystem properties of a given region, or 
the whole Earth (Daily 1997). Daily (1997) defines ecosystem services as “the con-
ditions and processes through which natural ecosystems, and the species that make 
them up, sustain and fulfill human life.” Ecosystem services, referred to by the 
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 
Services  (IPBES)  as “nature’s contributions to people” (Díaz et al. 2018), are a 
socioecological concept that emerged from the Millennium Ecosystem Assessment 
(2005) and include provisioning, regulating, supporting, and cultural services. Some 
ecosystem service categories include direct benefits of biodiversity—through the 
use and spiritual values that humans establish with elements of biodiversity and 
ecosystems—and indirect benefits through the contributions of biodiversity to criti-
cal regulating ecosystem functions. The diversities of functional traits of plants 
make up the primary productivity of life on Earth and are essential to the ecosystem 
services on which all life depends. Assessment of ecosystem services depends on 
understanding both the ecosystem functions on which ecosystem services are 
derived and how services are valued by humans (Schrodt et al., Chap. 17). Modeling 
efforts that incorporate remotely sensed data can be used to describe ecosystem 
functions and quantify the services they generate (Sharp et al. 2018). (For modeling 
tools that enable mapping and valuing ecosystem services, see https://naturalcapi-
talproject.stanford.edu/invest/.)

2.11  �Trade-Offs Between Biodiversity and Ecosystem 
Services

Biodiversity—as well as many regulating services to which biodiversity contributes 
and upon which it depends—frequently shows a negative trade-off with provision-
ing ecosystem services, such as agricultural production (Haines-Young and Potschin 
2009). The nature of these trade-offs depends on the biophysical context, including 
the climate, soils, hydrology, and geology, and will differ among regions. A trade-
off curve represents the limits set by these biophysical constraints and can be 
thought of in economic terms as an “efficiency frontier” that sets the boundaries on 
possible combinations of biodiversity (or regulating services) and provisioning 
services (Polasky et al. 2008). Combinations above the curve are not possible; out-
comes beneath the curve provide fewer total benefits than what is actually possible 
from the environment. Quantifying the biodiversity and ecosystem service potential 
from land and how they trade off are critical to efficient management of ecosys-
tems. Current RS tools and forthcoming technologies are well-poised to decrease 
uncertainty in estimates of biodiversity—ecosystem service trade-offs—and can 

J. Cavender-Bares et al.

https://naturalcapitalproject.stanford.edu/invest/
https://naturalcapitalproject.stanford.edu/invest/


35

contribute meaningfully to decision-making and resource management (Chaplin-
Kramer et al. 2015; de Araujo Barbosa et al. 2015; Schrodt et al., Chap. 17).

Where along the efficiency frontier we wish to target our management efforts 
depends on human preferences. These can differ strongly among different stake-
holders that have contrasting priorities (Cavender-Bares et  al. 2015a, b). 
Distinguishing the biophysical limits of ecosystems from contrasting stakeholder 
preferences for what they want from ecosystems is a critical contribution to partici-
patory processes that enable dialogue and progress toward sustainability (Cavender-
Bares et al. 2015b; King et al. 2015). RS technologies that can enhance detection of 
biodiversity as well as both regulating and provisioning ecosystem services—and 
changes in these at multiple scales—can thus increase clarity in decision-making 
processes in the face of rapid global change (Fig. 2.8).
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Chapter 3
Scaling Functional Traits from Leaves 
to Canopies

Shawn P. Serbin and Philip A. Townsend

3.1  �Introduction

Fossil energy use and land use change are the dominant drivers of the accelerating 
increase in atmospheric CO2 concentration and the principal causes of global cli-
mate change (IPCC 2018; IPBES 2018). Many of the observed and projected 
impacts of rising CO2 concentration and increased anthropogenic pressures on natu-
ral resources portend increasing risks to global terrestrial biomes, including direct 
impacts on biodiversity, yet the uncertainty surrounding the forecasting of biodiver-
sity change, future climate, and the fate of terrestrial ecosystems by biodiversity and 
Earth system models (ESMs) is unacceptably high, hindering informed policy deci-
sions at national and international levels (Jetz et al. 2007; Friedlingstein et al. 2014; 
Rice et al. 2018). As such, the impact of our changing climate and altered distur-
bance regimes on terrestrial ecosystems is a major focus of a number of disciplines, 
including the biodiversity, remote sensing (RS), and global change research 
communities.

Here we provide an overview of approaches to scale and map plant functional 
traits and diversity across landscapes with a focus on current approaches, leveraging 
on best practices provided by Schweiger (Chap. 15), benefits and issues with gen-
eral techniques for linking and scaling traits and spectra, and other key consider-
ations that need to be addressed when utilizing RS observations to infer plant 
functional traits across diverse landscapes.
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3.1.1  �Plant Traits and Functional Diversity

The importance of characterizing leaf and plant functional traits across scales is tied 
to the crucial role these traits play in mediating ecosystem structure, functioning, 
and resilience or response to perturbations (Lavorel and Garnier 2002; Reich et al. 
2003; Wright et al. 2004; Reich 2014; Funk et al. 2017). The structural, biochemi-
cal, physiological, and phenological properties of plants regulate the growth and 
performance or fitness of plants and their ability to propagate or survive in diverse 
environments. As such, these traits are used to characterize the axes of variation that 
define broad plant functional types (PFTs), which in turn describe global vegetation 
patterns and properties (Ustin and Gamon 2010; Díaz et al. 2015), particularly in 
ESMs (Bonan et al. 2002; Wullschleger et al. 2014). Our focus here will be on leaf 
traits related to nutrition and defense that broadly fit within the concept of the leaf 
economics spectrum (LES, Wright et al. 2004), because these are most amendable 
to measurements using spectral methods. Other traits relating to reproductive strate-
gies, hydraulics, physiology (though see Serbin et al. 2015), wood characteristics, 
etc. may be inferred from the traits described here, especially when combined with 
climate, soils, topography, or other data that generally are not directly detectable 
using RS.

Leaf nutritional properties and morphology are strong predictors of the photo-
synthetic capacity, plant growth, and biogeochemical cycling of terrestrial ecosys-
tems (Aber and Melillo 1982; Green et  al. 2003; Wright et  al. 2004; Díaz et  al. 
2015). With respect to litter turnover and nutrient cycling, leaf traits that correspond 
to the distribution and magnitude of structural carbon and chemical compounds 
such as lignin and cellulose are used to infer the recalcitrant characteristics of can-
opy foliage (Madritch et al., Chap. 8). Capturing the spatial variation in these traits 
can therefore provide critical information on the nutrient cycling potential of eco-
systems (Ollinger et al. 2002). On the other hand, leaf mass per area (LMA)—the 
ratio of a leaf’s dry mass to its surface area—and its reciprocal, specific leaf area 
(SLA), correspond to a fundamental trade-off of leaf construction costs versus light-
harvesting potential (Niinemets 2007; Poorter et  al. 2009). The amount of foliar 
nitrogen within a leaf, on a mass (Nmass, %) or area (Narea, g/m2) basis, strongly regu-
lates the photosynthetic capacity of leaves given its fundamental role in the light-
harvesting pigments of leaves (chlorophyll a and b) and photosynthetic machinery, 
namely, the enzyme RuBisCo (Field and Mooney 1986; Evans and Clarke 2018). 
Other traits, such as the concentration or content of water and accessory pigments, 
are important indicators of plant health and stress (Ustin et al. 2009). Moreover, the 
covariation of traits is also a primary focus of ecological and biodiversity research 
given strong trade-offs defining different leaf form and function (Díaz et al. 2015). 
For example, across the spectrum of plant functional diversity (Wright et al. 2004), 
foliar nitrogen and LMA form a key axis of variation that describes end-members 
between “cheap” thinner, low-LMA leaves with high leaf nitrogen, higher photo-
synthetic rates and faster turnover versus thick, expensive leaves with high LMA, 
low nitrogen, slower turnover, and longer leaf life spans. Other traits with strong 
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evidence for detection in the literature relate to plant allocation strategies (e.g., 
starch and sugar content) or defense compounds, such as phenolics (e.g., Asner 
et al. 2015; Kokaly and Skidmore 2015; Couture et al. 2016; Ely et al. 2019).

Despite the importance of characterizing leaf and plant functional traits across 
global biomes, the plasticity and high functional diversity of these traits makes this 
apparently simple goal extremely challenging (Reich et al. 1997; Wu et al. 2017; 
Osnas et al. 2018), and as such global coverage has been historically limited to spe-
cific biomes (Schimel et al. 2015). Leaf traits can vary strongly within and across 
species (Serbin et al. 2014; Osnas et al. 2018) and are strongly mediated by an array 
of biotic and abiotic factors (Díaz et al. 2015; Neyret et al. 2016; Butler et al. 2017). 
Within a canopy, for example, functional traits typically show high variation with 
average light condition and quality (Niinemets 2007; Neyret et  al. 2016) where 
lower canopy leaves tend to be thinner and have lower photosynthetic rates and 
altered pigment pools to account for the lower light quality. Plant traits can also 
change across local resource gradients, including with variations in water, nutrient 
availability, and disturbance legacy (Singh et al. 2015; Butler et al. 2017; Enquist 
et al. 2017). Importantly, this pattern can be confounded by species composition, 
which is generally the strongest driver of trait variation.

RS has provided new avenues to explore trait variation at larger scales and con-
tinuously across landscapes (Fig. 3.1). For example, Dahlin et al. (2013) observed 
that leaf functional traits were more strongly mediated by plant community compo-
sition than environment across a water-limited Mediterranean ecosystem, explain-
ing 46–61% of the variation on the landscape. Likewise, McNeil et al. (2008) found 
that 93% of variation in nutrient cycling in northern hardwood forests of the US 
Adirondacks could be explained by species identity. Yet the presence or absence of 
specific plant species is, in part, a consequence of habitat sorting processes and the 
adaptive mechanisms of plants that influence the environments in which they can 
persist, including their modification of traits in response to local conditions (Reich 
et al. 2003). Mapping species or communities to infer traits is impractical at any-
thing other than the local scale due to the presence of more than 200,000 plant spe-
cies on Earth. Dispersal and other stochastic processes also play a role. Across 
broad environmental gradients, traits display much larger variation, where climate, 
topography, and edaphic conditions drive changes in plant community composition 
and structure, which, in turn, drive the patterns of potential and realized plant traits 
in any one location (Díaz et al. 2015; Butler et al. 2017). Finally, factors such as 
convergent evolution may make some species spectrally similar, while phenology 
and phenotypic variation may make the same species look different across locations.

Temporal regulation of traits is a key factor driving changes in functional proper-
ties and the resulting functioning of the ecosystem. Seasonal changes in traits can 
be significant (e.g., Yang et al. 2016) and can strongly regulate vegetation function-
ing (e.g., Wong and Gamon 2015). Moreover, during the lifetime of a leaf, traits can 
change significantly (e.g., Wilson et al. 2001; Niinemets 2016), and in evergreen 
species, leaf age has been shown to be a strong covariate with functional trait values 
(e.g., Chavana-Bryant et al. 2017; Wu et al. 2017). Age-dependent and phenological 
changes in leaf traits can, in turn, have significant impacts on ecosystem functioning 
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(Wu et al. 2016). Given the role plant traits play in community assembly, character-
izing the distribution, spatial patterns, and seasonality of traits is crucial for improved 
prediction of biodiversity change and ecosystem responses to global change.

Numerous plant trait databases have been developed to store information on the 
variation in functional traits across space and time (e.g., Wright et al. 2004; Kattge 
et al. 2011; LeBauer et al. 2018) needed to inform biodiversity and ecological mod-
eling research. However, repeated direct measurement of plant traits is logistically 
challenging, which limits the geographic and temporal coverage of trait variation in 
these databases. Moreover, capturing plant trait variation through time is critical, 
but currently lacking from most observations (but with notable exceptions, e.g., 
Stylinski et al. 2002; Yang et al. 2016) given a host of additional technical and mon-
etary challenges. In particular, efforts to collect direct, repeat samples of functional 
traits in remote areas, such as high-latitude ecosystems and the remote tropics, can 
be severely hindered by access and other logistical considerations.

On the other hand, RS can provide the critical unifying observations to link 
in-situ measurements of plant traits to the larger spatial and temporal scales needed 
to improve our understanding of global functional and plant biodiversity (Fig. 3.1, 
Table  3.1). As such, a strong interest in the use of RS to characterize foliar 
functional traits and their diversity has emerged from three key areas: research in 
RS of leaf optical properties (Jacquemoud et  al. 2009), the concept of the leaf 

Fig. 3.1  There is a strong coupling between vegetation composition, structure and function, and 
the signatures observed by remote sensing instrumentation. Passive optical, thermal, and active 
sensing systems can be used to identify and map a range of phenomena, including minor to major 
variation in vegetation properties, health, and status across a landscape. Specifically, high spectral 
resolution imaging spectroscopy data can be used to infer functional traits of the vegetation through 
the measurement of canopy-scale optical properties which are driven by variation in leaf biochem-
istry and morphology, as well as overall canopy structure
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Table 3.1  List of key foliar functional traits that can be estimated from imaging spectroscopy

Functional 
characterizationa Trait

Example of functional 
role Example Citations

Primary Foliar N (% dry 
mass or area 
based)

Critical to primary 
metabolism (e.g., 
Rubisco).

Johnson et al. (1994),  
Gastellu-Etchegorry et al. (1995),  
Mirik et al. (2005), Martin et al. 
(2008), Gil-Pérez et al. (2010), 
Gökkaya et al. (2015), Kalacska 
et al. (2015), Singh et al. (2015)

Foliar P (% dry 
mass)

DNA, ATP synthesis Mirik et al. (2015), Mutanga 
and Kumar (2007), Gil-
Pérez et al. (2010), Asner et al. 
(2015)

Sugar (% dry 
mass)

Carbon soiree Asner and Martin (2015)

Starch (% dry 
mass)

Storage compound, 
carbon reserve

Matson et al. (1994)

Chlorophyll-total 
(ng g–1)

Light-harvesting 
capability

Johnson et al. (1994), Zarco-
Tejada et al., (2000a); Moorthy 
et al., (2008); Gil-Pérez et al. 
(2010), Zhang et al. (2008)

Carotenoids (ng 
g-1)

Light harvesting, 
antioxidants

Datt (1998), Zarco-Tejada et al.
(2000a)

Other pigments 
(e.g., 
anthocyanins; ng 
g–1)

Photoprotection. NPQ van den Berg and Perkins 
(2005)

Water content (% 
fresh mass)

Plant water status Gao and Goetz (1995),  
Gao (1996), Serrano et al., 
(2000), Asner et al. (2015)

Physical Leaf mass per 
area (g m–2)

Measure of plant 
resource allocation 
strategies

Asner et al. (2015),  
Singh et al. (2015)

Fiber (% dry 
mass)

Structure, 
decomposition

Mirik et al. (2005),  
Singh et al. (2015)

Cellulose (% dry 
mass)

Structure, 
decomposition

Gastellu-Etchegorry et al. 
(1995), Thulin et al. (2014), 
Singh et al. (2015)

Lignin (% dry 
mass)

Structure, 
decomposition

Singh et al. (2015)

Metabolism Vcmax (μmol m–2 
s–1)

Rubisco-limited 
photosynthetic capacity

Serbin et al. (2015)

Photochemical 
Reflectance Index 
(PRI)

Indicator of non-
photochemical 
quenching (NPQ) and 
photosynthetic 
efficiency, xanthophyll 
cycle

Gamon et al. (1992), Asner et al. 
(2004)

Fv/Fm Photosynthetic capacity Zarco-Tejada et al. (2000c)

(continued)
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economics spectrum (Wright et  al. 2004), and the development of global-scale 
foliar trait databases (Kattge et al. 2011). Within the signals observed by passive 
optical, thermal, and active sensing systems, such as light detection and ranging 
(lidar) platforms, is a whole host of underlying leaf chemical, physiological, and 
plant structure information that drives the spatial and temporal variation in RS 
observations (Ollinger 2011; Figs. 3.1, 3.2, and 3.3). As a result, RS provides the 
only truly practical approach to observing spatial and temporal variation in plant 
traits, canopy structure, ecosystem functioning, and biodiversity in absence of being 
able to map all species or communities everywhere (Schimel et al. 2015; Jetz et al. 
2016). RS observations can provide the synoptic view of terrestrial ecosystems and 
capture changes on the landscape from disturbances and necessary temporal cov-
erage via multiple repeat passes or targeted collection at specific phenological 
stages, yielding information needed to fill critical gaps in trait observations across 
global biomes (Cavender-Bares et al. 2017; Schimel et al., Chap. 19).

3.1.2  �Historical Advances in Remote Sensing of Vegetation

Over the last four-plus decades, passive optical RS has been used as a key tool for 
characterizing and monitoring the composition, structure, and functioning of ter-
restrial ecosystems across space and time. For example, spectral vegetation indices 
(SVIs), such as the normalized difference vegetation index (NDVI), have been used 
to capture broad-scale plant seasonality or phenology and changes in composition, 
monitor plant pigmentation and stress, and track changes in productivity through 
time and in response to environmental change (e.g., Goward and Huemmrich 1992; 
Kasischke et al. 1993; Myneni and Williams 1994; Gamon et al. 1995; Ahl et al. 
2006; Mand et al. 2010). Platforms, such as the Advanced Very High Resolution 
Radiometer (AVHRR), originally designed for atmospheric research, have been 

Table 3.1  (continued)

Functional 
characterizationa Trait

Example of functional 
role Example Citations

Secondary Bulk phenolics 
(% dry mass)

Stress responses Asner et al. (2015)

Tannins (% dry 
mass)

Defenses, nutrient 
cycling, stress 
responses

Asner et al. (2015)

aCategories of functional characterization are for organizational purposes only: Primary refers to 
compounds that are critical to photosynthetic metabolism; Physical refers to non-metabolic attri-
butes that are also important indicators of photosynthetic activity and plant resource allocation; 
Metabolism refers to measurements used to describe rate limits on photosynthesis; and Secondary 
refers compounds that are not directly related to plant growth, but indirectly related to plant func-
tion through associations with nutrient cycling, decomposition, community dynamics, and stress 
responses
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leveraged to capture changes in plant “greenness” based on the ratio of red absorp-
tion in leaves (signal of pigmentation levels and change) to near-infrared reflectance 
(tied to internal cellular structure and water content) to monitor changes in plant 
vigor and change (e.g., Tucker et  al. 2001; Zhou et  al. 2001; Goetz et  al. 2005; 
Goetz et al. 2006). With the advent of focused Earth-observing (EO) sensors, such 
as the Landsat constellation, the science and use of optical RS observations for 
monitoring plant properties and functioning increased substantially (e.g., Chen and 
Cihlar 1996; Turner et al. 1999; Townsend 2002; Jones et al. 2007; Sonnentag et al. 
2007; Drolet et al. 2008; Foster et al. 2008; Peckham et al. 2008; Yilmaz et al. 2008). 
Since the earliest uses, optical RS observations from the leaf to suborbital to satel-
lite EO platforms have been heavily leveraged in the plant sciences, RS, and biodi-
versity communities (e.g., Jacquemoud et al. 1995; Roberts et al. 2004; Ustin et al. 
2004; Gitelson et al. 2006; Hilker et al. 2008; Pettorelli et al. 2016; Cavender-Bares 
et al. 2017).

Fig. 3.2  The internal structure and biochemistry of leaves within a canopy control the optical 
signatures observed by remote sensing instrumentation. The amount of incident radiation that is 
reflected by, transmitted through, or absorbed by leaves within a canopy is regulated by these 
structural and biochemical properties of leaves. For example, leaf properties such as a thick cuticle 
layer, high wax, and/or a large amount of leaf hairs can significantly influence the amount of first-
surface reflectance (that is the reflected light directly off the outer leaf layer that does not interact 
with the leaf interior), causing less solar radiation to penetrate into the leaf. The thickness of the 
mesophyll layer associated with other properties, such as thicker leaves, can cause higher degree 
of internal leaf scattering, less transmittance through the leaf, and higher absorption in some wave-
lengths. Importantly, the diffuse reflectance out of the leaf is that modified by internal leaf proper-
ties and contains useful for mapping functional traits

3  Scaling Functional Traits from Leaves to Canopies



50

3.1.3  �Remote Sensing as a Tool for Scaling and Mapping  
Plant Traits

The use of leaf-level spectroscopy to understand plant functioning via biochemistry 
dates to the early twentieth century with papers describing light absorption and 
reflectance (Shull 1929; McNicholas 1931; Rabideau et  al. 1946; Clark 1946; 
Krinov 1953). Billings and Morris (1951) made a direct linkage to differing ecological 
strategies of plants, in particular demonstrating that visible and near-infrared reflec-
tance of species growing in different environments is directly linked to strategies 
associated with thermoregulation. Similarly, Gates et al. (1965) connected the inter-
action of light with leaves to internal leaf pigments and leaf structure (Fig. 3.2.) and 
how this relates to larger ecological processes.

By the 1970s, work with spectrophotometers at the US Department of Agriculture 
(USDA) led to the use of spectral methods for constituent characterization—near-
infrared spectroscopy (NIRS) to predict moisture, protein, fat, and carbohydrate 
content of feed (Norris and Hart 1965; Norris et al. 1976; Shenk et al. 1981; Davies 
1998; Workman and Weyer 2012), generally using linear regression on dry samples. 
In the 1980s and 1990s, field and laboratory studies used these earlier spectrometer 
systems to develop relationships and approaches to link leaf optical properties 
and underlying biochemical and structural properties, including variations in leaf 
moisture condition (Hunt and Rock 1989). For example, Elvidge (1990) utilized 

Fig. 3.3  High spectral resolution measurements of leaves and plant canopies enable the indirect, 
non-contact measurement of key structural and chemical absorption features that are associated 
with the physiological and biochemical properties of plants
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spectroscopy to describe optical properties of dried plant materials in the 0.4–2.5 
micron range that enable detection of plant biochemistry from spectroscopy. 
Similarly, Curran (1989) summarized spectral features across this same spectral 
range that could be used in RS of plants, identifying not just the specific absorption 
features associated with pigments but also features related to harmonics and over-
tones related to molecular bonds of hydrogen (H) with carbon (C), nitrogen (N), and 
oxygen (O) in organic compounds (e.g., Fig. 3.3). In addition, by the late 1980s, 
researchers began to utilize novel, experimental airborne imaging spectrometer sys-
tems to map vegetation canopy chemistry in diverse landscapes. Using an early-
generation NASA imaging spectrometer, the airborne imaging spectrometer (AIS, 
Vane and Goetz 1988), these studies illustrated the capacity to map landscape varia-
tion in foliar biochemical properties, including nitrogen and lignin (Peterson et al. 
1988; Wessman et al. 1988; Wessman et al. 1989). AIS was the precursor to the 
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS, Vane 1987). Following 
on this work, several others explored the impacts of leaf functional traits on reflec-
tance properties of plant canopies and the ability to retrieve canopy chemistry, 
leveraging several important airborne campaigns including the Oregon Transect 
Ecosystem Research (OTTER) project  and the Accelerated Canopy Chemistry 
Program (ACCP) (e.g., Card et al. 1988; Peterson et al. 1988; Matson et al. 1994; 
Bolster et al. 1996; Martin and Aber 1997).

These early studies became the basis for studies using imaging spectrometry to 
infer nutrient use and cycling in natural ecosystems (e.g., Martin and Aber 1997; 
Ollinger et  al. 2002; Ollinger and Smith 2005). By the 1990s, the promise of 
spectroscopy for ecological characterization led to the increased use of handheld 
portable spectrometers in the field (e.g., instruments from Analytical Spectral 
Devices, GER, Spectra Vista Corporation, Spectral Evolution, Ocean Optics, LiCor, 
and PP Systems), as well as research that led to the use of narrowband SVIs for 
characterizing rapid changes in leaf function in response to the environment and 
leaf physiology (e.g., photochemical reflectance index, PRI, Gamon et  al. 1992; 
Penuelas et  al. 1995; Gamon et  al. 1997). The review by Cotrozzi et  al. (2018) 
provides a more detailed summary of the history of spectroscopy for plant studies, 
while Table 3.1 provides a summary of the key functional traits observable with 
spectroscopic RS approaches. As a consequence of studies at the leaf level and 
using early imaging spectrometers, a host of airborne sensor systems emerged, such 
as AVIRIS (Green et  al. 1998), HyMap (Cocks et  al. 1998), Airborne Prism 
Experiment (APEX, Schaepman et al. 2015), the Carnegie Airborne Observatory 
(CAO, Asner et al. 2012), AVIRIS-Next Generation (Miller et al. 2018; Thompson 
et al. 2018), and the US National Ecological Observatory Network (NEON) imag-
ing spectrometer (Kampe et al. 2010) in the twenty-first century. The NASA proto-
type satellite EO-1 (Middleton et al. 2013) included the Hyperion sensor as an early 
test of the capacity to make hyperspectral measurements from space, leading to the 
development of a number of spaceborne missions planned for the early 2020s 
(Schimel et al., Chap. 19).
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3.1.4  �Key Considerations for the Use of Imaging Spectroscopy 
Data for Scaling and Mapping Plant Functional Traits

One of the chief challenges to effectively using imaging spectroscopy has been the 
acquisition of data of sufficient resolution, quality, and consistency for broad 
application in vegetation studies (Table 3.2). This necessitates measurements in the 
shortwave infrared (SWIR, 1100–2500 nm) in addition to the visible and near 
infrared (VNIR, 400–1100 nm). While VNIR wavelengths are most sensitive to 
pigments and overall canopy health, longer wavelengths are required to retrieve 
many biochemicals and LMA (Serbin et  al. 2014; Kokaly and Skidmore 2015; 
Serbin et al. 2015; Singh et al. 2015). Spectral resolution is critical as well, with 
10 nm band spacing and 10 nm full-width half maximum (FWHM) generally con-
sidered essential to identify traits detected based on narrow absorption features. 
Even finer resolution is required to detect spectral features that rely on narrow (<0.5 
nm) atmospheric windows, such as solar-induced fluorescence (SIF, Yang et  al. 
2018). Other key considerations include sufficient signal-to-noise ratio (SNR) to 
identify important spectral features, accounting for both coherent and random noise 
related to detector sensitivity, dark current, and stray light. Additional sensor char-
acteristics important to using imaging spectroscopy include spectral distortion. 
Most sensors are push-broom sensors, in which an image is constructed via the 
forward movement of the platform. Spatial samples are measured in the X-dimension 
(pixels) of the detector array and spectral wavelengths in the Y-dimension. 
Nonuniformity may arise due to differences in detectors in both dimensions, mean-
ing that different detectors in the X-dimension see different central wavelengths 
(smile) and offsets in the Y-dimension lead to band-to-band misregistration (key-
stone). All of these effects can influence the ability to detect traits reliably within 
one scene or across multiple scenes using common algorithms. Full understanding 
of detector (and thus image) uniformity as well as the measurement point-spread 
function in 3-D (spatial X [detector X], spatial Y [platform movement], and spectral 
[detector Y]) is critical to accurate retrievals.

All RS data require some level of post-processing. Imaging spectroscopy is no 
different; prior to implementing algorithms for trait retrieval (Sect. 3.2.2), addi-
tional efforts must be undertaken to ensure consistent measurements in consistent 
units such that retrievals from imagery from multiple sources, dates, locations, etc. 
can be compared. Minimally, pixel measurements should be converted to radiances 
(w m-2 sr-1 nm-1) based on laboratory calibrations and regular vicarious measure-
ments of stable targets. With proper instrument characterization, keystone, smile, 
and other radiometric artifacts can be reduced. Subsequently, atmospheric correc-
tions to convert radiance to reflectance (percent) are essential for cross-site studies. 
The approaches to atmospheric correction are numerous and tailored to particular 
environments, e.g., terrestrial vs. aquatic systems. Even within terrestrial applica-
tions, approaches differ among airborne data products (e.g., NASA’s AVIRIS-
Classic and AVIRIS-NG sensors vs. NEON AOP) and do not necessarily yield 
consistent reflectance imagery. Finally, new approaches that take advantage of 
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advances in computing capacities and newer optimal estimation (OE) approaches 
for radiative transfer retrieval of atmospheric parameters are poised to transform 
atmospheric correction in the 2020s (Thompson et al. 2018).

Following atmospheric correction, scene-dependent corrections are often 
required, including corrections for different illumination and reflectance due to sun-
target-sensor geometry, i.e., the bidirectional reflectance distribution function 
(BRDF). Current methods to correct for across-track (and along-track) illumination 
variation account for differences in vegetation structure and density, either through 
continuous functions (Schläpfer et  al. 2015; Weyermann et  al. 2015) or using 
land-cover stratification (Jensen et al. 2018). However, BRDF corrections are also 
rapidly changing and likely will be improved by new OE methods. As well, methods 
requiring land cover stratification are generally limited to local studies, whereas 
broad-scale implementation across biomes and through time will be most stable as 
long as scene-specific stratification is not required.

In addition to BRDF, corrections for topographic illumination are required 
(Singh et al. 2015). However, such corrections can result in poor performance for 
highly shaded slopes; they enhance noise on shaded slopes while suppressing signal 
on illuminated slopes. In addition, differential illumination may still remain in 
images due to multiple sensor artifacts as well as effects of vegetation structure 
(Knyazikhin et al. 2013). These effects can be effectively addressed using vector 
normalization (Feilhauer et al. 2010; Serbin et al. 2015) or continuum removal (e.g., 
Dahlin et al. 2013). Such approaches largely address structure-induced reflectance 
effects of broadleaf and graminoid canopies, with minor variances remaining in 
conifers. The residual effect of canopy structure on trait mapping largely relates to 
an inability to fully account for within-canopy scattering of diffuse radiation, 
especially in conifer forests.

Finally, when integrating data from multiple sources to map canopy traits, users 
must address wavelength calibrations. Different sensors may have different band 
centers, and these may change (on airborne devices) as they are recalibrated from 
time to time. This requires image resampling, which is data and processing inten-
sive and—to be done precisely—requires good knowledge of spectral response 
functions or model recalibration to new wavelengths.

3.2  �Linking Plant Functional Traits to Remote Sensing 
Signatures

All materials interact with light energy in different and characteristic ways. With 
respect to terrestrial ecosystems, spectroscopic RS leverages spectroradiometers, 
which measure the intensity of light energy reflected from or transmitted through 
leaves, plant canopies, or other materials (e.g., wood, soil, Fig. 3.3). The absorbing 
and scattering properties of the individual elements (e.g., leaves, twigs, stems) 
within the canopy or surface (soil) are defined by their physical and 3-D structure as 
well as chemical constituents or bonds (Figs. 3.2 and 3.3), which drives the vari-
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ability observed in reflectance spectra (Figs.  3.1 and 3.4). Thus, the underlying 
variation in plant canopy structure, function, and leaf traits in turn drives the optical 
properties and spectral signatures detected by RS platforms (Ollinger 2011). As 
such, the capacity to infer plant health, status, stress, and leaf and plant functional 
traits with optical RS observations is tied to the physical principle that plant physi-
ological properties, structure, and distribution of foliage within plant canopies are 
reflected in the RS signatures of leaves within a canopy (Curran 1989; Kokaly et al. 
2009; Ollinger 2011).

3.2.1  �Spectroscopy and Plant Functional Traits

With the advent of laboratory and field spectrometer instrumentation, the leaf to 
landscape-scale RS of vegetation traits and functional properties began in earnest in 
the early 1980s (Sect. 3.1.3). As stated in Sect. 3.1.4, there are a host of important 

Fig. 3.4.  Similar to those of a leaf, the properties of vegetation canopies strongly control the opti-
cal signatures observed by passive remote sensing instrumentation (Ollinger 2011). Specifically, 
the height and three-dimensional shape of the individual plants comprising the canopy as well as 
their leaf area index (LAI), leaf optical properties and stem and soil optical properties regulate the 
amount of incident radiation that reflects back from and transmits through a canopy. In addition, 
canopy properties and sun-sensor geometry can modify the shape and strength of the reflectance 
signature of vegetation canopies, which requires careful consideration when developing methods 
to map leaf functional traits

3  Scaling Functional Traits from Leaves to Canopies
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considerations with the use of leaf and imaging spectroscopy for scaling plant func-
tional traits. In addition, the underlying drivers of vegetation optical properties are 
complex and numerous (Ustin et al. 2004; Ollinger 2011). For example, in the vis-
ible range (~0.4–0.75 microns) of the electromagnetic (EM) spectrum, the strong 
absorption of solar energy by photosynthetic pigments in healthy, green foliage 
dominates the optical properties of leaves (Ustin et al. 2009; Figs. 3.2. and 3.3). 
Importantly, knowledge of leaf pigment pools and fluxes provides key insight into 
plant photosynthesis, environmental stress, and overall vigor. As such a significant 
amount of research has focused on the retrieval of foliar primary and accessory pig-
ments using spectroscopic and other RS measurements (e.g., Jacquemoud et  al. 
1996; Richardson et al. 2002; Sims and Gamon 2002; Ustin et al. 2009; Féret et al. 
2017). Blackburn (2007) and Ustin et al. (2009) provide more detailed reviews on 
the use of spectroscopy to remotely sense pigments in higher plants.

Within the near-infrared (NIR, ~0.8–1.2 microns) portion of the EM spectrum, 
optical signals are generally dominated by scattering from internal leaf structures, 
structural properties, water, and leaf epidermal layer (Figs. 3.2 and 3.3). In addition, 
strong leaf water absorption features in the NIR, centered on ~0.97 and 1.1 microns, 
are often used to remotely sense vegetation water content (e.g., Hunt and Rock 
1989; Gao and Goetz 1995; Sims and Gamon 2003; Stimson et al. 2005; Colombo 
et al. 2008). Much of the early research into the use of spectroscopic RS focused on 
leaf and canopy water content retrieval given its importance in plant function and as 
an important indicator of moisture (Fig. 3.5.) and other stress. In attached, fresh leaf 
material, water also dominates the spectral absorption features of the SWIR (1.3–2.5 
micron) portion of the EM (Hunt and Rock 1989; Sims and Gamon 2003); as a 
result, spectral optical properties are strongly regulated by leaf and canopy water 
content in this region (Fig. 3.5). Along with water absorption, a number of other 
biochemical and structural trait absorption features exist in the SWIR wavelength 
region (Fig. 3.3), including cellulose, lignin, structural carbon, and nutrients and 
proteins (Curran 1989; Elvidge 1990; Kokaly et al. 2009; Ollinger 2011; Ely et al., 
2019). Removal of water from leaf materials can sometimes enhance the detection 
of these absorption features (e.g., see Serbin et  al. 2014 and references within; 
Fig. 3.5). However, at the canopy scale, a number of studies have demonstrated the 
capacity to retrieve these foliar biochemical properties in the SWIR region (e.g., 
Wessman et al. 1988; Martin and Aber 1997; Townsend et al. 2003; Kokaly et al. 
2009; Asner et al. 2015; Singh et al. 2015), perhaps because of the increased signal 
due to multiple scattering within canopies (Baret et al. 1994).

In addition to the underlying leaf biochemical and structural characteristics, leaf 
orientation, display, and distribution in a canopy are also strong drivers of plant 
optical properties (Ollinger, 2011; Fig. 3.4). Decreasing the leaf area of a canopy 
generally results in a higher reflectance signal from elements deeper within the 
canopy, including twigs, branches, stems, and soil/litter layer (Asner 1998; Asner 
et al. 2000; Ollinger 2011). Canopies with flat, horizontal leaves tend to have higher 
NIR reflectance than those with more erect, vertical leaves, depending on the sun-
sensor geometry. Leaf anatomy and average leaf angle vary widely across species 
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Fig. 3.5.  Together, leaf optical properties and canopy architecture regulate the remote sensing 
signatures observed in remote sensing data. In addition, changes in leaf internal biochemistry or 
structure (i.e., functional traits) as a result of biotic or abiotic factors can change these signatures 
over space and time. For example, a prolonged drought can cause changes in leaf internal water 
content and potentially a redistribution of internal pigmentation. We can simulate the potential 
changes in optical signatures associated with a drought using a leaf and canopy-scale radiative 
transfer models (RTM), in this case PROSPECT-5b (Féret JB et al. 2008) and SAIL (Verhoef and 
Bach 2007), to illustrate the changes in leaf an canopy spectra over the course of a low, moderate, 
and high drought event. Here we modified pigment and water content from low to high for a range 
of canopies, as represented by different LAIs, and for canopy-scale reflectance, we incorporated 
the sensor characteristics of AVIRIS-classic (Green et al. 1998) to illustrate what the canopy reflec-
tance might look like from that sensor. (For illustration purposes only)
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(Falster and Westoby 2003), with consequences for interpreting optical RS sig-
natures (Ollinger 2011). Thus, when considering the use of RS approaches for map-
ping leaf traits, careful consideration of vegetation structure, collection 
characteristics, and sensor design is important.

Phenology, leaf seasonality, and leaf age are also important drivers of optical 
properties for a number of reasons. First, leaf traits can change significantly over the 
lifetime of a leaf (e.g., Wilson et al. 2001; Niinemets 2016; Chavana-Bryant et al. 
2017; Wu et al. 2017), and the corresponding leaf optical properties will change in 
concert (Yang et al. 2016). Average leaf angle distribution can also change with leaf 
age or seasonally from younger, recently expanded leaves to fully expanded (Raabe 
et al. 2015), which can have significant impacts on canopy reflectance (Huemmrich 
2013). Finally, atmospheric, insect, or other stressors typically change the chemical 
makeup of leaves and so their optical properties (e.g., Couture et al. 2013; Ainsworth 
et al. 2014; Cotrozzi et al. 2018).

3.2.2  �Approaches for Linking Traits and Spectral Signatures

Despite the promise and utility of spectroscopy for the retrieval and mapping of 
plant traits across space and time, there has not been consensus or standardization 
of approaches and algorithm development in the RS and biodiversity communities. 
This is not entirely unexpected given the complexity of connecting traits and RS 
observations across the various scales of interest, from leaves to individual trees, 
communities, and landscapes (Schweiger, Chap. 15). In addition, early approaches 
(e.g., Peterson et al. 1988) were often later deemed inappropriate and often replaced 
by other techniques (e.g., Grossman et al. 1996). Access to more powerful, improved, 
and cheaper computing resources has also allowed for the exploration of more com-
plex statistical and machine-learning approaches (see Schweiger, Chap. 15).

Two primary approaches have been utilized to link RS observations to functional 
traits—empirical, statistically based techniques and radiative transfer modeling 
(RTM; see also Meireles et al., Chap. 7; Ustin, Chap. 14).

3.2.2.1  �Empirical Scaling Approaches

With respect to empirical techniques, the use of SVIs was one of the earliest methods 
to explore the capacity to link a range of plant functional traits to vegetation spectra. 
Typically, with this approach a single SVI is linked with a trait of interest, such as 
leaf pigments or water content, to develop a simple statistical relationship between the 
trait of interest and corresponding variation in optical properties (e.g., Sims and 
Gamon 2003; Gitelson 2004; Colombo et al. 2008; Feret et al. 2011). The derived 
model is then used to estimate trait values for new leaves using only spectral mea-
surements. This approach typically assumes the researcher has an a priori under-
standing of the links between the trait and resulting variation in the electromagnetic 
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spectrum and thus selects specific wavelengths, and therefore SVI, for their analysis. 
An alternative approach is to explore the spectra and trait space to identify new or 
previously unknown SVIs that maximize the correspondence between optical prop-
erties and traits of interest (e.g., Inoue et al. 2008), akin to a data mining exercise. 
A challenge of this approach can be interpretation of the selected SVIs, where the 
resulting vegetation indices may not contain wavelengths with known absorption 
features relating to the trait of interest. The same general approach can also leverage 
multiple SVIs, provided the research avoids highly correlated portions of the spec-
trum (Grossman et  al., 1996), to attempt to capture how variation in the trait of 
interest is reflected in various portions of the EM spectrum to other sites and plant 
species. However, a limitation to the use of SVIs has been the ability to generalize 
across broad canopy architectures, species, and environments due to the often site-
specific modeling results or potential signal saturation issues with some SVIs 
(Shabanov et al. 2005; Glenn et al. 2008).

Continuous spectral wavelet transforms have been used to reduce the dimension-
ality of spectral data prior to developing simple statistical models (e.g., Blackburn 
and Ferwerda 2008). Wavelets are functions that are used to decompose a full, com-
plex signal into simpler component sub-signals. When used with spectral data, the 
full reflectance signature can be decomposed in a way that allows the resulting 
wavelet coefficients assigned to each sub-signal to be related to concentrations of 
chemical constituents or other traits of interest, through standard statistical model-
ing approaches (e.g., linear regression). Previous studies have explored the use of 
wavelet methods to retrieve a host of functional traits, including pigments, water, 
and nitrogen content (e.g., Blackburn and Ferwerda 2008; Cheng et al. 2011; Li 
et al. 2018; Wang et al. 2018). Continuum removal together with band-depth analy-
sis (Kokaly and Clark 1999) has also been utilized as a means to retrieve the chemi-
cal composition of leaves. In this approach, continuum removal lines are fit through 
the absorption features of interest based on those regions not in the areas of interest, 
then the original spectra are divided by corresponding values of the continuum 
removal line. The band centers can then be found by finding the minimum of the 
continuum-removed spectra. Normalization of the band centers is often used to 
standardize the values across samples. These data are then used to develop models 
to predict functional traits at the leaf and canopy scales, including foliar nitrogen 
and recalcitrant properties, such as the amount of lignin and cellulose (Kokaly 
et al. 2009).

In addition to the empirical SVI approach, as discussed in Schweiger (Chap. 15), 
partial least-squares regression (PLSR) modeling has been used extensively in the 
development of spectra-trait models for measuring, scaling, and mapping plant 
functional traits (e.g., Ollinger et al. 2002; Townsend et al. 2003; Asner and Martin 
2008; Martin et al. 2008; Dahlin et al. 2013; Singh et al. 2015; Ely et al. 2019). A 
key attribute of PLSR is the capacity to utilize the entire measured portion of the 
EM spectrum as predictors (i.e., X matrix) without requiring a priori selection of 
wavelengths or SVIs (Wold et  al. 1984; Geladi and Kowalski 1986; Wold et  al. 
2001). PLSR avoids collinearity (i.e., spectral autocorrelation across wavelengths) 
in the predictor variables (i.e., reflectance wavelengths), even if predictors exceed 
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the number of observations (Geladi and Kowalski 1986; Wold et al. 2001; Carrascal 
et  al. 2009). This is done through singular value decomposition (SVD), which 
reduces the X matrix down to relatively few non-correlated latent components. 
While PLSR was originally used in chemometrics, the features and benefits of 
PLSR also fit well within the goals of connecting spectral signatures to leaf func-
tional traits. PLSR leverages the fact that different portions of the EM spectrum 
change in concert with various nutritional, structural, and morphological properties 
of leaves and canopies—in other words, leveraging the known covariance between 
variations in leaf optical properties and leaf traits (Ollinger 2011). Importantly, 
PLSR also allows for univariate or multivariate modeling where multiple predic-
tands (i.e., Y matrix) can be modeled simultaneously with the same spectral matrix 
to account for the covariance between X and Y but also among the various Y 
(response) variables (Wold et  al. 1984; Geladi and Kowalski 1986; Wold et  al. 
2001). Wolter et al. (2008) review of the use of PLSR in RS research, and Carrascal 
et al. (2009) summarize its use in ecology, as well as key features of PLSR.

Several approaches and implementations of PLSR have been used within the 
overarching “plant trait mapping” paradigm, including various spectral transforma-
tions and the use of prescreening of wavelengths or down-selection of suitable of 
pixels (e.g., Townsend et al. 2003; Feilhauer et al. 2010; Schweiger, Chap. 15; Asner 
et al. 2015). In a typical PLSR implementation (e.g., Fig. 3.6), foliar samples are 
first collected from vegetation canopies and processed to obtain the functional traits 
of interest. For leaf-scale algorithms, the optical properties of the leaves are 
typically measured in situ or within a small window (2–4 hours) prior to further 

Fig. 3.6.  A simple example illustrating how leaf functional traits and optical properties (e.g. 
reflectance) are combined in an empirical partial least-squares regression (PLSR) modeling 
approach to develop spectra-trait algorithms. The input traits and reflectance spectra are combined 
and used to train and test a PLSR model, using either cross-validation and/or independent valida-
tion (e.g., Serbin et al. 2014), and the resulting model can then be applied to other spectral mea-
surements to estimate the traits of interest
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processing. Leaf and/or image spectra for the pixel containing the plots or sample 
locations are then linked with these functional trait measurements to develop the 
PLSR algorithm. Typically, for models utilizing imaging spectroscopy data, plot-
scale estimates of traits are derived using measurements of basal area, leaf area by 
species, or other means to produce a weighted average of each trait by dominant 
species within given ground area (e.g., McNeil et al. 2008; Singh et al. 2015). The 
algorithm is evaluated using internal validation during model development (e.g., 
cross-validation) and/or using a set of training and validation data to build and test 
the model predictive capacity across a range of similar samples and optical proper-
ties. Some approaches utilize additional steps to characterize the uncertainties asso-
ciated with the sample collection, measurements, and other issues (e.g., instrument 
noise) in the PLSR modeling step. For example, Serbin et al. (2014) and Singh et al. 
(2015) introduced a novel PLSR approach that can account for uncertainty in the 
prediction of trait values, which has later been used by other groups (Asner et al. 
2015). Image-scale algorithms are often used to derive functional trait maps (e.g., 
Fig. 3.7) to explore the spatial and/or temporal patterns of traits across the land-
scapes of interest (e.g., Ollinger et al. 2002; McNeil et al. 2008).

Fig. 3.7.  Much like developing a leaf-scale PLSR model for estimating leaf functional traits, such 
as leaf nitrogen concentration (Fig. 3.6), we can also utilize high spectral resolution imaging spec-
troscopy data, such as that from NASA AVIRIS to build models applicable at the canopy to land-
scape scales (e.g., Dahlin et al. 2013; Singh et al. 2015). Here we show a simple illustration of the 
linkage between functional traits scaled to the canopy, for example based on a weighted average of 
the dominant species in the plot, connected with the reflectance signature of these canopies. Once 
linked, we can develop PLSR algorithms conceptually similar to that of leaves resulting in canopy-
scale spectra-trait models capable of mapping functional traits across the broader landscape
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While the PLSR approach produces algorithms that “weight” wavelengths by 
their importance in the prediction (Wold et al. 2001) of the functional traits of inter-
est (e.g., Serbin et al. 2014), some researchers have also explored modifications to 
the standard PLSR approach that provide additional reductions in data dimensional-
ity. For example, Li et  al. (2008) coupled PLSR with a genetic algorithm (GA) 
approach to select a smaller subset of wavelengths to use in the final PLSR model 
for predicting leaf water content, measured as equivalent water thickness (EWT). 
DuBois et al. (2018) combined the SVI and PLSR approach by using all two-band 
AVIRIS wavelength combinations to model the relationship between spectral reflec-
tance and ecosystem carbon fluxes across a water-limited environment. To date, the 
spectra-trait PLSR modeling approach has shown the capacity to characterize the 
widest array of leaf functional traits using the optical properties of plants across a 
broad range of species and ecosystems (e.g., Dahlin et al. 2013; Asner et al. 2014; 
Asner et al. 2015; Serbin et al. 2015; Singh et al. 2015; Couture et al. 2016).

Similar to the PLSR approach, researchers have leveraged various machine-
learning approaches to connect RS observations to functional traits (e.g., Féret et al. 
2018). Schweiger (Chap. 15) describes two commonly used machine-learning 
approaches in RS; several other approaches have also been used to model trait varia-
tion as a function of spectral measurements. More recently, Gaussian processes 
regression (GPR) has been recommended as superior to other machine-learning 
approaches for trait mapping from imaging spectroscopy data (Verrelst et al. 2012; 
Verrelst et al. 2016). GPR is a nonlinear nonparametric probabilistic approach simi-
lar to kernel ridge regression that directly generates uncertainty (or confidence) lev-
els for the prediction (Wang et al. 2019). This is in contrast to PLSR uncertainties, 
generally assessed through permutation (Singh et al. 2015; Serbin et al. 2015). PLSR 
and GPR yield very similar results, both in terms of absolute trait predictions and 
relative scaling of uncertainties (Wang et al. 2019). PLSR is much more computa-
tionally efficient, and results are readily interpretable in terms of wavelength quanti-
tative contribution to prediction (see Fig. 3.1 in Schimel et al., Chap. 19), whereas 
GPR only identifies relatively important wavelengths.

The challenge with most machine-learning approaches is that some level of data 
reduction is required for optimal performance. Standard approaches, such as principle 
component analysis (PCA) or minimum noise fraction (MNF) transformations, may 
reduce data dimensionality. However, features important to trait estimation may be 
buried in lower principle components, as high contrast variation (albedo, greenness, 
water content) dominate scene properties. In contrast, PLSR rotates the data into 
latent vectors optimized to the empirical dependent variables, which generally yields 
strong models for calibration data but can lead to poor model performance when con-
fronted with new data that differ considerably from the model-building data sets.

3.2.2.2  �Radiative Transfer Models and Scaling Functional Traits

An alternative to statistical, field-based, and empirical approaches for connecting 
leaf and canopy optical properties with plant functional traits, RTMs can be used 
either at the leaf and canopy scales to directly retrieve leaf traits (e.g., Colombo 
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et  al. 2008; Darvishzadeh et  al. 2008; Feret et  al. 2011; Banskota et  al. 2015; 
Shiklomanov et al. 2016) or in hybrid approaches where statistical algorithms are 
developed based on RTM simulations (e.g., Asner et al. 2011). RTMs encapsulate 
our best mechanistic understanding of the coordination among leaf properties, 
canopy structure, and resulting spectral signatures at the leaf and canopy scales, 
but abstracted to operate with different degrees of complexity and assumptions 
(Bacour et al. 2002; Nilson et al. 2003; Kobayashi and Iwabuchi 2008; See also 
Morsdorf et al., Chap. 4; Ustin and Jacquemoud, Chap. 14).

At the leaf scale, RTMs were generally spawned from earlier work that identified 
the relationships between fresh and dried leaf reflectance and a range of foliar traits, 
including pigments, water content, nitrogen, dry matter, cellulose, and lignin. The 
realization that leaf optical properties were fundamentally tied to the concentration 
and distribution of leaf traits led to the development of models that could closely 
mimic the spectral patterns across the shortwave spectral region (0.4–2.5 microns) 
based on select leaf properties, such as chlorophyll and water content, as well as 
structural variables. By far the most widely and commonly used leaf-level RTM is 
the PROSPECT model (Jacquemoud and Baret 1990; Feret et al. 2008), which sim-
ulates leaf directional-hemispherical reflectance (R) and transmittance (T), allowing 
for the calculation of leaf absorption (1-R+T) based on leaf biochemical and mor-
phological properties, primary and accessory pigments, water content, LMA, or dry 
matter content, brown material, and an approximation of the thickness of the inter-
nal leaf mesophyll layer (Féret et  al. 2008; Féret et  al. 2017). PROSPECT then 
simulates leaf optical properties based on a generalized plate model describing 
leaves as a stack of N homogenous absorbing layers that are calculated based on the 
values of input leaf traits and their corresponding spectral absorption coefficient. 
Other prominent leaf models include the Leaf Incorporating Biochemistry 
Exhibiting Reflectance and Transmittance Yields (LIBERTY) model (Dawson et al. 
1998) and LEAFMOD (Ganapol et al. 1998). In particular, LIBERTY is notable 
given its original application focusing on improving the modeling of needle-leaf 
evergreen conifer species and their leaf optical properties based on several leaf 
traits, similar to PROSPECT, but also including foliar lignin and nitrogen content.

Moving to the canopy scale, RTMs are far more numerous with a wide variety of 
complexities, assumptions, and requirements (Verhoef and Bach 2007; Widlowski 
et al. 2015; Kuusk 2018). Most canopy RTMs leverage leaf-scale models, such as 
PROSPECT, to provide the leaf optical properties (i.e., leaf single-scattering albedo) 
needed to simulate canopy directional-hemispherical reflectance across select 
wavelengths, simulated spectral bands, or specific SVIs. Generally, the soil bound-
ary layer is either prescribed or simulated using a simple model of soil BRDF (e.g., 
Hapke model, Verhoef and Bach 2007), and stem or woody material reflectance and 
transmittance (when used) is prescribed. Canopy RTMs can be separated into two 
main classes, homogenous and heterogenous models. Homogenous models assume 
the canopy to be horizontally unlimited and treated as a turbid medium of suffi-
ciently large number of phytoelements (leaves, stems, other materials). For exam-
ple, the Ross–Nilson model of plate medium (Ross 1981) assumes these elements 
to be composed of small bi-Lambertian “plates” described by their reflectance and 
transmittance properties with a specific leaf angle distribution (LAD). Leaves are 
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small compared to the full canopy medium, with no self-shading, and transmittance 
is a function of optical properties and leaf area index (LAI). Additional canopy 
parameters were added, including the hot-spot and canopy clumping to describe 
sun-sensor illumination effects and the inhomogeneity of the canopy elements 
(Kuusk 2018). Early SAIL models also fall into this classification (e.g., Verhoef 
1984). On the other hand, heterogenous canopy RTM models, including 3-D mod-
els, address the fact that vegetation canopies are heterogenous (e.g., gaps between 
crowns, spatial structure, differing canopy architectures) but range widely in their 
complexity and implementations. These models provide enhanced detail in the 
modeling of vegetation canopies but are necessarily more complex. Often these 
models require additional information to model vegetation “scenes,” which can 
include information on tree crown shape, stem location, and other properties (e.g., 
hot spot, clumping) in addition to leaf optical properties, sun-sensor geometry, and 
LAI.  These models range from 3-D Monte Carlo ray-tracing models, such as 
FLIGHT (North 1996) and FLiES (Kobayashi and Iwabuchi 2008), to analytical 
and hybrid approaches using a variety of canopy structure schemes including geo-
metric optical (GO) representation of individual plants where tree placement fol-
lows a statistical distribution and leaf and stem scattering elements are homogenously 
distributed (e.g., Kuusk and Nilson 2000; Nilson et al. 2003). For example, multiple 
stream, including four-stream, two-layer models often utilize simplifying assump-
tions, to model canopies as homogenous and continuous (i.e., “slab canopies”), but 
which are composed of a large number of small scattering elements (leaves, some-
times leaves and stems) with arbitrary inclination angles (e.g., 4SAIL2, Verhoef and 
Bach 2007). The scattering elements and the soil can be prescribed with specific 
optical properties using observed data or based on a leaf RTM, such as PROSPECT 
(Jacquemoud et al. 2009). In addition, some models can divide complex scenes into 
smaller cells to perform the radiative transfer calculations (e.g., DART, 
Gastellu-Etchegorry et al. 2015) where the level of simulation detail is based on the 
size of the cells and the degree of detail built into the model scene components. See 
the review by Kuusk (2018) for more details regarding canopy RTMs and their 
design, diversity, assumptions, and approaches.

The use of RTMs allows for the estimation of leaf and canopy traits using simu-
lated canopy reflectance, without some of the limitations or challenges of empirical 
approaches (3.3.1), such as the requirement of field sampling, scaling leaf traits to 
the canopy, and other issues such as the timing of field and imagery collections. 
Furthermore, RTMs can provide a more mechanistic connection between traits and 
reflectance allowing for potentially broader application than empirical approaches 
in areas were ground sampling may be sparse (e.g., remote regions such as the 
Arctic or the tropics). In addition, RTMs provide the opportunity to prototype 
inversion approaches across a range of remote sensing platforms and evaluate the 
trade-offs between different sensor designs, spectral resolutions, and temporal 
coverage (Shiklomanov et al. 2016), enabling the development of cross-platform 
retrieval algorithms.

Depending on the application, and RTM complexity, inversion can be conducted 
at the pixel or larger patch scales (i.e., collections of relatively homogenous areas of 
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vegetation) to characterize spatial and temporal patterns in plant functional (e.g., 
pigments) and structural (e.g., LAI) properties. In RTM inversion, the leaf-scale 
model is often the focus, where the goal is to invert the canopy and leaf models 
jointly to extract estimated foliar traits based on observed canopy reflectance (e.g., 
Colombo et al. 2008). Many other studies have focused on retrieving canopy-scale 
parameters, such as LAI (e.g., Darvishzadeh et  al. 2008; Banskota et  al. 2015). 
Early approaches leveraged RTM inversions that focused on numerical optimization 
techniques to minimize the difference between modeled and observed reflectance 
across similar wavelengths (e.g., Jacquemoud et al. 1995). Other methods have uti-
lized look-up table (LUT) inversion (e.g., Weiss et al. 2000) where a range of simu-
lated canopy reflectance patterns are generated in advanced by varying leaf and 
canopy inputs across predetermined values. These simulated spectra are then com-
pared to observations where either a single or select number of closely matching 
modeled spectra, and their associated inputs, are selected as the solution to the 
inversion. Bayesian RTM inversion methods have also been utilized (e.g., 
Shiklomanov et al. 2016) as a means to retrieve leaf and canopy properties as joint 
posterior probability distributions through iterative sampling of the input parameter 
space. The use of RTMs ranges from retrieval of vegetation functional and structural 
traits to the characterization of landscape functional diversity (Kattenborn et  al. 
2017; Kattenborn et al. 2019).

3.3  �Important Considerations, Caveats, and Future 
Opportunities

3.3.1  �Field Sampling and Scaling Considerations

There are several important considerations and best practices when developing 
algorithms for the remote estimation of plant traits (see Schweiger, Chap. 15). We 
will only briefly touch on these here. A key first step is to consider the scope of the 
research and area of interest, focusing specifically on considerations such as local 
climate conditions, terrain, vegetation, and canopy access. Specifically, the spatial 
locations, site, and canopy access (e.g., is it possible to reach canopy foliage?); 
vegetation composition and canopy architecture; timing of collection; and methods 
for sample retrieval are key to identify prior to field campaigns in order to maximize 
the utility of the field samples for conversion of RS signatures to accurate trait maps. 
Furthermore, it may be important to consider what approach may be best to charac-
terize the vegetation canopy architecture and/or composition to facilitate scaling of 
each trait to the pixel or plot scale (e.g., using basal area, LAI). This may strongly 
depend on the dominant vegetation types, where more open canopies may require a 
different approach to a closed canopy, or on the spatial resolution of the imagery. 
Observational data range is a primary consideration (see Schweiger, Chap. 15), and 
sample locations should be chosen to cover the range of canopy types and vegeta-
tion communities that will fall within the RS observations. The timing of the field 
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sampling should be as close to the RS collection date as possible, as an optimal 
approach, but at least be selected to match the phenological stage of the vegetation 
during the imagery collection, if leveraging sample campaigns in following year(s).

A number of different methods have been used to collect plant functional traits 
to link with RS imagery (e.g., Wang et al. 2019). Common approaches for the col-
lection of canopy leaf samples include the use of slingshot, pruning pole, and shot-
gun (Lausch et al., Chap. 13), but also include line-launcher and air cannon (e.g., 
Serbin et  al. 2014); simpler tools and hand shears are often used for accessible, 
shorter canopies. Regardless of the sample collection approach, harvested leaves 
should be reasonably intact and minimally damaged in order to avoid any issues 
with changes in leaf chemistry from physical damage or stress. In addition, leaves 
should be immediately measured for leaf optical properties and fresh mass, if these 
are of interest, then stored in humidified and sealed bags and placed in a cool, dark 
place prior to transport for further processing. Processing should then be completed 
within 2–4 hours of sampling—though a much shorter time between sample and 
measurement or different sample storage and handling (e.g., flash freezing in liquid 
nitrogen) may be needed for specific biochemical traits. Typically top-of-canopy, 
sunlit samples have been the main focus; however, more recent work has also begun 
to focus on collection of canopy and subcanopy samples (e.g., Serbin et al. 2014; 
Singh et  al. 2015). This provides the ability to evaluate the depth in the canopy 
needed to link traits with image, which may vary by vegetation type or LAI.

3.3.2  �Evaluating Functional Trait Maps and the Need 
to Quantify Uncertainties

Maps of plant functional traits are useful for a wide variety of applications. From an 
ecological perspective, maps of plant traits across broad biotic and abiotic gradients 
can be used to explore the drivers of plant trait variation in relation to climate, soils, 
and vegetation types (e.g., McNeil et al. 2008). Modeling activities can leverage 
these trait maps as either inputs for model parameterization across space and time 
(Ollinger and Smith 2005) or to evaluate prognostic plant trait predictions. However, 
to maximize the utility of functional trait maps a detailed understanding of the their 
uncertainties across space and time is required.

In the earliest functional trait mapping work, predictive model uncertainties were 
limited to the “goodness of fit” and overall model root mean square error (RMSE) 
statistics provided by the modeling approach (e.g., Wessman et al. 1988; Martin and 
Aber 1997; Townsend et al. 2003). While this information is helpful to understand 
the accuracy of the model fit, that level of accuracy assessment is insufficient for 
characterizing the uncertainty of the trait maps themselves. Mapping efforts should 
instead provide an accounting of the trait measurement, scaling, and algorithm 
uncertainties and provide this information in the resulting trait map data products. 
However, detailed error propagation is not trivial, particularly with respect to empir-
ical modeling approaches, and is an ongoing and active area of research in the RS 
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sciences and not discussed in detail here. On the other hand, efforts to provide prod-
uct uncertainties do exist. Serbin et al. (2014) and Singh et al. (2015) illustrate how 
to incorporate data and modeling uncertainties at the leaf and canopy scales in the 
mapping of plant functional traits. This approach captures the uncertainties stem-
ming from the leaf-level estimation of traits (Serbin et al. 2014) and the modeling of 
plot-level spectra and trait values (Singh et  al. 2015) using a similar PLSR and 
uncertainty analysis approach. The result is an ensemble of PLSR models to apply 
to new RS data providing mean and error metrics for every pixel in the image. 
However, even approaches such as these fail to incorporate and propagate the uncer-
tainties stemming from the atmospheric correction workflow given the challenge of 
extract the information needed to enable this on a pixel-by-pixel or even a scene-by-
scene basis. Future work will be required to focus on capturing this information and 
providing it to the end-user who conducts the trait mapping efforts.

Uncertainty in RTM approaches have generally been derived based on inver-
sion approaches applied to imagery. For example, as described in Sect. 3.2.2.2, a 
commonly used approach to the inversion of RTM simulations for the RS of func-
tional traits is the use of LUTs. Some LUT approaches provide results based on 
the “best fit” of the model inversion results to the RS observations. However, this 
only provides an assessment of error where field measurements can be used to 
evaluate the retrieved values. Given the challenge of equifinality in RTM 
approaches, later efforts have used an ensemble of best fit results to provide a 
mean and distribution of values that provide a good fit of modeled reflectance to 
observed (e.g., Weiss et  al. 2000; Banskota et  al. 2015). Using this approach 
allows for the description of pixel-level uncertainty based on the best fit ensem-
bles; however, these need to be combined with an accuracy assessment to get a 
true uncertainty of the functional trait retrievals. More recent approaches have 
leveraged Bayesian inversion approaches that provide output that is not a point 
estimate for each parameter but rather the joint probability distribution that 
includes estimates of parameter uncertainties and covariance structure 
(Shiklomanov et al. 2016). Regardless of the approach, the key is that the derived 
products provide a reasonable assessment of trait uncertainty across the spatial 
and temporal domain (where appropriate).

3.3.3  �Current and Future Opportunities in the Use of Remote 
Sensing to Characterize Functional Traits 
and Biodiversity

The ability to map foliar functional traits from imaging spectroscopy greatly 
expands the potential for understanding patterns of vegetation function and func-
tional diversity both locally and broadly across biomes, especially in comparison to 
the challenges of fully characterizing spatial and temporal (across seasons and 
between years) variation using field data (e.g., the TRY database). With forthcoming 
spaceborne sensors (see Schimel et al., Chap. 19) and continental-scale experiments 
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like the US National Ecological Observatory Network (NEON), we are able to test 
relationships among traits and characterize functional diversity at unprecedented 
scales. For example, NEON is collecting imaging spectroscopy data at 1 m resolu-
tion and waveform lidar data almost annually for 30 years at 81 10 km × 10 km sites 
covering 20 biomes defined for the USA. With the addition of lidar, which enables 
measuring traits such as plant area index, canopy height, canopy volume, and 
aboveground biomass (of forests), a broad suite of traits can be leveraged to test 
relationships that have been published in the literature (e.g., the leaf economics 
spectrum) and are generally tested now at global scales using extensive—but still 
not comprehensive—databases such as TRY. With spaceborne imaging, phenologi-
cal variation in traits (e.g., Yang et al. 2016) can be further explored. For example, 
preliminary mapping of key functional traits across all NEON biomes in the USA 
shows the leaf economics spectrum relationship between LMA and nitrogen for for-
est and grassland ecosystems east of the US Rocky Mountains (Fig. 3.8.) in com-
parison to the data set used for the original LES studies, GLOPNET (Global Plant 
Trait Network, Wright et al. 2004; Reich et al. 2007). Importantly, the use of data 
from RS platforms, such as NEON, AVIRIS, and upcoming spaceborne sensors (see 
Schimel et al., Chap. 19), enables the filling of critical research gaps and global 
coverage in remote regions, as suggested by Jetz et al. (2016) and Schimel et al. 
(2015). The relationship does not differ significantly from published relationships 
but does suggest a breadth of the relationship as well as outliers for a number of 
observations many orders of magnitude higher than is possible from field databases. 
Field databases are still required for basic science studies, as well as inventory, cali-
bration, and validation, but RS offers new possibilities for baseline characterization 
of Earth’s functional diversity and thus testing new hypotheses about the drivers of 
such variation, using the range of traits detectable from RS (Tables 3.1 and 3.2). 

Fig. 3.8.  LMA versus nitrogen for NEON for GLOPNET observations (black dots, truncated to 
observations with LMA <600) vs. pixel predictions derived for NEON sites east of the US Rocky 
Mountains (color gradient). Color gradient is density of pixel observations based on 333,500 pixel 
values randomly extracted from 447 flight NEON flight lines in 18 sites across 6 biomes
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Furthermore, coupling of spectral and functional trait databases (e.g., ecosis.org) will 
facilitate more rapid development and testing of new functional algorithms or the 
expansion of the scope of inference of existing models. In addition, the inclusion of 
high spectral resolution sensors on unmanned aerial systems (UASs, Shiklomanov 
et al. 2019) provides the opportunity to leverage similar scaling approaches as pre-
sented in this chapter with UAS observations to provide unprecedented temporal cov-
erage and targeted spatial sampling that can be used to understand ecosystem in new 
detail or aid in the scaling from the plant to grid cell. In all, functional trait maps from 
imaging spectroscopy will supplement data and approaches presented by Butler et al. 
(2017) or Moreno-Martínez et al. (2018) for broad-scale trait characterization.
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Chapter 4
The Laegeren Site: An Augmented Forest 
Laboratory

Combining 3-D Reconstruction and Radiative 
Transfer Models for Trait-Based Assessment of 
Functional Diversity

Felix Morsdorf, Fabian D. Schneider, Carla Gullien, Daniel Kükenbrink, 
Reik Leiterer, and Michael E. Schaepman

4.1  �Introduction

Global change is altering biodiversity in an unprecedented manner (Parmesan and 
Yohe 2003), and its impact on humankind may be large (Chapin III et  al. 2000; 
Isbell et al. 2017). Forests are of special relevance because they hold most of the 
terrestrial biomass (Bar-On et al. 2018), are a hot spot of biodiversity (Wilson et al. 
2012), and are subject to climate- and human-induced changes (Gardner 2010; 
Hansen et al. 2013). To monitor and potentially mitigate changes in biodiversity, 
Pereira et al. (2013) defined a set of essential biodiversity variables (EBVs), which 
should be comprehensive, concise, and standardized. Originally, most of these 
EBVs were to be measured in situ within ecosystems, but because forest plots are 
particularly scarce in the regions where change is happening the fastest (Chave et al. 
2014), remote sensing (RS) has been acknowledged as a vital component to contrib-
ute to the aims of EBVs in the form of RS-enabled EBVs (RS-EBVs; Pettorelli et al. 
2016; O’Connor et al. 2015). More specifically, RS technologies such as imaging 
spectroscopy and laser scanning have been attributed with the potential to play an 
important role in providing the necessary information for RS-EBVs, be it at regional, 
national, or global scale (Skidmore et al. 2015; Jetz et al. 2016).

Still in its early stage is the design and use of the EBV framework to include and 
combine RS-EBVs with in-situ measurements. In-situ measurements are often 
based on point measurements of individual species, whereas RS-EBVs are area-
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based, with spatial characteristics depending on sensor resolution and coverage, 
similar to the concept of grain and extent in ecology (Turner 1989).

For large-scale assessments (i.e., regional, continental, global), cost and effort of 
fieldwork is a limiting factor with respect to in-situ observations. Data from the 
newest generation of optical satellites (e.g., Landsat 8 and Sentinel-2) have high 
potential for a global biodiversity assessment due to their high spatial resolution 
(10–30 m), multispectral information, and temporal coverage, with repeat passes 
within 5–6 days, depending on the area of interest. Nevertheless, due to their recent 
launch, these sensors do not provide a long time series, and the complementarity of 
lower resolution satellite data or airborne or terrestrial RS data in combination with 
in-situ observation is beneficial to map changes at decadal or longer timescales.

All optical RS approaches use reflected light of the vegetation canopy to infer 
information about its state (Schaepman et al. 2009; Homolov́a et al. 2013). Leaf-
level biochemistry (e.g., traits such as chlorophyll and water content) has strong 
links with leaf reflectance and transmittance (Jacquemoud and Baret 1990). 
However, when light interacts with the canopy, a multitude of scattering and absorp-
tion processes have to be considered (North 1996), taking place at different levels 
(e.g., leaf, tree, canopy; Niinemets et al. 1998) of the canopy. Thus, passive optical 
observational approaches of forested ecosystems are susceptible to the effects of 
forest structure because directional effects associated with illumination and obser-
vation geometry may interact with signals related to leaf-level biochemistry (Hilker 
et  al. 2008; Knyazikhin et  al. 2013). Consequently, the reflectance signal at the 
canopy level is influenced by both vegetation structure and leaf-level physiology, 
and disentangling those based on passive optical data alone remains a difficult prob-
lem (Kotz et al. 2004). The effect of vegetation structure on RS indices and products 
(e.g., RS-EBVs) is difficult to assess, and its impact on current observations and 
predictions may be large. The validation of advanced wall-to-wall RS products 
becomes increasingly difficult because of spatiotemporal mismatches of in-situ 
observations with RS data. Hence, we need a framework to be able to upscale and 
validate leaf-level physiological traits to the level of RS data to test potential observ-
ables for RS-informed EBVs.

Radiative transfer (RT) modeling has been used for several decades to simulate 
and understand the signals in passive optical data (Myneni et al. 1995, 1997; Meroni 
et al. 2004; Lewis and Disney 2007; Gastellu-Etchegorry et al. 1996). In addition, 
RT models (RTMs) have been used with existing medium- to low-resolution space-
borne missions for the retrieval of products such as leaf area index (LAI) or fraction 
of absorbed photosynthetic radiation (fAPAR) through inversion (Myneni et  al. 
1997; Running et al. 2004). One particular issue with RTMs of vegetation is their 
parameterization. While modeling approaches simulating low-resolution data [such 
as Moderate Resolution Imaging Spectroradiometer (MODIS) or MEdium 
Resolution Imaging Spectrometer (MERIS)] mainly used one-dimensional param-
eterizations of the vegetation (Jacquemoud 1993; Huemmrich 2001; Verhoef and 
Bach 2007), higher-resolution sensors will need 3-D parameterization to account 
for effects like shadowing and multiple scattering (Asner and Warner 2003; Disney 
et al. 2006; Widlowski et al. 2015). The first RTMs incorporating 3-D forest structure 
were called geometric-optical radiative transfer (GORT)-type models (Ni et al. 1999). 
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While they were better at modeling directional effects than 1-D models, they still 
lacked multiple scattering and did not have full energy balance closure of incoming 
and outgoing radiation across all spectral domains. More advanced models use 
Monte Carlo ray tracing (MCRT) to add multiple scattering and provide a sound 
physical representation of the photon’s interaction with vegetation canopies (Disney 
et al. 2006). While the inclusion of more physical processes (e.g., multiple scatter-
ing) certainly improves MCRT-type models over simpler approaches, their param-
eterization and benchmarking remains an issue. A large effort in testing RT models 
was undertaken in the course of the radiation transfer modeling intercomparison 
(RAMI) exercise, where different models were tested using a set of artificial scenes 
of different complexity, including 3-D scenes, to see if the models produced compa-
rable results (Widlowski et al. 2008, 2015). However, this benchmarking remained 
relative (i.e., representing actual forest patches that could be validated with real-
world Earth observation (EO) data acquired over the same area was not an aim of 
the RAMI exercise). One reason, among others, for this was the lack of suitable 
technologies and methods to capture and represent the 3-D vegetation structure at 
small scales (e.g., branches, leaves, and/or shoots).

Today, laser scanning is an established tool for retrieving quantitative measures 
of canopy structure (Nelson 1997; Lefsky et al. 1999; Næsset 2002; Morsdorf et al. 
2004; Popescu et al. 2002; Morsdorf et al. 2006, 2010; Nelson 2013; Wulder et al. 
2012). Airborne (ALS)-, terrestrial (TLS)-, and unmanned aerial vehicle (UAV)-
based laser scanning (Morsdorf et al. 2017) provide a direct means to assess vegeta-
tion structure by combining the known position and orientation of the sensor with 
the time of flight of a laser pulse to produce a point cloud of exact 3-D coordinates. 
Measurements can be made across scales (e.g., stand, tree, branch, and leaf level) 
with finer scales often captured by close-range laser scanning (Morsdorf et  al. 
2018). The amount of structural detail contained in the point cloud can be over-
whelming, and the extraction of meaningful information remains a challenge 
(Wulder et al. 2013; Morsdorf et al. 2018). Due to large data sets, automated meth-
ods for the extraction of either semantic information, such as single-tree detection 
based on ALS (Hyyppa et al. 2001; Morsdorf et al. 2004; Kaartinen et al. 2012; 
Wang et  al. 2016) or tree geometry reconstruction from TLS (Cote et  al. 2009; 
Raumonen et  al. 2013) or the derivation of biophysical variables such as LAI 
(Morsdorf et al. 2006), are preferable over manual and/or empirical approaches.

Figure 4.1 shows an example of a single-tree-based 3-D reconstruction using 
ALS- and TLS-derived information. Using the 3-D information derived by ALS and 
TLS, one can reconstruct a virtual representation of the forest that will be used by 
the RT model to simulate the radiative regime of the canopy. Such an approach can 
be utilized to upscale measurements of leaf biochemistry to the canopy scale and to 
validate imaging spectroscopy-derived RS-EBVs across larger regions. In addition, 
this approach uses a set of three physiological and tree morphological functional 
traits, derived from imaging spectroscopy and laser scanning, respectively, to show-
case the potential of these technologies to map the functional diversity of forests 
and to provide relevant information for RS-enabled EBVs.

Here we describe how we (i) designed and implemented an observational scheme 
to gather in-situ and structural data across several scales to simulate the 3-D radiative 
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regime of the forest, (ii) tested the simulation by comparing simulated and actual RS 
data in their spectral and spatial information dimension, and (iii) use the approach to 
demonstrate how remotely sensed functional traits can be used to compute regional-
scale functional richness, showcasing the information content of RS-EBVs.

4.2  �The Laegeren Site: Description and History

The Laegeren site is located at N 47° 28′, 49″ and E 8° 21′, 05″ at 680 m a.s.l. on the 
southern slope of the Laegeren mountain, approximately 15 km northwest of Zürich, 
Switzerland (Fig. 4.2). The southern slope of the Laegeren marks the boundary of the 
Swiss Plateau, which is bordered by the Jura and the Alps. Since 1986, a 45-m-tall 
flux tower has provided micrometeorological data at high temporal resolution. Since 
April 2004, CO2 and H2O flux measurements are a routinely contribution to the 
FLUXNET/CarboEurope-IP network (Eugster et al. 2007). The mean annual tem-
perature is 8°C. The mean annual precipitation is 1200 mm, and the growing season 
lasts 170–190  days. The natural vegetation cover around the tower is a mixed 
beech forest. The western part is dominated by broad-leaved trees, mainly beech 
(Fagus sylvatica L.) and ash (Fraxinus excelsior L.). In the eastern part, beech and 

Fig. 4.1  Workflow of the 3-D reconstruction using ALS and TLS measurements
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Norway spruce (Picea abies (L.) Karst.) are dominant. The forest stand has a rela-
tively high diversity of species, ages, and diameters (Eugster et al. 2007). The ground 
cover mainly consists of bare soil, boulders, and litter, while the sparse understory 
vegetation is dominated by herbs and shrubs. Average canopy height (CH) is 24.9 m, 
with a maximum of 49 m, and the stem density is 270 stems per ha.

4.3  �Data

4.3.1  �In-Situ Data

Ground data with varying spatial, spectral, and temporal resolution allow for the 
3-D reconstruction of the Laegeren, its attribution with leaf optical properties 
(LOPs), and generation of a reference database for parameterization and validation 
purposes. We used multitemporal TLS on a 60 m × 60 m plot (Sect. 4.3.2.2) and an 
extensive forest inventory for an area of 300  m  ×  300  m, which is extended to 
300 m × 900 m for the simulation of EO data. In the inventory data, the type and 
accurate position of the trees, as well as their crown dimension and offset due to 
leaning stems, social position, and vertical stratification of the crown, were recorded 
(Sect. 4.3.1.2). In addition, the occurrence and characterization of the understory 
was mapped in the field and interpolated to a 2 m × 2 m grid using an ALS-based 
classification (Leiterer et al. 2013).

Fig. 4.2  Location of the Laegeren site within Switzerland
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4.3.1.1  �Measurements of Leaf Optical Properties

To obtain the optical properties of tree foliage, we used an integrating sphere cou-
pled with an Analytical Spectral Devices (ASD) FieldSpec-3. Measurements of 
hemispherical and directional reflectance and transmittance, both from the abaxial 
and adaxial side of the leaves, were taken. To take into account the vertical variabil-
ity of LOPs, we sampled in three different crown parts (top, middle, bottom), repre-
senting different lighting conditions in the canopy (e.g., sunlit, transitional, shaded). 
Deciduous leaves were collected from ten individual trees of five species (Acer 
pseudoplatanus spp., Fagus excelsior, F. sylvatica, Ulmus glabra, and Tilia platy-
phyllos). Measurements of aerosol optical depth (AOD) and precipitable amount of 
water (PAW) were provided by the aerosol robotic network (AERONET) as level 
2.0 quality-assured data. For details of the sampling and measurement scheme, see 
Schneider et al. (2014).

4.3.1.2  �Forest Inventory

An exhaustive forest inventory was carried out, individually addressing all single 
trees with a diameter at breast height (DBH) above 20 cm on the 300 m × 300 m site. 
Variables recorded for each tree included DBH, species, social status, and crown 
shift (i.e., an estimation of the magnitude and horizontal direction of the crown 
center in respect to the foot of the stem). The latter is of particular relevance on the 
Laegeren site because many trees have leaning stems due to topography and shallow 
soils. A geodetic tachymeter was used for the surveying, enabling fast and accurate 
electronic tree location measurements. Using all measured points, a polygonal tra-
verse was calculated resulting in the x, y, z coordinates for each measurement posi-
tion with an error range of millimeters for the TLS measurements and a maximum 
of 10 cm in x, y, and z for all other field measurements. The relative locations were 
transformed to absolute Swiss national coordinates using three differentially cor-
rected global positioning system (GPS) base points, which were placed in canopy 
gaps. See Fig. 4.3 for a visualization of the tree inventory.

4.3.2  �RS Data

4.3.2.1  �Airborne Laser Scanning

To provide 3-D structure information across the whole study area, we relied on two 
airborne laser scanning campaigns, using a RIEGL LMS-Q680i scanner under leaf-
on conditions and a RIEGL LMS-Q560 scanner under leaf-off conditions. Flight 
strips have an overlap of approximately 50%. Full-waveform features, namely, echo 
width and intensity, were extracted from the data using the software RiANALYZE 
and were assigned to the individual returns in the multiple-echo point cloud. 
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The point cloud was filtered to classify ground and vegetation points, and the ground 
points were subsequently interpolated to a raster of 1 m resolution. For a detailed 
description of the digital terrain model (DTM) generation, see Leiterer et al. (2013). 
DTM accuracy was assessed using more than 500 TLS-measured road surface and 
bare soil points (see Sect. 4.3.2.2), which were related to the national land survey 
and resulted in a mean height uncertainty of about ±0.25 m. For each point of the 
full point cloud, the height above ground was calculated by subtracting the interpo-
lated DTM value from the corresponding echo height above sea level, providing the 
vertical distance of the vegetation echoes to the terrain underneath.

4.3.2.2  �Terrestrial Laser Scanning

On a subset of about 60 m × 60 m, a ground-based TLS survey was carried out using 
a Riegl VZ1000 instrument. A total of 40 scans on 20 scan locations were taken 
because each location had to be covered by two scans due to the VZ1000’s camera 
scanning pattern (Morsdorf et  al. 2018). About 50 reflective targets were placed 
within the scene and later used for co-registration of the scans. For co-registering 
RiSCAN Pro was used, and we used the ALS data to subsequently globally adjust 
(rotate and translate) the unified TLS point cloud. Due to the high and dense canopy, 
TLS needs to be complemented by laser data from above the canopy, providing 
more information in the upper part, either by ALS or UAV-based laser scanners. For 
biomass retrievals, the occlusion of upper canopy material in TLS data might be less 
of a problem because stems generally taper off toward the top. However, if simula-
tion of the radiative regime and subsequent comparison with EO data gathered with 
a top-of-canopy perspective is the aim, TLS in denser forests needs to be comple-
mented with laser scanning data from above the canopy (Morsdorf et  al. 2017, 
2018) (Fig. 4.4).

Fig. 4.3  Subset of single-tree ground inventory (a) and UAV-based RGB imagery acquired in fall 
(b). The black box in (b) denotes the subset presented in (a). The gray structure southwest of the 
bounding box is the flux tower, and the small inset shows the total extent of the single-tree ground 
inventory

4  The Laegeren Site: An Augmented Forest Laboratory



90

4.3.3  �Multispectral and Imaging Spectroscopy Data

Imaging spectroscopy data were acquired under clear sky conditions using the 
APEX imaging spectrometer (Schaepman et al. 2015). The average flight altitude 
was 4500 m a.s.l. resulting in an average ground pixel size of 2 m. APEX measured 
at-sensor radiances in 316 spectral bands ranging from 372 nm to 2540 nm. APEX 
data were processed to hemispherical-conical reflectance factors in the APEX pro-
cessing and archiving facility (Hueni et al. 2009). Level 1 (L1) calibrated radiances 
were obtained by inverting the instrument model, applying coefficients established 
during calibration, and characterization at the APEX Calibration Home Base 
(CHB) in Oberpfaffenhofen, Germany. The position and orientation of each pixel 
in 3-D space was based on automatic geocoding in PARGE v3.269, using the swis-
sALTI3D DTM. L1 data were then converted to hemispherical conical reflectance 
factors (HCRFs, Schaepman-Strub et al. 2006) by employing ATCOR4 v7.0 in the 
smile aware mode. The APEX data were complemented with other passive optical 
data of varying spatial and spectral resolution to build up an EO data set (Fig. 4.5). 
This EO data set enables cross-comparisons between the 3-D RT modeled and the 
actual, measured top-of-atmosphere (TOA) reflectance values at different spectral 
and spatial resolutions and thus an absolute evaluation of the 3-D reconstructed 
forest scenes and the RTM parameterization. The EO data acquired during the 
2010–2014 growing seasons covers a variety of spectral and spatial resolutions: 

Fig. 4.4  Terrestrial laser scan of a beech-dominated part of the study area. Transect measures 
about 30 m (width) × 4 m (depth). One can observe a general thinning of the point cloud toward 
the top due to occlusion
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imaging spectrometer data from APEX (2 m × 2 m, see above for details) as well 
as multispectral data from RapidEye (5  m  ×  5  m, 4 scenes), SPOT HRG 
(10 m × 10 m, 5 scenes), PROBA CHRIS (17 m × 17 m, 1 scene), Landsat TM/
ETM+/OLI (30  m  ×  30  m, 37 scenes), ENVISAT MERIS (300  m  ×  300  m, 8 
scenes), and Aqua/Terra MODIS (250 m × 250 m, monthly). We use APEX data for 
the spectral validation and a RapidEye scene for the spatial validation of our 3-D 
RTM approach.

4.4  �Methods

4.4.1  �In-Situ Data Processing

4.4.1.1  �Optical Properties

LOPs were calculated separately for deciduous and coniferous trees. A linear 
spectral forward mixing was applied to calculate the reflectance and transmittance 
spectra of sunlit, transitional, and shaded leaves and needles. Because the spectra 

Fig. 4.5  The spatial and spectral scales covered by Earth observation (EO) data gathered for 
validation and up- and downscaling purposes
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were found to match well with those in literature, the data were used directly instead 
of a forward simulation of a LOP model (Feret et al. 2008). This was done to reduce 
the number of parameters and associated uncertainties. The broadleaf species com-
position used for spectral mixing was derived from the forest inventory information 
and is dominated by beech (about 50%), with lesser contributions from maple, elm, 
linden, and ash.

One particular issue of the Laegeren site is its large variation in the spectral 
background. Because we had multitemporal full-waveform lidar data available for 
the Laegeren site, we used this information to classify the ground into distinct 
classes (gravel, litter, soil) and assigned matching spectra from our field measure-
ments to these classes (Leiterer et al. 2013). As Schneider et al. (2014) showed, 
using several understory classes instead of a homogenous (black) background 
makes simulated top-of-canopy (TOC) and top-of-atmosphere (TOA) reflectance 
values more realistic.

4.4.1.2  �3-D Reconstruction

Two different approaches for 3-D reconstruction of the vegetation structure were 
implemented and tested. The first approach relied on a single-tree identification and 
the second one on a direct computation of plant area index (PAI) values inside a 
voxel cell. Voxels are basically 3-D pixels, dividing the 3-D space into equal-sized 
cubes. The single-tree detection (individual tree crown, ITC) method used was 
based on Morsdorf et  al. (2004), which derives tree location, height, and crown 
diameter to reconstruct the forest in 3-D based on simple geometric primitives like 
rotational paraboloids. However, as with most local maxima detection-based ITC 
methods, its performance within the mixed forest stands of the Laegeren site was 
suboptimal, with tree detection rates of only 50–70%. This is much lower than what 
can be expected for conifer forests, where rates of up to 90% can be achieved 
(Kaartinen et al. 2012; Wang et al. 2016). Conifers generally have conical crowns 
with one distinct peak (treetop), greatly facilitating their detection as local maxima 
in a digital surface model (DSM). The main difference between the voxel-grid and 
ITC approaches is the added level of semantics (Morsdorf et al. 2018) in the single-
tree case, which might be relevant for some species- and individual-focused experi-
ments (i.e., when trying to link EO-based traits with genetic information of the 
individual tree). If the aim of the 3-D reconstruction is an accurate simulation of the 
radiative regime, single-tree identification adds a layer of unnecessary complexity, 
so the voxel-grid approach led to better results (Schneider et al. 2014) and was sub-
sequently used for upscaling of the trait information (Schneider et al. 2017).

4.4.1.3  �Linking Field and RS Data

The perspective of forest inventory is from within or beneath the canopy and the 
main sampling unit is the tree, quantified as diameter at breast height (DBH). RS, 
on the other hand, has a top-down perspective on the canopy, and the sampling unit 
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is normally a pixel. Linking these different perspectives can be difficult under any 
circumstances; the Laegeren site is situated on a steep slope, and trees have irregular 
crown shapes and different growing directions, which further complicates informa-
tion matching. The first necessary step is to convert the pixel-based EO data to tree-
based data by using 2-D polygons of crown boundaries. Considering the low success 
rates of ALS-based ITC, we manually delineated tree crowns based on UAV imag-
ery acquired in the fall (Fig. 4.3) and matched each crown with the forest inventory 
data. The field inventory provided valuable additional information, such as magni-
tude and direction of the crown shift for trees with leaning stems, which hinders a 
direct stem and crown location matching based on location (Fig. 4.6).

4.4.2  �Radiative Transfer Modeling

The RTM used to upscale and validate leaf-level traits such as chlorophyll and leaf 
water content is Discrete Anisotropic Radiative Transfer (DART; Gastellu-Etchegorry 
et al. 2015). Generally, a DART scene is built out of voxels with a predefined size. 

Fig. 4.6  Map of crown polygons determined from a combination of ALS and maximum leaf 
senescence (Fall) UAV data, linked with species information derived from the stem-referenced 
field inventory. Only the combination of these crown outlines and the stem map (see Fig. 4.3) 
allowed for individual specific computation of physiological and morphological traits
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To simulate vegetation such as grass or tree crowns, voxels can be filled by turbid 
media parameterized with PAI and leaf optical properties (LOPs). Further details of 
the DART model and examples of DART simulations can be found in Gastellu-
Etchegorry et al. (2015). We use flux tracking in reflectance mode with the sun and the 
atmosphere as the only radiation sources and used DART version 5.6.0 (v739). Optical 
properties described in Sect. 4.4.1.1 and the forest reconstruction described in Sect. 
4.4.1.2 are used to parameterize the forest canopy, background, and terrain in 
DART. For details of model parameterization, see Schneider et al. (2014); for details 
on the model-based upscaling of leaf-level traits, see Schneider et al. (2017). For the 
modeling results shown in Sect. 4.5.1.1, we used sun and observation angles as in the 
actual APEX and RapidEye acquisitions, respectively. We evaluate the performance 
of the combined 3-D reconstruction and RT simulation approach in two ways: spec-
trally, by comparing averaged simulated spectra on the core (i.e., covered by TLS 
measurements) site with those obtained by the APEX instrument, and, spatially, by 
comparing simulated bands of RapidEye over an area of 900 m × 300 m with DART-
simulated reflectance at those particular wavelength regions.

4.4.3  �Validation of Trait Predictions Using the RTM Approach

Three functional traits were derived from ALS data, canopy height (CH), PAI, and 
foliage height diversity (FHD), forming a set of morphological traits. These three 
were chosen because they are ecologically relevant and can be easily derived from 
airborne laser scanning data. Three additional functional traits—chlorophylls 
(CHL), carotenoids (CAR), and equivalent water thickness (EWT)—were chosen 
and computed using specific band ratios from the IS data (Schneider et al. 2017), 
forming a set of physiological traits. Both CH and CHL have been identified as 
primary observables for RS-EBVs, so their validation and scaling is particularly 
relevant. The traits were computed at a spatial aggregation unit of 6 m; for the ALS 
data, all echo values within a 6 m × 6 m grid cell were used for the computation, 
while for the IS data only sunlit pixels within the grid cell were retained for subse-
quent index computation. The shadow mask used for extracting sunlit pixels was 
derived from a DSM based on the ALS data and the solar illumination angle at the 
time of the IS overflight. For more details on the selected traits and their computa-
tion, please refer to Schneider et al. (2017).

The physiological traits used in this study are by definition leaf-level parameters, 
which need to be upscaled or averaged to be representative for the tree or canopy 
level. On the other hand, the morphological traits can be directly estimated from 
ALS data for any spatial unit. However, the chosen spatial scale and context might 
change how the data are interpreted (e.g., tree height needs to be estimated using 
single-tree information, whereas vegetation height can be derived at all different 
scales at the stand or plot level. See Fig. 4.7 for a map of the computed physiological 
and morphological traits.
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4.4.4  �Computation of Functional Richness

To showcase how the RTM-validated EO traits can be used for spatially explicit 
diversity assessments, we compute the functional richness within the 3-D trait space 
using a spatial subset of pixels (e.g., in a 60 m × 60 m box containing 100 pixels). In 
the case of the morphological traits, the 3-D trait space is spanned by the axes CH, 
PAI, and FHD, whereas for the physiological traits the trait space is spanned by the 
axes CHL, CAR, and EWT. The richness within the trait space is based on volume 
of a 3-D convex hull of all pixels’ trait values (i.e., the larger the variation of the 
respective traits, the larger the volume of the convex hull). As an example, if all trait 
values were the same, the richness would be zero because no volume would be 
spanned in the 3-D trait space. Computing the richness using a pixel-based approach 
has the advantage of resolving both inter- and intraspecific variation of the traits, 

Fig. 4.7  Physiological (a) and morphological (b) traits derived from IS and ALS. For the ALS-
based morphological traits, density is plant area index (PAI) and layering foliage height diversity 
(FHD)
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with the latter being potentially as large as the former (e.g., as observed in our leaf 
spectra). For details on the definition and computation of richness and other diversity-
related metrics in the scope of this work, please refer to Schneider et al. (2017).

4.5  �Results and Discussion

4.5.1  �Forward Simulation of Passive Optical Imagery 
and Comparison With EO Data

4.5.1.1  �Spectral Validation

Figure 4.8 compares the spectral response of a 20 m × 20 m subplot within the 
Laegeren site simulated by the DART RTM with the average APEX spectrum of the 
same area. In contrast to Schneider et al. (2014), the improved version of the DART 
model used in this study shows good agreement (within the standard deviation for 
the 10 × 10 pixel areas) for all wavelengths, including the visible domain. The ver-
sion of DART used in this study (5.6.0, v739) has a more sophisticated parameter-
ization of the atmosphere than the older version, improving the spectral response in 
the visible domain (Grau and Gastellu-Etchegorry 2013; Yin et al. 2013; Gastellu-
Etchegorry et al. 2015). The very good agreement of simulated and measured spec-
tra across all bands shows that our approach of combining a 3-D reconstruction of 
the forest and LOPs of leaves and needles was successful in capturing the dominant 
scattering components of this natural system. In the near-infrared domain of the 
spectra, this is likely due to ALS and TLS providing accurate physical representa-
tions of 3-D canopy structure, whereas in the visible domain the quality of the LOPs 

Fig. 4.8  Simulated spectral response by DART for subplot S1  in comparison with APEX data 
acquired over the same area. The standard deviation is computed from the single pixels in the 
20 m × 20 m plot
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and the representation of the atmosphere are contributing more to this excellent 
result. Thus, we have shown that the measured physiological trait variation at leaf 
level can be upscaled to canopy level (as observed by IS instruments). We used this 
to forward validate IS-derived physiological traits that are the basis of the functional 
richness computation in Sect. 4.5.2. This RTM-based link is a key component of our 
validation framework because typically field-measured spectra and the traits based 
on spectral indices cannot be assumed to be representative for the respective signals 
measured at the imaging sensor above the canopy.

4.5.1.2  �Spatial Validation

Figure 4.9 shows a comparison of the spatial patterns in both simulated and actual 
RapidEye imagery obtained over the Laegeren site in leaf-on conditions. When sub-
sampled to the 5 m resolution of RapidEye, our approach produces very similar 
spatial patterns, properly resolving shadows and highlights due to forest structure 
and underlying topography effectively contained in the ALS data and transferred to 
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lower resolution (5 m) of the RapidEye imaging sensor
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the RT model by the PAI voxel grid. If LOPs can be assumed to be uniform across 
a site or region, the presented approach can be used for larger areas, only relying on 
ALS data to parameterize the RT model and using the LOPs measured at a subset of 
the site or taken from spectral libraries. ALS data are generally available at regional 
and national scales, effectively bridging the gap between point-based field invento-
ries and global scale satellite imagery. Using such larger-scale simulated EO data, 
retrieval methods for RS-EBV primary observables such as CHL and vegetation 
height can be tested and validated. The 3-D simulation environment we established 
explicitly or implicitly contains all these variables in an easily retrievable format.

4.5.2  �Functional Diversity of Laegeren Site

Figure 4.10 shows the spatial distribution of the richness as computed from the three 
morphological and physiological traits. The most prominent pattern is the strong 
topographic effect of the Laegeren mountain ridge, which is equally present in both 

Fig. 4.10  Physiological (a) and morphological (b) richness determined within the trait space 
spanned by three traits

F. Morsdorf et al.



99

richness maps. The ridge and the associated steep slopes affect many environmental 
variables, which could act as filter for niche space and thus diversity. Higher altitude 
is linked with decreased temperature, whereas the slope is contributing to lesser soil 
depths and water availability and increased incoming radiation, at least for the part 
south of the ridge. Thus, the environmental conditions are harsher close to the ridge, 
which might explain the decrease of functional richness we observe in this context. 
In the lower regions, morphological and physiological richness exhibit differing 
spatial patterns. We assume that changes of the morphological richness in lower 
parts parallel to ridge are caused by the different stand management regimes and 
associated stand ages and structures. For the physiological richness, differences in 
species composition seem to be a dominant effect, with the conifer-dominated 
stands having a lower functional richness and the old-growth mixed stands being 
functionally richer.

4.6  �Conclusion and Outlook

Modern RS technologies increasingly face a validation paradox—i.e., it is very dif-
ficult to provide ground-based validation data that match the spatial (resolution and 
extent), temporal, and thematic characteristics of modern EO data sets. As an exam-
ple, ALS-derived tree height is assumed to be more accurate than field measure-
ments, but it cannot be proved using field data alone. By using laser scanning-derived 
3-D structure together with LOPs in an RT model approach, we have shown a way 
to overcome such mismatches and provide a framework that could be established 
across a range of sites around the globe to prototype and validate EO-based data and 
products in the future. Such a forward validation will as well pave the way for prod-
ucts that are not measurable in the field, but still might be relevant in the context of 
ecosystem function and diversity. The RTM approach provides a physical and 
mechanistic way to learn about the information content of EO data, and a combina-
tion of this approach with recent developments in the machine learning domain 
could provide interesting perspectives.

With the trait-based functional richness assessment, we demonstrated how a spa-
tially extended monitoring using the complementary technologies imaging spec-
troscopy and lidar would work and what kind of insights into ecosystem functioning 
it could generate. In addition, the trait maps and the derived functional richness 
could be used for spatiotemporal gap filling of in-situ observational networks such 
as the global forest biodiversity initiative, complementing the diversity information 
that these provide.

In the future, these data streams in conjunction with the EBV concept (Fernández 
et al., Chap. 18) will give policy-makers around the world useful tools to assess and 
report on the biodiversity. To speed up this process, the European Space Agency 
funded the GlobDiversity project starting in 2017 in the tradition of similar projects 
for some of the essential climate variables. The project’s goal is to demonstrate the 
capability and utility of producing a set of selected RS-EBV data sets in different 
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regions and biomes around the globe and with high spatial resolution (10–30 m) 
using the newest-generation satellite data, such as Sentinel-2 and Landsat 8. In addi-
tion, the project shall suggest in a reference document how to describe RS-EBVs 
and how they could be engineered and validated. We believe that the 3-D recon-
struction and RT modeling approach highlighted in this chapter could be applied 
across a global range of sites to fulfill this task.
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Chapter 5
Lessons Learned from Spectranomics:  
Wet Tropical Forests

Roberta E. Martin

5.1  �Introduction

One of the major challenges for biodiversity science is how to measure biodiversity 
at spatial scales relevant for conservation and management (Turner 2014). Supported 
by technological, computational, and modeling advances, along with increased data 
availability, remote sensing (RS) has become an essential tool for ecologists and 
land managers because it provides data on the optical properties of the Earth’s sur-
face at landscape to global scales (Jetz et al. 2016). At the same time, increasing 
awareness of how little we know about the species inhabiting our planet has led to a 
surge in ground-based activities to catalog what’s out there and establish baselines 
such as Conservation International’s Rapid Assessment Program and/or community 
aggregated information needed for biodiversity assessment (Myers et al. 2000). In 
addition, advances in genetic analysis, physiological experiments, and trait-based 
studies have advanced our understanding of functional biodiversity (Cavender-
Bares et al. 2006; Kress et al. 2009; Baraloto et al. 2012). Despite these knowledge 
gains, linking the information from these disparate sources in a useful manner pre-
sented a new hurdle. In 2007 the Spectranomics approach was launched to address 
this challenge using canopy functional traits and their resultant spectral properties.
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Plants play a foundational role in establishing and maintaining ecosystem function, 
biogeochemical cycling, hydrological cycling, and biodiversity (Mooney et al. 1996; 
Schimel et  al. 2013). More specifically, canopy plants (those that occupy the sun-
facing portion of a landscape) serve as dominant primary producers through the cap-
ture and utilization of light. Their structures also provide habitat for vast numbers of 
species living in the shadows. To maintain this premier position in a forest ecosystem, 
plants have evolved a vast array of strategies for growth, defense, and longevity, 
largely manifested as chemical and/or structural adjustments in their leaves (Reich 
et al. 2003; Wright et al. 2004; Diaz et al. 2016). The molecular arrangement of these 
foliar properties generates an optical reflectance spectrum that can be measured at a 
variety of scales with spectroscopy (Curran 1989; Jacquemoud and Ustin 2001; Ustin 
et al. 2009; Ustin and Jacquemoud, Chap. 14). The ultimate result is a massive number 
of tree species coalescing into forest communities of varying complexity, with unique 
taxonomic compositions and functional roles that can potentially be mapped across a 
forested landscape (Reichstein et al. 2014 and others).

Despite understanding the important role different canopy species and communi-
ties of species play in creating and maintaining biodiversity, the measurement, map-
ping, and monitoring of forest canopy composition and functional diversity has 
remained a challenge. Current Earth-observing satellite technology is limited to 
detecting changes in vegetation cover as well as major differences in vegetation 
type and photosynthesis (Running et al. 1994; Tucker and Townshend 2000) and 
does not easily reveal compositional differences or changes over time (Turner et al. 
2003). Tropical forest canopy diversity is especially underexplored because spatial 
and temporal variation often exceeds our ability to adequately utilize field-based 
approaches (Marvin et  al. 2014). Airborne imaging spectroscopy can provide an 
intermediate solution; however, a fundamental prerequisite for determining whether 
species diversity or a particular species might be successfully mapped is an assess-
ment of chemical uniqueness and diversity among plant taxa. This is important 
because the spectroscopy of canopies is driven primarily by the chemical composi-
tion of the foliage (Curran 1989; Asner et al. 2015).

5.2  �Spectranomics Approach

The Spectranomics approach was developed to link plant canopy functional traits to 
their spectral properties with the objective of providing time-varying, scalable 
methods for remote sensing (RS) of forest biodiversity (Asner and Martin 2009). In 
the pool of potentially important plant functional traits, foliar chemicals stand out as 
core physiologically based predictors of plant adaptation to environmental condi-
tions (Díaz et al. 1998; Wright et al. 2010). We selected a suite of 23 canopy chemi-
cal traits based on their strong ecological and evolutionary relevance, spatial 
variation in species and communities, and measurable spectral properties. These 
traits consist of those that (i) mediate or are indicative of photosynthesis and carbon 
uptake (chlorophyll a and b, carotenoids, nitrogen, δ13C, and δ15N; non-soluble car-
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bohydrates); (ii) are related to structure (leaf mass per area and water content, lig-
nin, cellulose, and hemicellulose) and chemical defense (phenols and tannins); and 
(iii) are defining general metabolic processes (macro- and micronutrients; here cal-
cium, magnesium, phosphorus, potassium and boron, iron, manganese, zinc) 
(Table  5.1). The distribution and variation of these traits in plant canopy leaves 
evolve as a function of stoichiometric relationships among constituents in response 
to biotic and abiotic pressures and are often formulated differently at the species 
level (Díaz et al. 1998). This evolved chemical makeup of plant canopies and its 
similarity and uniqueness among species, which we call chemical phylogeny, is an 
essential component of Spectranomics (Fig. 5.1a).

Table 5.1  Summary statistics for 22 foliar chemical traits and leaf mass per area (LMA) from 
top-of-canopy leaves collected from 12,012 individual trees at sites across the wet tropics as part 
of the Spectranomics Program

Mean
Standard 
deviation Minimum Maximum Median Skew Kurtosis

Light capture and growth

Chlorophyll a 
(mg g−1)

4.67 1.96 0.01 26.71 4.40 2.47 1.76

Chlorophyll b 
(mg g−1)

1.73 0.78 0.01 11.32 1.62 0.86 0.58

Carotenoids (mg g−1) 1.38 0.53 0.01 7.87 1.31 0.80 0.59
Nitrogen (%) 2.01 0.70 0.35 6.15 1.91 1.21 0.91
NSC (%) 46.20 11.56 12.73 86.33 45.72 31.40 25.61
δ13C (‰) −30.59 1.89 −36.40 −19.90 −30.70 −32.90 −34.00
δ15N (‰) 1.38 2.70 −10.30 10.50 1.40 −2.00 −4.00
Structure and defense

LMA (g m−2) 113.63 44.44 15.65 622.36 105.33 66.92 51.68
Water (%) 58.40 8.28 9.17 90.79 57.57 48.92 44.87
Carbon (%) 49.30 3.31 31.60 65.00 49.70 45.00 41.80
Lignin (%) 24.15 9.94 0.25 81.08 23.47 11.67 7.65
Cellulose (%) 17.82 5.75 1.08 56.60 17.30 10.89 8.41
Hemicellulose (%) 11.63 5.03 0.00 49.31 11.25 5.72 2.84
Phenols (mg g−1) 101.11 53.63 0.00 358.19 101.71 27.02 10.54
Tannins (mg g−1) 46.45 26.82 −0.64 238.79 43.14 15.27 5.66
Macronutrients

Calcium (%) 0.96 0.81 0.00 8.36 0.74 0.18 0.08
Magnesium (%) 0.26 0.15 0.02 2.71 0.23 0.11 0.08
Phosphorus (%) 0.12 0.07 0.02 0.86 0.10 0.05 0.04
Potassium (%) 0.76 0.45 0.13 5.64 0.65 0.35 0.25
Micronutrients

Boron (μg g−1) 27.19 23.48 1.16 321.89 20.03 8.35 5.31
Iron (μg g−1) 80.58 206.63 7.13 9470.68 47.78 26.55 19.47
Manganese (μg g−1) 304.32 512.14 3.03 7331.67 103.80 19.75 11.55
Zinc (μg g−1) 17.08 44.47 1.65 2535.98 11.77 6.49 4.62

NSC nonstructural carbohydrates
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Fig. 5.1  The essential interactive elements of the Spectranomics Database include phylogenetic, 
chemical, and spectral information on canopy species. (a) Assays of 23 foliar chemical traits com-
bined are collected, organized, and analyzed phylogenetically, producing a new tree of life based 
on the relatedness of functional trait signatures. This generic phylogeny shows the chemical relat-
edness of thousands of species in the Spectranomics Database. (b) An example of a remotely 
sensed canopy reflectance spectrum of one species is shown along with indicators of key chemical 
contributions to the spectrum (Curran 1989; Ustin et al. 2009; Kokaly et al. 2009). (c) Chemometric 

R. E. Martin



109

Another component of Spectranomics is the spectral properties of plant canopies 
(Fig. 5.1b). Canopy spectra are derived from the way plant foliage interacts with 
solar radiation, and this interaction is strongly determined by foliar chemicals. 
Across the full solar spectrum, from the ultraviolet to the visible to the near-infrared 
and the shortwave-infrared regions of the electromagnetic spectrum (350–3500 nm), 
plants have many common and yet also unique patterns of interaction with solar 
energy. Chemometric studies determine how these chemicals relate to reflectance 
spectra, and the methods today range from traditional spectroscopic assays and 
newer machine learning approaches (Wold et al. 2001; Serbin et al. 2014; Feilhauer 
et al. 2015). Spectral properties also provide a tantalizing pathway forward to scale 
up from leaves to landscapes (Ustin et al. 2004) to the planetary level (Jetz et al. 
2016), but only if we can accurately and repeatedly measure and interpret the spec-
tra of plants over increasingly larger portions of Earth (Fig. 5.1c–e).

The realization of Spectranomics rests in a number of choices made early on to 
attempt to reduce unwanted sources of variation combined with extensive sampling. 
We focused on humid tropical forests for their high diversity and relative freedom 
from extreme phenological changes brought about by seasonal cycles such as those 
experienced in temperate regions but may not completely eliminate smaller pheno-
logical variation that might arise in reaction to drought or solar variations. We tar-
geted only mature, fully sunlit, top-of-canopy leaves (trees and lianas) to limit 
variation attributable to intra-canopy shade and ontogeny and to best relate leaf 
properties to airborne and satellite-based spectral measurements. Prior to 
Spectranomics, our work and that of many others did not follow a strategically con-
sistent, integrated method for global spectral-functional trait database building 
needed to reveal canopy plant functional spectral-chemical patterns at the bio-
spheric scale.

We have collected, cataloged, and stored more than 13,000 canopy tree and liana 
specimens, in over 3 million tissue samples, representing about 10,000 species 
biased to humid tropical ecosystems (Fig.  5.2a). For perspective, this number 
approaches the total number of tree species in the Amazon basin (roughly 11,000; 
Hubbell et  al. 2008), a value that would put the global tropical tree inventory at 
30,000 species if we liberally extrapolate to the entire Neotropics plus the African 
and Asian-Oceanic tropics. The Spectranomics database focuses only on species 
found in the canopy, meaning they are in full sunlight and are observable from 
above. Since roughly 30–60% of tree species in a tropical forest plot makes it to the 
canopy (e.g., Bohlman 2015), the current Spectranomics database contains at least 

Fig. 5.1 (continued) equations are derived to quantitatively relate canopy functional traits 
(chemicals) to spectral data. Example relationships are shown for foliar lignin, nitrogen (N), and 
polyphenols. The x-axis indicates spectral wavelengths of 400–2500 nm; the y-axes indicate rela-
tive importance of the spectrum to each example chemical constituent shown. (d) An example of 
spectra from individual crowns clustered based on their spectral variation. (e) A 3-D view of a 
portion of lowland Amazonian forest canopy. Different colors indicate different species detected 
based on 15 chemical traits using airborne imaging spectroscopy
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Fig. 5.2  An illustration of functional biodiversity mapping from foliar traits. (a) The 2018 global 
distribution of 128 forest landscapes contributing to the Spectranomics database. (b) Example 
maps of four foliar traits generated for the Andes-to-Amazon region of Peru using airborne imag-
ing spectroscopy and modeling (Asner et al. 2017). (c) Map of 36 forest functional communities 
derived from a classification based on seven forest canopy traits derived from airborne imaging 
spectroscopy
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half of the known tropical forest canopy species worldwide with measured foliar 
traits (Table 5.1). From investigations of these data and the fundamental patterns 
they uncover, Spectranomics has evolved into a new pathway to biological and eco-
logical discovery, as well as a new tool for conservation-relevant mapping, particu-
larly in high-diversity tropical forests.

5.3  �Lessons Learned from Spectranomics

As the Spectranomics database has grown through the years, new relationships 
among plant phylogeny, canopy chemical traits, and spectral properties have 
emerged that reveal patterns at nested biogeographic scales. The extent of sampling 
across continents, along regional environmental gradients, and within local tree 
communities, coupled with consistent methods and analysis, has provided for quan-
titative testing of these relationships at multiple scales such that they can now be 
used to forecast the functional traits and biodiversity components that can be 
remotely mapped and monitored with spectral RS instrumentation.

5.3.1  �Nested Geography of Canopy Chemical Traits in Humid 
Tropical Forest

Humid tropical forests cover over 20 million km of land area, span an enormous 
range of environmental conditions from hot lowland forests to cool montane rain-
forests along equatorial tree line at almost 3500 m on a variety of geological sub-
strates, and support thousands of tree species. The high degree of complexity of this 
region provided an ideal setting to develop and use Spectranomics to test how envi-
ronment and phylogeny interact to sort the spectral-chemical diversity of forest 
canopies. Based on results from multiple field studies throughout this region (Martin 
et al. 2007; Asner and Martin 2011; Asner et al. 2014b; McManus Chauvin et al. 
2018) as well as their collective analysis (Asner and Martin 2016), we discovered 
that canopy chemical trait diversity of humid tropical forests occurs in a nested pat-
tern driven by long-term adjustment of tree communities to large-scale environmen-
tal factors, particularly geologic substrate and climate. More specifically, geographic 
variation at the soil order level, expressing broad changes in fertility, underpins 
major shifts in foliar phosphorus (P) and calcium (Ca) (Fig.  5.2). Additionally, 
elevation-dependent shifts in average community leaf dry mass per area (LMA), 
chlorophyll, and carbon allocation (including nonstructural carbohydrates) are most 
strongly correlated with changes in foliar Ca. We also found that chemical diversity 
within communities is driven by differences between species rather than by plastic-
ity within species. Finally, elevation- and soil-dependent changes in nitrogen (N), 
LMA, and leaf carbon allocation are mediated by canopy compositional turnover, 
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whereas foliar P and Ca are driven more by changes in site conditions than by phy-
logeny. In short, Spectranomics led us to understand that canopy functional traits 
can be nested regionally by environmental setting but expressed locally within any 
given environment by their evolutionary origin.

5.3.2  �Spectral Properties of Humid Tropical Forest Canopies

In concert with chemical trait collections, we measured the spectral properties of 
canopy foliage from thousands of humid tropical tree canopies and determined that 
all 23 chemical traits can be remotely sensed to varying degrees (Asner et al. 2011; 
Chadwick and Asner 2016; Martin et al. 2018). Utilizing leaf-level spectral-chemical 
relationships, we discovered that the spectral properties of canopy foliage closely 
tracked canopy functional trait responses to macro-environmental changes such as 
broad differences in soil fertility (Asner and Martin 2011; Asner et  al. 2012b). 
Similar to the functional trait findings, we discovered that the spectral properties of 
foliage within communities along elevation gradients were largely determined by 
phylogenetic identity (Asner et al. 2014a). Consequently, canopy functional traits 
and spectral properties tracked one another at nested ecological scales, a result that 
suggests what we might find if we collected map-based spectral data over a much 
larger geographic area using RS instrumentation.

When coupled with DNA analyses, Spectranomics data indicate that forest cano-
pies show strong phylogenetic organization of their foliar spectral properties, par-
ticularly in the shortwave-infrared (1500–2500 nm) wavelength region (McManus 
et al. 2016). This finding suggests that mapping of forest canopies with airborne 
imaging spectroscopy may provide spatial insight to the genetic distribution and 
genealogy of forest canopy taxa. Growth-form-specific studies using the 
Spectranomics approach revealed that lianas (woody vines) maintain functional 
traits and spectral properties unique from their host tree canopies (Asner and Martin 
2012). Lianas are important drivers and limiters of biodiversity and carbon cycling 
in tropical forests (Schnitzer and Bongers 2011), and these measured differences 
predicted and underpinned the subsequent mapping of lianas in tropical forests 
using airborne imaging spectroscopy (Marvin et al. 2016).

Spectranomics data have been collected and archived under stringent field and 
analytical standards, which has facilitated the development new quantitative link-
ages between canopy foliar spectroscopy and canopy functional traits (Feilhauer 
et al. 2010, 2015; Féret et al. 2011, 2017). Spectral modeling studies showed that 
full-spectrum (350–3500 nm) data provided retrieval capability for three times the 
number of chemicals as 350–1300 nm data from less expensive, more common vis-
ible to near-infrared spectrometers. These studies also pointed to the need for sam-
pling fully sunlit foliage in higher-density portions of tree crowns to minimize the 
effect of canopy structure on chemical trait retrievals. These findings were key guid-
ing components in the development of laser-guided imaging spectroscopy that links 
Spectranomics field surveys to remotely sensed spectra to generate consistent can-
opy chemical trait retrieval at multiple geographic scales.
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5.3.3  �Spectranomics for Biodiversity Mapping

The Spectranomics fieldwork pointed toward two particular forecasts. First, 
Spectranomics suggested that spectral mapping from current aircraft and future sat-
ellites will reveal where whole forest communities are functionally similar and 
where they are unique. Second, Spectranomics suggested that spectral RS will 
reveal the presence and patterning of specific canopy species, within communities 
and across environmental gradients, based on their functional trait “signatures.”

Both forecasts were subsequently proven correct during mapping studies. 
Numerous landscape-scale studies now show that location of particular forest can-
opy species and their evolved canopy functional traits mirror soil nutrient resources 
mediated by topography, parent material, and climate (Higgins et al. 2014; Chadwick 
and Asner 2016; Balzotti et al. 2016). These findings demonstrate that Spectranomics 
directly connects plants to ecosystem processes such as biogeochemical cycles, 
which form an essential link to the rest of the Earth system. At a larger scale, a 2016 
report on Andean and Amazonian forests mapped with airborne imaging spectros-
copy confirmed the forecasted ecological shifts in forest canopy functional compo-
sition, sorted geographically by large-scale environmental factors including 
elevation, geology, soils, and climate (Fig. 5.2b, c; Asner et al. 2017). While the 
Spectranomics database provided a field-based preview of how communities of spe-
cies would differ from one another, the mapping step provided a first synoptic view 
of the geographic distribution. Importantly, the mapping phase also revealed numer-
ous new combinations of functional traits that had not been detected in the field 
program. The new canopy functional trait maps are a key stepping-stone to biogeo-
graphic assembly, not only of the functional diversity of the Andes-to-Amazon but 
also of the biological diversity of the region. The approach from Peru is currently 
being applied in Ecuador as well as Malaysian Borneo.

The second forecast from Spectranomics—which coexisting species within 
communities can maintain relatively unique canopy functional traits and spectral 
properties—has been explored and confirmed in a series of studies using airborne 
and space-based imaging spectroscopy. From Hawaii to Panama, and from Africa to 
the Amazon, hundreds of target species have been mapped based on their spectral 
signatures, underpinned by a knowledge of their functional traits (Fig. 5.3; Carlson 
et al. 2007; Papeş et al. 2010; Colgan et al. 2012; Baldeck and Asner 2014; Baldeck 
et al. 2015; Graves et al. 2016). Further, the new concept of “spectral species” was 
developed to map species richness (alpha diversity) and compositional turnover 
(beta diversity) in forest landscapes without the need to detect individual species 
(Féret and Asner 2014).The separability of the spectral species is determined by 
their canopy functional traits.

More broadly, Spectranomics has enabled a different kind of interaction between 
field or laboratory studies of plants and RS of functional and biological diversity of 
ecosystems. The forecasting capability made possible with the Spectranomics 
database has been central to planning whether and how to undertake spectral map-
ping activities in different regions and under what environmental conditions the RS 
technology will yield new insight. In turn, this has transformed the interaction 
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Fig. 5.3  Three scale-dependent views of the Peruvian Andes-Amazon region derived from air-
borne imaging spectroscopy using data and information from Spectranomics. (a) Peru-wide map 
shows the distribution of functionally distinct forests. Different colors indicate varying combina-
tions of remotely sensed canopy foliar nitrogen (N), phosphorus (P), and leaf mass per area 
(LMA) (Asner et al. 2016). (b) Zoom image from the Peru-wide map indicates major changes in 
canopy N, P, and LMA with a lowland Amazonian forest (Asner et  al. 2015a). Red indicates 
higher N + P and lower LMA relative to yellow and blue. (c) Individual species detections within 
the zoom box of panel b, derived using species-specific canopy spectra (Féret and Asner 2013; 
Baldeck et al. 2015)
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between field and RS work from the traditional approach of mapping and ground 
truthing to one based on botanical, ecological, and biophysical knowledge in the 
interpretation of remotely sensed data.

This interaction between Spectranomics and RS also provided the scientific 
guidance, and initial funding, for a new class of mapping instruments, starting with 
a next-generation, high-fidelity visible-to-shortwave infrared (VSWIR) imaging 
spectrometer, built by the California Institute of Technology’s Jet Propulsion 
Laboratory (JPL) for the Global Airborne Observatory, formerly the  Carnegie 
Airborne Observatory (Asner et al. 2012a). JPL then built an identical instrument 
for NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS; http://aviris.
jpl.nasa.gov) program, as well as several copies for the US National Ecological 
Observatory Network (NEON, https://www.neonscience.org; Kampe et al. 2011).

5.3.4  �Scientific and Conservation Opportunities

An important outgrowth of Spectranomics is an emerging opportunity to partner 
discovery-based science with applied environmental conservation at large geo-
graphic scales. Conservation and management actions are usually limited in scope 
and effectiveness by numerous interacting financial, logistical, cultural, and politi-
cal factors. An increasing ability to map canopy diversity may provide an avenue to 
identify the location and essential components of high-value conservation targets. 
Moreover, near-real-time scientific discovery from spectral RS can lead to more 
tactical conservation decision-making. Our specific experience is that, as land use 
pressures expand, intensify, and change over time, a mapping capability built upon 
the details of forest canopy function and composition, rather than just forest cover, 
supports improved conservation discussions and planning. This type of approach is 
needed to identify current and potential threats to, as well as current protections 
and opportunities for new protection of, species, communities, and ecosystems. 
The evolving biodiversity mapping capabilities made possible through 
Spectranomics are providing a tool set to support the current portfolio of Global 
Airborne Observatory activities (e.g., http://www.theborneopost.com/2016/04/06/3d- 
mapping-to-decide-on-land-use/).

The Spectranomics approach is starting to catch on in the scientific community, 
as highlighted in chapters throughout this book as well as new programs such as 
NEON and Canada’s recently announced Spectranomics program for boreal forests 
(the Canadian Airborne Biodiversity Observatory; http://www.caboscience.org/), 
but there is much more to do to bring our approach to the global level. First, more 
scientists could get involved through building plant canopy trait laboratories and 
databases, paired with a specific style of leaf-level spectral measurements in the 
field. Currently, many functional trait and spectral measurement protocols are 
incompatible with the Spectranomics approach. For example, many foliar trait 
studies have involved the collection of samples in understory or shaded settings, 
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in part because this foliage is easier to reach, yet spectral RS is most sensitive to 
canopy-level foliar chemical and structural traits (Jacquemoud et  al. 2009). 
Additionally, most field-based trait studies do not include the use of a high-fidelity 
field spectrometer, which must be applied on fresh foliage to ensure connectivity to 
biotic and environmental conditions. Moreover, high-fidelity imaging spectrome-
ters needed for mapping, such as the Global Airborne Observatory or AVIRIS, 
demand stringent and consistent field and laboratory trait measurement practices. 
Most of these issues can be remedied by incorporating one or more of the protocols 
provided on the Spectranomics website (https://gdcs.asu.edu/labs/martinlab/spec-
tranomics). More could be done to boost capacity throughout the science commu-
nity to generate data suitable for Spectranomics-type applications. Community-wide 
efforts to develop a global biodiversity monitoring system (Geller, Chap. 20) will 
greatly enhance humanity’s ability to monitor and manage biodiversity for sustain-
ability in the Anthropocene.
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Chapter 6
Remote Sensing for Early, Detailed, 
and Accurate Detection of Forest 
Disturbance and Decline for Protection 
of Biodiversity

Jennifer Pontius, Paul Schaberg, and Ryan Hanavan

6.1  �Introduction

In many ways, biodiversity is a foundational component of healthy, productive forests 
and maintenance of the many ecosystem services that they provide (e.g., carbon 
sequestration, nutrient cycling, water filtration and provisioning, wildlife habitat). 
Forested landscapes are often characterized by a mosaic of species, age classes, and 
structural characteristics that results from natural patterns of disturbance. This diver-
sity within stands and across forested landscapes increases resilience of larger for-
ested ecosystems, enabling them to recover and maintain ecological function 
following disturbance (Thompson et al. 2009). But many pests and pathogens, par-
ticularly exotic invasive insects, as well as various abiotic stresses (e.g., pollution 
impacts or increases in climate extremes), have the potential to alter native popula-
tions, reduce biodiversity, and impact ecosystem function and service provisioning. 
This is particularly true for ecosystems dominated by keystone or foundational spe-
cies, which exert a relatively large impact on community stability and ecosystem 
function (Ellison et al. 2010).

There are many examples of the impacts of pests and pathogens on biodiversity 
and ecological function in forested ecosystems. Dutch elm disease was introduced 
in the United States in the 1930s and the United Kingdom in the 1970s, with 
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profound impacts on the biodiversity of rural landscapes (Harwood et al. 2011). The 
mountain pine beetle has impacted large swaths of coniferous and mixed forests in 
British Columbia, with severe impacts to avian biodiversity (Martin et al. 2006). 
In the western United States, pine blister rust has impacted biodiversity and ecologi-
cal processes, particularly at high elevation sites where whitebark pine is a keystone 
species (Tomback and Achuff 2010, Fig. 6.1). Recent cases, such as the introduction 
of the Asian long-horned beetle and emerald ash borer to the United States, demon-
strate the ongoing biosecurity challenges that currently face forested ecosystems.

Similarly, abiotic stresses can lead to declines that alter competition and biodi-
versity in the broader forest. For example, acid deposition that resulted from ele-
vated inputs of sulfur and nitrogen pollution in the 1950s through 1980s led to 
declines in red spruce (Picea rubens Sarg.) (Schaberg et al. 2011) and sugar maple 
(Acer saccharum Marsh.) (Huggett et al. 2007) and increases in less sensitive spe-
cies such as American beech (Fagus grandifolia Ehrh.) (Schaberg et  al. 2001; 
Pontius et  al. 2016). In another example, warming temperatures were associated 
with reductions in winter snowpacks, increased soil freezing, and root mortality that 
resulted in the broad-scale decline of yellow cedar (Callitropsis nootkatensis) but 
not sympatric species (Hennon et al. 2012). Warmer climates have also resulted in 
range expansion of native insects and disease with potential to further alter the land-
scape. For example, the southern pine beetle (Dendroctonus frontalis) continues to 
move north from the loblolly forests of the southern United States to pitch pine in 
the north.

Many resource managers cite the need for early detection of forest decline to 
minimize impacts of emergent stress agents (Genovesi et  al. 2015; Sitzia et  al. 
2016). Research has shown that the earlier you can detect forest decline, the more 
successful management and control efforts will be (Epanchin-Niell and Hastings 
2010). For invasive pests and pathogens, identifying the locations of incipient infes-
tations is critical to minimizing spread, reducing ecosystem impacts, and targeting 
management and control (Mumford 2017).

But early detection also benefits the sustainable management of forested ecosys-
tems responding to lower-level, chronic stress agents such as climate change and 
acid deposition. Such chronic stress agents often manifest in more subtle decline 

Fig. 6.1  Ancient 
whitebark pines killed by 
the recent mountain pine 
beetle outbreak stand on a 
windy ridge in Yellowstone 
National Park. (Credit: 
Adam Markham/CleanAir-
CoolPlanet.org, https://
www.fws.gov/cno/
newsroom/highlights/2017/
whitebark_pine/)
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symptoms over many years. This slow and highly variable decline (some good 
years, some bad years) limits the ability to identify causal relationships, understand 
potential impacts to ecosystem function, and develop management strategies. As a 
result, we need to be able to quantify decline symptoms with greater detail and sen-
sitivity to subtle changes, from the gradual loss of photosynthetic apparatus in 
response to initial stress, to reductions in canopy density, dieback, and ultimate 
mortality across the landscape.

Remote sensing (RS) has long been used to assess relative vegetation density, 
decline, and mortality. But landscape-scale assessment of small-scale or subtle 
decline symptoms has been more difficult. The spatial patial resolution of many 
sensors has limited our ability to detect small-scale decline in highly mixed pixels, 
while spectral resolution has limited our ability to detect early biogeochemical pre-
cursors to more severe decline symptoms. But as new sensors and modeling algo-
rithms have come on board, there is a growing list of successful early decline 
detection efforts.

Here we present the science behind RS for the assessment of vegetation condi-
tion, with a focus on using these tools for more detailed and accurate monitoring of 
forest decline and disturbance. We also highlight the importance of this approach to 
inform the sustainable management of forested ecosystems and preservation of for-
est biodiversity.

6.2  �The Basics of Forest Decline

In order to better understand how RS instruments can detect vegetation stress, and 
be used to quantify forest decline, it is important to understand the structural and 
physiological response of vegetation to stress. Any RS effort to detect or monitor 
decline is based on the sensor’s ability to detect these biophysical changes that 
manifest following stress.

Trees adjust their physiology and form in response to environmental stimuli 
(e.g., light, temperature, moisture). Stress occurs when environmental conditions 
fall outside of the normal or optimal levels to which plants are adapted. As sessile 
organisms that cannot flee from the many stresses that they are routinely exposed to 
over their long life spans, trees have evolved enumerable mechanisms to avoid, 
mitigate, or rebound from stress. Some of these adaptations (e.g., protective pig-
ments such as the yellow/orange carotenoids and red anthocyanins in leaves) can 
directly influence RS spectral measurements. Other stress adaptations (e.g., changes 
in carbohydrate storage and lipid and protein metabolism; Strimbeck et al. 2015) 
influence spectral characteristics indirectly through changes in leaf retention and 
life span. Here we walk through some of these physiological and structural changes 
relevant to RS efforts in more detail.

Leaf Size  Small, emerging leaves can be difficult to detect via RS (e.g., White et al. 
2014). Therefore, factors that delay or expedite bud break and leaf expansion, or 
lead to leaf wilting, curling, and folding can influence spectral signatures 
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(Fig.  6.2). In addition, leaves that develop after episodic leaf mortality are often 
stunted, diminishing overall leaf area. Reduced leaf size can also result from carbo-
hydrate losses associated with sucking insects, e.g., pear thrips (Taeniothrips incon-
sequens; Kolb and Teulon 1991), and insect herbivory can reduce the functional area 
of leaves through leaf consumption.

Leaf Chemistry and Physiology  Plant pigments (chlorophylls essential in photo-
synthesis, xanthophylls that assist with light capture and protect leaves from photo-
oxidation, and anthocyanins that have numerous protective capacities) are all 
spectrally responsive (Fig.  6.3). Therefore, environmental factors that influence 
their development and turnover (e.g., cold temperatures that can speed chlorophyll 
catabolism and trigger anthocyanin expression; Schaberg et al. 2017) can influence 
associated spectral signatures. Similarly, because leaf water content and chemistry 
have identifiable spectral features, environmental factors such as droughts, fertiliza-
tion, and soil acidification can also influence spectral signatures.

Leaf Quantity and Longevity  Despite remarkable and diverse capacities for 
stress response and protection, numerous biological and abiotic factors can reduce 

Fig. 6.2  Leaf curl, wilt, 
and stunted expansion can 
result in decreased leaf 
area index that is 
commonly quantified in 
RS applications. (Credit: 
Eiku [CC BY-SA 4.0] from 
Wikimedia Commons)

Fig. 6.3  Many sensors can 
detect changes in leaf 
pigment concentration and 
function before chlorosis is 
visible to the human eye. 
(Credit: [CC0] https://
pxhere.com/en/
photo/575928)
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leaf longevity or lead to significant defoliation. The most prominent factors causing 
foliar reductions vary across ecoregions (e.g., drought is a dominant factor in the 
western United States, whereas insect defoliation is prominent in the eastern states) 
and over time (e.g., episodic drought, cyclic insect outbreaks). However, numerous 
anthropogenic factors (e.g., ozone pollution, acid deposition, introduction of exotic 
pests and pathogens) have expanded the list of stress agents that can lead to signifi-
cant defoliation. Some stress agents directly result in defoliation, but many stress 
agents impact other organs that crowns rely on, for example, insects such as bark 
beetles and the emerald ash borer (Fig. 6.4) and pathogens such as chestnut blight 
girdle stems. Invasive pests such as hemlock woolly adelgid extract photosynthate 
directly from phloem. Root freezing injury (e.g., yellow cedar decline; Hennon 
et al. 2012) can limit resource uptake. All of these stress agents can manifest as 
reduced leaf area index and canopy density.

Branch Dieback, Tree Decline, and Mortality  Repeated or severe direct damage 
to tree canopies or chronic imbalances in tree carbohydrate and/or stress response 
systems can lead to branch dieback. This dieback is typically first evident as mortal-
ity of the most distal portions of the crown (tip dieback) and can lead to significant 
carbon imbalances as the photosynthetic capacity of trees is outstripped by 

Fig. 6.4  Peeling back the 
bark on green ash shows 
the girdling effect of the 
emerald ash borer (Agrilus 
planipennis). (Credit: 
USDA Forest Service)

6  Remote Sensing for Early, Detailed, and Accurate Detection of Forest Disturbance…
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carbohydrate use associated with maintenance respiration as well as compensatory 
growth (e.g., epicormic branching), and seed production, which are often associated 
with decline. Significant crown loss exacerbates negative carbon balances, ulti-
mately resulting in tree mortality. Temporary or partial crown dieback may be dif-
ficult to detect if it is not widespread, but protracted dieback, especially if it results 
in significant tree mortality, could dramatically alter spectral measurements in the 
near (during the decline event) and long terms if elevated mortality leads to signifi-
cant changes in canopy density, gap fraction, species composition, or forest cover 
(Fig. 6.5).

6.3  �RS Approaches to Forest Decline Detection

Aerial Sketch Mapping  In the United States, federal and state forestry agencies 
have been conducting aerial detection surveys of forest decline for many decades 
(Fig. 6.6; Johnson and Wittwer 2008; Johnson and Ross 2008; McConnell 1999). 
This manual RS technique involves an observer mapping polygons by identifying 
host trees by crown shape and causal agent by damage signature from an aircraft. In 
the early decades (1950s–1980s), this was often deployed only in response to severe 
or widespread forest disturbance events, with limited flight lines and rough delinea-
tion of impacted stands onto paper maps. Now, organized by the national Forest 
Health Monitoring (FHM) program, many states are flown in their entirety each 
year to survey impacts from a suite of potential biotic and abiotic stressors and vari-
ous disturbance types (e.g., defoliation, mortality, dieback), with mapping captured 
on digital, global positioning system (GPS)-enabled touchscreen tablets. Like other 
RS methods, ground validation adds confidence in the final map products. Aerial 
sketch mapping is currently the most widespread approach to forest condition map-
ping across the United States, and because of direct cooperation among federal and 
states agencies collecting and using the resulting maps, it also has the most direct 
link to land managers and decision-makers.

Fig. 6.5  Dieback typically 
results in changes to 
spectral characteristics as 
pixels become dominated 
by understory or bark and 
soil surface features. 
(Credit: Joseph O’Brien, 
USDA Forest Service, 
Bugwood.org)

J. Pontius et al.
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However, the mapping products generated vary based on differences in the base 
map scale used, observer bias, or agency emphasis (Kosiba et al. 2018). Products 
also vary year to year based on timing of flight and the visibility of different stress 
symptoms (e.g., early season vs. late season defoliators). Further, only decline 
symptoms that are severe enough, and in large enough patches to be visible to an 
observer in an aircraft traveling approximately 100 knots from an altitude of 
1000–3000 feet above ground level, are mapped. As such, aerial sketch mapping 
can be highly subjective and should only be regarded as a coarse “snapshot” of 
landscape-level forest health.

Multispectral Sensors  Terrestrial satellite RS began with the launch of the Landsat 
mission (then called the Earth Resources Technology Satellite (ERTS)) in 1972. 
Designed to supply regular images of Earth’s surface, with multispectral bands designed 
to capture biospheric processes at medium-high spatial resolution, Landsat-1 enabled a 
revolution in terrestrial research (Williams et al. 2006). With continuous coverage since 
the 1972 launch, the family of Landsat sensors is particularly useful for studying forest 
change over time across regional to global scales (Fig. 6.7).

Initially, the broad, multispectral bands on the Landsat sensors were used to 
assess relative vegetative density, or “greenness.” This was made possible by target-
ing the near-infrared (NIR) portions of the electromagnetic spectrum in addition to 
visible wavelengths. This “near-infrared plateau” is a region of strong reflectance in 
vegetation and is distinct from many other surface features such as soil, rock, and 
water, making it particularly useful for distinguishing vegetation from non-vegeta-
tive land cover types or assessing the relative amount of vegetation within mixed 
pixels. It is also highly responsive to common stress symptoms such as defoliation, 
chlorosis, and decreases in canopy density. Over the decades, scientists have devel-
oped a suite of vegetation indices to quantify vegetation condition and biophysical 
attributes (Table 6.1) that have been commonly used to assess changes in canopy 
cover (e.g., deforestation) and widespread defoliation or mortality.

Fig. 6.6  Cessna 170-B 
survey plane mapping 
Douglas-fir beetle damage 
near Sutherlin, Oregon. 
(Credit: USDA Forest 
Service, Region 6, State 
and Private Forestry)

6  Remote Sensing for Early, Detailed, and Accurate Detection of Forest Disturbance…
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The use of multispectral sensors to identify more subtle or early decline symp-
toms is typically limited by the spectral resolution (few, broad-bands of spectral 
information to work with), spatial resolution (mixes of healthy and stressed vegeta-
tion in one pixel often mask the spectral stress signature of stressed individual 
trees), and temporal resolution (inability to acquire cloud-free images at intervals 
sufficient to detect change).

As the interest in RS products has grown, along with the range of applications, 
many commercial vendors have expanded access to multispectral products with 
both aerial and satellite platforms. We now have over 100 active satellite sensors 
with visible and NIR capabilities listed in the International Inst. for Aerospace 
Survey and Earth Sciences (Netherlands; formerly International Training Centre for 

Fig. 6.7  Landsat images from 1984 and 2010 show clear-cutting and forest regrowth in Washington 
State, highlighting the utility of multispectral sensors in detecting vegetation density and distur-
bance. (Credit: NASA image by Robert Simmon)

J. Pontius et al.
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Aerial Survey) ITC Satellite and Sensor Database: https://webapps.itc.utwente.nl/
sensor/default.aspx?view=allsensors

One particularly promising sensor for improved forest health detection includes 
Sentinel 2 (A and B), recently launched by the European Space Agency. This is the 
first civil Earth observation sensor to include three bands in the red edge, providing 
additional information to quantify vegetation condition. Its 5-day repeat time and 
10 m pixels also improve its ability to detect more subtle decline symptoms. This 
temporal resolution has proven useful in identifying forest decline based on detect-
ing changes in the spectra of declining trees relative to healthy ones over time 
(Zarco-Tejada et al. 2018). Geostationary sensors like the GOES-R series also pro-
vide a unique opportunity to monitor forest condition at rapid time intervals across 
large landscapes. With two visible and four infrared bands useful to inform vegeta-
tion condition, the Advanced Baseline Imager on GOES-16 can provide images 
every 5 minutes with a spatial resolution of 0.5–2 km.

Improvements in computing technologies and modeling techniques have also 
increased the utility of multispectral sensors in early vegetation decline detection 
(Lausch et al. 2017). For example, Pontius (2014) demonstrated that using a multi-
temporal approach mimicking hyperspectral algorithms could successfully quantify 
a detailed decline scale using Landsat TM data. Over time, ongoing improvements in 
sensor resolution, computing capabilities, and modeling options will enable measure-
ments of more subtle changes in reflectance associated with early decline detection.

Hyperspectral Sensors  While multispectral sensors record electromagnetic radia-
tion averaged over a broad “band” of wavelengths, a hyperspectral instrument 
records many adjacent narrow bands to image most of the spectrum within a set 
range. What makes these instruments so useful for vegetation assessment extends 
beyond the simple availability of more bands to work with. Typically, these bands 
record reflectance from much narrower regions of the electromagnetic spectrum. 
This narrowband design provides two key modeling capabilities that are not possi-
ble with broadband sensors: (1) narrow bands are able to target specific absorption 
features linked to specific physiological structures or processes that we can directly 
relate to plant stress response and (2) narrow, contiguous bands allow us to consider 
the overall shape of spectral signatures, including mathematical techniques (e.g., 
derivatives, area under the curve, slope of the line between key regions) that are not 
possible with broadband data.

Building off of the science of spectroscopy (the study of constituents and materi-
als using specific wavelengths), RS analysts have used hyperspectral imagery to 
quantify specific vegetation constituents and processes. The best hyperspectral nar-
row bands to study vegetation are in the 400–2500 nm spectral range (Thenkabail 
et al. 2013; Fig. 6.8), enabling direct links to species composition, foliar chemistry, 
foliar function, and ecosystem characteristics (Smith et al. 2002; Williams and Hunt 
2002; Kokaly et al. 2003; Asner and Heidebrecht 2003; Townsend et al. 2003; Carter 
et al. 2005; Cheng et al. 2006; Singh et al. 2015).

While it is generally believed that spectral changes in stressed vegetation are 
common across stress agents, the ability of hyperspectral sensors to target specific 
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chemical, physiological, and morphological traits allows RS analysts to target and 
assess specific, early symptoms of decline and target detection efforts based on 
known physiological responses to a particular pest or pathogen. Lausch et al. (2013) 
targeted changes in chlorophyll absorption as an indicator of bark beetle-induced 
decline; Pontius et al. (2008) targeted chlorophyll fluoresce to map the invasive 
emerald ash borer (Pontius et al. 2008) and canopy density for detailed monitoring 
impacts of hemlock woolly adelgid (Pontius et al. 2005b).

Hyperspectral imagery has historically been limited in availability. NASA’s 
Airborne Visible/Infrared Spectrometer (AVIRIS; Porter and Enmark 1987) hyper-
spectral sensor was the pioneer of airborne applications. But the launch of the 
NASA Hyperion Instrument (Pearlman et al. 2003) on the EO-1 satellite in 2000, 
and the addition of commercial vendors with aerial hyperspectral platforms (e.g., 
ITRES http://www.itres.com/; SPECIM http://www.specim.fi/hyperspectral-RS/), 
has increased the availability of hyperspectral imagery. The promise of new hyper-
spectral satellites such as the Environmental Mapping and Analysis Program 
(EnMAP http://www.enmap.org/mission.html) suggests there is potential for 
expanding applications in forest health monitoring and assessment. Recent exam-
ples include assessments of hemlock woolly adelgid-induced decline in the Catskills 
region of New York (Hanavan et al. 2015) and detection of drought-induced decline 
in the chaparral ecosystems of California (Coates et al. 2015). Fused hyperspectral 
and LiDAR imagery have also enabled the assessment of early decline at the canopy 
level in urban environments (e.g., Degerickx et al. 2018; Pontius et al. 2017).

6.4  �Spectroscopy of Early Decline Detection

While different species have unique spectral signatures, there are similar changes in 
general spectral characteristics in response to stress (Buschmann and Nagel 1993). 
Many of these spectral features can be directly linked to the stress symptoms and 
physiological characteristics described above (Fig. 6.8). For example, changes in 
leaf chemistry and physiology are captured in the 480–520  nm (blue) and 
600–680 nm (red) regions, where chlorophyll absorption is strong. But changes in 
this region are relatively small compared with the dramatic changes that can be seen 
with stress between 750 and 1300 nm. The sharp rise in reflectance between the red 
and NIR regions (red edge inflection point) can be used to quantify changes in both 
the slope of the spectral signature and the location of the inflection point of the slope 
in response to changes in leaf chemistry and canopy density. Spectral information at 
longer wavelengths (1650–2200 shortwave infrared) has also been useful in quanti-
fying changes in leaf water content, often a key signal of early vegetation stress.

Often the most useful information about general canopy condition, density, and 
function is derived from combining bands from various regions in mathematical 
expressions referred to as vegetation indices (Elvidge and Chen 1995; Pinty et al. 
1993). Sometimes these indices incorporate information from multiple wavelengths 
with known absorption features. But other times a nonresponsive “control” band 
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may be used to help account for differences in reflectance due to illumination or 
topography. Many vegetation indices have been designed for use with specific 
broadband sensors to assess general canopy characteristics such as relative “green-
ness,” canopy density, or canopy condition (Table 6.1). But because of contributions 
in the field of spectroscopy, there is a wealth of literature that highlights specific 
regions of the electromagnetic spectrum (EMS) that are specifically associated with 
foliar chemistry, chlorophyll or carotenoid content, various metrics of photosyn-
thetic activity, and other common stress markers (see Serbin et al. 2014, 2015; Singh 
et al. 2015).

Some of the vegetation indices listed in Table 6.1 are easily captured with widely 
available sensors. Others require reflectance information from narrow spectral regions 
that may only be accurately measured with hyperspectral sensors. Others may be 
located in regions that are outside of the EMS range of the imagery that is available. 
Thus, the number of available indices will depend on the imagery you have. Which 
index will prove most useful in detecting early canopy stress depends on the specific 
stress symptoms and the conditions of your study area. For example, in ecosystems 
with relatively sparse vegetation, a soil-adjusted vegetation index may work best to 
minimize the impact of background reflectance. Similarly, in ecosystems with very 
dense vegetation, you may need to select an index that does not saturate at high bio-

Fig. 6.8  Hyperspectral RS of vegetation condition is possible because of a suite of absorption and 
reflectance features across the visible and NIR spectra. (Credit: USGS by P. Thenkabail)

J. Pontius et al.
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mass levels. In most cases, you won’t know which index, or set of indices and wave-
lengths, is best to use until you examine them as a part of your analyses. The best way 
to identify useful vegetation indices is detailed in the next section.

6.5  �Techniques for Early Stress Detection

While mapping severe or widespread forest decline can be relatively straightfor-
ward using simple vegetation indices, it can be much more challenging to identify 
early or small-scale decline, particularly in mixed forests. For example, an insect 
outbreak may cause severe decline symptoms in the host tree species, but this sig-
nal may be washed out in a heterogeneous forest where reflectance from the larger 
canopy of other species dominates. Similarly, tree mortality is often accompanied 
by the release and ingrowth of understory vegetation. This can make detection of 
decline difficult as increased vegetation density from the understory masks the 
reduction in vegetation density in the upper canopy. Further, different species 
inherently have different chemical and structural characteristics, resulting in some-
times starkly different spectral signatures, even among healthy canopies. A healthy 
oak may be spectrally similar to a declining sugar maple. This underscores the 
importance of knowing the distribution of species across a landscape of interest 
and the characteristics of a “healthy” vs. “declining” spectral signature for a target 
forest type.

Because the identification of subtle stress characteristics relies on subtle changes 
in spectral characteristics, RS of early decline is very sensitive to anything that 
might alter spectral signatures. For example, an algorithm designed for early stress 
detection with one instrument may not be appropriate to apply to imagery from a 
different sensor. Even with a similar spectral, radiometric, and spatial configuration, 
differences in calibration may introduce differences that have nothing to do with the 
health of the canopy. Even when using the same instrument, atmospheric or illumi-
nation conditions may vary over time. For these reasons, it is important to calibrate 
each image to the specific conditions (atmospheric, illumination, canopy condition) 
at the time of acquisition.

There are several methodological approaches that can help to isolate and quan-
tify decline symptoms, regardless of the sensor system (Pontius and Hallett 2014). 
Here we summarize the key components to identifying and quantifying early vege-
tation stress:

	1.	 Know the spectral characteristics of your baseline ecosystem. While all vegeta-
tion has a common spectral curve, there are distinct differences in the spectral 
signature across different species and at different spatial resolutions. Because of 
inherent differences in foliar chemistry and canopy structure, a sugar maple has 
a spectral signature that is distinct from an eastern hemlock, even when both are 
in optimal health. Because of the spectral contribution from surrounding surface 
features, a healthy sugar maple in a heterogeneous forest will look different from 

6  Remote Sensing for Early, Detailed, and Accurate Detection of Forest Disturbance…



138

a healthy sugar maple grown in someone’s front yard. Thus, it is important to 
know what the spectral signature for a pixel of your target ecosystem would look 
like in optimal condition.

There are many spectral libraries where “typical” spectra for a range of sur-
face features can be downloaded and used for image calibration (e.g., 
ECOSTRESS Spectral Library https://speclib.jpl.nasa.gov/documents/jhu_desc 
or US Geological Survey (USGS) Spectral Library https://crustal.usgs.gov/spe-
clab/QueryAll07a.php?quick_filter=vegetation). However, because of inherent 
differences between sensors, as well as atmospheric and illumination conditions 
at the time of image acquisition, it is best to also collect field spectra or identify 
homogeneous calibration pixels from across the imagery. Linking field data 
directly to the pixels will provide a spectral signature that is specific to the imag-
ery you are using and ecosystem you are working in. This will serve as an impor-
tant baseline and provide essential calibration data to model the species and 
stress condition of interest.

	2.	 Identify, quantify, and gather calibration data for the specific stress symptoms 
you expect to see. While there are many common stress responses across vegeta-
tion types and stress agents, many symptoms can be species- or stress-specific. 
Of these, only some may be visible to the human eye. This is why it is important 
to identify the common stress symptoms you expect to see, from the earliest 
symptoms to the most obvious and severe decline, and design field data collec-
tion efforts that quantify each of those stress symptoms. Field calibration data 
should include measurements from locations across the imagery and cover the 
full range for each of these metrics that you would expect to manifest in the sys-
tem you are studying and that you hope to quantify in your final product. These 
field data will provide valuable information as you analyze your imagery and 
model decline conditions across your study area.

For example, hemlock woolly adelgid feed on photosynthate stored within 
hemlock twigs, limiting the ability of trees to put on new growth. This may not 
be visible in a broad assessment of canopy vigor, but can be quantified in the 
field by collecting multiple branches from across the canopy and assessing the 
proportion of terminal branchlets that have put on new growth. This serves as a 
relatively quick and low-tech way to quantify foliar productivity and the reduc-
tions in new growth that are often the first sign of infestation. Similarly, the most 
obvious visible sign of emerald ash borer infestation in ash trees is often scarified 
bark that results from increased woodpecker activity. Woodpeckers strip bark as 
they feed on larvae, leaving obvious white markings. These telltale signs of early 
infestation can serve as a proxy for subtle biophysical changes in the canopy that 
are not yet visible to field crews.

Most often, decline manifests as many different concurrent stress symptoms 
(e.g., chlorosis and defoliation and dieback in various parts of the canopy) or a 
progression of decline symptoms that vary with the degree of impact (e.g., early 
decline manifests as chlorosis, later stages dominated by reductions in the live 
crown ratio, and ultimately mortality). In such cases, you may choose to develop 
an aggregate “field health” index that mathematically normalizes a suite of stress 
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metrics into one summary metric (Pontius and Hallett 2014). This may be easier 
and more efficient than creating models to assess each of the various decline 
symptoms you expect to see in your target system or having to pick one decline 
metric to use.

	3.	 Calibrate imagery with field data. In an ideal world, we would be able to develop 
one model that could be automated and applied to imagery over time and space 
regardless of sensor, acquisition condition, or location. Several automated RS 
tools currently available (see Sect. 6) have proven incredibly useful for monitor-
ing large areas over time. But automated applications are limited in their ability 
to detect subtle, early decline, which requires careful calibration between the 
imagery acquired and ground conditions at the time that imagery was collected 
to make it possible to identify the targeted stress response while controlling for 
other sources of spectral variability. Ideally, field calibration data can be col-
lected within several weeks of imagery acquisition (or at least before conditions 
on the ground change). GPS locations of field calibration sites link field data to 
the spectra of the associated pixel or pixels to calibrate the larger image.

Various proprietary software modules exist for spectral calibration, modeling, 
and analyses. These modules can range from simple classification techniques 
that match pixels to various stages of decline based on your calibration spectra, 
to more complex spectral unmixing algorithms that approximate the proportion 
of “healthy to declining” spectra contained within each pixel. Even without spe-
cialized RS software, simple statistics can be used to quantify relationships 
between spectral reflectance and derived vegetation indices using field calibra-
tion data. A common approach is to use correlations between individual vegeta-
tion indices and decline metrics to qualitatively assess canopy condition across 
the landscape. Another approach uses multivariate statistical models to identify 
the best combination of bands or vegetation indices to quantify the decline met-
ric of interest. Regardless of the mathematical approach, accuracy and detail are 
ultimately determined by the quality and range field calibration data available for 
model development. This type of targeted calibration to match the timing, loca-
tion, and sensor characteristics for each decline assessment maximizes accuracy 
and detail of the final products.

	4.	 Validate and assess accuracy to inform interpretation. One of the dangers inher-
ent in linking RS products with management applications is overconfidence in 
the RS products. There is error inherent in each component of the RS process, 
from incorrect sensor calibration, to the variability introduced by atmospheric, 
topographic, and georegistration errors. However, when presented with a RS 
product, many end users develop their plans without consideration of how accu-
rate the product may be or how inaccuracies can be avoided.

Any RS product should include some measure of accuracy as well as any 
caveats that should be considered in its use. In some cases (e.g., the use of a 
vegetation index to qualitatively describe relative states of decline), it is suffi-
cient to remind users that the scale presented is intended to be relative and does 
not necessarily identify stands in specific states of decline or resulting from 
specific stress agents. In other cases (e.g., the classification of pixels into levels 
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of decline), we can use field data to present an accuracy assessment. Any accu-
racy assessment of classified image products should include overall accuracy as 
well as users’ accuracy (percent of target pixels correctly classified; 
inverse  =  errors of omission) and producers’ accuracy (percent of nontarget 
pixels that are not classified as the target class; inverse = errors of commission; 
Congalton 2001; Fassnacht et al. 2006). Splitting accuracy into users’ and pro-
ducers’ values allows the end user to understand how false positives (saying a 
stand is dead when it is not) and false negatives (saying a stand is healthy when 
it is dead) can influence how the end product is used to inform management 
activities. For example, if overall accuracy in classifying forest mortality is 70% 
but almost all of the error results from false positives (many stands classified as 
dead when they are actually alive), end users may decide to limit management 
to locations with large clusters of predicted mortality or to clusters in higher-
decline categories in order to avoid these common errors.

RS decline-detection products that result in ordinal classes of decline (e.g., 
healthy, degrees of decline, dead) can also be assessed for “fuzzy accuracy,” 
which considers not only correct class assignments but also those within one 
ordinal class of the correct class. Products that provide a continuous decline 
metric can be used to produce more detailed accuracy metrics. Standard statisti-
cal regression techniques produce a coefficient of determination (r2) to describe 
how well a statistical model fits the relationship between the input spectral vari-
ables and the output decline metric. Root mean square error, standard errors, and 
prediction errors can be used to place confidence bounds on predicted values. We 
can also examine how accuracy changes across the range of decline values pre-
dicted. For example, some models may be very good at quantifying severe 
decline but may not be able to detect early decline symptoms. Some models may 
overpredict early decline but underpredict severe decline. Standard statistical 
methods can be useful to examine how well your model works, which is critical 
to ensure that end users know how to best integrate your resulting RS products 
into their decision-making process.

A Nested Approach  No one sensor, field methodology, or scale is appropriate 
for all applications. Different goals may require that you work at different scales 
(Fig. 6.9). The most detailed and accurate information about specific stress agents 
and response symptoms will always be obtained from on-the-ground field surveys 
(Tier 1). Such location-specific studies allow researchers to directly measure 
foliar chemistry, canopy structure, and spectral characteristics in situ. But these 
studies are limited in their utility to inform management across the broader land-
scape. Aerial sensors are often used to collect RS imagery at the local scale (Tier 
2). Typically, this scale allows for the use of high spatial and spectral resolution 
imagery, ideally suited to detect forest stress conditions. However, such efforts 
may still be limited in geographic extent due to the high cost and computing 
needs. Most common is the use of broadband sensors at the regional-continental 
scale (Tier 3). Landsat sensors have been widely used for such applications, with 
sufficient spatial (30 m) and spectral resolution to prove useful in assessment of 
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relative levels of forest decline. The recent addition of improved satellite sensors 
(e.g., Sentinel 2) is rapidly increasing the capability to cover broad landscapes at 
higher spatial resolutions. Global assessments (Tier 4) of forest condition typi-
cally require a reduction in spatial resolution in order to process information over 
vast geographic extents. The much larger, mixed pixels often mask subtle changes 
in vegetation condition but can be useful in time series analyses when focused on 
relative changes in vegetation indices on continental scales.

The best approach to mapping and modeling forest decline depends on the scale 
of the investigation, level of detail needed, resources available, and time frame. For 
example, a regional assessment may have to forgo spatial and spectral resolution 
(and predictive detail and accuracy) in order to achieve the spatial coverage desired. 
In contrast, a municipality concerned about the spread of a recently detected inva-
sive insect pest may forgo widespread spatial coverage to maximize the spatial and 
spectral resolution necessary to identify individual, newly infested trees. Sometimes 
you are limited by what is available in terms of imagery, time, or financial resources. 
For example, it is impossible to go back in time to collect high-resolution imagery, 
but you may be able to make use of historical broadband satellite imagery for a 
general assessment of past conditions. In most cases RS products, even when not 
exactly matched to the user’s needs, can still provide insight that is not available 
through traditional monitoring.

Perhaps the most comprehensive approach to detecting novel forest health issues 
is to combine approaches. For example, a broad landscape assessment can be useful 
to identify localized areas for more detailed image acquisition. Even better, examin-
ing the relationship between spectral characteristics from higher-resolution imagery 
could be used to train coarser resolution imagery for a larger-scale assessment. The 
key is to recognize that there is no one right approach and that perhaps there are 
several RS approaches that can be used to achieve your objectives.

Stakeholder Engagement  For each of the steps suggested above, stakeholder 
engagement is critical to success. RS specialists typically are not experts in ento-
mology, invasive species, tree physiology, or forest ecology, and may not be aware 

Fig. 6.9  RS work occurs 
at a variety of scales, with 
benefits and limitations at 
each level. Sometimes the 
best approach includes 
nesting your analyses 
across multiple scales to 
gain a comprehensive 
understanding of the forest 
health dynamics on the 
ground
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of the specific stress symptoms to target for a given application. Because we work 
in various locations, we are rarely experts on the ecological specifics of a new study 
area. Where can we find target species or stands in various stages of decline? What 
key landscape features or characteristics should be covered in our calibration to best 
inform management? We also may not be sure how the products we develop could 
be most useful to land managers and practitioners. Would a classification product be 
most useful, with simple “healthy vs. dead” groupings, or would a range of decline 
condition be better? Do we need to develop a species map first to better target the 
declining stands end users hope to find? Are they looking for potential healthy 
“refugia” areas for conservation, newly declining stands for intervention, or high-
mortality stands for salvage? Knowing what they need will allow us to design our 
modeling outputs to best suit their needs.

To maximize the impact of the products you develop, we suggest engaging a 
range of stakeholders throughout the entire process, for example:

•	 Go beyond simply obtaining letters of support to include end users and other key 
stakeholders in proposal development and experimental design from the outset 
of a new project.

•	 Find practitioners in your study area to identify and visit potential field sites.
•	 Present at local and regional meetings with the specific intent to introduce the 

project and solicit feedback on product format and delivery (prior to obtaining 
results).

•	 Include stakeholders in fieldwork, training them in field methodologies and 
learning from their expertise. Creating a sense of ownership or investment in a 
project improves the chances that your final products will actually be used.

•	 Meet with potential users as products are developed to gauge if the format (met-
ric scale/range, spatial resolution, file format, etc.) are useful and, if not, how you 
might modify products to meet their needs.

•	 In addition to presenting your results at scientific meetings, target professional 
meetings and workshops to reach end users.

•	 Make your data products easily discoverable and available. This may include 
posting final products in online databases or web portals. Be sure the format is 
not limiting. Google Earth provides a useful platform for users without ARC or 
other proprietary geocomputing resources.

Including stakeholders in this way not only helps maximize the utility and impact 
of your efforts but also builds bridges between scientific and management commu-
nities. Historically, there have been limited collaborations among land managers, 
practitioners, decision-makers, and the RS scientific community. In some cases, 
there has even been mistrust as products are promised but delivered on a scientific 
timeline rather than a management timeline. But there has been a recent push to 
include stakeholders in RS and modeling efforts, exemplified by the recent “Voices 
from the Land” project led by researchers at Harvard Forest (McBride et al. 2017). 
This stakeholder-driven approach used interviews with New Englanders to identify 
key outcomes and likely scenarios for modeling. Such steps can build relationships 
that can serve all communities interested in sustaining forested ecosystems.
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6.6  �Using RS to Inform Forest Management

The application of RS for vegetation stress detection has advanced rapidly, evolv-
ing from classical aerial survey and photointerpretation techniques to digital image 
processing, where manual interpretation has been replaced with machine learning 
to identify subtle signatures humans are incapable of seeing with the naked eye. 
This technological evolution has effectively transferred these tools to the sustain-
able management of forest resources, but limitations remain in their widespread 
use. Monitoring, detecting, and reporting on forest health threats has always been 
a priority of federal and state forestry agencies. Conversion of forest land and 
changes in land use; climate change, intensified storms, higher frequency and 
intensity of forest fires and concerns of host range recession; and the threat of 
introduction and establishment from invasive insects and diseases have created an 
even more urgent demand for improved near-real-time tools and products. The 
capabilities of most sensors and the applications on which they have been tested 
are impressive, and more promising techniques and approaches continue to build 
on field application.

Recently, several programs have been developed with the goal of advancing and 
improving RS applications for forest management, including online tools developed 
to bring RS products to the forest health management community in near real time. 
Here we present some examples of online resources developed to transfer RS prod-
ucts to end users on time scales useful to inform management and planning.

World Vegetation Health Index  https://www.star.nesdis.noaa.gov/smcd/emb/vci/
VH/vh_browse.php The National Oceanic and Atmospheric Administration 
(NOAA)-National Environmental Satellite, Data, and Information Service 
(NESDIS) has developed several RS products designed specifically to assess vege-
tation health across the globe. Their Center for Satellite Applications and Research 
(STAR) Vegetation Health Index (Fig. 6.10) uses Advanced Very High-Resolution 
Radiometer (AVHRR) imagery produced from the NOAA/NESDIS Global Area 
Coverage (GAC) data set from 1981 to the present, with 4 km spatial and 7-day 
composite temporal resolution. Common vegetation indices are used to estimate 
vegetation health, moisture, and temperature and serve as a proxy to monitor vege-
tation cover, density, productivity, and drought conditions, as well as phenological 
stages such as the start/end of the growing season. Outputs are scaled to a range (0 
to 100), providing a relative assessment of vegetation condition rather than a predic-
tion of actual decline symptoms or identification of stress agents. However, these 
products are useful for examining short-term changes in vegetation that can be used 
to identify widespread decline events such as drought, land degradation, or fire.

ForWarn Online Mapper  http://forwarn.forestthreats.org/; https://forwarn.forest-
threats.org/fcav2/ ForWarn Satellite-Based Change Recognition and Tracking 
(Fig. 6.11) is a near-real-time product from the US Forest Service that uses 250 m 
MODIS data to compare current NDVI to seasonally similar historic NDVI values 
to identify disturbance such as wildfires, windstorms, insects, disease outbreaks, 
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logging, and land use change (Norman et  al. 2013). Recent improvements in 
historical NDVI baseline data now provide the end user more tools to diagnose the 
severity and cause of changes in the mapping products.

Forest Disturbance Monitor (FDM) and Operational Remote Sensing 
(ORS)  https://foresthealth.fs.usda.gov/FDM; http://foresthealth.fs.usda.gov/portal 
The US Forest Service Forest Disturbance Monitor (FDM; Fig.  6.12) is a forest 
disturbance web portal based on 16-day and 24-day MODIS composites that are 
updated every 8 days. FDM produces two forest disturbance products, 3-year Real-
Time Forest Disturbance (RTFD) data and 5-year Trend Disturbance Data (TDD), 
providing near-real-time forest disturbance maps for land managers to target forest 
insect and disease events and complement aerial sketch mapping annual insect and 
disease surveys (IDSs; Chastain et al. 2015).

Fig. 6.10  The NOAA STAR World Vegetation Health Index visualization and data download 
portal

Fig. 6.11  The USFS ForWarn II online mapping portal provides weekly vegetation change and 
identification products dating back to 2003
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To improve insect and disease surveys and facilitate the use of forest health infor-
mation that RS products can provide, the USFS has recently initiated the Operational 
Remote Sensing (ORS) program. Similar to the FDM, ORS will use a phenology-
based approach to intensifying surveys using 30 m Landsat and other moderate-
resolution data.

Ecosystem Disturbance and Recovery Tracker (eDaRT)  http://www.cstarsd3s.
ucdavis.edu/systems/edart/ A collaboration among the University of California, 
Davis, Center for Southeastern Tropical Advanced Remote Sensing (CSTARS), and 
the US Forest Service, the Ecosystem Disturbance and Recovery Tracker (eDaRT; 
Koltunov et  al. 2015) is an automated system that provides a suite of Landsat-
derived products to identify and categorize changes in forest, shrubland, and herba-
ceous ecosystems. Currently, eDaRT products are not publicly available, but recent 
efforts are focused on expanding operations by the US Forest Service in California 
and elsewhere in the western United States in support of daily ecosystem manage-
ment tasks.

Looking Ahead  Because of the vast potential for RS to inform the sustainable 
management of terrestrial landscapes, there are several new Earth observation mis-
sions on the horizon. The European Space Agency (ESA) will launch Earth Explorer 
7 in 2021 (https://www.esa.int/Our_Activities/Observing_the_Earth). This ecology 
mission, known as Biomass, is designed to characterize forests. The Biomass mis-
sion will be followed by the Earth Explorer 8 Fluorescence Explorer (FLEX) mis-
sion in 2022, with capabilities to quantify chlorophyll fluorescence in terrestrial 
vegetation. Landsat 9, part of the Earth observation data continuity mission from 
NASA (fast-tracked for December 2020 launch date), will maintain nearly 50 years 
of continuous Earth observation. This instrument is designed to simultaneously 
image 11 spectral bands, including a 15 m panchromatic band, with 12 bit radiomet-
ric resolution to increase sensitivity to small differences in reflectance. Such 
advances are critical to the early stress detection and detailed decline assessment 
that land managers need.

Fig. 6.12  The USFS Forest Disturbance Monitor online portal
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6.7  �Management Applications: Limitations 
and Opportunities

Thanks to continuing advances in computing and software technologies, we are 
poised to bring near-real-time RS products to more stakeholders. Applications like 
Google Earth Engine (https://earthengine.google.com/) now have the ability to 
automate image acquisition, preprocessing, and more complex modeling algorithms 
to provide critical forest health information across large landscapes at regular time 
intervals. Similarly, the ESA’s Grid Processing on Demand (G-POD) provides an 
online environment where scientists can build and automate RS applications (https://
gpod.eo.esa.int/). While several organizations (see ForWarn, FDM, and eDaRT 
above) are making final products from this type of rapid analysis and assessment 
operational for coarse forest health assessments and disturbance mapping efforts, 
higher-level products (higher spatial resolution, low-level stress detection) are not 
yet publicly available for use by broad stakeholder groups.

Currently, most RS efforts to detect incipient stress factors or detailed vegetation 
condition are conducted by the research community with scientific journals as their 
primary outputs. The more widespread use of more advanced RS techniques in for-
est management is primarily limited by:

•	 The cost of image acquisition and expertise required to accurately calibrate sen-
sors and validate products. This is particularly true for hyperspectral efforts, 
which generate large amounts of data and require specialized expertise for pre-
processing corrections, calibration, and data management. Computing advances 
and the growing commercial sector promise improved access, but for many land 
managers, cost is still a strong deterrent. Some organizations are hoping to make 
cutting-edge imagery more accessible. For example, NASA’s Goddard’s LiDAR, 
Hyperspectral, and Thermal Imager (G-LiHT) (https://gliht.gsfc.nasa.gov/) is a 
portable, airborne imaging system that simultaneously maps composition, struc-
ture, and function of terrestrial ecosystems using multispectral LiDARs (3-D 
information about the vertical and horizontal distribution of foliage and other 
canopy elements), hyperspectral imaging spectrometer to discern species com-
position and variations in biophysical variables (photosynthetic pigments and 
nutrient and water content), and a thermal camera to measure surface tempera-
tures to detect heat and moisture stress (Cook et al. 2013). Owned and operated 
by NASA Goddard, this instrument has proven to be more affordable and acces-
sible than comparable commercial vendors and may greatly expand access to 
cutting-edge sensor technologies for a variety of applications (Fig. 6.13).

•	 The turnaround time required to deliver final mapping products. Typically, the 
more irruptive forest health issues require immediate attention in the current 
growing season (e.g., pest outbreaks, extreme climate events, wildfires), while 
turnaround from RS projects doesn’t always occur in the same year. This dispar-
ity between product delivery and product need is especially evident in studies 
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where method development is necessary and limits the adoption of more 
advanced RS efforts by the forest management community. However, the 
increased use of automated image processing scripts that make satellite image 
products available in near real time is expanding the use of traditional (vegeta-
tion index-based) relative assessments available for a variety of applications. The 
resulting online tools described above are being adopted by a range of state and 
federal agencies to inform management decisions.

•	 Integration of mapping products into decision-making processes. Even when RS 
products are available, there is no clear path on how to use the information they 
provide to inform decision-making. Land managers may reference mapping 
products to target specific locations, but more complete integration of spatial 
products into management plans can be challenging for those not used to work-
ing with spatial data. Foresters are typically trained in making decisions based on 
generalized inventories of forest stands or management units, not pixelated ras-
ters across a landscape with a high degree of variability. End users may not be 
aware that mapping products should come with an accuracy assessment that 
informs how the information can best be used and how it impacts the overall 
confidence in the product. Many of these limitations can be resolved by scientists 
working more closely with end users as outlined in the Stakeholder Engagement 
section above. By working together, both scientists and land managers can learn 
from each other and so better use RS technologies to manage critical environ-
mental resources.

Fig. 6.13  NASA’s G-LiHT online data portal
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6.8  �Conclusions

While historically RS has been successfully used to assess and monitor vegetation 
condition on a coarse, relative scale, recent advances and new analysis techniques 
now enable us to also use RS to identify and track early decline, disturbance, and 
stress conditions in vegetative systems. Considering the environmental challenges 
currently facing terrestrial systems, this information is critical to inform manage-
ment, policy, and planning in order to maintain the structure and function of these 
systems.

The challenge is for scientists to look beyond traditional approaches to vegeta-
tion assessment and target earlier or more subtle decline response resulting from 
incipient or chronic environmental stress agents (e.g., climate change, pollution). 
Key challenges include linking hyperspectral data to specific stress agents, extend-
ing the availability of higher-resolution imagery, and operationalizing near-real-
time monitoring of the forest resource (Senf et  al. 2017). Scientists must work 
closely with land managers to bring these new technologies to application in order 
to harness RS’s full potential to inform the management of critical ecological 
resources.
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Chapter 7
Linking Leaf Spectra to the Plant Tree 
of Life

José Eduardo Meireles, Brian O’Meara, and Jeannine Cavender-Bares

7.1  �Introduction

Evolution is the engine behind the diversity in leaf structure and chemistry that is 
captured in their spectral profiles, and, therefore, leaf spectra are inexorably linked 
to the tree of life. Our ability to distinguish species using spectra is a consequence 
of trait differences that arise and accumulate over evolutionary time. By the same 
token, the amount of variation that exists in different spectral regions is ultimately 
determined by the pace of evolution, convergence, and other evolutionary dynamics 
affecting the underlying leaf traits. There is an increasing interest in understanding 
leaf spectra through the lens of evolution and in the context of phylogenetic history 
(Cavender-Bares et  al. 2016; McManus et  al. 2016). Advances on this front will 
require, however, a good understanding of how evolutionary biologists leverage the 
tree of life to make inferences about evolution.
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7.2  �Evolutionary Trees

We refer to phylogenies in many different ways, and all of these terms appear in the 
literature. The terms phylogeny, phylogenetic tree, and evolutionary tree can be 
used interchangeably. We also use the term tree of life to refer to the tree of life (the 
evolutionary tree for all of life) or to the phylogeny of a really large group (or lin-
eage) of organisms, such as the plant tree of life or the vertebrate tree of life.

7.2.1  �How to Read Phylogenies

The idea that species descend from a common ancestor is at the very core of the 
theory of evolution. Evolutionary trees represent the branching structure of life and 
describe how species are related to each other similarly to how a genealogical tree 
recounts how people are related. A branch on a phylogenetic tree is a species; when 
it speciates, two (typically) descendant species arise. The two lineages coming from 
the same ancestor are known as sisters. These lineages can continue to branch, lead-
ing to more descendants. An ancestor and all its descendants are known as a clade: 
since these descendants all came from the same species, they share many inherited 
traits. Relatedness among organisms is encoded in the phylogeny’s structure—its 
topology—which defines a series of lineages that are hierarchically nested. The 
branch lengths also usually convey information, such as the time since divergence, 
amount of molecular similarity, or number of generations (Fig. 7.1). Dated fossil 
information can be used to calibrate the age of some of the nodes in a phylogeny. 
This is one means by which branch lengths can be made to represent time fairly 
accurately. Typically, the spacing between tip nodes (the y-axis in Fig. 7.1a, b, and 
d) has no meaning, but it can sometimes be used to display information about the 
trait values of a species (Fig. 7.1c). Because no one has been taking notes of how 
lineages split over the last 4 billion years, phylogenetic trees must be estimated by 
analyzing current species data, generally DNA sequences, using models of evolu-
tion. This means that phylogenies are statistical inferences that have uncertainty 
about their topology and their branch lengths (Fig. 7.1d).

7.2.2  �Why Care About Phylogenetic Accuracy?

An accurate phylogeny is key for understanding life. A phylogeny in which dande-
lions were more closely related to ferns than to roses would tell us a very different 
story about the evolution of flowering plants than would the true phylogeny, in 
which all flowering plants belong to a single lineage. In other words, the accuracy 
of the estimated tree topology—the structure of the relationships between species—
matters to how we understand trait evolution. Accurately inferring divergence times 
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among species and lineages is also critical for making meaningful inferences about 
evolution. As we will discuss in the next section, estimates of the pace of trait evolu-
tion depends on the amount of change in a trait that occurs over a unit of time.

There are today several resources to help generate a good phylogenetic tree for a 
set of species. A common approach is to trim the whole plant tree of life—taken 
from the Open Tree of Life (Hinchliff et  al. 2015) or Phylomatic (Webb and 
Donoghue 2005), for example—to the set of species of interest. A second option is 

Fig. 7.1  Phylogenetic trees depict the inferred evolutionary relationships between species. (a) 
Clades (or lineages) are defined by a common ancestor and all of its descendants. Nodes are the 
branching points between descendants as well as tips, which are typically species. All nodes—tips 
and ancestors alike—share a common ancestor. The ancestral node from which all subsequent 
nodes of the tree descend is called the root. Confidence in the evolutionary relationships is shown 
above internal branches (maximum possible is 1). (b) Branch lengths (here shown along the x-axis) 
may represent divergence times, number of generations, or amount of molecular divergence. (c) In 
some cases the y-axis is used to display information about a quantitative trait—such as leaf size—
in a tree known as a phenogram or a traitigram. (d) Unresolved relationships can be represented as 
three or more descendants stemming from the same ancestor, which is known as a polytomy. 
Uncertainty in divergence times are generally depicted with error bars at the internal nodes, if 
indicated at all
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to reconstruct the phylogeny from scratch using DNA sequences and then by time-
calibrating the tree using fossil information and molecular clock models. Tree 
reconstruction is tricky and laborious, but there are many tools that can help (e.g., 
Antonelli et al. 2016; Pearse and Purvis 2013). Cobbling together a phylogenetic 
tree by manually assembling branches is not recommended for analysis of spectra 
or other traits.

Finally, as seen in the previous section, phylogenies are estimates, and system-
atists have means of assessing uncertainty in their topology and their branch lengths, 
which are together referred to as phylogenetic uncertainty. For example, the diver-
gence between two lineages may have a mean of 20 million years and a confidence 
interval or 95% highest posterior density of 18–22 million years. That uncertainty 
can (and should) be carried over to downstream statistical analyses.

7.3  �The Evolution of Quantitative Traits

The study of evolution is fundamentally concerned with describing how organisms 
change through time and with understanding the processes driving change. 
Evolutionary change, however, can be thought about at different phylogenetic and 
temporal scales. Because we are interested in understanding spectra in light of phy-
logenies, we will not discuss microevolutionary processes that occur at the popula-
tion level such as genetic drift and natural selection. Instead, we will focus on 
describing macroevolution and how traits—such as leaf structure and chemical 
composition—change across entire lineages over long timescales (usually millions 
of years).

7.3.1  �Macroevolutionary Models of Trait Evolution

Macroevolutionary models of trait evolution describe the long-term consequences 
of short timescale evolution. At any given time step, a trait value can increase or 
decrease due to mechanisms like selection, drift, and migration. For example, the 
reflectance in one spectral region may decrease due to selection for higher levels of 
a particular pigment, while reflectance in another spectral region may decrease due 
to a random change in leaf hair density. Many such changes occur over long evolu-
tionary time in each lineage.

7.3.1.1  �Brownian Motion

Most models for evolution of quantitative traits leverage the central limit theorem 
from statistics, which states that the sum of many random changes leads to a normal 
distribution. Because trait evolution at macroevolutionary scales integrates over 
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many random changes in trait values (due to varied processes), it may be described 
by a normal distribution. This model of evolution is known as Brownian motion 
(Felsenstein 1985). The pace at which those changes accumulate is at the core of 
what we call the rate of evolution, and it is captured by the variance of the normal 
distribution (whose mean is the trait value at the root).

When lineages split, they start out with the same trait value and then diverge 
independently. It is easy then to see that the expected amount of trait variation 
between lineages depends on both the rate of evolution and on the divergence time. 
This leads to the expectation that trait values should be on average more similar 
among closely related taxa—which had little time to diverge—than among distantly 
related taxa. Such expectation is at the core of the concept of phylogenetic signal 
(see Sect. 7.3.2) and the idea that phylogenetic relatedness can be used as a proxy 
for functional similarity (Webb et al. 2002), particularly when integrating across a 
large number of traits (Cavender-Bares et al. 2009).

7.3.1.2  �Ornstein–Uhlenbeck

With Brownian motion, an increase or decrease in a trait is equally likely, regardless 
of the current value of a trait (Fig. 7.2a). However, it could be more realistic to think 
of a trait as being pulled toward some optimum (or, similarly but not quite the same, 
away from extreme values). This force or “pull” could be due to many processes: it 
is often considered to be a pull toward some evolutionary optimum due to natural 
selection, but it could instead result from a bias in mutation toward a particular trait 
value, repulsion from extremes, or other factors that lead to a pattern that resembles 
a pull toward an optimum. The placement of the optimum, the strength of the pull, 
and the basic underlying rate of evolution are all parameters of this model, which is 
known as an Ornstein–Uhlenbeck process (Butler and King 2004). The degree of 
the pull toward the optimum is analogous to the strength of a rubber band linking 

Fig. 7.2  Three independent realizations of the Brownian motion (BM) and Ornstein–Uhlenbeck 
(OU) processes. (a) In a BM model, trait values are equally likely to increase or decrease at each 
time step. (b, c) In contrast, traits in an OU model are more likely to move toward an optimum 
(represented by the red arrows). (b) When the evolutionary pull is weak, traits move slowly toward 
their optimum. (c) When the pull is strong, however, traits converge quickly toward their 
optimum
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the evolving trait on one end and the optimum trait value on the other end. A weak 
rubber band will provide enough slack for the trait to wiggle around the optimum 
(Fig. 7.2b), whereas a strong rubber band will keep the evolving trait close to the 
optimum (Fig. 7.2c). The strength of the rubber band also affects how quickly the 
trait is pulled toward its optimum (Fig. 7.2b,c). The time a trait is expected to take 
to get halfway to the optimum is called the phylogenetic half-life, and this is an 
alternative way to think about the strength of the evolutionary pull.

Variation in traits within species, populations, and even individuals may result 
from responses to environmental conditions or have a genetic basis. Until recently, 
phylogenetic comparative methods largely ignored intraspecific variation and used 
species means instead. Ives et al. (2007) and Felsenstein (2008) devised methods 
to account for within species variation, which typically enters the model as the stan-
dard errors about the mean trait value of each species.

7.3.2  �Phylogenetic Signal

Phylogenetic signal can be thought as the degree to which closely related species 
resemble each other. Two different metrics have been widely used to assess phylo-
genetic signal: Pagel’s lambda (Pagel 1999) and Blomberg’s K (Blomberg 
et al. 2003).

7.3.2.1  �Pagel’s Lambda

Pagel’s lambda is a scalar for the correlation between the phylogenetic similarity 
matrix and the trait matrix. It has the effect of shrinking the internal branches (as 
opposed to the branches that lead to the tips) of a phylogeny, thereby reducing the 
expected species correlation due to shared evolutionary history (Fig.  7.3a–d). A 
lambda value of 0 indicates that trait correlations between species are independent 
from evolutionary history (Fig. 7.3d), whereas a lambda of 1 suggests that trait cor-
relations are equal to the species correlation imposed by their shared evolutionary 
history (Fig. 7.3a), assuming a Brownian motion model of evolution.

7.3.2.2  �Blomberg’s K

Blomberg’s K measures the degree to which trait variance lies within clades versus 
among clades. Brownian motion is used as an expectation. K values greater than 1 
indicate that there is more variance among clades than expected by Brownian 
motion (Fig. 7.3e), while K values smaller than 1 imply that more variance is found 
within clades than expected under a Brownian motion model (Fig. 7.3f).

It is important to note that both Pagel’s lambda and Blomberg’s K are treewide 
metrics, meaning that they do not explicitly account for the heterogeneity in trait 
values among lineages. For example, an estimate of low phylogenetic signal in fruit 
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shape across all flowering plants does not imply the lack of phylogenetic signal in 
fruit shape within the oaks. Therefore, assessments of phylogenetic signal should 
be seen as indicators that are contingent on the scale of analysis and the particular 
species sampled instead of as general, hard truths.

It is also important to recognize that every calculation of the phylogenetic signal 
of a trait involves fitting an evolutionary model that comes with a series of assump-
tions. For example, most procedures to estimate phylogenetic signal using 
Blomberg’s K are based on a single-rate Brownian motion model; using and report-
ing the measure of phylogenetic signal implicitly requires accepting the Brownian 
assumptions.

7.4  �Evolution and Spectra

Chemical and structural leaf attributes that underlie plant spectra evolve through 
time. Because leaf spectra integrate over these evolved leaf attributes, they can carry 
information about phylogenetic relationships and leaf evolution. Given this, how 
would one go about analyzing spectra in a phylogenetic context?

One approach is to subject the spectra directly to an evolutionary analysis, essen-
tially taking reflectance values at different bands across the spectrum to be a set of 
“traits.” For example, McManus et al. (2016) estimated Pagel’s lambda on spectra 
from Amazonian plants, assuming each band to be an independent trait. Cavender-
Bares et al. (2016) used principal component analysis (PCA) to reduce the dimen-
sionality of the spectral data before estimating phylogenetic signal on the resulting 
principal component axes using Blomberg’s K.

Fig. 7.3  This is how 
phylogenetic signal is 
inferred. (a–d) Pagel’s 
lambda is equivalent to 
scaling the internal 
branches of the phylogeny, 
which reduces the expected 
covariance between species 
due to evolutionary history. 
(e, f) Blomberg’s K 
measures phylogenetic 
signal by estimating the 
degree of variation 
between and within clades. 
(e) K value is high when 
most trait variation is 
found between clades 
instead of within them. (f) 
K values are low when trait 
variation is mostly within 
clades
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Fitting evolutionary models directly to spectra can be useful for identifying 
promising associations between phylogenetic history and plant spectral signatures. 
However, this approach is largely devoid of mechanism and does not allow us to 
verify that our inferences are biologically meaningful.

Another approach to integrate phylogenies and leaf spectra is to explicitly model 
the evolution of structural and chemical traits that underlie the spectrum. This 
approach matches more closely the reality of biology by acknowledging that any 
signal of evolution found in the spectra is an emerging property of the evolutionary 
dynamics of leaf traits (see Sect. 7.5.3). This idea can be implemented by coupling 
the models of trait evolution described in the previous section with leaf radiative 
transfer models (Fig. 7.4) that predict spectral profiles from a small set of leaf attri-
butes (see Martin, Chap. 5; Ustin and Jacquemoud, Chap. 14).

This framework can be used in several ways. For example, we can simulate what 
leaf spectra would look like given a certain evolutionary model and phylogenetic 
tree (Sect. 7.4.1). Alternatively, given a phylogeny and a spectral data set, we can 
infer what ancestral spectra or ancestral traits were like if we assume a certain model 
of evolution. Finally, given a spectrum from an unknown plant, we could estimate 
how that plant is related to other plants (Sect. 7.4.3).

7.4.1  �Simulating Leaf Spectra Under Different Evolutionary 
Regimes

A model that describes the evolution of leaf spectra mediated by the evolution of leaf 
traits enables us to simulate spectral data in a phylogenetically explicit way. This 
allows us to forecast how different evolutionary scenarios would affect the shape and 
diversity of spectral profiles we observe. For example, Fig. 7.5 shows how the differ-
ent scenarios for the evolution of leaf structure—the number of layers parameter (N) 

Fig. 7.4  Integration of trait evolution and leaf spectral models enables estimation of evolutionary 
parameters from spectra and simulation of leaf spectra along a phylogeny. Ancestral leaf attributes 
evolve along a phylogenetic tree under a given evolutionary regime, generating the current leaf 
attributes that underlie spectra. From the evolved leaf attributes, radiative transfer models (RTMs) 
such as PROSPECT estimate spectra that carry the signature of the phylogeny
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in PROSPECT5—result in different amounts of trait variability. A fast Brownian rate 
(top left, Fig. 7.5) results in higher trait variation than a slow Brownian rate (top cen-
ter, Fig.  7.5). Evolution under an Ornstein–Uhlenbeck model also results in less 
variation than the fast Brownian model even though their rates of evolution are the 
same (top right, Fig. 7.5). The trait values shaped by evolution have a noticeable 
effect on the spectral profiles of those lineages (bottom panels, Fig. 7.5).

7.4.2  �Making Evolutionary Inferences from Leaf Spectra

Integrating spectra and phylogenies raises the exciting prospect of leveraging spectra 
to estimate aspects of the evolutionary process and test hypotheses.

Some questions may be about evolutionary patterns in the spectra themselves. 
Those include investigations about phylogenetic signal or rates of evolution across 
the spectrum. For example, Cavender-Bares et  al. (2016) and McManus et  al. 
(2016) investigated how much phylogenetic signal is present in leaf spectra. 
Meireles et al. (in review) estimated how rates of evolution varied across the leaf 
spectrum of seed plants. Now, because we are interested in biology, evolutionary 
inference made at the spectral level will often need to be interpreted a posteriori. 

Fig. 7.5  Evolution of leaf structure under different evolutionary scenarios and consequences for 
leaf spectra. Top row depicts evolution according to an unbounded Brownian motion model at two 
different rates and according to an Ornstein–Uhlenbeck process. The bottom row shows spectra 
estimated with the PROSPECT5 model, where all leaf attributes evolved under the same model 
except for leaf structure, which evolved under the three scenarios outlined above

7  Linking Leaf Spectra to the Plant Tree of Life



164

Interpreting results correctly may pose some challenges, however. Who guarantees 
that the high rates of evolution in a particular spectral band really means that a cer-
tain trait is evolving at a fast pace? A potentially better approach is to infer traits 
from spectra first using either statistical (e.g., partial least squares regression) or 
RTM inversions (e.g., PROSPECT) and then study the evolution of those traits (see 
Serbin and Townsend, Chap. 3).

We can test hypotheses about how evolution affects leaf spectra because we can 
calculate the likelihood of spectral data being generated by different models of evo-
lution, which can be compared to each other using a goodness of fit metric such as 
Akaike information criterion (AIC; Burnham and Anderson 2002). We foresee 
numerous interesting hypotheses being tested using this type of approach, espe-
cially related to evolutionary rates and convergent evolution.

Here is a hypothetical but realistic example: We could hypothesize that plant 
lineages that shift from sunny to shade habitats see an increase in their leaf chloro-
phyll content from 20 to 60 ug/cm2, that is, they have a new chlorophyll content 
optimum, and that should be reflected in their spectra (Fig. 7.6). We used the predic-
tive approach established in the previous subsection to simulate leaf spectra under 
that evolutionary scenario, which highlights the disparity in reflectance in the visi-
ble spectrum between sun and understory plants. We can then fit various models of 
evolution to the spectra (including one- and two-rate Brownian motion as well as a 
one-optimum Ornstein–Uhlenbeck and a two-optimum Ornstein–Uhlenbeck, the 
model under which the data were simulated), calculate their AIC, and compare 
models using AIC weights (Burnham and Anderson 2002), as shown in Fig. 7.6. In 
this simulated scenario, we find that indeed the best fit comes from having two dif-
ferent optima in the spectra correlating with chlorophyll content. However, in real 
data, we might find that there is a difference, but only in bands correlating with 
lignin content in leaves (which could reflect different herbivore or structural pres-
sure); that there is a difference in optimum but that understory plants are much more 
constrained toward their optimum than plants from sunnier habitats; or that there is 
a change but it happens over longer time periods than we expect.

7.4.3  �Leaf Spectra, Biodiversity Detection, and Evolution

As other chapters discuss, one approach to assessing biodiversity from plant spec-
tra is to use spectral indices that correlate with species richness (Gamon et  al., 
Chap. 16). Another approach is to use classification models (Clark et  al. 2005; 
Asner and Martin 2011; Serbin and Townsend, Chap. 3). Using an empirical exam-
ple within a single lineage (the oaks, genus Quercus), there is enough information 
in the spectra of leaves to significantly differentiate populations within a single 
species (Quercus oleoides) and assign them to the correct population most of the 
time. Different species can be correctly classified with even greater accuracy, and 
the four major oak clades in the example can be identified with very high accuracy 
(Cavender-Bares et al. 2016).
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Evolutionarily-explicit diversity detection approaches could have enormous 
potential even when species cannot be identified. Biodiversity encompasses, among 
other things, which branches of the tree of life are found in an area how much evo-
lutionary history that represents. Because plant spectral profiles can carry informa-
tion about evolutionary history, they can be leveraged to assess the diversity of 
lineages instead of (or in addition to) the diversity in species or function. There are 
key conceptual advantages of taking this approach.

First, we can estimate lineage diversity at different phylogenetic scales when 
species-level detection performs poorly. As suggested in Fig.  7.7, leaf spectral 

Fig. 7.6  Simulation of the evolution of chlorophyll content under a multiple optima Ornstein–
Uhlenbeck model. (a, b) Macroevolutionary shifts from sun exposed to understory habitats (a) 
result in chlorophyll content being pulled toward different optima in different lineages (b). (c) 
Differences between the evolved spectra and the ancestral spectrum highlight the effect of chloro-
phyll evolution on the visible region of the spectrum. (d) We can use AIC to calculate how well 
various models of evolution, including the true multiple optima Ornstein–Uhlenbeck model, 
describe evolution across the spectrum. AIC weights suggest that the multiple optima Ornstein–
Uhlenbeck model is preferred in the visible regions and nowhere else, which matches how the data 
were simulated
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information can more accurately identify broad oak clades (kappa 0.81) than 
species (kappa 0.61) and than population within a species (kappa 0.34). It is thus 
possible that classification models can detect broad clades more accurately than 
they can detect very young clades or species.

Second, we know that species definitions change over time and that many species 
in hyperdiverse ecosystems are still unknown to science. How can we classify spe-
cies that we do not yet know about? Using evolutionary models to estimate where 
an unknown spectrum belongs on the tree of life reduces the need for labeling, 
because it can reveal the taxa that the unknown sample is related to. This provides a 
means to estimate the phylogenetic diversity of a site even without species identi-
ties. The models of evolution described above should allow us to calculate the prob-
ability that the unknown spectrum belongs to different parts of the tree assuming 
that we know the correct evolutionary model and its parameter values. Developing 
the framework to achieve this would require filling in many gaps and detecting spe-
cies at appropriate spatial resolutions. It also would require trusting many assump-
tions that go into evolutionary models, because we know that as we go deeper in 
phylogenetic time and evolutionary history, these models become increasingly 
complex (see Sect. 7.5.2).

7.4.4  �Diversity Detection at Large Scales: Challenges 
and Ways Forward

The fact that spectra are tightly coupled with evolutionary history helps explain why 
hyperspectral data can be used for accurate taxonomic classification. It also pro-
vides a basis for using remotely sensed hyperspectral data for biodiversity composi-
tion monitoring.

Using RS hyperspectral data for biodiversity detection requires moving from the 
leaf level to the whole canopy level (Serbin and Townsend, Chap. 3; Martin, Chap. 5; 
Gamon et al., Chap. 16). We expect that canopy spectra, like leaf spectra, will show 

Fig. 7.7  Classification 
accuracy for different 
diversity levels of Quercus: 
(1) populations with 
Quercus oleoides, (2) 33 
oak species, and (3) 4 
clades of the genus 
Quercus. Accuracy was 
estimated from 300 
independent PLS-DA 
iterations and summarized 
using Cohen’s kappa. 
(Redrawn from Cavender-
Bares et al. (2016))
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tight coupling to phylogenetic information. Branching architecture, leaf angles, and 
other structural traits of plants that contribute to spectral signals at the canopy level 
are themselves evolved traits and are potentially phylogenetically conserved. To the 
extent that remotely sensed hyperspectral data can capture the spectral profiles of 
individual canopies (Gamon et al., Chap. 16), hyperspectral data should be capable 
of detecting and identifying species (Morsdorf et al., Chap. 4) and lineages, follow-
ing the logic presented above for leaves. Such an effort would require assembling 
vast libraries of spectral information across the plant tree of life for a given region 
of interest and comparing spectra obtained through remote sensing to those libraries.

Developing accurate classification models as the number of species and clades 
grow can be challenging. For example, Fig. 7.8 shows randomly assembled com-
munities with different species diversity levels, where species spectra were simu-
lated using PROSPECT5. As the number of species grows, the ability of a PLS-DA 
classification model to correctly classify species decreases.

This classification problem can be simplified by circumscribing the possible spe-
cies pool. This could be done by estimating the potential pool of species or clades 
in a region based on other biodiversity monitoring and prediction approaches, 
including herbarium records, plant inventories or other types of in-situ data collec-
tion, and habitat suitability predictions (Pinto-Ledezma and Cavender-Bares, 
Chap. 9). Combining classification methods using hyperspectral data with prediction 
of species pools at regional scales across the globe could allow global plant compo-

Fig. 7.8  Species classification accuracy of a PLS-DA model in simulated communities with dif-
ferent species richness. Spectra for each species were simulated using PROSPECT5, and commu-
nities with different diversity levels were randomly assembled
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sition information to be detected when the spatial resolution of the data is sufficient 
to capture individuals.

7.5  �Cautionary Notes

The integration of leaf spectra and phylogenies can provide breakthroughs in how 
we detect biodiversity, explain how spectral variation between species and lin-
eages comes to be, and make inferences about the evolution of leaves. We should, 
nevertheless, be aware of the limitations inherent in making inferences about the 
deep past, be mindful of the sampling requirements and statistical assumptions of 
our analyses, and be careful to interpret our findings in a biologically mean-
ingful way.

7.5.1  �Is the Sampling Adequate for Making Evolutionary 
Inferences?

Inferences about the evolutionary process or that rely heavily on it—such as the 
degree of phylogenetic signal or the pace of evolution—are dependent on how 
well a lineage has been sampled. Evolutionary biologists usually target a particu-
lar lineage and strive to include in their analysis as many close relatives as possi-
ble regardless of their location. Ecologists, on the other hand, tend to focus on a 
specific geographic area of interest and end up sampling whatever species are 
there. This likely results in very severe undersampling of the total phylogenetic 
diversity represented by the particular species pool. For example, the 20 seed 
plants at a study site belong to a clade that has about 300,000 species, harbors 
incredible morphological and physiological diversity, and goes back 350 million 
years. Evolutionary analyses of undersampled will very likely yield poor esti-
mates of the evolutionary parameters: The species in that area can tolerate a sub-
set of all the climate conditions other seed plants can handle, for example.

In addition, ecological processes themselves can lead to bias in estimates of evo-
lutionary parameters. For example, extremely arid conditions may act as an environ-
mental filter that curbs colonization by species with low leaf water content, reducing 
the amount of variability in leaf succulence. As a consequence, estimates of the rate 
of evolution of leaf succulence based on species found in that hyper-arid community 
may be artificially low.

These caveats should be kept in mind when analyzing spectra in an evolutionary 
context. Finding that certain spectral regions have high phylogenetic signal in a 
large forest plot does not necessarily mean that those regions are truly phylogeneti-
cally conserved.
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7.5.2  �The More of the Tree of Life That Is Sampled, the More 
Complex Models Will (or Should) Be

Most of the models of evolution and phylogenetic signal statistics we saw here are 
actually rather simple. For example, a Brownian motion model has two parameters, 
the trait value at the root (mean) and the rate of evolution (variance). The single-rate 
Brownian motion model may reasonably describe the evolution of leaf water con-
tent in dogwoods (Cornus), but it would probably do a terrible job if you were 
analyzing all flowering plants because of the sheer heterogeneity and diversity that 
they possess (Felsenstein 2008; O’Meara 2012; Cornwell et al. 2014).

There is a trade-off: the most realistic model would have a different set of param-
eters at every time point on every branch but would have far more parameters to 
estimate than the data could support; a simple model of one set of parameters across 
all the time periods and species examined is clearly unrealistic. Most applications 
have used the simplest approach, but there are ways to allow for more complex 
models. Some of them test a priori hypotheses about heterogeneity in models of 
evolution: Biologists propose particular models linking sets of parameters on differ-
ent parts of the tree (e.g., gymnosperms and angiosperms having different rates of 
evolution), and then the methods select between the possible models (Butler and 
King 2004; O’Meara et al. 2006). There are also methods that can automatically 
search across possible mappings to find the ones that fit best (Uyeda and Harmon 
2014). In the case of multiple characters, such as reflectance at different wave-
lengths of light, there is also the question of whether different characters are 
evolving under the same or different models, and there are models to test that, as 
well (Adams and Otárola-Castillo 2013).

Early attempts to analyze spectra in an evolutionary context (Cavender-Bares 
et al. 2016; McManus et al. 2016; Meireles et al. in review) have used models that 
are maximally simple for each character (a single model applying for all taxa and 
times) and are nearly maximally complex between characters (each trait evolves 
independently of all others on the same common tree). Those approaches are com-
putationally cheap but are at odds with our understanding of biology (i.e., models of 
evolution do vary among lineages) and physics (i.e., spectral bands do covary). 
Other ways of segregating complexity, such as models that incorporate heterogene-
ity among lineages and account for the covariance among spectral bands, remain 
potentially more fruitful ways of examining the diversity in leaf spectra.

7.5.3  �Spectra Do not Evolve∗, Leaves Do!

{∗except when they do}
One could estimate the pace of evolution of the beaks of Darwin’s finches from 

their photographs. But the photographs didn’t evolve. Leaf spectra do capture many 
different aspects of the complex phenotype, and, we have seen in this chapter, each 
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band of a spectrum can be analyzed as a trait in an evolutionary model. This does 
not necessarily mean that spectra themselves are traits nor that they themselves 
evolve. For example, there is no reason for evolution to favor lower reflectance at 
660 nm. However, there may be biological reasons for natural selection to favor 
higher amounts of chlorophyll a in a leaf, which happens to absorb light at 660 nm. 
Terminology such as “evolution of spectra” or “spectral niches” may be efficient 
communication shortcuts but can also cause confusion. They may make it all too 
easy to lose sight of the biological mechanisms behind the observed phenomena.

Advances in analyzing spectral data in light of evolution will require keeping 
mechanisms in mind. That said, phylogenetic inference on spectra can be used as a 
discovery tool. Consistently finding high rates evolution in a spectral region not asso-
ciated with a known function should trigger further investigation. Moreover, mecha-
nistic thinking may end up proving us wrong and show that spectra in fact evolve (at 
least some regions). For example, increased leaf reflectance that prevents leaf over-
heating could be favored by evolution. In such a situation, high reflectance would 
result from “real” traits—such as bright hairs, cuticles, and waxes—but one can 
argue that there is biological meaning in the evolution of reflectance itself in this case.

7.5.4  �Ignore Phylogeny at Your Peril

Phylogeny adds complexity to an analysis but has benefits in new insights (estimat-
ing ancestral leaf spectra, helping to go from observations to traits, and more). 
However, it can be tempting to analyze data on multiple species without accounting 
for shared evolutionary history. The problem with methods that ignore the phylog-
eny, such as partial least squares regression, is that they assume that species are 
independent data points. They are not! There is thus the risk of “overcounting” some 
parts of the tree of life: for example, if one wants to develop a model for all plants, 
and one has five oak species, a ginkgo, a pine, and a magnolia, the final model will 
essentially be an oak model with some deviations. However, the five oaks have 
shared much of their evolutionary history and so do not represent five independent 
instances of evolution. Phylogenies can be included into such analyses, and their 
importance appropriately scaled (in some cases, they will not affect results, but this 
is only knowable once the tree is used), and make results far more robust.

7.6  �Moving Forward

The integration of leaf spectra and phylogenies using evolutionary models is still in 
its infancy. Phylogenetic models have the potential to unlock what drives evolution 
of the traits leading to different spectra. Spectra may have the potential, combined 
with phylogenies, to help identify species from afar, and even contain phylogenetic 
information themselves.
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Chapter 8
Linking Foliar Traits to Belowground 
Processes

Michael Madritch, Jeannine Cavender-Bares, Sarah E. Hobbie, 
and Philip A. Townsend

8.1  �Framework

Remote sensing (RS) of belowground processes via aboveground ecosystem 
properties and plant foliar traits depends upon (1) the ability to quantify ecosystem 
productivity and relevant plant attributes—including plant chemical composition 
and diversity—and (2) tight linkages between above- and belowground systems. 
These linkages can occur through the effects of aboveground inputs into below-
ground systems and/or through relationships between above- and belowground 
attributes and, in turn, between belowground relationships between plant roots and 
microbial communities and processes (i.e., fine-root turnover, mycorrhizal associa-
tions). The increasing ability of remotely sensed information to accurately measure 
productivity, ecologically important plant traits (Serbin and Townsend, Chap. 3, this 
volume; Wang et  al. 2019), and plant taxonomic, functional, and phylogenetic 
diversity (Wang et al. 2019; Schweiger et al. 2018; Gholizadeh et al. 2019) creates 
new opportunities to observe terrestrial ecosystems. While the focus of RS tools is 
generally on aboveground vegetation characteristics, the tight linkage between 
above- and belowground systems through productivity and foliar chemistry means 
that many belowground processes can be inferred from remotely sensed informa-
tion. Here, we focus on how the productivity and composition of foliar traits in plant 
communities influence belowground processes such as decomposition and nutrient 
cycling. We specifically consider foliar traits that are increasingly measurable via 
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airborne RS. Using two case studies, one in a clonal aspen (Populus tremuloides) 
forest system and one in a manipulated grassland biodiversity experiment, we dem-
onstrate that plant foliar traits and vegetation cover, as measured via plant spectra 
(Wang et  al. 2019), can provide critical information predictive of belowground 
processes.

8.2  �How Are Belowground Processes and Microbial 
Communities Influenced by Aboveground Properties?

Belowground processes—including decomposition and nutrient cycling, which are 
mediated by microbial biomass, composition, and diversity—are heavily influenced 
by both the amount and chemistry of aboveground inputs. Quantifying the amount 
and quality of foliar components is a major aspect of trait-based ecology, which 
seeks to use functional traits, rather than taxonomic classification, to determine 
organisms’ contributions to communities and ecosystems. Trait-based ecology has 
inherent strengths, including the ability to consider biological variation across both 
phylogenetic and spatial scales (Funk et al. 2017). While there is a range of accepted 
trait-based approaches in plant sciences (Funk et al. 2017), the emergence of the 
leaf economic spectrum (Wright et al. 2004) and the whole plant economic spec-
trum (Reich 2014) has clearly demonstrated that plant traits are important to ecosys-
tem processes across multiple biological and spatial scales. Further, employing a 
trait-based approach to explore the relationships among plant function, biodiversity, 
and belowground processes allows us to take advantage of recent advances in RS to 
accurately measure plant traits across large spatial scales.

	A.	 Decomposition and Nutrient Cycling—The productivity, composition, and 
diversity of aboveground communities influence belowground processes, in part 
through decomposition of leaf litter (Gartner and Cardon 2004; Hättenschwiler 
et al. 2005), root litter (Bardgett et al. 2014; Laliberté 2017), and root exudates 
(Hobbie 2015; Cline et al. 2018) and also through effects on soil organic matter 
(SOM) properties (Mueller et al. 2015) and soil physical structure (Gould et al. 
2016). Several seminal reviews outlining the importance of biodiversity to eco-
system function (BEF) have focused specifically on the afterlife effects of litter 
diversity on decomposition (Hättenschwiler et al. 2005; Gessner et al. 2010).

	B.	 Microbial Community Composition—Variation in the quantity and quality of 
organic inputs into belowground systems drives variation in belowground 
microbial communities and functioning (de Vries et al. 2012). Differences in 
aboveground communities are mirrored by those in belowground communities 
(Wardle et  al. 2004; De Deyn and van der Putten 2005; Kardol and Wardle 
2010). Across multiple spatial and taxonomic scales, variation in belowground 
microbial communities is driven by variation in plant traits associated with the 
leaf economic spectrum (de Vries et  al. 2012). In general, fungi dominate 
decomposition of complex, low-quality substrates, while bacteria favor labile, 
high-quality substrates (Fig.  8.1, Bossuyt et  al. 2001; Lauber et  al. 2008). 
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Microorganisms release extracellular enzymes, which degrade organic mole-
cules outside of their cells, and likely differ among groups of microorganisms 
(Schneider et al. 2012). As a consequence, microbial composition and diversity 
are expected to influence decomposition and nutrient cycling. Most litter decom-
position appears to be driven by fungal members, with Ascomycota dominating 
early degradation of cellulose and hemicellulose, followed by colonization by 
lignin-degrading Basidiomycota (Osono 2007; Schneider et al. 2012). Although 
lignin decomposition is dominated by fungal groups, some bacteria also degrade 
lignin (Kirby 2006; López-Mondéjar et al. 2016). Bacteria not directly involved 
with litter decomposition target the low molecular weight carbohydrates pro-
vided by fungal-derived extracellular enzymes (Allison 2005). The degradation 
of aromatic polyphenolics is largely limited to fungal member of the 
Basidiomycota phylum (Floudas et  al. 2012). The wide structural variation 
among tannins (see section on carbon (polyphenols) results in a wide range of 
effects on specific microbial members (Kraus et al. 2003).

A challenge in predicting belowground processes such as decomposition and 
nutrient cycling from the diversity and quality of leaf litter inputs is that such an 
approach must also consider the diversity and function of belowground microbial 
communities. Belowground mycorrhizal communities can increase net primary pro-
duction (NPP) and drive variation in plant communities (Wardle et al. 2004). Given 
the influence of plant traits on belowground processes, biodiversity may drive varia-
tion in decomposition through top-down (microbially driven) rather than bottom-up 
(substrate driven) forces (Srivasta et al. 2009). Several reviews have addressed the 
importance of belowground community diversity to ecosystem processes (e.g., 
Hättenschwiler et al. 2005; Gessner et al. 2010; Phillips et al. 2013; Bardgett and 
van der Putten 2014). Belowground diversity can influence aboveground factors 
such as NPP (Wardle et al. 2004; Eisenhauer et al. 2018) that then have important 
feedbacks to belowground processes. Decomposition is driven by a combination 
of both the microbial community and the quality and quantity of litter that those 
communities receive (e.g., Keiser et al. 2013; García-Palacios et al. 2016).

Fig. 8.1  Complex, recalcitrant compounds are typically degraded by fungi, while soluble, labile 
substrates are catabolized by bacteria
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8.3  �Mechanisms by Which Aboveground Vegetation 
Attributes Influence Belowground Processes

Aboveground community composition and vegetation chemistry are tightly linked 
with belowground communities through belowground inputs and subsequent 
decomposition and nutrient uptake (Hobbie 1992; Wardle et al. 2004). Plant bio-
mass, structure, and chemical composition are all important drivers of belowground 
processes to such an extent that plant traits may be the dominant control on litter 
decomposition, outweighing the influence of climate even over large spatial scales 
(Cornwell et al. 2008).

8.3.1  �Total Aboveground Inputs

Standing aboveground biomass and NPP are among the most important attributes of 
vegetation that impact belowground systems (Chapin et al. 2002) and are widely 
measured via RS techniques with increasing accuracy (Kokaly et al. 2009; Serbin 
et al., this issue). Belowground respiration is tightly linked with aboveground pro-
ductivity (Högberg et al. 2001), and leaf litter can provide roughly half of organic 
inputs into some belowground systems (Coleman and Crossley 1996). The amount 
of aboveground biomass can be critical to litter decomposition (Lohbeck et  al. 
2015) and microbial community function and diversity (Fierer et al. 2009; Cline 
et al. 2018), and its influence may surpass the effects of plant quality, as measured 
by plant chemistry and functional traits (Lohbeck et al. 2015).

Plant traits related to biomass, such as leaf area index (LAI), are also linked to 
belowground processes, with belowground carbon (C) turnover peaking at interme-
diate LAI levels (Berryman et al. 2016; others). Importantly, LAI can be measured 
with RS products over large spatial scales (Serbin et al. 2014; Lausch et al., Chap. 
13 this volume, Morsdorf et al. Chap. 4). While there have been few explicit links 
of remotely sensed LAI to soil respiration (but see Huang et al. 2015), the concep-
tual link has been recognized for decades (Landsberg and Waring 1997). Other 
remotely sensed variables tightly coupled with biomass, including vegetation cover 
(Wang et al. 2019), also predict soil respiration (Fig. 8.4).

The effects of biomass on belowground processes have been recognized by ecol-
ogists employing RS to estimate belowground C stocks (e.g., Bellassen et al. 2011). 
Across large scales, aboveground biomass is generally correlated with belowground 
root biomass (Cairns et al. 1997). While aboveground biomass is commonly mea-
sured, the calculation of belowground biomass is less common and is often limited 
to estimates of shoot biomass as a simple proportion of aboveground biomass 
(Mokany et al. 2006). Nonetheless, the belowground estimates based on aboveground 
measurements can be useful for estimating above- and belowground C stores via RS 
products over large spatial scales (Saatchi et al. 2011). Allocation of C to below-
ground systems varies among systems, with annual grassland systems differing 
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from forested biomes in their allocation patterns of NPP (Litton et al. 2007). There 
are also large differences in above- and belowground linkages according to site 
fertility. In fertile sites the majority of NPP returned to the soil as labile fecal matter, 
whereas in infertile systems most NPP returned as recalcitrant plant litter (Wardle 
et al. 2004).

8.3.2  �Chemical Composition of Vegetation

Beyond variation in total organic inputs to soil, variation in plant chemical composi-
tion is critical to belowground ecosystem processes. The physiological traits that 
comprise the plant economic spectrum developed by Wright et  al. (2004) have 
important afterlife affects for belowground systems (Cornwell et al. 2008; Freschet 
et al. 2012; see review by Bardgett 2017). Variation in litter chemical quality can 
produce marked, long-term effects on litter decomposition rates and nutrient cycling 
in underlying soils, and litter quality has long been identified as key factor in deter-
mining decomposition rates (Tenney and Waksman 1929). Litter chemistry gener-
ally mirrors canopy chemistry (Hättenschwiler et  al. 2008), making canopy 
chemistry a viable metric to estimate litter chemistry and subsequent belowground 
decomposition and nutrient cycling patterns. Aside from aboveground biomass, leaf 
nitrogen (N) and lignin content are often the dominant plant traits that drive varia-
tion in belowground process, particularly leaf litter decomposition (Aber and 
Mellilo 1982; Cadisch and Giller 1997), and both of these traits are readily derived 
from spectroscopy at multiple scales (Wessman et  al. 1988; Serbin et  al. 2014; 
Schweiger et al. 2018; Wang et al. 2019). RS of additional leaf traits important to 
belowground processes, such as plant secondary chemistry, is also increasingly 
measured via RS techniques (Kokaly et al. 2009; Asner et al. 2014; Serbin et al., 
this issue).

Nitrogen  Foliar N is often the most important leaf trait driving variation in decom-
position across biomes (Diaz et al. 2004; Cornwell et al. 2008; Handa et al. 2014). 
In some biomes leaf N is the only known leaf trait associated with leaf decomposi-
tion among wide ranges of species (Jo et al. 2016). Because canopy N has a tight 
correlation with plant carbon capture through photosynthesis, aboveground biomass, 
and belowground processes such as decomposition and N cycling rates, it is among 
the most common canopy traits measured via RS platforms (Martin and Aber 1997; 
Wessmen et al. 1998; Kokaly and Clark 1999; Martin et al. 1998, 2008; Ollinger 
et al. 2002; Townsend et al. 2003; Kokaly et al. 2009; Vitousek et al. 2009; Ollinger 
et al. 2013).

Leaf N is directly linked to plant productivity because most plant N is associ-
ated with metabolically active proteins, including RuBisCo. Leaf N content is 
driven by a trade-off between the benefits of increased photosynthetic potential and 
the costs associated with acquiring N along with the increased risk of herbivory 
(Diaz et al. 2016). In addition, leaf N can be indicative of plant growth strategies 
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(Wardle et  al. 2004). Most short-term decomposition studies indicate that leaf N 
increases leaf litter decay (Cornwell et al. 2008). However, as decomposition pro-
gresses, leaf N may negatively affect the latter stages of decomposition, possibly due 
to interactions with lignified substrates (Berg 2014; discussed in brief below).

Carbon quality (lignin)  The second most abundant natural polymer following cel-
lulose is lignin, a complex phenolic polymer that wraps in and out of the structural 
polysaccharides in cell walls (Cadisch and Giller 1997). Due to its central roles in 
both aboveground biomass and belowground decomposition, lignin has been tar-
geted as an important plant trait for RS techniques (Wessman et al. 1988; Serbin 
et al. 2014; Serbin and Townsend, Chap. 3). While lignin is a polyphenolic com-
pound comprised of linked phenols (Horner et al. 1988), it is considered separate 
from other polyphenols because lignin is a primary structural component, whereas 
other polyphenols are a subset of secondary metabolites not directly involved 
with plant growth. The structure role of lignin and its low solubility also merit 
distinction from other polyphenolics when considering belowground processes 
(Hättenschwiler and Vitousek 2000). Lignin concentrations are negatively corre-
lated with decomposition rates (Meentemeyer 1978; Melillo et  al. 1982; Horner 
et al. 1988). The recalcitrant nature of lignin is due, in part, to its irregular structure 
and low energy yield, which largely limits its degradation to white-rot fungus 
members of Basidiomycota (Chapin et al. 2002).

The interaction of N and lignin during decomposition is not straightforward 
because N limits the early stages of decomposition, whereas lignin limits the latter 
stages of decomposition (Burns et al. 2013). Newly senesced leaves are composed 
largely of polysaccharides of holocellulose and lignin. High N availability will stim-
ulate holocellulose decomposition in the early stages of decomposition but will then 
retard lignin decomposition in later stages of decomposition leading to lignified soil 
organic matter (SOM), potentially due to white-rot fungi favoring low N conditions 
(Berg 2014). The degradation of lignin is often a rate-limiting step during the later 
stages of decomposition because it protects cell wall polysaccharides physically and 
chemically (Talbot et al. 2012). Despite the changing roles that leaf N and lignin 
have over the course of decomposition, litter quality metrics such as C:N and lignin: 
N can explain variation in decomposition, with decomposition rates increasing with 
N in the early stages, but decreasing with N in the later stages, and decreasing with 
lignin (Fanin and Bertrand 2016).

While lignin almost universally retards decomposition, there is a large amount of 
variation within lignin compounds based on the proportion of specific monomers 
that varies across major plant groups (Thevenot et  al. 2010). Angiosperm lignin 
tends to degrade more quickly than does gymnosperm lignin due to the specific 
identities of constituting moieties of lignin in each species (Higuchi 2006). The 
compact nature of gymnosperm lignin subunits is thought to protect them from 
enzymatic degradation (Hatakka and Hammel 2010). Functional measurements of 
lignin are often made via either acid digestion or thioglycolic acid methods that can 
then be used to calibrate spectroscopic methods (Brinkmann et al. 2002; Schweiger 
et al. 2018).
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Carbon quality (polyphenols)  In some ecosystems non-lignin carbon compounds 
(e.g., phenolics) explain more variation in decomposition than does either N or lig-
nin (Hättenschwiler et al. 2011). Phenolics are the most widely distributed class of 
secondary plant metabolites and interact strongly with several aspects of nutrient 
cycling (Hättenschwiler and Vitousek 2000). Simple phenolics can prime (Fontaine 
et al. 2007), while large complex polyphenolics can retard (Coq et al. 2010) decom-
position. Carbon quality—including the chemical composition of polyphenolics—
can be more important to litter decomposition than is litter nutrient concentration 
(Hättenschwiler and Jørgensen 2010). Plant polyphenolics can be accurately mea-
sured via near-infrared spectroscopy (NIRS; Rupert-Nason et al. 2013), and by air-
borne imaging spectroscopy (Kokaly et al. 2009; Asner et al. 2014; Madritch et al. 
2014; Serbin and Townsend, Chap. 3).

Though typically considered primarily for their aboveground defensive proper-
ties, phenolics in plant residues (leaf litter and roots) can have large influences on 
decomposition. Simple phenolics can increase soil respiration by providing a sim-
ple carbon source for microorganisms (Horner et  al. 1988; Schimel et  al. 1996; 
Madritch et al. 2007). Tannins are defined, in part, by their ability to bind to proteins 
(Bate-Smith 1975). The attributes of nonstructural polyphenolics that make them 
effective plant pathogen defenses also affect nonpathogenic fungi and microbes 
once litter enters the detrital food web; tannins do not discriminate between enzymes 
of plant pathogenic fungi or decomposing fungi. If tannins bind covalently with 
proteins to form polyphenolic-protein complexes, they become highly recalcitrant, 
and only basidiomycetes with polyphenol oxidase and earthworms can take advan-
tage of these complex N sources (Hättenschwiler and Vitousek 2000). The inhibi-
tory role of tannins on soil enzymes varies with specific tannin structure, which 
varies widely among species (Triebwasser et al. 2012). Tannins also have a limited 
ability to bind with carbohydrates and cellulose to form recalcitrant complexes 
(Horner et al. 1988; Kraus et al. 2003). The ability of polyphenolics to complex with 
proteins and other biochemicals is the primary method by which they influence soil 
respiration, litter decomposition, and soil N fluxes.

In addition to their influence on decomposition, nonstructural polyphenolics 
(which do not include lignin) influence N cycling by binding to and promoting 
retention of N-rich compounds including ammonium, amino acids, and proteins 
(Hättenschwiler and Vitousek 2000). Ayres (1997) suggested that condensed tan-
nins may be more important to N cycling than to herbivore defense, since con-
densed tannins frequently have no anti-herbivory activity. Hättenschwiler et  al. 
(2011) also proposed that polyphenolics, and tannins in particular, may be an impor-
tant N conservation and recovery strategy for some species. This appears to be the 
case in Populus tremuloides systems, where high-tannin genotypes recovered more 
N than did low-tannin genotypes, especially when under severe herbivory (Madritch 
and Lindroth 2015). The high reactivity and branching structure of reactive hydroxyl 
sites also allow polyphenolics to complex with clay particles in soil and thereby 
influence several micronutrients in addition to N (Schnitzer et al. 1984).
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Variation in plant phenolics is driven by several interacting factors. In general, 
polyphenolic concentrations in foliage are highest during the summer months 
(Feeny 1970). Summer coincides with both the onset of herbivory and the highest 
levels of photosynthetic activity. Herbivory-induced polyphenolic production is a 
well-documented aspect of plant-insect interactions (Herms and Mattson 1992; 
Baldwin 1994). The composition and quantity of phenolics vary among taxa at 
small and large phylogenetic scales. At large phylogenetic scales, condensed tan-
nins are common in woody plants but almost absent in herbaceous species (Haslam 
1989). At narrow phylogenetic scales, the concentration of polyphenolics is also 
under genetic control, and often there is considerable variation within the same spe-
cies that can have important influences on belowground processes including litter 
decomposition and nutrient cycling (Lindroth et al. 2002; Schweitzer et al. 2005; 
Madritch et al. 2006, 2007).

8.3.3  �Plant Diversity

Plant diversity, which can be accurately remotely sensed at some spatial scales 
(Wang et al. 2019; Gholizadeh et al. 2019), can influence belowground processes 
through its effects on productivity as well as on chemical diversity (Meier and 
Bowman 2008). Belowground diversity may be intrinsically linked to aboveground 
diversity because high plant diversity may provide a high diversity of litter quality 
and quantity to belowground systems that subsequently result in a high diversity of 
decomposers (Hooper et al. 2000). The specific relationship between aboveground 
plant communities and belowground microbial communities is context, system, and 
scale dependent (De Deyn and van der Putten 2005; Wu et al. 2011; Cline et al. 
2018). For instance, Chen et al. (2018) found that plant diversity is coupled with soil 
beta diversity but not soil alpha diversity in grassland systems. Nonetheless, if 
aboveground diversity is indeed linked to belowground diversity, then aboveground 
estimates of plant diversity and plant traits could provide robust estimates of below-
ground processes.

Early work that focused on the influence of aboveground species diversity on 
litter decomposition yielded idiosyncratic results (Gartner and Cardon 2004; 
Hättenschwiler et al. 2005), with some studies reporting no effect of plant species 
diversity (e.g., Naeem et al. 1999; Wardle et al. 1999; Wardle et al. 2000; Knops 
et al. 2001), some reporting unpredictable results (Wardle and Nicholson 1996), and 
some reporting positive effects of plant species diversity on litter decomposition 
(Hector et  al. 2000). Similar to aboveground processes, BEF studies that link 
aboveground diversity with belowground processes initially focused on aboveg-
round species diversity (Scherer-Lorenzen et  al. 2007; Ball et  al. 2008; Gessner 
et al. 2010). The idiosyncratic relationship between species diversity and below-
ground processes led others to identify aboveground functional diversity and com-
position as more important to belowground processes than species diversity (Dawud 
et al. 2017).
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Foliar chemistry  is relevant to biodiversity and ecosystem functioning studies 
because plant chemistry varies widely among and within species and can influence 
belowground microbial communities and biogeochemical cycles (Cadisch and 
Giller 1997; Hättenschwiler and Vitousek 2000). It follows that variation in foliar 
traits important to decomposition (e.g., tannin concentration) will affect below-
ground microbial communities and the basic biogeochemical cycles that sustain 
forested ecosystems. Some studies have supported a chemical diversity approach 
toward elucidating the belowground effects of aboveground diversity (Hoorens 
et al. 2003; Smith and Bradford 2003). Epps et al. (2007) demonstrated that account-
ing for chemical variation was more informative regarding decomposition than was 
species diversity. While the usefulness of trait-based dissimilarity approaches 
remains somewhat equivocal (Frainer et al. 2015), there is increasing support for 
such trait-based approaches in explaining variation in leaf litter decomposition 
(Fortunel et al. 2009; Finerty et al. 2016; Jewell et al. 2017; Fujii et al. 2017). Handa 
et al. (2014) found that variation in leaf litter decomposition across widely different 
biomes was largely driven by commonly measured leaf traits such as N, lignin, and 
tannin content. At large scales, species traits rather than species diversity per se 
appears to at least partially drive variation in decomposition and belowground 
nutrient cycling.

In experimental systems, plant communities with high biodiversity result in high 
above- and belowground productivity (Tilman et al. 2001). The additional biomass 
that an ecosystem produces in diverse assemblages over what is expected from 
monocultures is called “overyielding” and has been documented in both grassland 
and forest experiments (Grossman et al. 2018; Weisser et al. 2017). The additional 
productivity results from several mechanisms acting simultaneously in more diverse 
communities, such as reduced pathogen attack, reduced  seed limitation, and 
increased trait differences leading to “complementarity” in resource uptake (Weisser 
et al. 2017). Complementarity in resource use, particularly light harvesting, results 
in more efficient use of limiting resources and greater productivity (Williams et al. 
2017). Similar patterns of greater productivity with higher diversity are observed in 
forest plots globally (Liang et al. 2016) although such patterns are scale dependent, 
and do not necessarily hold at large spatial extents (Chisholm et al. 2013). In natu-
rally assembled grasslands, the relationship may not necessarily hold consistently 
(Adler et  al. 2011). An open question, then, is the extent to which diversity and 
productivity are linked at large spatial scales in ecosystems globally. This is a ques-
tion that can reasonably be addressed with remotely sensed measures of biodiversity 
and ecosystem productivity if scaling issues are appropriately considered (Gamon 
et al., Chap. 16). Plant diversity influences the quality of inputs and may allow for 
niche partitioning among functionally different microbes and may also influence 
productivity, the source of inputs of organic matter available to microbes, and 
microbial  diversity. Through these linkages, foliar diversity has the potential to 
influence microbial diversity and function and hence belowground processes (Cline 
et al. 2018). The extent to which diversity and productivity, measured aboveground, 
can predict belowground microbial and soil processes is a question that is ready to 
be tackled at a range of scales across continents.
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8.4  �Case Studies

8.4.1  �Remote Sensing of Belowground Processes via Canopy 
Chemistry Measurements

Plants act as aboveground signals for belowground systems. As such, RS of plant 
spectra can provide information about belowground systems. Plant spectra can pro-
vide a wealth of biological information important to plant physiology and commu-
nity and ecosystem processes across multiple spatial scales (Cavender-Bares et al. 
2017). Some researchers have used direct spectral measurements (e.g., NIRS) for 
direct measurements of soil characteristics (reviewed by Stenberg et  al. 2010; 
Bellon-Maurel and McBratney 2011; Soriano-Disla et  al. 2014), and there are 
limited examples of remotely sensed spectroscopic measurements of soils (reviewed 
by Ustin et al. 2004; Cecillon et al. 2009). Here we focus on remotely sensed spec-
tral measurements of plant communities as a surrogate for belowground processes. 
The optical surrogacy hypothesis (sensu Gamon 2008) argues that plant spectra can 
serve as a surrogate for important belowground processes.

Direct spectral measurements have been used to assess belowground processes for 
decades. For instance, direct NIRS of leaf litter can be used to predict decomposition 
rates in a variety of systems (Gillon et al. 1993; Gillon et al. 1999; Shepherd et al. 
2005; Fortunel et al. 2009; Parsons et al. 2011). RS of canopy traits to predict below-
ground processes is becoming increasingly useful. Spectroscopic measurement of 
δ15N is of particular interest for ecosystem processes (Serbin et al. 2014) because 
stable N isotopes can provide important information regarding ecosystem N cycling 
(Robinson 2001; Hobbie and Hobbie 2006). RS of forest disturbance (e.g., fire sever-
ity) and subsequent belowground processes is relatively common (e.g., Holden et al. 
2016). Sabetta et al. (2006) used hyperspectral imaging to predict leaf litter decom-
position across four forest communities. Fisher et al. (2016) were able to distinguish 
between arbuscular and ectomycorrhizal tree-mycorrhizal associations using spectral 
information gleaned from Landsat data. While the above examples focus on remotely 
sensed spectral information, remotely sensed forest structural information developed 
from lidar data can also provide information about belowground systems, as Thers 
et al. (2017) were able to use remotely sensed lidar data to estimate belowground 
fungal diversity. The growing number of examples that employ remotely sensed data 
to provide information about belowground systems points to the potential of plant 
spectra to be used as surrogates for ecosystem processes.

8.4.2  �Forest Systems: Aspen Clones Example

An example of optical surrogacy in practice is illustrated by work completed in 
trembling aspen (Populus tremuloides) systems across the Western and Midwestern 
USA. Trembling aspen is the most widespread native tree species in North America 
(Mitton and Grant 1996) and is an ecologically important foundation species across 
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its native range (Lindroth and St. Clair 2013). Aspen is facing large and rapid 
declines in intraspecific biodiversity because concentrated patches of aspen are cur-
rently experiencing high mortality rates in North America (Frey et al. 2004; Worrall 
et  al. 2008). This phenomenon, commonly referred to as sudden aspen decline 
(SAD), leads to the death of apparently healthy aspen stands in 3–6 years (Shields 
and Bockheim 1981; Frey et al. 2004). These natural history traits, combined with 
the ecological and economic significance of the species, make trembling aspen an 
ideal system to employ RS techniques to estimate genetic diversity and the conse-
quences thereof for belowground processes.

Aspen typically reproduces clonally, often creating a patchwork of clones with 
many ramets (Fig. 8.2). Aspen clones vary widely in canopy chemistry traits that are 
important to belowground processes such as litter decomposition (Madritch et al. 
2006). Several studies have highlighted the importance of plant genetic diversity to 
ecosystem processes (Madritch and Hunter 2002, 2003; Schweitzer et  al. 2005; 
Crutsinger et  al. 2006; Madritch et  al. 2006, 2007) and community composition 
(Wimp et al. 2004, 2005; Johnson and Agrawal 2005). These recent advances dem-
onstrate that genetic diversity affects fundamental ecosystem processes by influenc-
ing both above- and belowground communities (Hughes et al. 2008). The natural 
history traits of aspen, its clonal nature, genetically mediated variation in canopy 
chemistry, and the concomitant wide range of variation in foliar traits make it an 
ideal model system for RS of biodiversity.

Madritch et  al. (2014) described how remotely sensed spectroscopic data from 
NASA’s AVIRIS platform can be used to describe aboveground genetic and chemical 
variation in aspen forests across subcontinental spatial scales. This work built upon past 
work that demonstrated the ability of imaging spectroscopy to detect both aboveground 
chemistry (Townsend et al. 2003) and biodiversity (Clark et al. 2005) and employed 
imaging spectroscopy to discriminate intraspecific, genetic variation in aboveground 
chemistry and diversity. Because of the tight linkages between aboveground and below-
ground systems and because of the large variation in secondary chemistries important 
to belowground processes in aspen, this project also demonstrated the ability to predict 
belowground process via RS of forest canopy chemistry. Figure 8.3 illustrates both the 

Fig. 8.2  Aerial photo 
showing color 
differentiation of 
genetically distinct aspen 
clones. Genotypes can be 
detected rapidly via remote 
sensing techniques

8  Linking Foliar Traits to Belowground Processes



184

direct linkages between RS and canopy chemistry (A) and the subsequent indirect link-
ages to belowground function (B) and the microbial community (C). The indirect link-
ages represent the optical surrogacy hypothesis. Belowground attributes are not 
measured directly via RS, but rather RS of the forest canopy was able to provide detailed 
information regarding belowground process.

8.4.3  �Experiment Prairie Grassland System: Cedar Creek 
Example

Vegetation differences between prairie and forested ecosystems have important con-
sequences for above- and belowground linkages. Detrital inputs in forests are domi-
nated by leaf litter, whereas they are dominated by root exudates and turnover in 

Fig. 8.3  Imaging spectroscopy links to several layers of ecological processes in aspen forests. (a) 
Partial least squares (PLS) prediction (pred) for condensed tannin concentration from AVIRIS data 
compared to observed (obs) tannin. (b) PLS prediction (pred) for soil b-glucosidase activity com-
pared to observed (obs) b-glucosidase. (c) PLS prediction from AVIRIS spectra for bacterial diver-
sity compared to observed bacterial diversity, where bacterial diversity is the first axis of an NMDS 
ordination of amplicon sequencing of rDNA (525f and 806r primers). (Tannin and soil enzyme 
data are from Madritch et al. (2014))
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prairie systems that are frequently burned. We employed a parallel application of 
spectroscopic imagery to assess above- and belowground diversity and functioning at 
the grassland biodiversity experiment located at Cedar Creek Ecosystem Science 
Reserve (Tilman et al. 2001). Rather than a monospecific forest canopy, the grassland 
experiment consisted of replicated diversity treatments ranging from 1 to 16 peren-
nial grassland species in 9 m × 9 m plots. This work had more technical challenges 
associated with it compared to the aspen forest project due to the inherent complexity 
of a mixed species system and the small spatial scale of the experimental plots.

The relationship between plant diversity and aboveground biomass in the Cedar 
Creek BioDIV experiment is well documented (Tilman et al. 2001, 2006). Schweiger 
et al. (2018) further demonstrate that both plant diversity and function are measur-
able via remotely sensed spectra within the experiment and that spectral diversity 
predicted productivity. Wang et al. (2019) used AVIRIS imagery to map functional 
traits across the experiment. Remotely sensed productivity and functional trait com-
position can thus be tested for linkages with belowground processes. In this system, 
the quantity of inputs had a large impact on fungal composition and diversity (Cline 
et al. 2018). Productivity, measured as annual aboveground biomass, given that it is 
annually burned, can be accurately detected as remotely sensed vegetation cover 
(Fig. 8.4a; Wang et al. 2019, following the method of Serbin et al. 2015). Remotely 
sensed vegetation cover, in turn, predicted fungal diversity, measured as operational 
taxonomic unit (OTU) richness (Fig.  8.4b), and cumulative soil respiration 
(Fig. 8.4c). In addition to the total organic matter inputs to the soil, chemical com-
position also influenced belowground microbial communities. For example, 
remotely sensed %N (Wang et al. 2019) was positively correlated with soil micro-
bial biomass (Cavender-Bares et al., unpublished manuscript).

8.4.4  �Challenges and Future Directions

Employing plant spectra to predict belowground processes has both caveats and 
advantages over traditional belowground sampling. One important caveat is that any 
prediction of belowground processes requires a solid understanding of the linkages 
between above- and belowground processes in any given system. Examples in the 
literature that link remotely sensed attributes of aboveground systems with below-
ground systems remain scarce, in part, because of the historic separation of the two 
disciplines. It is unclear how well remotely sensed plant attributes will predict 
microbial and soil processes across ecological systems. In the above forest example, 
aspen forests were generally uniform in canopy coverage. It was also a single-
species system where leaf structure remained consistent across the study area, 
despite the large spatial sampling scheme. Consequently, most of the variation in 
aspen spectral signal was likely due to variation in canopy chemistry and biomass 
rather than leaf structure. Lastly, in this temperate forest system, leaf litter accounts 
for a large fraction of inputs into belowground systems, compared to systems such 
as Cedar Creek that are burned frequently and where fine-root turnover dominates 
belowground inputs.
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RS of aboveground properties poses further challenges that include separating 
the spectral signals important to canopy chemistry from those of physical properties 
of the forest canopy (Townsend et al. 2013). Larger challenges lie in the lack of 
accessibility of RS data and processing techniques to the broader ecological research 
community.

Several issues of scale present challenges to the application of RS to below-
ground systems. Large knowledge gaps remain in connecting the small spatial scale 
observations of traditional field studies with the large spatial scale observations of 
airborne or satellite RS platforms (Asner et al. 2015; Gamon et al., Chap. 16). In 
addition, there is a large mismatch in the spatial heterogeneity between above- and 
belowground systems, with belowground systems being notoriously heterogeneous 
across small spatial scales (Bardgett and van der Putten 2014). The majority of 
variation in belowground processes may be due to small, local-scale factors rather 
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Fig. 8.4  Hyperspectral imagery links above- and belowground processes in a prairie ecosystem. 
(a) Remotely sensed vegetation cover significantly predicted aboveground plant productivity, 
R2 = 0.695 (a); cumulative soil respiration (mg CO2-C [g soil]−1), R2 = 0.63 (b); and fungal diver-
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Cline et al. (2018))
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than large-scale factors such as climate (Bradford et al. 2016). In addition to issues 
associated with spatial scale, there are large spans in the scales of biodiversity and 
time. Speciose aboveground systems may contain upward of 600 species ha−1 (Lee 
et al. 2002), whereas soils contain many thousands of microbial “species” per gram 
of soil, with large numbers of endemics (Schloss and Handelsman 2006). Linking 
function to diversity remains a challenge in both systems and particularly in below-
ground systems where the functional role of the vast majority of species is unknown 
(Krause et al. 2014). Likewise, large differences in temporal scales exist between 
above- and belowground systems, with leaf responses to sunlight occurring on the 
order of seconds (Lambers et al. 1998), while the turnover of soil organic matter can 
take years to centuries (Bardgett and van der Putten 2014). Variation in temporal 
scales across systems is particularly important given that the importance of biodi-
versity to ecosystem processes increases with temporal scale (Cardinale et al. 2012; 
Reich et al. 2012).

Irrespective of RS, there are shortcomings associated with belowground 
measurement. For example, belowground measurements that use enzyme activity 
potentials as indicators of microbial function are widespread, but they are known to 
have numerous limitations (Nannipieri et al. 2018). Likewise, microbial diversity 
estimates based upon amplicon sequences of bacterial 16s rDNA have their own 
methodological and interpretive limitations (Schöler et al. 2017). Nonetheless, both 
enzyme activities and amplicon sequencing techniques provide useful information 
about belowground systems and are used widely enough to be compared across 
studies as long as protocols are consistent.

Advantages of using remotely sensed spectral properties of aboveground vegeta-
tion to predict belowground processes lie within the data-rich nature of imaging 
spectroscopy and the consequent ability to measure many more traits of the canopy 
than would otherwise be feasible with traditional benchtop methods. In Madritch 
et al. (2014), only four canopy traits were considered using traditional wet chemis-
try techniques (leaf tannin, N, C, lignin). These canopy foliar traits were expectedly 
well correlated with belowground processes. However, plant spectra themselves 
were better correlated with belowground processes than were plant leaf traits 
(Madritch et al. 2014). This strong relationship between plant spectra and below-
ground processing existed because the plant spectra provided quantitative informa-
tion about many plant traits that were not measured via wet chemistry techniques. 
Potentially dozens of leaf traits important to belowground processes could be con-
veyed by plant spectra. The ability of plant spectra to capture many foliar attributes 
quickly and accurately is a large reason why plant spectra are useful for predicting 
belowground processes. In addition, identifying which regions of plant spectra are 
most variable and correlated with belowground process allows researchers to use 
spectra to identify plant traits important to soil processes. In short, the potential for 
RS products to link above- and belowground systems is promising but faces consid-
erable obstacles.
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Chapter 9
Using Remote Sensing for Modeling 
and Monitoring Species Distributions

Jesús N. Pinto-Ledezma and Jeannine Cavender-Bares

9.1  �Introduction

What drives species distributions? This is one of the most fundamental questions in 
ecology, evolution, and biogeography, and it drew the attention of early naturalists 
(Gaston 2009; Guisan et al. 2017). Although the question is classic and its answers 
sometime seem obvious—for example, Alfred Russel Wallace recognized the effect 
of geographical and environmental features on species distributional ranges 
(Wallace 1860)—the answers are highly complex as a consequence of historical 
evolutionary and biogeographic processes and the spatial and temporal dynamics of 
abiotic and biotic factors (Soberón and Peterson 2005; Soberón 2007; Colwell and 
Rangel 2009).

Here we explore the potential of satellite remote sensing (S-RS) products to 
quantify species-environment relationships that predict species distributions. We 
propose several new metrics that take advantage of the high temporal resolution in 
Moderate Resolution Imaging Spectroradiometer (MODIS) leaf area index (LAI) 
and MODIS normalized difference vegetation index (NDVI) data products. 
Evaluating the potential of remotely sensed data in environmental niche modeling 
(ENM) and species distribution modeling (SDM) is an important step toward the 
long-term goal of improving our ability to monitor and predict changes in biodiver-
sity globally. To achieve this, we first modeled the environmental/ecological niches 
for the American live oak species (Quercus section Virentes) using environmental 
variables derived from (1) interpolated climate surfaces data (i.e., WorldClim) and 

J. N. Pinto-Ledezma (*) · J. Cavender-Bares 
Department of Ecology, Evolution and Behavior, University of Minnesota,  
Saint Paul, MN, USA
e-mail: jpintole@umn.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33157-3_9&domain=pdf
mailto:jpintole@umn.edu


200

(2) S-RS products. Live oaks are a small lineage, descended from a common ances-
tor (for a discussion on phylogenetics, see Meireles et al., Chap. 7) that includes 
seven species that vary in geographic range size and climatic breadth and are 
distributed in both temperate and tropical climates from the southeastern United 
States, Mesoamerica, and the Caribbean (Cavender-Bares et al. 2015). Their varia-
tion in range size and climatic distributions, their distributions in both highly stud-
ied and understudied regions of the globe, and the second author’s expert knowledge 
of their distributions make them an interesting case study for comparing SDM/
ENMs that rely on classic data sources to those that use remotely sensed data 
sources, which have more consistent data accuracy and resolution. We used the live 
oaks as a test clade to evaluate the relationships among the modeled niches esti-
mated from both sources of environmental data.

Given that the interpolated climate surfaces from WorldClim (Hijmans et al. 
2005) are the most widely used data set for the study of species-environment rela-
tionships, we compare the performance of SDMs based on S-RS products to those 
based on WorldClim data. If there is a tight relationship between models from the 
two sources, this would indicate that the resultant models from S-RS products 
have similar performance to the resultant models from the WorldClim climatic 
predictors. Remotely sensed data products may provide an advantage in predicting 
species distributions in regions where climatic data is sparsely sampled. Although 
WorldClim provides interpolated climate surfaces for land areas across the world 
at multiple spatial resolutions, from 30 arc seconds (~1  km) to 10 arcmin 
(~18.5 km) (Hijmans et al. 2005), the spatial distribution of the base information 
(i.e., weather or climatic stations) used for interpolations is unevenly distributed 
across the world (Fig. 9.2c). This is not a small issue given the uncertainty associ-
ated with interpolated climatic variables when modeling species-environment 
relationships, especially in many tropical countries, where weather stations are 
frequently few and far apart (Soria-Auza et al. 2010). Given that tropical regions 
are precisely the regions where most species occur (Fig. 9.2c), finding alternative 
means to predict species is important for efforts to monitor and manage biodiver-
sity globally. S-RS products, which provide quasi-global coverage of land and sea 
surfaces at high temporal and spatial resolution, represent promising alternatives 
that may be particularly important in the world’s most biologically diverse regions. 
Our aim here is to provide an understanding of the potential of S-RS products to 
quantify species ecological niches and estimate species distributions rather than to 
develop a definitive ecological and geographical profile for the live oaks them-
selves. If the consistent accuracy and high spatial resolution of S-RS products can 
actually improve estimates of species distributions, they will represent an advance 
in our ability to predict where species are likely persist under changing environ-
ments. Ultimately, such predictions can be combined with other remote sensing 
(RS) means of detecting species and biodiversity (Meireles et al., Chap. 7; Bolch 
et al., Chap. 12; Record et al., Chap. 10) to enable global-scale biodiversity change 
detection.
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9.2  �Theoretical Background

9.2.1  �The BAM Diagram

One way to explore the ubiquitous relationship between the spatial and temporal 
dynamics of abiotic and biotic factors is through the BAM framework (Fig. 9.1, 
Soberón and Peterson 2005; Soberón 2007), which formally describes the individ-
ual and joint effects of biotic factors (B; e.g., species interactions), abiotic factors 
(A; e.g., environmental conditions or abiotically suitable area), and movement (M; 
e.g., species dispersal capacity) in determining species distributions in a geographi-
cal space (G; e.g., the study region). Notice that all factors in the BAM framework 
are placed within a spatial context. Within the geographical space (G), three over-
lapping circles are shown, each of which represents suitable conditions for a given 
species. The intersection between all factors “B∩A∩M” represents the occupied 
distributional area (G0) or the “realized” or occupied niche. The intersection 
between biotic and abiotic factors “B∩A” represents the invadable distributional 
area (G1) or areas that can be colonized because suitable biotic and abiotic condi-
tions and both present. The intersection between abiotic and movement factors 
“A∩M” represents the area where the species cannot be found. Finally, the union 
between the occupied and invadable areas “G0∪G1” represents the geographic 
potential distribution area (GP) or biotically reduced niche (see Soberón 2007; 
Peterson et al. 2011 for detailed explanations).

Abiotic Movement

Biotic

Geographical space

G0

G1

Fig. 9.1  The BAM 
diagram, where B biotic, A 
abiotically suitable area, 
and M movement or 
migration, illustrates the 
relationship among the 
three major determinants 
of species distributions. 
G1, the invadable 
distributional area, and G0, 
the occupied distributional 
area, represent the 
outcomes from the 
intersection between the 
major determinants
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9.2.2  �Where Are We Now?

Although the BAM framework was developed to understand and quantify species-
environment relationships (Soberón 2007; see also Soberón and Peterson 2005), the 
concept and investigation of species-environment relationships are long-standing, 
dating back to Wallace (Wallace 1860) and early ecologists (Grinnell 1904, 1917; 
Elton 1927; Holdridge 1947; Hutchinson 1957). These early naturalists originally 
established the theoretical principles to analyze and describe biogeographical distri-
butions in relation to environmental patterns (Colwell and Rangel 2009). 
Interestingly, despite the large body of theoretical advances and empirical applica-
tions, the quantification of ecological niches and estimation of species distributions 
is still a challenging task (but see Sanín and Anderson 2018; Smith et al. 2018) and 
one of the most active areas in macroecological and biodiversity research (Franklin 
2010; Peterson et al. 2011; Anderson 2013; Guisan et al. 2017).

In fact, since the first algorithm for modeling species-environment relationship 
was presented (BIOCLIM, Nix 1986), the number of publications has increased dra-
matically (Lobo et al. 2010; Booth et al. 2013). A simple search in Google Scholar 
for the terms “ecological niche model” and “species distribution model” (last 
accessed on December 30, 2018) returned 2,950 and 6,400 citations, respectively, for 
1990–2018 (Fig.  9.2a). Interestingly, the number of publications on these topics 
increased markedly in the past 10 years (Fig. 9.2, see also Lobo et al. 2010) and 
continues to grow, particularly in studies that emphasize the application of ENMs 
and SDMs to environmental assessment, forecasting, and hindcasting species distri-
butions (Anderson 2013; Elith and Franklin 2013; Guisan et al. 2017). Interestingly, 
although the number of publications increased in the last 10 years, most of the stud-
ies were performed in United States and Europe (Fig. 9.2b) in countries with a high 
density of weather stations (Fig. 9.2c), with much less emphasis on the most diverse 
regions of the globe. The increasing access to species occurrence data (e.g., Global 
Biodiversity Information Facility, GBIF) and environmental data (climatic and satel-
lite derived) has created the opportunity not only to model species-environment rela-
tionships but to expand the theoretical and practical applications of ENM and SDM 
to different research programs and fields, including conservation biology, wildlife 
and ecosystem management, evolutionary biology, and public health (Franklin 2010; 
Peterson et al. 2011; Guisan et al. 2017), and to do so in remote regions where access 
is limited and predictions of species distributions have disproportionate importance.

Parallel to the development and evolution of ENM and SDM theory and applica-
tions, we have witnessed the growth of technological tools and S-RS products 
(Pettorelli et al. 2014a; Turner 2014). Many of these are particularly applicable for 
describing, quantifying, and mapping the spatial and temporal patterns of vegeta-
tion structure and function, the impacts of human activities, and environmental 
change (Turner et al. 2003; Pinto-Ledezma and Rivero 2014; Jetz et al. 2016; Cord 
et al. 2017) and more recently are used as predictors of broad patterns of biodiver-
sity, including the associations between species co-occurrence patterns and ecosys-
tem energy availability (Phillips et al. 2008; Pigot et al. 2016; Hobi et al. 2017). 
In addition, an unprecedented number of S-RS data and data products (S-RS) have 
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been made freely available (Turner et al. 2003; Hobi et al. 2017) with the potential 
to track the spatial variation in the chemical composition of vegetation (Wang et al. 
2019; Serbin and Townsend, Chap. 3), physiology, structure, and function (Lausch 
et al., Chap. 13; Serbin and Townsend, Chap. 3; Myneni et al. 2002; Saatchi et al. 
2008; Jetz et al. 2016).

Despite the potential of S-RS products for measuring and modeling biodiversity 
(Gillespie et  al. 2008; Pettorelli et  al. 2014a, b; Turner 2014; Cord et  al. 2013; 

Fig. 9.2  (a) Number of publications containing the term “species distribution model” or “ecological 
niche model” between 1990 and 2018 (Google Scholar search December 31, 2018). The solid line 
represents the combination of both SDM and ENM, while dashed and dotted lines indicate the indi-
vidual terms. (b) Percentage of ENM/SDM studies performed in the United States and Europe in 
relation to the total number of publications from (a). (c) Distribution of weather stations (green dots) 
used to create the interpolated climate surfaces (i.e., WorldClim) and the number of species for the 30 
most diverse countries. The numbers correspond to the estimated number of species—vertebrates and 
vascular plants—for each country. Notice that for most countries the weather stations are sparse and 
have low coverage. (Source: WorldClim: Global weather stations, 2014 (http://databasin.org/dataset
s/15a31dec689b4c958ee491ff30fcce75); biodiversity data: World Conservation Monitoring Centre 
of the United Nations Environment Programme (UNEP-WCMC), 2004)
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Zimmermann et al. 2007), attention has only recently turned to using these data in 
studies of species-environment relationships (Cord et al. 2013; West et al. 2016), 
and most studies use bioclimatic data such as WorldClim (but see Paz et  al., 
Chap. 11; Record et al., Chap. 10). Although early attempts indicated that S-RS 
products do not seem to improve the accuracy in estimating species distributions 
(Pearson et al. 2004; Thuiller 2004; Zimmermann et al. 2007), more recent publica-
tions (Kissling et  al. 2012; Cord et  al. 2013) suggest that despite these apparent 
limitations, S-RS products provide better spatial resolution that allow the discrimi-
nation of habitat characteristics not captured when bioclimatic data are used (Saatchi 
et al. 2008; Cord et al. 2013), and they can be used as surrogates of biotic and/or 
functional predictors such as LAI that increase the performance of individual spe-
cies models (Kissling et al. 2012; Cord et al. 2013).

9.3  �Modeling Ecological Niches and Predicting Geographic 
Distributions

Although the terms ENM and SDM are often used synonymously in the literature, the 
two are not equivalent (Anderson 2012; Soberón et al. 2017). A comprehensive discus-
sion of this topic is beyond the scope of this chapter but is provided elsewhere (see 
Peterson et al. 2011; Anderson 2012; Soberón et al. 2017). A crucial step in differentiat-
ing the two terms is to establish a distinction between environmental space and geo-
graphical space (Hutchinson’s duality; Colwell and Rangel 2009). On the one hand, 
environmental space corresponds to a suite of environmental conditions at a given time 
(e.g., climate, topography); on the other hand, geographical space is the extent of a 
particular region or study area (Soberón and Nakamura 2009; Peterson et al. 2011) and 
includes important historical context. Thus, when modeling species ecological niches, 
we are modeling the existing abiotically suitable conditions for the species or the bioti-
cally reduced niche (Peterson et al. 2011; see also Fig. 9.1). However, when modeling 
species distributions, the intent is to project objects into geographical space (Fig. 9.1), 
and, depending on the factors considered, it is possible to estimate the occupied distri-
butional area or the invadable distributional area (Soberón and Nakamura 2009; 
Peterson et al. 2011; Anderson 2012; Soberón et al. 2017).

9.3.1  �Methods

9.3.1.1  �Oak Species Data Sets

Occurrence data were downloaded from iDigBio between 20 and 24 July 2018, 
including localities collected by the authors, and cleaned for accuracy. Any botani-
cal garden localities were discarded. All points were visually examined, and any 
localities that were outside the known range of the species, or in unrealistic loca-
tions (e.g., water bodies), were discarded.
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9.3.1.2  �Environmental Data Sets

For comparative purposes we obtained environmental data from two sources: (1) 
environmental variables derived from WorldClim and (2) S-RS data products 
(Fig. 9.3). Environmental variables derived from climatic data were obtained from 
the 10 to 2.5 arcmin WorldClim (Hijmans et al. 2005; spatial resolution of ~18.5 
and 4.5 km at the equator, respectively) for annual mean temperature (BIO1), tem-
perature seasonality (BIO4), minimum temperature of coldest month (BIO6), mean 

Fig. 9.3  A selection of S-RS products and climatic variables used in this study. The panels show 
(a) Climate Hazards group Infrared Precipitation with Stations (CHIRPS); (b) MODIS mean LAI; 
(c) MODIS mean NDVI; (d) mean annual temperature; (e) mean annual precipitation; and (f) 
altitude or mean elevation from Shuttle Radar Topography Mission (SRTM)
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Fig. 9.4  Satellite remotely sensed vegetation phenology based on MODIS LAI product. The time 
periods (t) represent the 46 time intervals every 8 days within a year starting from 1 January. The 
curves for vegetation phenology represent the variation in LAI over a 1-year interval calculated as 
the mean LAI within a species geographical distribution at 8-day intervals averaged over 15 years 
(see Hobi et al. 2017 for details). Shown is seasonal variation in the temperate forest vegetation 
where Q. virginiana occurs in North America compared with seasonal variation in the tropical dry 
forest vegetation where Q. oleoides occurs in Mexico and Central America

temperature of warmest quarter (BIO10), annual precipitation (BIO12), and precipi-
tation seasonality (BIO15). These environmental variables were selected as critical 
for the distribution of oak species (Hipp et al. 2017) generally and were previously 
shown to be important in differentiating live oak (Virentes) species specifically 
(Cavender-Bares et al. 2011; Koehler et al. 2011; Cavender-Bares et al. 2015).

Environmental variables from S-RS products were obtained from MODIS over a 
15-year period (2001–2015) from NASA using the interface EOSDIS Earthdata 
(https://earthdata.nasa.gov). Data include two MODIS Collection 5 land products: 
LAI (8-day temporal resolution) and NDVI (16-day temporal resolution). LAI and 
NDVI products (Fig. 9.3b, c) are derived from Terra/Aqua MOD15A2 and Terra 
MOD13A2, respectively (see Myneni et  al. 2002 for a detailed explanation of 
MODIS products). We also obtained precipitation data from Climate Hazards group 
Infrared Precipitation with Stations (CHIRPS, Fig. 9.3a), an S-RS product designed 
for monitoring drought and global environmental land change (Funk et al. 2015). 
Notice that the original MODIS products present a spatial resolution of 1 km and 
CHIRPS, a spatial resolution of 3 arcmin or ~5.5 km at the equator. To standardize 
the spatial resolution of both MODIS products and CHIRPS, we upscaled the spa-
tial resolution of MODIS products to that of CHIRPS.

Prior to following the ENM/SDM procedures (outlined below), we calculated 
five new metrics taking advantage of the high temporal resolution LAI and NDVI 
data by doing simple arithmetic calculations: LAI/NDVI cumulative, LAI/NDVI 
mean, LAI/NDVI max, LAI/NDVI min, and LAI/NDVI seasonality or the coeffi-
cient of variation (see Saatchi et al. 2008; Hobi et al. 2017 for details). These met-
rics represent the spatial variation in vegetation productivity over a year (Berry 
et al. 2007; Hobi et al. 2017) and allow detection of biodiversity changes, descrip-
tion of habitats of different species, and tracking of phenology within species geo-
graphical ranges (Fig. 9.4). We used these two S-RS products given LAI and NDVI 
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provide information on net primary productivity, dynamics of the growing season, 
and vegetation seasonality, all potentially important variables for characterizing 
plant species ranges (Myneni et al. 2002; Saatchi et al. 2008). All data processing 
and metric calculations were performed in R v3.5 (R Core Team 2018) using cus-
tomized scripts and core functions from the packages raster (Hijmans 2018), 
gdalUtils (Greenberg and Mattiuzzi 2018), and rgdal (Bivand et al. 2018). R scripts 
for data processing and metric calculations can be found at https://github.com/jesu-
sNPL/RS-SDM_ENM.

9.3.1.3  �Modeling Procedure

To model the ecological niche and distribution for oak species, we used an ensemble 
framework—prediction of a niche or a distributional area made by combining 
results of different modeling algorithms (Araújo and New 2007; Diniz-Filho et al. 
2009). Within this framework we fit six species models and projected potential 
distributions for current environmental conditions for both environmental data sets 
(Table 9.1). The modeling algorithms included three statistical models (generalized 
linear models [GLM], generalized additive models [GAM], and adaptive regression 
splines [MARS]) and three machine learning models (MAXENT, support vector 

Table 9.1  Combinations of environmental variables used for modeling live oak species-
environment relationship under an ensemble framework

Source
Environmental 
predictors Description

S-RS CHIRPS Climate Hazards group Infrared Precipitation with Stations
LAI maximum MODIS maximum leaf area index calculated over a year
LAI mean MODIS mean leaf area index calculated over a year
LAI seasonality MODIS seasonality of leaf area index calculated over a year
LAI minimum MODIS minimum leaf area index calculated over a year
Altitude Mean elevation from Shuttle Radar Topography Mission

S-RS2 CHIRPS –
LAI maximum –
LAI mean –
LAI seasonality –
LAI minimum –
NDVI maximum MODIS maximum normalized difference vegetation index 

calculated over a year
NDVI mean MODIS mean normalized difference vegetation index 

calculated over a year
NDVI seasonality MODIS seasonality of normalized difference vegetation 

index calculated over a year
NDVI minimum MODIS minimum normalized difference vegetation index 

calculated over a year
Altitude –

(continued)
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machines [SVM], and Random Forest [RF]). A description for each algorithm is 
detailed in Franklin (2010) (see also Peterson et al. 2011). All algorithms were fit in 
R and used the packages dismo (Hijmans et al. 2017), kernlab (Karatzoglou et al. 
2004), randomForest (Liaw and Wiener 2002), mgcv (Wood 2006), and earth 
(Milborrow 2016).

Within our ensemble framework, species’ ecological niches are modeled using 
the six algorithms by fitting the occurrences of a single species and the predictors. 
The resulting six species models (one for each algorithm) are stacked into a single 
species model by averaging all models (Araújo and New 2007). We chose this 
approach because a major source of uncertainty in ENM/SDM arises from the algo-
rithm used for modeling (Diniz-Filho et al. 2009; Qiao et al. 2015) and because the 
choice of the “best” modeling algorithm depends on the aims of the modeling appli-
cations (Peterson et al. 2011). Finally, using the stacked species models, we esti-
mated macroecological patterns of species richness and the uncertainty associated 
with model parametrization. These patterns are less interesting in their own right for 
a small clade with only seven species, but they demonstrate an effective approach 
that can be applied to much larger groups of species.

We estimated live oak species richness by summing the projected potential spe-
cies distributions; uncertainty was estimated as the variance attributable to the 
source of uncertainty (i.e., algorithms and their interactions) by performing a 
one-way analysis of variance (ANOVA) without replicates (Sokal and Rohlf 1995). 
The resulting uncertainty map shows regions with low and high uncertainty associated 
with the source of uncertainty (i.e., algorithm).

Statistical Analyses

To explore the performance of environmental data derived from RS for ENM/SDM 
compared to traditionally used environmental data from climatic variables (e.g., 
WorldClim), we evaluated the relationship between the modeled ecological niches 
from: (1) S-RS products; and (2) environmental variables from WorldClim. In doing 

Source
Environmental 
predictors Description

WorldClim BIO 1 Mean annual temperature
BIO 4 Temperature seasonality
BIO 6 Minimum temperature of coldest month
BIO 10 Mean temperature of warmest quarter
BIO 12 Mean annual precipitation
BIO 15 Precipitation seasonality
Altitude –

S-RS satellite remote sensing products. For comparative purposes, we used the same environmental 
variables from WorldClim at two spatial resolutions, 10 and 2.5 arcmin

Table 9.1  continued
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so, we used correlation analyses corrected according Clifford’s method to obtain the 
effective degrees of freedom for Pearson’s coefficients while controlling for spatial 
autocorrelation (Clifford et al. 1989). Statistical analyses were performed in R using 
the package SpatialPack (Vallejos and Osorio 2014).

9.3.2  �Results

Live oak models calibrated using different sources and combinations of environ-
mental predictors (Table 9.1) within the ensemble framework generally provided 
similar suitability distributions (Fig. 9.5). Interestingly, increasing the number of 
predictors or increasing model complexity (S-SR2 in Table 9.1) affected model per-
formance as measured by the Cohen’s Kappa coefficient and AUC (area under the 
receiver operating characteristic curve) indices (Table 9.2), and thus affected the 
geographic predictions: Complex models tended to have higher statistical perfor-
mance but to underestimate the distributions of live oak species when compared 
with simpler models (Fig. 9.5). Individual live oak species models made from S-RS 
products and WorldClim differed somewhat in their performances (see Table 9.2 
and Fig. 9.5). Models from WorldClim tended to have slightly better statistical per-
formance in inferring species distributions based on the AUC and Kappa criteria. 
However, these metrics do not capture differences in the precision and spatial reso-
lution of the approaches. In several species, the WorldClim models predicted low 
precision locations compared to the S-RS data. In particular, the IUCN (International 
Union for Conservation of Nature) red-listed narrow endemic Brandegee Oak 
(Quercus brandegeei) in southern Baja California is very imprecisely predicted 
compared with the S-RS data. Using high-resolution interpolated climatic predic-
tors did not improve the performance of individual models (WC25 in Table 9.2) and 
returned similar suitability predictions to those estimated under lower spatial reso-
lution climatic predictors (Fig.  9.5). Although WorldClim models seems to have 
better statistical performance as shown in Table 9.2, we can at most discriminate the 
accuracy of interpolating continuous surface-derived models, only when we are 
inferring habitat suitability models (ENM) and not the projected species geographi-
cal distribution (SDM). Using S-RS data as predictors not only helps to identify the 
species habitat suitability but also incorporates local ecological conditions neces-
sary to predict local species distributions and co-occurrence (Radeloff et al. 2019). 
This is because S-RS data have the potential to get at biological mechanisms, for 
example, through the detection of species phenological variation over space and 
time (Figs. 9.3c and 9.4).

When macroecological patterns of species richness and uncertainty maps were 
constructed, we observed similar patterns of species richness between maps made 
from the simpler combination of S-RS and WorldClim models (Fig. 9.6a, c, and d; 
see Table  9.1 for a description of the environmental combinations of S-RS and 
WorldClim). Notably, species richness estimation from the complex S-RS tends to 
restrict live oak assemblages to southeastern North America (Fig. 9.6b), which is the 
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Fig. 9.5  Maps of predicted distributions for seven live oak species under three combinations of 
environmental variables. Legend colors represent values of suitability, where 1 and 0 represent 
maximum and minimum suitability, respectively. (a–d) Quercus brandegeei; (e–h) Quercus fusi-
formis; (i–l) Quercus geminata; (LL–Ñ) Quercus minima; (o–r) Quercus oleoides; (s–v) Quercus 
sagraena; and (w–z) Quercus virginiana. Notice that each species model was estimated using an 
ensemble framework such that each species model represents the average of six algorithms 
weighted by their AUC. For representation purposes we cropped the predicted distributions using 
the species geographical ranges obtained from BIEN database (Enquist et al. 2016)

J. N. Pinto-Ledezma and J. Cavender-Bares



211

only region where three live oak species co-occur. Uncertainty maps (Fig. 9.6e–h) 
show that uncertainty values for the simpler S-RS models (Fig.  9.6e) are lower 
when compared with the other models and WorldClim models tend to show high 
uncertainty values across south-central North America (e.g., Texas).

The geographical relationship between the individual species models made for 
the four combinations of environmental predictors varied depending on the species 
evaluated (Table 9.3), although they show positive relationships in all cases. In gen-
eral, spatial relationships between species models from S-RS products (i.e., S-RS vs 
S-RS2) and WorldClim (i.e., WC10 vs WC25) were strongly correlated (see also 
Paz et al., Chap. 11), while the relationship between models made from S-RS products 

Table 9.2  Model accuracy assessment for the three combinations of environmental predictors

Species Environmental combinations Threshold AUC Kappa

Quercus brandegeei S-RS 0.5221 0.9901 0.7989
S-RS2 0.4808 0.9983 0.9044
WC10 0.5865 0.9992 0.9244
WC25 0.5816 0.9996 0.9321

Quercus fusiformis S-RS 0.4764 0.9224 0.6192
S-RS2 0.5026 0.9432 0.7115
WC10 0.4137 0.9205 0.6073
WC25 0.4153 0.9020 0.5814

Quercus geminata S-RS 0.4730 0.9470 0.6439
S-RS2 0.4196 0.9737 0.7365
WC10 0.4958 0.9853 0.7965
WC25 0.5829 0.9621 0.7650

Quercus minima S-RS 0.4311 0.9587 0.6241
S-RS2 0.4601 0.9848 0.7311
WC10 0.4985 0.9813 0.7429
WC25 0.5232 0.9708 0.7158

Quercus oleoides S-RS 0.4917 0.8408 0.5678
S-RS2 0.4947 0.8660 0.6113
WC10 0.5527 0.9320 0.7788
WC25 0.4891 0.9128 0.7121

Quercus sagraena S-RS 0.4975 0.9788 0.7185
S-RS2 0.5196 0.9945 0.8311
WC10 0.5423 0.9809 0.7522
WC25 0.5758 0.9818 0.7666

Quercus virginiana S-RS 0.3712 0.9088 0.6292
S-RS2 0.3613 0.9396 0.7064
WC10 0.4204 0.9424 0.7263
WC25 0.4314 0.9231 0.7215

AUC area under the ROC curve, Kappa Cohen’s Kappa coefficient, S-RS CHIRPS + LAI + Altitude, 
S-RS2 CHIRPS + LAI + NDVI + Altitude, WC10 and WC25 WorldClim + Altitude at spatial reso-
lution of 10 and 2.5 arcmin, respectively
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and WorldClim data varied slightly; the simpler models made from the S-RS data 
showed stronger spatial relationship to the WorldClim models (Table  9.3). 
Interestingly, the spatial relationships increased as a function of increasing the species 
potential distributions. For example, weaker spatial relationships (r = 0.5384 for 
S-RS/WC10 and r = 0.6360 for S-RS/WC25) were found for Quercus brandegeei, 
and stronger spatial relationships were found for dwarf live oak (Quercus minima; 
r = 0.8150 for S-RS/WC10 and r = 0.8332) and southern live oak (Quercus virgin-
iana; r = 0.8872 for S-RS/WC10 and r = 0.8523 for S-RS/WC25) that are distrib-
uted across the southeastern United States (Fig.  9.5LL–Ñ and Fig.  9.5W–Z, 
respectively).

Finally, we found that macroecological patterns of species richness derived 
from the four sets of environmental predictors were strongly correlated (Table 9.4). 
Although the algorithms used for modeling have been emphasized as a major 
source of uncertainty (Diniz-Filho et al. 2009; Qiao et al. 2015), by applying the 
ensemble framework, we found that uncertainties due to the modeling algorithm 
were low (<10%) for the four sets of environmental predictors and showed similar 
distribution estimates (Fig. 9.6e–h). These results suggest that our results are not 
biased by applying a particular algorithm. Interestingly, we found low correlations 
between uncertainty predictions under S-RS and WC comparisons (Table  9.4), 
which potentially could suggest an associated error due to the predictors used to 
build the models.

Fig. 9.6  Macroecological patterns of species richness (top panel) and uncertainty (bottom panel) 
for live oak species quantified under four combinations of environmental variables. WorldClim 
data were used at two spatial resolutions, 10 and 2.5 arcmin. See Table 9.1 for a description of the 
environmental combinations. Numbers on legends for the top panel represent the number of spe-
cies within each pixel, where 4 means that four live oak are co-occurring in those pixels. Numbers 
on legends on the bottom panel represent the percentage of uncertainty or variance between algo-
rithms, where higher values represent higher uncertainty
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Table 9.3  Spatial correlations between live oak ENMs estimated under three combinations of 
environmental variables

Species Correlation r F d.f. P

Quercus brandegeei RS/RS2 0.8441 40.8471 16.4851 0.0000
RS/WC10 0.5384 5.7733 14.1398 0.0306
RS/WC25 0.6360 10.3226 15.2004 0.0057
RS2/WC10 0.6315 4.4031 6.6384 0.0762
RS2/WC25 0.7043 7.0943 7.2068 0.0315
WC10/WC25 0.8844 20.2487 5.6377 0.0048

Quercus fusiformis RS/RS2 0.9105 102.5446 21.1581 0.0000
RS/WC10 0.5735 8.1106 16.5511 0.0113
RS/WC25 0.6117 8.7692 14.6656 0.0099
RS2/WC10 0.5251 8.2619 21.6973 0.0089
RS2/WC25 0.5652 8.9715 19.1088 0.0074
WC10/WC25 0.9588 128.5055 11.2890 0.0000

Quercus geminata RS/RS2 0.8764 62.1065 18.7489 0.0000
RS/WC10 0.7099 14.3529 14.1270 0.0020
RS/WC25 0.6951 12.1338 12.9824 0.0040
RS2/WC10 0.6615 9.5259 12.2447 0.0092
RS2/WC25 0.6589 8.6050 11.2139 0.0134
WC10/WC25 0.9868 260.9438 7.0118 0.0000

Quercus minima RS/RS2 0.8758 35.2577 10.7082 0.0001
RS/WC10 0.8150 15.2887 7.7296 0.0048
RS/WC25 0.8332 17.4921 7.7073 0.0033
RS2/WC10 0.8051 13.1280 7.1263 0.0082
RS2/WC25 0.8240 15.0107 7.0984 0.0059
WC10/WC25 0.9878 195.5017 4.8702 0.0000

Quercus oleoides RS/RS2 0.8945 930.5677 232.4530 0.0000
RS/WC10 0.3946 29.0474 157.5251 0.0000
RS/WC25 0.4130 35.6662 173.4187 0.0000
RS2/WC10 0.3913 22.1329 122.4110 0.0000
RS2/WC25 0.4059 26.5171 134.4395 0.0000
WC10/WC25 0.9290 423.5265 67.2515 0.0000

Quercus sagraena RS/RS2 0.7268 76.7276 68.5351 0.0000
RS/WC10 0.6090 33.5887 56.9651 0.0000
RS/WC25 0.6626 42.6603 54.5144 0.0000
RS2/WC10 0.4627 17.5238 64.3187 0.0001
RS2/WC25 0.5028 20.8935 61.7460 0.0000
WC10/WC25 0.9333 83.3701 12.3397 0.0000

Quercus virginiana RS/RS2 0.9064 47.3462 10.2891 0.0000
RS/WC10 0.8872 42.5539 11.5129 0.0000
RS/WC25 0.8523 44.9094 16.9107 0.0000
RS2/WC10 0.7865 24.3299 14.9996 0.0002
RS2/WC25 0.7748 32.6135 21.7171 0.0000
WC10/WC25 0.9662 279.5733 19.9292 0.0000

S-RS CHIRPS + LAI + Altitude, S-RS2 CHIRPS + LAI + NDVI + Altitude, WC10 and WC25 
WorldClim + Altitude, at spatial resolution of 10 and 2.5 arc-min, respectively. r Pearson’s correla-
tion coefficient, F F-statistic, d.f. degrees of freedom, P associated p-value
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9.4  �Perspectives

The field of ecological niche and species distribution modeling contributes signifi-
cantly to our capacity to evaluate and describe the effect of geographical and envi-
ronmental features on species distributions and has become in one of the most 
widely applied tools for the assessment of the impact of climate change and human 
activities on species and communities, biological invasions, epidemiology, and con-
servation biology (Peterson et  al. 2011; Guisan et  al. 2017). However, despite 
important advances in theory (Soberón 2007; Colwell and Rangel 2009; Soberón 
and Nakamura 2009; Peterson et al. 2011), methods, and algorithms (reviewed in 
Duarte et al. 2019; see also Warren et al. 2018) and practical applications (Guillera-
Arroita et al. 2015; Cord et al. 2017; Sanín and Anderson 2018), most studies still 
rely on the use of interpolated climate data as environmental predictors (Saatchi 
et al. 2008; Waltari et al. 2014). In this article we compare the performance of envi-
ronmental data derived from interpolated climate surfaces data (i.e., WorldClim) 
and S-RS products data (i.e., LAI and NDVI). Specifically, using live oaks as a case 
study, we show the advances and potential caveats in using S-RS data in describing 
and predicting species-environment relationships. Overall, our analyses show that 
S-RS products perform, as well as products from interpolated climate surfaces as 
environmental predictors (Tables 9.2, 9.3, and 9.4), and indeed present quite similar 
results for both species environmental suitability and macroecological patterns 
(Figs. 9.5 and 9.6), similar to Paz et al. (Chap. 11). However, they have the potential 
to provide more precise estimates of species distributions at higher spatial resolution.

In our example, we used different grain sizes for both data sets: WorldClim  
(10 and 2.5 arcmin or ~18.5 and ~ 4.5 km at the equator, respectively) and S-RS 
products (3 arcmin or ~5.5 km at the equator). Although changing grain size in the 

Table 9.4  Spatial correlation between estimations of live oak species richness and uncertainty 
quantified under three combinations of environmental variables

Component Correlation r F d.f. P

Species richness RS/RS2 0.8991 98.5384 23.3534 0.0000
RS/WC10 0.7420 27.0162 22.0477 0.0000
RS/WC25 0.7224 25.6607 23.5094 0.0000
RS2/WC10 0.7269 29.3608 26.2069 0.0000
RS2/WC25 0.7120 28.6270 27.8452 0.0000
WC10/WC25 0.9858 791.2799 22.9570 0.0000

Uncertainty RS/RS2 0.8163 47.6775 23.8806 0.0000
RS/WC10 0.3549 2.5399 17.6208 0.1288
RS/WC25 0.4561 5.4356 20.6974 0.0299
RS2/WC10 0.2315 1.2401 21.9056 0.2775
RS2/WC25 0.3164 2.8755 25.8479 0.1019
WC10/WC25 0.9425 136.3926 17.1534 0.0000

S-RS CHIRPS + LAI + Altitude, S-RS2 CHIRPS + LAI + NDVI + Altitude, WC10 and WC25 
WorldClim + Altitude at spatial resolution of 10 and 2.5 arcmin, respectively
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predictors might be anticipated to affect model performance, different lines of 
evidence indicate that model performance is not affected by grain resolution, but 
rather by species response to the environmental conditions in the study region 
(Guisan et al. 2007, see also Fig. 9.5). Our results show that enhancing spatial reso-
lution of interpolated climatic data does not improve the spatial resolution at which 
species distributions can be accurately predicted. The quality of interpolated climate 
surfaces such as WorldClim, which depends on climatic stations as data sources, has 
been ignored as a source of uncertainty in studies of species-environment relation-
ships—for example, Hijmans et al. (2005) used a variable number of weather sta-
tions for their interpolations, 47.554, 24.542, and 14.930 for precipitation, mean 
temperature, and maximum and minimum temperature, respectively—especially in 
the tropics (Fig.  9.2c), where weather stations are sparse (Hijmans et  al. 2005; 
Soria-Auza et al. 2010). This source of uncertainty can be avoided using S-RS prod-
ucts, which have continuous (from daily to monthly) and quasi-global environmen-
tal information, including precipitation, temperature, and biophysical variables that 
represent different components of vegetation and ecosystems (Funk et  al. 2015; 
Cord et al. 2017; Radeloff et al. 2019).

Fine and broad spatial and temporal scale data derived from S-RS, which have 
only been available in the last ~20 years (Turner 2014), can be used to improve the 
evaluation of species-environment relationships. A number of research avenues 
remain to be pursued to better understand the potential of S-RS data and their 
products in quantifying species ecological niches and estimating species distribu-
tions. For example, applying the same framework presented here to other species 
or clades (including vertebrates and invertebrates) or applying more complex 
frameworks (e.g., Peterson and Nakazawa 2008; Waltari et  al. 2014) may shed 
light on the potential of S-RS products as predictors for the analysis of species-
environment relationships. This is important because ENMs/SDMs are used as 
predictive models that can be extrapolated across space and time to forecast and 
monitor biodiversity under a changing global climate (Peterson and Nakazawa 
2008; Warren 2012).

9.4.1  �Should We Use S-RS Data for ENM/SDM?

Whether S-RS data should replace other environmental data in modeling niches and 
projecting species distribution depends on the modeling purposes (Peterson et al. 
2011). In fact, modeling species niches and projecting distributions involves relat-
ing a set of species occurrences to relevant environmental predictors. In essence, 
ENM/SDM based only on climatic variables would tend to return broad predictions 
(Coudun et al. 2006, see also right panel in Fig. 9.5), particularly because climatic 
data are useful in describing macroecological patterns of species distributions and 
communities (Lin and Wiens 2017; Manzoor et al. 2018), while ENM/SDM based 
on S-RS data alone allows the discrimination of local features not captured by cli-
matic information (Coudun et al. 2006; Saatchi et al. 2008; Radeloff et al. 2019). 
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Nevertheless, it seems that overall statistical model accuracy in this example is not 
improved (Pearson et al. 2004; Thuiller 2004; see also Table 9.2). Given that cli-
matic and S-RS data provide information at different spatial and temporal scales, a 
promising option would be to use both sources of environmental predictors to model 
species distributions to achieve “the best of both worlds” (Saatchi et  al. 2008; 
Pradervand et al. 2013).

More accurate predictions of species distributions are critical for the develop-
ment of conservation and management actions if we are to meet the challenges 
posed by global change (Coudun et al. 2006; Zimmermann et al. 2007; Cord et al. 
2013). Our point here is to facilitate and demonstrate the potential for the use of 
S-RS data for predicting species distributions and modeling environmental niches. 
The results we show here and those of others (e.g., Saatchi et al. 2008; Waltari et al. 
2014) indicate that S-RS data provide a valuable complement to other environmen-
tal variables for ENM/SDM.

Another potential and important research direction is the use of S-RS products 
that have high temporal resolution, such as LAI (Fig. 9.3b), as biophysical variables 
that represent ecosystem functions (Cord et al. 2013, 2017). These products allow 
the exploration of dynamics of vegetation growth and seasonality in vegetation 
function, fundamental features that characterize vegetation form and function 
(Myneni et al. 2002; Hobi et al. 2017). Here, using metrics derived from MODIS 
LAI in combination with other S-RS products (Table 9.1), we show that, using rel-
evant biophysical variables, it is possible to predict distributions similar to those 
predicted from climate data alone (Fig. 9.5, Tables 9.2 and 9.3). In fact, a recent 
study (Simões and Peterson 2018) found that including biotic predictors can improve 
ENMs even while increasing model complexity, such that the combination of abi-
otic and biotic predictors improves model performance (Simões and Peterson 2018). 
To confirm this conclusion, substantial effort would be needed, including new meth-
odological and conceptual approaches, to disentangle the real contribution of S-RS 
products—spatial and temporal features of S-RS products that improve statistical 
model performance—as predictors of species distributions. Nonetheless, our results 
highlight an advance on the use of relevant predictors for modeling species-
environment relationships.

In addition, recent macroecological studies have used these products to relate 
annual vegetation productivity to continental and global patterns of species richness 
(Pigot et al. 2016; Hobi et al. 2017; Coops et al. 2018), providing spatially explicit 
support for the use of satellite data products in predicting biodiversity. These 
advances point to an exciting avenue for the study of the distribution and assembly 
of biological communities (Ferrier and Guisan 2006). For example, S-RS products 
can be used for the development of stacked species distribution models (S-SDM, 
see Fig. 9.6) that can be integrated into novel biodiversity modeling frameworks, 
such as Spatially Explicit Species Assemblage Modelling (SESAM, Guisan and 
Rahbek 2011) or the Hierarchical Modelling of Species Communities (HMSC, 
Ovaskainen et al. 2017), aimed at predicting composition and distribution of species 
and communities (Mateo et al. 2017).
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Finally, the example presented here is meant to spur further theoretical, method-
ological, and empirical research aimed at developing a Global Biodiversity 
Observatory (Geller et al., Chap. 20). Explicit incorporation of biotic information 
into species-environment modeling may turn our focus away from the use only of 
climatic information toward the “complete” evaluation of the drivers that determine 
the species distributions (Fig. 9.1).

9.4.2  �Enabling Large-Scale Biodiversity Change Detection

Since the last millennium, rising human population and activity have been major 
drivers of environmental change on Earth, with consequences for the distribution 
and abundance of biodiversity and associated ecosystem functioning (Tilman 1997; 
Tylianakis et al. 2008). Thus, improving large-scale biodiversity change detection is 
crucial to the development of effective policies that advance conservation and man-
agement of species and communities.

Such efforts are critical to enhancing efforts to develop a Global Biodiversity 
Observatory (Geller et al., Chap. 20; Jetz et al. 2016). Research interest in using 
S-RS has increased in recent years given its high potential for monitoring global 
biodiversity and detecting change (Turner 2014; Jetz et al. 2016). For example, it is 
possible to identify shifts in vegetation structure or to monitor the dynamics of the 
growing season of an entire region, or within a specific species geographical range 
(Fig. 9.4) using time series S-RS products such as LAI—half of the total green leaf 
area per unit of horizontal ground surface area (Xiao et  al. 2014)—which has a 
temporal resolution of 8 days. This is particularly important given that ENM/SDM 
theory assumes that species’ niches are stable across time and space and that species 
and their environments are at pseudo-equilibrium, suggesting that species are occu-
pying all suitable areas (Guisan and Thuiller 2005). However, the environment is 
dynamic and can change even at small scales; species ranges can thus expand and 
retract across time, varying within species lifetimes as well as over evolutionary 
timescales encompassing many generations. Long-term series of S-RS data prod-
ucts (i.e., spatial and temporal) supply remarkable opportunities for assessing and 
monitoring the state of the Earth’s surface and, combining with species-environment 
relationship modeling, provide new frontiers for the prediction of species distribu-
tions and species monitoring across time and space (Randin et al. 2020). Indeed, 
using biophysical variables derived from high-resolution S-RS products (i.e., LAI) 
allows the identification of geographic areas where species actually occur (Fig. 9.7) 
and thus has the potential for enhancing the predictions of a set of species that could 
occur in an area—species pool—that is used for species assignments from direct RS 
detection using hyperspectral data (see simulation in Fig. 7.8, Section 9.4.2 in 
Meireles et al., Chap. 7).

In addition, enhancing predictive models of the species expected to be present in 
a given geographic region can be coupled with other means of detecting which spe-
cies are present based on spectroscopic imaging (Serbin et al. 2015; Bolch et al., 
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Chap. 12; Meireles et al., Chap. 7), reducing the complexity of species identification 
algorithms. For example, imaging spectroscopy allows mapping of functional traits, 
by estimating vegetation traits for each pixel in an image (Wang et al. 2019; Asner 
et al. 2017; Martin, Chap. 5). Plant spectra obtained from imaging spectroscopy at 
different spatial resolutions can in turn be used to detect different aspects and 
traits—within- and between-species differences in morphology, foliar chemistry, 
life history strategies—of plant species (Ustin and Gamon 2010; Cavender-Bares 
et al. 2017; Schweiger et al. 2018) and the correct identification of different taxo-
nomic levels from populations to species to clades (Cavender-Bares et al. 2016). 
Thus, the integration of spectral approaches with techniques for modeling species 
ecological niches has the potential to produce reliable information of species distri-
butions and co-occurrence, filling current gaps about species-environment relation-
ships at a range of spatial scales and levels of organization—from species to 
communities—increasing the accuracy of direct detection assignments, and enabling 
monitoring of changes in biodiversity, one of the premises for the sustainable man-
agement of the biosphere (Pinto-Ledezma and Rivero 2014; Fernández et  al., 
Chap. 18).
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Fig. 9.7  Mean LAI estimated at 8-day intervals averaged over 15 years (left panel). The overlaid 
continuous lines correspond to the geographical ranges of Q. virginiana and Q. oleoides obtained 
from BIEN database. Predicted distributions for Q. virginiana (top right panel) and Q. oleoides 
(bottom right panel) are based on S-RS products, which include the temporal variation in LAI 
shown in A. The triangles over the maps represent occurrence points used for calibration (where 
the authors have collected specimens), and the boxes represent a zoom over a specific area of the 
predicted species distributions. Note that high values of the predicted distributions coincide with 
the occurrence points
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Chapter 10
Remote Sensing of Geodiversity as a Link 
to Biodiversity

Sydne Record, Kyla M. Dahlin, Phoebe L. Zarnetske, Quentin D. Read, 
Sparkle L. Malone, Keith D. Gaddis, John M. Grady, Jennifer Costanza, 
Martina L. Hobi, Andrew M. Latimer, Stephanie Pau, Adam M. Wilson, 
Scott V. Ollinger, Andrew O. Finley, and Erin Hestir

10.1  �Conserving Nature’s Stage

Biodiversity is essential for ecosystem functioning and ecosystem services (Chapin 
et al. 1997; Yachi and Loreau 1999). Yet rapid global change is altering biodiversity 
and endangering its vital functions, with human-caused habitat deterioration being 
the number one cause of biodiversity loss (Sala et al. 2000). In addition, climate 
change is directly affecting individual species abundances and distributions and 
indirectly affecting species via biotic interactions (Walther et  al. 2002). When 
combined, these effects lead to novel ecological communities for which there are no 
modern analogs (Williams and Jackson 2007). Although species have continually 
experienced shifts in climate, the recent rate of temperature change is more rapid 
than in any other timeframe in the past 10,000 years (Marcott et al. 2013), and tem-
peratures are expected to rise even faster in the near future (Smith et al. 2015). In 
light of these rapid global changes, a major challenge for biodiversity scientists is to 
generate robust statistical models that describe and predict biodiversity in space and 

S. Record (*) 
Department of Biology, Bryn Mawr College, Bryn Mawr, PA, USA
e-mail: srecord@brynmawr.edu 

K. M. Dahlin 
Department of Geography, Environment, & Spatial Sciences, Michigan State University,  
East Lansing, MI, USA 

Ecology, Evolutionary Biology, and Behavior Program, Michigan State University,  
East Lansing, MI, USA 

P. L. Zarnetske · Q. D. Read 
Ecology, Evolutionary Biology, and Behavior Program, Michigan State University,  
East Lansing, MI, USA 

Department of Integrative Biology, Michigan State University, East Lansing, MI, USA 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33157-3_10&domain=pdf
mailto:srecord@brynmawr.edu


226

time, from which changes in hot spots (highs) and cold spots (lows) of biodiversity 
may indicate shifts in ecosystem functions and services.

Contemporary strategies for addressing and managing biodiversity loss align 
with a metaphor developed by G. Evelyn Hutchinson in his book The Ecological 
Theater and the Evolutionary Play from Shakespeare’s As You Like It (Hutchinson 
1965). In Act II, Scene VII, of As You Like It, Shakespeare wrote, “All the world’s a 
stage, and all the men and women merely players. They have their exits and their 
entrances.” In Hutchinson’s metaphor, the world’s biota comprises the players, and 
the script is an evolutionary play. More recently, the metaphor has been extended to 
consider the Earth’s abiotic setting as the stage (Beier et al. 2015).

Conservation efforts often emphasize management plans for the actors [e.g., 
Essential Biodiversity Variables (EBVs)] (Fernandez and Pereira, Chap. 18). 
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For instance, the US Endangered Species Act and International Union for 
Conservation of Nature (IUCN) Red List focus on individual species (ESA 1973; 
IUCN 2001). However, an inherent challenge to managing species is that, during the 
course of a play, the actors move across the stage. Geo-referenced fossils from the 
paleoecological record provide evidence of how species’ geographic ranges shifted 
in the past as Earth’s climate fluctuated (Williams and Jackson 2007; Veloz et al. 
2012). For instance, in terms of estimating EBVs (Fernandez and Pereira, Chap. 18), 
species distribution models (SDMs) are one of the most common tools for under-
standing how species ranges might shift over time and space (Elith and Leathwick 
2009; Record and Charney 2016), but they are fraught with statistical (Record et al. 
2013) and biological shortcomings (Belmaker et  al. 2015; Charney et  al. 2016; 
Evans et al. 2016) that hamper their ability to reliably inform management. Given 
the challenges of managing species whose ranges might be shifting in response to 
climate change (Veloz et al. 2012), there is interest in focusing conservation efforts 
on areas that are likely to support biodiversity and on the processes that generate it 
(Pressey et al. 2007; Anderson and Ferree 2010; Beier and Brost 2010). Indeed, The 
Nature Conservancy, one of the world’s leading nonprofit conservation organiza-
tions, has adopted the rallying cry of “conserving nature’s stage” (Beier et al. 2015). 
Conserving nature’s stage entails identifying parcels of Earth that are valuable for 
their geodiversity and for their capacity to support diverse life forms today and into 
the future.

Geodiversity has been defined in several ways (see Table  1.2  in Gray 2013). 
Some definitions of geodiversity refer to variability in soil, geological, and geomor-
phological features and the processes that give rise to them (Gray 2013 and refer-
ences therein). Other definitions tend to have a wider scope and also include 
topography, hydrology, and climate (Benito-Calvo et al. 2009; Parks and Mulligan 
2010). These more inclusive definitions of geodiversity capture variability in the 
entire geosphere (Hjort et al. 2012) that link to important drivers of biodiversity 
(e.g., energy, water, and nutrients (Richerson and Lum 1980; Kerr and Packer 
1997)). The geosphere includes the lithosphere, atmosphere, hydrosphere, and 
cryosphere (Williams 2012) and processes within and among them and encom-
passes the abiotic components of Earth’s “Critical Zone,” or the portion of Earth 
where biotic and abiotic processes support life on Earth’s surface (NRC 2001). Just 
as the Critical Zone arises from interactions among abiotic and biotic processes, 
geodiversity is not separated from biotic influences and biodiversity. A key step in 
the prioritization of conservation areas using this approach is to understand the 
relationships between biodiversity and geodiversity. Remotely sensed biodiversity 
and geodiversity data have the potential to answer questions of scale to better inform 
conservation decisions because they can provide coverage at nearly continuous 
large spatial extents (i.e., regional to global) and at fine spatial and temporal resolu-
tions (Fig. 10.1 for a spatial example). Here, we provide an overview of remotely 
sensed data sources that can be used to measure geodiversity and biodiversity to 
better understand biodiversity-geodiversity relationships, which is a key step in 
conserving nature’s stage.
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10.2  �Geodiversity Indices

Geodiversity represents an opportunity for habitat differentiation (Radford 1981) 
and available niche space (Dufour et al. 2006) that is thought to support biodiversity 
(Gray 2008). The continuous nature of remote sensing (RS) data enables explora-
tion of novel measures of geodiversity. In this section we focus our discussion on 
metrics of variability, although absolute values (e.g., minimum and maximum 
thresholds) of some geographical features are also informative for understanding 
species’ limits and ultimately species diversity. Studies have used two aspects of 
variability: the absolute range of conditions and the spatial configuration of these 
conditions (Spehn and Körner 2005; Dufour et  al. 2006; Jackova and Romportl 
2008; Serrano et al. 2009; Hjort and Luoto 2010; Hjort and Luoto 2012). The range 
in conditions is an estimate of the different elements in the area of interest. Given 
sampling units larger than the minimum pixel resolution, the proportional area cov-
ered by distinct geographical features could be used to calculate an evenness index 
of geodiversity. Categorical features have also treated geodiversity variables simi-
larly to species with measured presences or abundances in various geodiversity met-
rics (Serrano et al. 2009; Tuanmu and Jetz 2015).

Alternatively, geodiversity could be quantified as variability in continuous obser-
vations such as elevation or climate. A focus on variability allows for different geo-
logical contexts (past and present) to be taken into account. One of the most common 
measures of environmental heterogeneity is elevational range (Stein et al. 2014), 
simply the absolute difference between elevation at two sites or sample units 
(i.e., among or within sites, respectively). Using elevation as an example, the average 

Fig. 10.1  Topography at different spatial grains. Hillshade maps calculated from digital elevation 
models (DEMs) at 1 m resolution (a) and (b), 90 m resolution (c), and 1 km resolution (d). The 
inset map in (d) shows the locations of panels (c) and (d) in California, which have the same 
extent. Data for panels (a) and (b) are from the National Ecological Observatory Network’s 
(NEON) Airborne Observation Platform Light Detection and Ranging (LiDAR) system (Kampe 
et al. 2010). Data for panels (c) and (d) are from the Shuttle Radar Topography Mission (SRTM) 
via earthenv.org (Robinson et al. 2014)
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difference, squared, between the elevation in a focal cell and all other cells in a 
sample unit could be used as a measure of topographic heterogeneity. The coeffi-
cient of variation is a similar measure of heterogeneity, though it is standardized to 
the mean elevation of the sample unit. Pairwise site differences in multiple geo-
graphical features can be used as predictors in matrix regression such as generalized 
dissimilarity models (Ferrier et al. 2007) or more generally a Mantel test (Tuomisto 
et al. 2003; Legendre et al. 2005), though mechanistic interpretation is limited when 
geographical features are combined in this way.

Additional approaches include a geodiversity atlas that classifies areas as having 
very high, high, moderate, low, and very low geodiversity (Kozlowski 1999), quan-
tifying geodiversity in terms of total component resource  potential (i.e., energy, 
water, space, and nutrients; Parks and Mulligan 2010), and the geodiversity index 
(Gd) that relates the variety of physical elements (i.e., geomorphological, hydro-
logical, soils) with the roughness and surface of the previously established geomor-
phological units according to the formula:

	
Gd

EgR

lnS
=

	
(10.1)

where Eg is the number of different physical elements, R is the coefficient of rough-
ness of the unit, and S is the surface of the unit (km2). The Gd is a semiquantitative 
scale that permits the establishment of five values of geodiversity, from very low to 
very high for each homogeneous unit. It is argued that use of Gd would allow easier 
comparison of units and aid suitable management of protected areas (Serrano et al. 
2009; Hjort and Luoto 2010; Tukiainen et al. 2017).

With continuously measured remotely sensed geographical features, the sample 
unit (i.e., grain size) can be modified to examine within site and total site (and thus 
between sites) geodiversity. Additionally, RS data can uniquely address how rela-
tionships between geodiversity and biodiversity change across scales. Various com-
binations of changing grain and extent (change grain maintain extent, change extent 
maintain grain, change grain and extent) could be examined to explore scaling rela-
tionships (Barton et al. 2013).

10.3  �Remote Sensing of Geodiversity

In the following sections, we describe the different components of geodiversity 
(Table 10.1), some of the ways they can be quantified, and the current state of tech-
nologies available to measure them remotely via airborne or satellite observations 
(Table 10.2). To match current interests in global biodiversity databases (e.g., the 
Global Biodiversity Information Facility, gbif.org), and because of the importance 
of scaling from local to much larger extents, we focus here on globally available 
data; however, we also mention some local scale RS applications. In particular, 
given that more and more remotely sensed data have been made publically available, 
we highlight open access remotely sensed geodiversity data.
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Table 10.1  Elements of geodiversity

Lithosphere Geology Minerals
Rocks
Unconsolidated solids
Fossils

Geomorphology Tectonics
Soils Soil chemical properties

Soil physical properties
Topography Elevation

Landforms (e.g., ridges, spurs)
Slope
Aspect
Energy
Roughness

Atmosphere Climate and weather Temperature Extreme events
Precipitation
Wind

Hydrosphere Surface water
Groundwater

Cryosphere Ice
Snow

Adapted from Serrano et al. (2009)

Table 10.2  Examples of remotely sensed geodiversity elements

Geosphere
Geodiversity 
element RS data set

Lithosphere Geology Ground-penetrating radar (GPR)
Topography Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER)
Shuttle Radar Topography Mission (SRTM)
Sentinel-2

Atmosphere Surface 
temperature

MODIS (Moderate Resolution Imaging Spectroradiometer) 
surface temperature
AVHRR (Advanced Very High Resolution Radiometer) 
surface temperature
Sentinel-3

Rainfall Tropical Rainfall Measurement Mission (TRMM)
Global Precipitation Measurement (GPM) mission

Wind direction 
and speed

Quick Scatterometer (QuickSCAT)
Rapid Scatterometer (RapidScat)

Hydrosphere Soil moisture ESA’s Soil Moisture and Ocean Salinity (SMOS)
NASA’s Soil Moisture Active Passive (SMAP) observatory

Gravity anomalies Gravity Recovery and Climate Experiment (GRACE)
Cryosphere Ice sheet mass 

balance
Geoscience Laser Altimeter System (GLAS) sensor onboard 
the Ice, Cloud, and land Elevation Satellite (ICESat)
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10.3.1  �Lithosphere

10.3.1.1  �Lithosphere: Topography

Topographic barriers can influence geographic patterns of biodiversity by physically 
isolating populations of plants and animals (Janzen 1967). Topography also can be 
used as an indirect measure of microclimate, as topographic position can influence 
temperature and precipitation (e.g., Ollinger et al. 1995). Topography of the litho-
sphere crust is often represented by elevation (the height above sea level of a given 
point on the ground) or bathymetry (the depth to the bottom of a water body). In 
February 2000 the SRTM radar system flew on the US Space Shuttle Endeavour for 
11 days collecting radar-derived elevation data from 60°N to 56°S. These data were 
originally released at 90 m resolution; however, in 2015, 30 m data (1 arc second) 
were released for the entire SRTM extent. There are many other sources of elevation 
data including NASA Advanced Spaceborne Thermal Emission and Reflection 
Radiometer ASTER (Fig. 10.2), active radar satellites designed for ice measurement 
(see the Cryosphere section), and more. NASA is currently working to develop a 
best available digital elevation model (DEM) for the planet, NASADEM. For this 
the entire SRTM data set will be reprocessed, Geoscience Laser Altimeter System 
(GLAS) data will be incorporated to remove artifacts, and the Advanced Spaceborne 
Thermal Emission and Reflection Radiometer Global Digital Elevation Model ver-
sion 2 (ASTER) and Global Digital Elevation Map (GDEM) V2 DEMs will be used 
for refinement.

Elevation is only one of many products under the umbrella of topography. Slope 
(the angle between two elevation points) and aspect (the direction a slope is facing) 
are two of the many indices that can be derived from elevation data. Importantly, 
most of these indices are kernel-dependent, meaning they rely on data not just from 
an individual point but from surrounding points as well. For example, ArcGIS 10.3 
(ESRI; Redlands, California) calculates the slope of a given pixel (elevation value) 
as the maximum slope between that center pixel and the eight surrounding pixels. 
The “terrain” function in the raster package in R statistical software (Hijmans and 
van Etten 2019) permits several different methods for calculating slope based on 
either a 4- or an 8-cell kernel, and these calculations differ slightly from those in the 
Geospatial Data Abstraction Library (GDAL; gdal.org). Environment for Visualizing 
Images (ENVI) software (Harris Geospatial Solutions, Broomfield, Colorado) 
allows the user to select any kernel size then fits a quadratic surface to the entire 
kernel, calculating slope and other parameters based on that surface (Wood 1996). 
These different methods could lead to somewhat different results; in particular, the 
selection of a small versus a large kernel could change the slope estimated. Imagine, 
for example, with fine-grained data, the inside of a tip-up pit on the side of a north-
facing slope. The local aspect could be south facing, while a larger kernel could 
reveal that the landscape is north facing.

Beyond slope and aspect, there are many other kernel-dependent topographic 
measures. For instance, Topographic Position Index (TPI) is defined as the differ-
ence between a central pixel and the mean of its surrounding pixels. Terrain 
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Ruggedness Index (TRI), in contrast, is the mean of the difference between the 
central pixel and its surrounding pixels (Riley et al. 1999). Wood (1996) describes a 
number of convexity and curvature metrics based on the first and second derivatives 
of the quadratic surface described above. DEMs can also be classified into topo-
graphic features or landforms like peaks, ridges, channels, and pits, though these 
definitions depend on specific threshold values that may either be prescribed by 
software or defined by the user. Incident solar radiation can also be calculated for a 
given day or aggregated for a year based on a given point’s elevation and latitude 
and the elevations of surrounding pixels. Although this section mainly describes 
DEM-derived morphometric landforms, it is also important to acknowledge that the 
genesis of landforms interacts with the ecology of a system. For instance, two hills 
with similar shapes may have very different associated vegetation if one is sandy 
(e.g., a dune) and the other is made of tills (e.g., end moraine).

While SRTM-derived products are typically used to produce “best available” 
topographic information, a challenge with SRTM is that the mission occurred 

Fig. 10.2  Four examples of geodiversity variables derived from National Aeronautics and Space 
Administration (NASA) data products. (a) Earth’s elevation, from which topographic diversity can 
be calculated, from 2009 imagery from the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) instrument aboard NASA’s Terra satellite (30 m spatial resolution). Image 
courtesy of NASA/JPL/METI/ASTER Team, NASA’s Goddard Space Flight Center. https://svs.
gsfc.nasa.gov/11734. Elevation in meters shown with yellows being lower in elevation than greens 
or reds.  (b) Gravity Recovery and Climate Experiment’s (GRACE) Terrestrial Water Storage 
Anomaly as of April 2015 relative to a 2002–2015 mean. Image courtesy of NASA’s Scientific 
Visualization Studio (1° spatial resolution). (c) Soil Moisture Active Passive (SMAP) global radi-
ometer map. Image courtesy of NASA (9 km spatial resolution). H-polarized brightness tempera-
tures are shown in degrees Kelvin with warmer colors (reds and oranges) showing warmer 
temperatures and cooler colors (blues and yellows) showing cooler temperatures. (d) Mean annual 
cloud frequency (%; reds indicate higher cloud frequency than blues) over 2000–2014 derived 
from NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) satellites (Wilson and 
Jetz 2016; 1 km spatial resolution)

S. Record et al.

https://svs.gsfc.nasa.gov/11734
https://svs.gsfc.nasa.gov/11734


233

only once. In geologically and tectonically active areas and areas where humans are 
influencing geology, satellite-derived data can be used to detect even very small 
changes over time. For example, Ge et  al. (2014) used synthetic aperture radar 
(SAR) interferometry to detect subsidence in the Bandung Basin (Indonesia) likely 
due to groundwater extraction. Yun et al. (2015) used SAR data to map areas of 
change and potential damage after the 2015 Gorkha earthquake in central Nepal. 
Using SAR instruments in concert with LiDAR instruments on airborne flights has 
allowed for greater than 30 cm vertical accuracy (Corbley 2010). The launch of the 
Global Ecosystem Dynamics Investigation (GEDI) mission onboard the International 
Space Station has the potential to allow for improved global topographic data 
(Stavros et al. 2017).

10.3.1.2  �Lithosphere: Geology and Soils

Geology consists of several subdisciplines, including lithology, tectonics, volcanol-
ogy, and seismology. A modern geologic “map” in a geographic information system 
(GIS) framework may include polygons outlining the different substrate types and 
their ages, lines showing faults, and points identifying small outcrops or places 
where cores were collected. These static (unchanging through time) representations 
are developed through the painstaking work of geologists who gather in-situ records 
of rock type and estimates of geologic feature extents. Geologic maps vary in qual-
ity and access due largely to the density and biases of field technicians. When con-
sidering long-term evolutionary histories that generate deeper phylogenetic patterns, 
geological processes of uplift and erosion can become important (Cowling et al. 
2009). Nevertheless, for more historically proximate species, community assembly, 
the available minerals, substrate structure, and topography are likely to play a more 
important role, especially in plants. For example, although all locations across the 
Mauna Loa environmental matrix in Hawai’i share a common parent material, 
differences in age, texture, and nutrient availability (due to variation in climate and 
weathering) lead to dramatically different vegetation patterns (Vitousek et al. 1992).

Similar to geologic maps, soil maps are typically developed through fieldwork 
and image interpretation for a single time period. Nevertheless, soils have higher 
spatial variability than bedrock and may change rapidly in response to natural or 
man-made disturbance. Recently there have been calls to improve the quality and 
dynamism of soil maps (Grunwald et  al. 2011). The SoilGrids1km data product 
(Hengl et al. 2014) is one such example. It is a modeled product that relies on indi-
rect remotely sensed variables, such as Moderate Resolution Imaging 
Spectroradiometer (MODIS), leaf area index (LAI), land surface temperature 
(LST), and topography from the SRTM to produce estimates at six depths of soil 
organic carbon, soil pH, sand, silt, and clay fractions, bulk density, cation-exchange 
capacity, coarse fragments, and depth to bedrock.

Imaging spectroscopy has been broadly applied for geologic mapping (Goetz 
et al. 1985; Gupta 2013). Multispectral imagery, like NASA’s ASTER instrument 
and the European Space Agency’s (ESA’s) Sentinel-2 satellite, that is part of the 
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Copernicus program has long been used for mapping lithography in exposed sur-
face environments (Rowan and Mars 2003; Hewson et al. 2005; Massironi et al. 
2008; van der Werff and van der Meer 2016). Hyperspectral imagery has been used 
successfully to map minerals in many low-vegetation landscapes. For example, the 
Hyperion sensor, aboard the now decommissioned EO-1 satellite, was used to map 
mineralogy in Australia (Cudahy et  al. 2001). The Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS) and new AVIRIS-Next Generation missions con-
tinue to push the boundary of imaging spectroscopy used in mineral mapping 
(Krause et al. 1993; Crowley 1993; Green et al. 1998). These instruments can also 
provide information on soil nutrient availability in areas dominated by vegetation 
cover via the influence of soils on foliar chemistry (e.g., Ollinger et al. 2002).

Ground-based RS has also provided insights for subsurface geologic mapping. 
For instance, ground-penetrating radar (GPR) uses radar pulses to map the relative 
densities of materials belowground and effectively maps soil and bedrock in layers 
(Davis and Annan 1989). Airborne GPR can greatly enhance the temporal and spa-
tial resolution of geologic maps (Catapano et al. 2014; Campbell et al. 2018).

10.3.2  �Atmosphere: Climate and Weather

Climate is an important control on mineral weathering, soil formation, and land-
forms (Jenny 1941). Surface temperature and cloud cover are readily observed with 
RS.  The Advanced Very High Resolution Radiometers [AVHRR; National 
Oceanographic and Atmospheric Administration (NOAA)] have been collecting 
surface radiation data in the visible, infrared, and thermal spectra with twice-daily 
global coverage since 1981 that currently gathers data at ~1 km spatial resolution. 
AVHRR data can be used to map cloud cover and land and water surface tempera-
tures; however, changes in satellite technology and the lack of onboard calibration 
in the AVHRR sensors have made the use of these data challenging due to a need for 
standardization of data across satellite technologies (Cao et al. 2008). The launch of 
the MODIS sensors on NASA’s Terra (launched in 1999) and Aqua (launched in 
2002) satellites and ESA’s Sentinel-3 satellite as part of the Copernicus program 
(3-A launched in 2016 and 3-B launched in 2018) significantly improved global 
mapping capabilities. The two MODIS sensors map most of the planet twice a day 
with 36 bands ranging from the visible to the thermal infrared. The MODIS bands 
were selected to capture properties of the land surface but also ocean properties, 
atmospheric water vapor, surface temperature, and clouds (Fig.  10.2). Products 
from MODIS, such as surface temperature and cloud presence, have been used 
either to directly map climate variables for use in ecological research (e.g., Cord and 
Rödder 2011; Wilson and Jetz 2016) or to inform modeled climate products like 
Worldclim-2 (Fick and Hijmans 2017). Furthermore, surface temperature can better 
characterize plant ecological differences (Still et al. 2014) because it more accu-
rately captures canopy temperature, which is not the same as air temperature, and 
because many air temperature products (such as Worldclim-2) are interpolated (see 
Pinto-Ledézma and Cavender-Bares, Chap. 9).
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Satellite-derived rainfall products are estimated through a combination of mea-
surements, including surface reflectance of clouds (i.e., cloud coverage, type, and 
top temperature), passive microwave (i.e., column precipitation content, cloud water 
and ice, rain intensity and type), and lightning sensors. The Tropical Rainfall 
Measurement Mission (TRMM) operated from 1997 to 2015, providing informa-
tion on rainfall amount and intensity and lightning activity globally every 3 hours at 
5  km resolution from 38°N to 38°S.  As a follow-up to TRMM, the Global 
Precipitation Measurement (GPM) mission relies on a constellation of satellites, 
including a core GPM observatory, to produce 0.1° resolution data every 30 minutes 
from 60°N to 60°S.  Initiated in 2014, GPM allows new explorations of extreme 
weather events. Like MODIS temperature measurements, TRMM and GPM pre-
cipitation measures have been directly incorporated into ecological research (e.g., 
Deblauwe et al. 2016) and used to inform modeled climate products like the Climate 
Hazards Group Infrared Precipitation with Station data product (CHIRPS; Funk 
et al. 2015).

There is also a broad set of efforts to generate reanalysis products that combine 
the history of Earth observations to develop temporally and spatially consistent 
global models of climatic and environmental variables. For instance, the NASA 
Modern-Era Retrospective Analysis for Research and Applications (MERRA) mod-
els close to 800 radiative and physical properties of the Earth’s atmosphere at 3- to 
6-hour time steps from 1979 to present at ~50 km spatial resolution (Rienecker et al. 
2011). While this obviously sacrifices spatial resolution, these efforts open the door 
for longer-term analysis of climatic influence on biologic phenomena.

One commonly overlooked source of geologic substrate lies in the atmosphere. 
Airborne dust particles provide an essential source of nutrients in many environ-
ments and can originate from sources hundreds to thousands of miles away 
(Chadwick et al. 1999). Aeolian transport of phosphorus from North Africa to South 
America is thought to be an important driver of Amazonian productivity (e.g., Okin 
et al. 2004). Studies have mapped dust sources and rates using MODIS products 
(Ginoux et al. 2012) and produced 3-D models of dust transportation using LiDAR 
on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 
(CALIPSO) satellite (Yu et al. 2015). Furthermore, the SeaWinds instrument on the 
Quick Scatterometer (QuickSCAT) satellite and the subsequent Rapid Scatterometer 
(RapidSCAT) aboard the International Space Station measures wind speed and 
direction over the ocean’s surface.

10.3.3  �Hydrosphere

The hydrosphere consists of the water on, in, and above Earth’s surface and is 
known to have a large influence in structuring riparian and aquatic communities of 
organisms (reviewed by Atkinson et al. 2017). The hydrosphere interacts with other 
types of geodiversity in the lithosphere, cryosphere, and atmosphere. Topography 
alone can be used to indirectly provide a crude estimate of many hydrological 
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variables, including watershed size, soil water content (Moore et  al. 1991), flow 
paths, and surface water. In addition, two types of satellite data can be used to esti-
mate soil moisture and groundwater, which in some systems are important drivers 
of plant diversity because drought sensitivity may shape plant distributions (e.g., 
Engelbrecht et  al. 2007). The ESA’s Soil Moisture and Ocean Salinity (SMOS; 
launched 2009) and NASA’s Soil Moisture Active Passive observatory (SMAP; 
launched 2015; Fig. 10.2) both use microwave radiometers to detect surface soil 
moisture globally in areas with low topographic variation and low-vegetation cover. 
The Gravity Recovery and Climate Experiment (GRACE; launched in 2002; 
Fig. 10.2) is a pair of satellites that measure gravity anomalies around the world, 
allowing researchers to estimate available groundwater reserves and their change 
over time.

Water quality is a critical driver of aquatic biodiversity across taxa, from plants 
to animals (Stendera et  al. 2012). Watershed disturbance, sediment runoff, and 
nutrient pollution are major aquatic biodiversity stressors, affecting phytoplankton 
and aquatic and wetland vegetation abundance and diversity (Lacoul and Freedman 
2006; Mouillot et al. 2013) and higher trophic levels (e.g., zooplankton, shrimps, 
larval fish, and birds (Thackeray et al. 2010). Optical RS can be used to retrieve a 
limited but important set of water quality variables, including particulate and dis-
solved organic and inorganic matter, chlorophyll-a, as well as other phytoplankton 
pigments like the phycocyanins common in potentially harmful cyanobacteria 
blooms. Surface or “skin” water temperature is measured from instruments with 
thermal bands (Giardino et al. 2018; Alcântara et al. 2010). The major limitation in 
RS of water quality is in sensor resolution. Sensors must have a fine enough pixel 
size to resolve water bodies, with high enough radiometric sensitivity to detect 
small changes in a dark target (10% or less of the total signal received by the sensor, 
Muller-Karger et al. 2018; Hestir et al. 2015). While some water quality products 
are publically distributed with limited spatial coverage [e.g., United Nations 
Educational, Scientific and Cultural Organization (UNESCO) regions], free data 
processors distributed by NASA (Sea-viewing Data Analysis System [SeaDAS]) 
and the ESA (Sentinel Application Platform) enable users to compute their own 
water quality products.

10.3.4  �Cryosphere

Earth’s fossil record illustrates how changes in glacial cover over time have gov-
erned the distribution of biodiversity (e.g., Veloz et al. 2012), and many aspects of 
the globe’s biodiversity are influenced by snow, ice, and permafrost (reviewed by 
Vincent et al. 2011). The frozen parts of the Earth system, the cryosphere, can be 
detected with a number of different RS tools. The cryosphere can be divided into 
several different components—seasonally snow-covered land, permafrost, glaciers 
and ice sheets, lake ice, and sea ice. Because cloud cover is a frequent problem at 
high latitudes, cryosphere RS often relies on longwave techniques that can pass 
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through clouds. A recent book, Remote Sensing of the Cryosphere (Tedesco 2014), 
describes these tools and methods in great detail; here we review some of the major 
techniques. In all of the discussion below, the importance of change over time is 
paramount; inter- and intra-annual variation in snow and ice cover are important 
drivers of physical and biological processes.

The 3-D extent of snow and ice can easily be mapped using optical techniques; 
snow reflects strongly in the visible and near-infrared (NIR) range but absorbs in the 
shortwave infrared (SWIR), making it spectrally distinct from other white objects 
such as rooftops and clouds. These distinctions may still be challenging with multi-
spectral sensors, but hyperspectral sensors permit mapping of snow versus clouds 
and even some estimation of snow particle size (e.g., Burakowski et  al. 2015). 
Passive microwave sensors can be used to estimate snow depth and snow water 
equivalent, while active microwave sensors can map liquid water content. Tools and 
techniques for mapping snow are reviewed by Dietz et al. (2011).

Ice and permafrost features can be mapped with many of the tools and methods 
described in preceding sections. Snow cover can be mapped using optical sensors 
and methods; subsidence of the cryosphere can be mapped with SRTM (near global 
extent, 30–90 m spatial resolution, single snapshot in time) and SAR (airborne, 2 m 
spatial resolution); and passive microwave radiometers such as SMOS (global 
extent, 50 km spatial resolution, 3-day temporal resolution) and SMAP (near global 
extent for low-vegetation areas, 9–36 km spatial resolution, 8-day temporal resolu-
tion) can be used to map frozen versus thawed ground surfaces (Entekhabi et al. 
2014). Because glaciers and ice sheets are fundamentally a combination of snow, 
ice, and liquid water, many of the techniques described above, such as optical sen-
sors and passive microwave radiometers, can be used to map their extent and status. 
In addition, the GLAS sensor onboard the Ice, Cloud, and land Elevation Satellite 
(ICESat; near global spatial extent, 70 m spatial resolution, 91-day temporal resolu-
tion from 2003 to 2009) permitted the mapping of ice sheet mass balance (Zwally 
et al. 2011). ICESat-2 is scheduled for launch in 2018 (global spatial extent, 14 km 
spatial resolution, 91-day temporal resolution). SAR has also been used to map ice 
flow on Antarctica (Rignot et al. 2011).

Sea, lake, and river ice cover can be mapped using optical techniques (Jeffries 
et al. 2005), while thickness has been measured using ICESat and passive micro-
wave sensors (e.g., Kwok and Rothrock 2009). The difference between first-year 
sea ice and older sea ice can be identified by changes in salinity using multichannel 
passive microwave sensors like the Advanced Microwave Scanning Radiometer for 
Earth Observing System (AMSR-E) onboard NASA’s Aqua satellite (global spatial 
extent, 474  km spatial resolution, 12-hour temporal resolution, operational 
2002–2015). River ice mapping is critical for monitoring and predicting river habi-
tat quality and duration for a variety of organisms (e.g., Charney and Record 2016; 
Pavelsky and Zarnetske 2017). The extent and duration of river icing types have 
been mapped with different polarizations of passive microwave data from Canada’s 
RADARSAT-1 (1995–2013) and RADARSAT-2 (launched 2007) (Weber et  al. 
2003; Jeffries et  al. 2005; Yoshikawa et  al. 2007 for aufeis features) and with 
MODIS Terra (Pavelsky and Zarnetske 2017).
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10.4  �Remote Sensing of Biodiversity

Approaches for using RS to track biodiversity are reviewed in several chapters in 
this book (Fernandez and Pereira, Chap. 18; Serbin and Townsend, Chap. 4; Meireles 
et  al., Chap. 7). Biodiversity has many forms—including taxonomic, functional, 
genetic, and phylogenetic diversity (Serbin and Townsend, Chap. 4; Meireles et al., 
Chap. 7). Each form may exhibit different relationships with both geophysical and 
biological drivers, owing to a variety of mechanisms (Gaston 2000; Lomolino et al. 
2010). For example, reorganization of organisms in response to changing environ-
ments leads to species assemblages becoming more or less similar through biotic 
homogenization or differentiation (Baiser et al. 2012). Such biotic homogenization/
differentiation is usually characterized taxonomically (Olden and Rooney 2006). 
However, functional traits (i.e., traits representing the interface between species and 
their environment) possessed by species are often more important to ecosystem 
functions valued by society (Baiser and Lockwood 2011) and may be more appro-
priate to use in assessing biodiversity-ecosystem function relationships (Flynn et al. 
2011). Many functional traits may also exhibit a phylogenetic signal (Srivastava 
et al. 2012), so it is important to consider multiple measures of diversity (i.e., taxo-
nomic, functional, and phylogenetic) when assessing patterns of biodiversity 
(Serbin and Townsend, Chap. 4; Meireles et al., Chap. 7; Lausch et al. 2016; Lausch 
et al. 2018).

One caveat to measures of biodiversity generated from high-resolution RS data 
is that as the spatial resolution of data increases, the spatial extent typically decreases 
(Turner 2014; Gamon et al., Chap. 16). This limitation hinders our ability to under-
stand how biodiversity relates to different drivers (e.g., geodiversity) at different 
spatial scales to better inform conservation decisions. There have been recent calls 
from scientists for new satellite missions and data integration efforts to address this 
issue (Schimel et al., Chap. 19). For instance, Jetz et al. (2016) call for a Global 
Biodiversity Observatory to generate worldwide remotely sensed data on several 
plant functional traits. Petorelli et al. (2016) and Fernández and Pereira (Chap. 18) 
identify satellite RS data that, given technological and algorithmic developments in 
the near future, could be capable of meeting the criteria of EBVs for conservation 
outlined by the international Group on Earth Observations—Biodiversity 
Observation Network (GEO BON) at a global spatial extent.

Until finer resolution, remotely sensed biodiversity data exist at large spatial 
extents, data available from in-situ measurements of organisms can inform the rela-
tionships between biodiversity and geodiversity. Publically available biodiversity 
data with geographic locations include expert range maps of individual species from 
IUCN (IUCN 2017), occurrence data [e.g., Global Biodiversity Information Facility 
(GBIF, GBIF 2016); Botanical Information and Ecology Network (BIEN, Enquist 
et al. 2016)], citizen science networks [e.g., Invasive Plant Atlas of New England, 
IPANE, Bois et al. 2011], and national [e.g., US Forest Service Forest Inventory and 
Analysis (FIA), Bechtold and Paterson 2005)] and international inventory networks 
[e.g., the Amazon Forest Inventory Network (RAINFOR), Peacock et  al. 2007]. 
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Each of these data sets comes with its own uncertainties (e.g., observation errors) 
and user challenges. For instance, citizen science data require detailed metadata on 
the sampling process to ensure that citizen scientists are able to reduce error and 
bias as they collect data and to enable those analyzing the data to model potential 
uncertainty (Bird et al. 2014). Despite these sources of uncertainty and logistical 
hurdles, these data provide a useful starting point for understanding the relationship 
between biodiversity and geodiversity.

10.5  �A Case Study Linking RS of Geodiversity to Tree 
Diversity in the Eastern United States

To motivate explorations of the relationship between biodiversity and geodiversity 
with remotely sensed data, we provide an example using biodiversity data from the 
FIA program of the US Forest Service (O’Connell et al. 2017) and geodiversity data 
on elevation from SRTM. We selected elevation as a covariate because patterns of 
tree diversity often vary with elevation (Körner 2012). While some studies promote 
the use of many geodiversity components (Serrano et  al. 2009; Hjort and Luoto 
2010; Bailey et al. 2017; Tukiainen et al. 2017), a great deal of the variation in geo-
diversity is captured by the standard deviation in elevation (Hjort and Luoto 2012), 
which is used in this analysis.

The FIA program uses a two-phase protocol to characterize the nation’s forest 
resources. In phase one, all land in the United States is categorized as either “for-
ested” or “not forested” using remotely sensed data. In phase two, in every 2428 ha 
of land classified as forested, one permanent FIA plot is placed for in-situ sampling. 
Each FIA plot consists of four 7.2-m-fixed-radius subplots wherein all trees 
>12.7 cm diameter at breast height are measured. FIA plot measurements began in 
the 1940s, but a consistent nationwide sampling protocol was not implemented until 
2001. In the analysis presented, we used data from the most recent full plot FIA 
inventory from 2012–2016; the SRTM data were collected in 2009. Although there 
is not perfect temporal overlap in the geodiversity and biodiversity data used in this 
example, we do not expect that topography at a spatial resolution of 50 km would 
have changed much over the time period encompassed by both data sets for this part 
of the world.

We fixed the spatial extent of the analysis to the contiguous United States east 
of 100°W longitude (n = 90,250 plots total) and selected a grain size of 50 km for 
calculating alpha (within site), beta (turnover between sites), and gamma (total 
across all sites) diversities within a radius centered on each FIA plot. All biodiver-
sity metrics were based on species abundances as quantified by the total basal area 
of each tree species in each plot. Alpha diversity was calculated as the median 
abundance-weighted effective species number of all plots falling within a 50 km 
radius of the focal FIA plot, including the focal plot. Beta diversity was calculated 
as the mean abundance-weighted pairwise Sørensen dissimilarity of all pairs of 
plots within a 50  km radius of the focal plot, including the focal plot. Gamma 
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diversity was calculated as the aggregated effective species number of all plots 
within a 50 km radius of the focal plot, including the focal plot. For each 50 km 
radius centered on a focal plot, we computed the standard deviation of elevation 
across pixels within the radius from 30 m SRTM data (Fig. 10.3). To avoid edge 
effects, all plots within 100 km of the political borders of the United States were 
excluded, retaining 80,411 plots. To avoid pseudo-replication, we generated 999 
subsamples of plots separated by at least 100 km, yielding ~370 plots per sub-
sample. Because of the saturating relationship between biodiversity and geodiver-
sity, we fit natural splines with 3 degrees of freedom to relate all focal plots’ 
univariate diversity to elevation standard deviation (SD) (linear regression for 
alpha and gamma diversity; beta regression for beta diversity), and goodness of fits 
of the models were assessed with r-squared (Fig. 10.4).

This example shows how the relationships between biodiversity and geodiversity 
for a subset of different biodiversity metrics vary depending on the metric of biodi-
versity calculated. Here beta and gamma diversity do not show a strong relationship 
(r2 = 0.03 and r2 = 0.07, respectively; Figs. 10.3 and 10.4) with geodiversity, but 
alpha diversity shows a stronger, positive relationship with elevation variability 

Fig. 10.3  Mapped variation in tree diversity calculated within 50 km radii. Tree data come from 
the Forest Inventory and Analysis of the US Forest Service (FIA, O’Connell et  al. 2017. (a) 
Taxonomic alpha diversity. (b) Taxonomic beta diversity. (c) Taxonomic gamma diversity. (d) The 
standard deviation of all elevation pixels within the radius from 30 m Shuttle Radar Topography 
Mission (SRTM) data
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(r2 = 0.35; Figs. 10.3 and 10.4). Interestingly, in a sister study, Zarnetske et al. (2019) 
found that FIA tree diversity with a different spatial extent—in California, 
Washington, and Oregon—showed a different relationship with elevation variability. 
Furthermore, beta and gamma diversity showed a strong increasing relationship with 
elevation variability, whereas alpha diversity did not. This comparison between the 
case study illustrated in this chapter and the results of Zarnetske et al. (2019) high-
lights the importance of considering how the relationship between geodiversity and 
biodiversity may change with different spatial scales (Gamon et al., Chap. 16). Bailey 
et al. (2017) also showed that landforms detected with airborne RS at smaller spatial 
resolutions explained more of the variation in alpha diversity of alien vascular plants 
in Great Britain than did climate measured at larger spatial resolutions. While these 
examples do not provide an exhaustive exploration of the ways in which tree diver-
sity responds to geodiversity, they clearly show how remotely sensed data may help 
us understand the relationships between geodiversity and biodiversity and how these 
relationships may be different in different geographic areas.

This example shows how the relationship between taxonomic biodiversity and 
geodiversity depends on the biodiversity metric chosen. There are various method-
ologies for calculating biodiversity metrics and various facets of biodiversity (e.g., 
functional, taxonomic, phylogenetic), and the theoretical pros and cons of each 
remain controversial (e.g., Jost 2007; Clark 2016), so it may not be obvious which 
metric is the best. Furthermore, different conclusions may be drawn depending on 
the types of taxa used in the analysis.

In a similar vein, the choice of an appropriate geodiversity metric may not be 
obvious. Here we use a single measure of geodiversity, standard deviation of eleva-
tion. However, different definitions of the term geodiversity include different com-
ponents of geology, topography, and, in some instances, climate (Parks and Mulligan 
2010; Gray 2013). The amalgamation of these different variables to characterize 
geodiversity as a whole is an area in need of development.

Fig. 10.4  The relationships between three measures of tree taxonomic diversity (alpha, beta, and 
gamma) and geodiversity (i.e., elevation standard deviation) at a spatial resolution of 50 km. Points 
indicate the aggregated plots, and the red line indicates the natural spline relationship fitted with a 
linear regression model for alpha and gamma diversity and a beta regression model for beta diver-
sity. Dotted lines represent the 2.5% and 97.5% quantiles of predicted values across 999 spatially 
stratified random subsamples of the data, and the given r-squared value is the mean across all the 
subsamples
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10.5.1  �Challenges and Opportunities

10.5.1.1  �The Interplay Between Biodiversity and Geodiversity over Time

Although we have focused thus far on the effects of geodiversity on biodiversity, 
biodiversity can also affect geodiversity. Ecosystem engineers (Jones et al. 1994) 
and foundation species (Record et al. 2018) can influence biodiversity through habi-
tat formation (Hastings et  al. 2007). Geodiversity can be modified by species 
impacting the structure and function of landscape features. For example, elephants 
dig, form trails, and trample (Haynes 2012), and vegetation and sediment interact to 
form streams and coastal dunes (Zarnetske et al. 2012; Atkinson et al. 2017). In 
turn, these species-modified features can feed back to mediate the strength and 
direction of biotic interactions among species and ultimately influence patterns of 
biodiversity (Zarnetske et al. 2017). Even climate can be influenced by biodiversity 
and biogeographic patterns. Forests directly affect Earth’s climate through atmo-
spheric exchange (Bonan 2008). If shrubs expand by 20% and continue to dominate 
in areas north of 60°N latitude, for example, Arctic annual temperature could 
increase by 0.66°C– 1.84°C, via decreased albedo and increased evapotranspiration 
(Bonfills et al. 2012).

Many of these feedbacks between biodiversity and geodiversity are not detect-
able given a single snapshot in time and require longer time series. RS with repeat 
samples taken as satellites orbit the Earth provide data with high spatial and deep 
temporal coverage that can be used to assess changes in the dominance of a species 
within a community (Pau and Dee 2016). Changes in the dominance structure of 
communities (or its counterpart, evenness) should be early indicators of global 
change because these changes occur before the complete loss or replacement of spe-
cies (Hillebrand et  al. 2008). Furthermore, tracking dominant species should be 
especially important for quantifying biomass or abundance-driven ecosystem func-
tions and services (Pau and Dee 2016). For instance, Cavanaugh et al. (2013) used 
28 years of Landsat imagery to map the poleward expansion of mangroves, which 
are important in preventing coastal erosion, in the eastern United States. Furthermore, 
the 45-year time series of Landsat data provide an excellent opportunity for detect-
ing changes in habitat due to species, which may have extreme impacts on the abi-
otic stage.

10.5.1.2  �Scale and Expertise Mismatches

The relationships between geodiversity and biodiversity are likely to change across 
spatial and temporal scales. For instance, a focused spotlight shining down on one 
part of the stage (e.g., the tip of a mountaintop) might exhibit different covariation 
between geodiversity and biodiversity than a broad swath of light on another portion 
of the stage (e.g., an expansive low-lying valley). Spatial patterns of biodiversity 
and geodiversity are each scale dependent (Rahbek 2005; Bailey et  al. 2017; 
Cavender-Bares et al., Chap. 2; Gamon et al., Chap. 16), and it is well established 
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that ecological processes influencing the assembly of communities of organisms are 
scale dependent (Levin 1992; McGill 2010). A spatially explicit framework for con-
ceptualizing community assembly describes external filters (e.g., climate or soils) 
that sort species from a regional pool at a spatial scale larger than the community 
and internal filters that sort species into a community from a subset of the species 
that make it through the external filter (e.g., microenvironmental heterogeneity, 
biotic interactions; Violle et al. 2012; Fig. 10.5). These “assembly rules” about how 
communities form remain a controversial paradigm with uncertainty about which 
processes operate at which scales (McGill 2010; Belmaker et al. 2015). Observing 
and quantifying relationships between geodiversity and biodiversity and how these 
relationships change with scale, however, are essential for moving forward regard-
less of one’s position on these controversies. To most effectively use geodiversity to 
help explain and predict patterns of biodiversity, we need a framework that addresses 
the scaling relationship between biodiversity and geodiversity.

Furthermore, there are important disconnects in both scale and expertise between 
biodiversity science and RS (Petorelli et al. 2014) that once addressed will aid in the 
development of such a framework. Whereas the availability of remotely sensed geo-
diversity data products has increased, many of the scales are too coarse to reflect the 
environmental and biological conditions that often drive more fine-scaled spatially 
heterogeneous biodiversity patterns (Nadeau et al. 2017) and thus may require com-
plex post-processing techniques unfamiliar to most biodiversity scientists before 
they can be used appropriately in biodiversity models. Also, there are likely many 
important aspects of geodiversity that at this time can only be derived through in-situ 
measurements and cannot be remotely sensed. Determining how physical and bio-
logical drivers influence biodiversity across spatial and temporal scales is a central 
focus of ecology. However, most models predicting future patterns of biodiversity 
assume broad-scale climatic drivers—temperature and precipitation—are sole driv-
ers and leave out important biological drivers (Zarnetske et al. 2012; Record et al. 
2013). Biological drivers such as dispersal ability and biotic interactions (e.g., com-
petition) are often mediated by the structure of the landscape, including geophysical 
feature configuration, topographic complexity, and habitat patch arrangement 
(Zarnetske et  al. 2017). Yet a significant knowledge gap remains about how the 
relationships between biodiversity and its geophysical and biological drivers change 
with respect to space and time—perhaps owing to the scale mismatch between fine-
scale point-level biodiversity data and many coarse-scale remotely sensed data 
products.

Many ecological questions are addressed at scales much finer than the grain size 
of MODIS or GPM, which makes statistical downscaling a necessity for remotely 
sensed products to be used. Yet the landscape of options for statistical downscaling 
is vast and complex (Pourmokhtarian et al. 2016). In addition, the increasing avail-
ability of airborne topographic data like LiDAR makes the possibility of finer-grain 
analysis even more viable, yet these data also bring another dimension of complex-
ity and a lack of standardization across platforms and methods.

Open access analytical tools and training will provide ways forward given data 
downloading and processing challenges. The Application for Extracting and 
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Fig. 10.5  Conceptual diagram adapted from Violle et al. (2012) showing how spatially explicit 
(i.e., local versus regional) filters influence the assembly of traits in an observed community (bot-
tom schematic). The regional species pool (top schematic) contains all of the species capable of 
seeding into the local community. However, the observed local community may only contain a 
subset of the species in the regional pool after species have passed through a series of filters. Both 
internal and external filters encompass different aspects of the stage, whereas internal filters may 
also include the actors. Examples of external filters include broad-scale climate or soil types for 
which some species may not have physiological tolerances. Internal filters include microenviron-
mental heterogeneity and/or biotic interactions. In this schematic, the traits that passed through the 
external and internal filters partition in the observed local community, perhaps due to competitive 
effects between species for resources
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Exploring Analysis Ready Samples (AppEEARS) offered by NASA and US 
Geological Survey (USGS) is a user-friendly tool that enables simple and efficient 
downloads and transformations of geospatial data from a number of federal data 
archives from the United States [e.g., the Land Process Distributed Active Archive 
Center (LP DAAC)]. Additionally, Geomorphons provides a user-friendly interface 
that automates the calculation of complex geodiversity features from topography 
data (Jasiewicz and Stepinski 2013). Training the next generation of ecologists and 
conservation biologists in RS will be integral to overcoming some of these hurdles 
and bridging the gaps between RS and ecology and conservation.

10.6  �Conclusion

Cross-scale studies of relationships between geodiversity and biodiversity using RS 
and large field-based data sets hold promise for evaluating processes underlying 
biodiversity and identifying scales and methods for its monitoring and management. 
Realizing this potential will require more interaction among biodiversity scientists, 
geoscientists, RS experts, and statisticians to reconcile the challenges associated 
with differences in scales, available data products, disciplinary barriers, and avail-
able methods for connecting geodiversity to biodiversity. These challenges are far 
from trivial, but overcoming them has the potential to result in key ecological 
insights that will help us to be better stewards of the entire ecological theater.
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Chapter 11
Predicting Patterns of Plant Diversity 
and Endemism in the Tropics Using 
Remote Sensing Data: A Study Case 
from the Brazilian Atlantic Forest

Andrea Paz, Marcelo Reginato, Fabián A. Michelangeli, Renato Goldenberg, 
Mayara K. Caddah, Julián Aguirre-Santoro, Miriam Kaehler, 
Lúcia G. Lohmann, and Ana Carnaval

11.1  �Introduction

The spatial distribution of species is unquestionably tied to environments, particularly 
temperature and precipitation (Hutchinson 1957). By exploring this correlation, 
multiple studies have demonstrated that environmental descriptors are able to pre-
dict geographic patterns of biological diversity reasonably well (Peters et al. 2016; 

A. Paz (*) · A. Carnaval 
Department of Biology, City College of New York, New York, NY, USA 

Biology Program, The Graduate Center, City University of New York, New York, NY, USA 

M. Reginato 
Departamento de Botânica, Instituto de Biociências, Universidade Federal do Rio Grande  
do Sul, Porto Alegre, RS, Brazil 

F. A. Michelangeli 
Biology Program, The Graduate Center, City University of New York, New York, NY, USA 

Institute of Systematic Botany, The New York Botanical Garden, The Bronx, NY, USA 

R. Goldenberg 
Universidade Federal do Paraná, Curitiba, PR, Brazil 

M. K. Caddah 
Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil 

J. Aguirre-Santoro 
Biology Program, The Graduate Center, City University of New York, New York, NY, USA 

Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, 
Bogotá, Colombia 

M. Kaehler · L. G. Lohmann
Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo,  
São Paulo, SP, Brazil

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33157-3_11&domain=pdf


256

Zellweger et al. 2016). Temperature, for example, has been repeatedly shown to be 
a good predictor of the species that inhabit a given area (the taxonomic dimension 
of biodiversity, e.g., Peters et al. 2016). However, the power to predict the distinct 
dimensions of biodiversity varies within and across groups of organisms. For 
instance, the contribution of different measures of temperature and precipitation 
appears to be idiosyncratic when multiple taxa are compared (Rompré et al. 2007; 
Laurencio and Fitzgerald 2010; Peters et al. 2016; Zellweger et al. 2016). Moreover, 
and in contrast to species richness (SR), the relationships between climate and the 
geographic distribution of evolutionary diversity in a region (i.e., the phylogenetic 
dimension of biodiversity), as well as the relationships between climate and ende-
mism, have been less explored. Still, those relationships appear weaker due to the 
relatively larger contribution of history, biogeography, and contingency in the spa-
tial distribution of lineages (da Silva et al. 2012; Barratt et al. 2017).

Most of those advances have relied on the use of climatic data sets that are inter-
polated from weather station data (Hijmans et al. 2005), summarizing spatial pat-
terns of temperature and precipitation. These include the widely used WorldClim 
data set (Hijmans et al. 2005), country-specific data sets (e.g., Cuervo-Robayo et al. 
2014), and the hybrid CHELSA database (Karger et al. 2017). The ease by which 
biodiversity scientists can access and download these databases, and the fact that 
they provide global-scale climatic information at biologically relevant scales (up to 
1 km), have resulted in a sharp increase in the number of studies that explore the 
correlations between climate and biodiversity patterns. Yet the accuracy and the 
effectiveness of these global climatic descriptors have been questioned (Soria-Auza 
et al. 2010). Because the distribution of weather stations around the world is unequal, 
the confidence in those data sets is reduced in undersampled areas, which frequently 
correspond to the most biodiverse areas on Earth (see Pinto-Ledézma and Cavender-
Bares, Chap. 9).

In this chapter, we explore the use of bioclimatic variables built from long-term 
climatologies derived from remote sensing (RS) as predictors of biodiversity pat-
terns. We focus in a megadiverse region, with high topographic complexity: the 
Brazilian Atlantic Forest hotspot. We evaluate whether climate, inferred from RS 
sources, predicts which areas accumulate the highest diversity of species, evolution-
ary lineages, and endemism. For that, we use distribution and phylogenetic data 
from three plant clades representing different life forms, that are commonly found 
in the Brazilian Atlantic Forest: melastomes (178 species of shrubs and trees), bro-
meliads (43 species of epiphytes), and bignones (131 species of lianas). We also 
evaluate what (if any) gains emerge from the use of climatic descriptors based on 
RS, rather than weather stations, for this area. Given the sharp altitudinal changes 
observed in the Brazilian Atlantic Forest hotspot, it has been proposed that interpo-
lated weather station data may perform more poorly than variables derived from RS 
(Waltari et al. 2014).
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11.2  �Study System

The Brazilian Atlantic Forest harbors one of the highest levels of endemism and 
threat globally, representing one the world’s hotspots of biodiversity (Myers et al. 
2000). Although only about 16% of the original forest persists (Ribeiro et al. 2009), 
the Atlantic Forest is topographically and environmentally complex, spanning more 
than 1,700 m in altitude and about 25° of latitude (Ribeiro et al. 2009). Climatic 
analyses of the forest, along with molecular studies of its biota, suggest that it 
encompasses multiple environmental spaces and associated species pools. More 
specifically, the northern (mostly lowland) and southern (mostly montane) elements 
are largely different in species composition and have responded differently to past 
climatic changes (Carnaval et al. 2014; Leite et al. 2016).

Melastomes represent the first clade selected for our study. The tribe Miconieae 
(Melastomataceae) is exclusively Neotropical, with ca. 1,900 species, mostly shrubs 
and small trees, but also herbs, lianas, epiphytes, and large trees (Michelangeli et al. 
2004, 2008; Goldenberg et al. 2008). In the Atlantic Forest, the tribe is represented 
by ca. 310 species, 70% of which are endemic (“Flora do Brasil 2020”; Goldenberg 
et al. 2009). These species are largely grouped into three clades: the Leandra clade 
with ca. 215 species (Caddah 2013; Reginato and Michelangeli 2016), the Miconia 
section Chaenanthera clade (Goldenberg et al. 2018), and the Miconia sect. dis-
color clade. Most of these species are small trees and shrubs (although the 
Pleiochiton clade contains 12 species of shrubby epiphytes; Reginato et al. 2010, 
2013), and the great majority are bee pollinated and have berry fruits that are dis-
persed by birds. In the Atlantic Forest, species of Miconieae are found throughout 
most environments and at all elevations, with species ranges varying from widely 
distributed within the domain and beyond, to microendemics found in a single 
mountain top (Michelangeli et al. 2008).

Bromeliads represent the second clade included in this investigation. The 
Bromeliaceae is an almost exclusively Neotropical family, with ca. 3,300 species of 
terrestrial or epiphytic rosette-forming herbs. In the Atlantic Forest, the Bromeliaceae 
is represented by 816 species, over 75% of which are endemic (Martinelli et  al. 
2009). The data set used here represents a clade of 70 species belonging to the 
Ronnbergia-Wittmackia alliance (Aguirre-Santoro et  al. 2016; Aguirre-Santoro 
2017). With the exception of one species, the basal grade of 26 species of Wittmackia 
is composed of species restricted to the Atlantic Forest. All of them are tank-forming 
epiphytes found in forested environments, many with very restricted distributions 
(Aguirre-Santoro 2017). In the Atlantic Forest, Wittmackia is found predominantly 
in the central and northern states.

Bignones are the third plant clade used in this analysis. The tribe Bignonieae 
(Bignoniaceae) originated at around 50 million years ago (mya) in the Brazilian 
Atlantic Forest and subsequently occupied Amazonia and the dry areas of Central 
Brazil (Lohmann et al. 2013). The group is very diverse ecologically, including spe-
cies pollinated by hummingbirds, butterflies, bees, and bats (Gentry 1974; Alcantara 
and Lohmann 2010). Ant-plant interactions are extremely common and play an 
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important role in herbivore defense (Nogueira et al. 2015). Most species in the fam-
ily are dispersed by wind or water (Lohmann 2004).

Former drying of Neotropical climates, and the Andean orogeny, seems to have 
represented key diversification drivers for tribe Bignonieae (Lohmann et al. 2013). 
Today, it includes 383 species and 21 genera (Lohmann and Taylor 2014), repre-
senting the most diverse and abundant clade of lianas in Neotropical forests 
(Lohmann 2006). All species of the tribe are distributed among three main clades: 
(i) the “multiples of four clade” (referring to the multiples of four phloem wedges), 
with ca. 135 species (Lohmann 2006); (ii) the “Fridericia and Allies clade,” with 
around 132 species (Kaehler et al. 2019); and (iii) the “Adenocalymma-Neojobertia” 
clade, with ca. 75 species (Fonseca and Lohmann 2018). The remaining species of 
the Tribe are distributed among eight small genera (Lohmann 2006).

11.3  �Methods

To investigate the relationships between climate and biodiversity patterns in the 
Atlantic rainforest of Brazil, we selected three clades of angiosperms with different 
life forms, i.e., shrubs and small trees (tribe Miconieae, Melastomataceae), epi-
phytic herbs (the Ronnbergia/Wittmackia alliance, Bromeliaceae), and lianas (the 
“Fridericia and Allies” clade of tribe Bignonieae, Bignoniaceae).

For each group, we combined geo-referenced occurrence data from each species 
with information about its evolutionary relationships. Using personal field data, 
published records, and geo-referenced herbarium information, we gathered locality 
information for 352 species and 22,338 unique locality points vetted by experts for 
spatial and taxonomic accuracy as follows: (i) melastomes, 178 species and 10,253 
records of members of tribe Miconieae; (ii) bromeliads, 43 species and 4,606 
records of members of the Ronnbergia/Wittmackia alliance; and (iii) Bignones, 132 
species and 7,480 records of members of the “Fridericia and Allies” clade of tribe 
Bignonieae (Lohmann, unpublished data; see Meyer et. al 2008 for further details 
on this data set).

For each species, we used the locality data to generate a multiple convex polygon 
representing its range, which was then converted into a gridded map (~5 km resolu-
tion). Maps of the individual species were then stacked, allowing us to compute the 
total number of species per pixel. Information about the species composition at each 
grid cell was then combined with published and novel data on the phylogenetic rela-
tionships among species of melastomes (Caddah 2013; Reginato and Michelangeli 
2016; Goldenberg et al. 2018), bromeliads (Aguirre-Santoro et al. 2016), and big-
nones (Kaehler et al. 2019), to provide a measurement of phylogenetic diversity (PD) 
per pixel, using Faith’s phylogenetic diversity index (Faith 1992). This metric quanti-
fies the evolutionary history included in every community by adding the branch 
lengths leading to each taxon present in the community (Faith 1992).

We also identified pixels holding high or low levels of phylogenetic endemism 
(PE) by including information about the range of each species’ sister taxon 
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(PE, Rosauer et al. 2009). This metric takes into account the evolutionary history 
(as branch lengths) and spatial restriction (here as range estimates; Rosauer et al. 
2009). To allow for comparisons across plant groups with distinct life histories and 
environmental envelopes, we performed these analyses separately for each clade 
(melastomes, bromeliads, and bignones). We used the Biodiverse software (Laffan 
et al. 2010) to map the geographical patterns of SR, the PD, and the phylogenetic 
endemism of each group.

We then gathered climatic descriptors for the Atlantic Forest region using two 
sources of climatic data, both at a 0.05° resolution (~5 km): one derived from RS 
instruments (Deblauwe et al. 2016) and another derived from interpolated weather 
station data (WorldClim database; Hijmans et al. 2005). Both databases describe 
environmental variation in the form of 19 bioclimatic variables that reflect spatial 
and temporal differences in precipitation and temperature (Bio1-19, as defined in 
the WorldClim database). These data were estimated with the same formulae, across 
data sets. While the WorldClim data reflect bioclimatic conditions estimated 
from  interpolated weather station information, the database of Deblauwe et  al. 
(2016) was built based on temperature information from NASA’s Moderate 
Resolution Imaging Spectroradiometer (MODIS) and precipitation from the Climate 
Hazards Group InfraRed Precipitation with Station (CHIRPS) data. To reduce col-
linearity between the 19 bioclimatic variables, we employed a variance inflation 
factor (VIF), retaining only those variables with VIF < 5 in both datasets in all anal-
yses. This left us with seven variables from each source, in both cases bio 3, 8, 9 
13,18, and 19, plus bio 2 for the dataset based on weather station data (WorldClim), 
and bio 7 for the RS-based (Deblauwe et al. 2016) dataset (see Table 11.1 for bio-
climatic variable descriptions).

To investigate how much of the spatial patterns of SR, PD, and phylogenetic 
endemism can be explained by each set of climatic descriptors, we ran conditional 
autoregressive (CAR) models on the pooled data from each group. CAR models 

Table 11.1  Bioclimatic 
variables used as predictors 
for analyses, after removing 
variables with high variance 
inflation factor (VIF) 

Variable Description

Bio 2 Mean diurnal range [mean of monthly 
(max temp–min temp)]

Bio 3 Isothermality (Bio 2/Bio 7) ∗100
Bio 7 Temperature annual range
Bio 8 Mean temperature of the wettest 

quarter
Bio 9 Mean temperature of the driest 

quarter
Bio 13 Precipitation of the wettest month
Bio 18 Precipitation of the warmest quarter
Bio 19 Precipitation of the coldest quarter

In bold, variables used in both the RS- and weather 
station-derived data sets
Bio 2 was used only in the weather station-based 
analysis; bio 7 was used only in the RS-based analysis
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implement a multiple spatial regression in which the covariance among residuals 
considers the neighborhood of each evaluated cell (Rangel et al. 2006). To evaluate 
model fit, we computed pseudo-R2 for our models, including both the full model and 
the predictor-only effect (i.e., removing the effect of space and spatial autocorrela-
tion). Also, to detect areas of potential concentration or overdispersion of the regres-
sion residuals, we generated residual maps for models of SR and PD.

11.4  �Results and Discussion

The spatial patterns of SR, PD, and phylogenetic endemism vary across groups. 
While melastomes show higher PD and SR along the east coast of Brazil, bromeli-
ads accumulate PD and SR in the northern region of the Atlantic Forest, and big-
nones in the central portion of the domain. Phylogenetic endemism concentrates in 
the coastal mountains for melastomes, in the northern coast for bromeliads, and 
toward the west and northwest for bignones (Fig. 11.1).

Bioclimatic variables derived from RS products have excellent predictive power 
for both SR and PD. The full CAR models built from RS sources performed well, 
irrespective of plant group (R2 > 0.89, Table 11.2). Prediction of phylogenetic ende-

Fig. 11.1  Patterns of biodiversity for three plant clades in the Brazilian Atlantic Forest, from left 
to right: melastomes, bromeliads, and bignones. Each row corresponds to one biodiversity index, 
top to bottom: phylogenetic diversity (PD), phylogenetic endemism (PE), and species richness 
(SR). Warmer colors represent higher values of each of the indices
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mism based on RS sources was not as successful: the performance of the CAR 
models was fair to good, irrespective of plant clade (R2 0.57–0.75, Table  11.2). 
These observed differences in predictive power are not surprising and stand in 
agreement with the expectation that phylogenetic endemism may be more strongly 
impacted by historical processes and former climates (e.g., Late Quaternary) than 
by contemporary descriptors (Rosauer and Jetz 2015).

The predictive power of the models built with weather station data (WorldClim; 
Hijmans et al. 2005) was comparable to that of models based on satellite informa-
tion, similar to Pinto-Ledézma and Cavender-Bares (Chap. 9), showing only slightly 
lower R2 values overall (within 0.01, Table 11.2). This difference tended to increase 
(i.e., with models based on RS data performing better than those built with weather 
station data) when spatial autocorrelation effects were removed from the analyses 
(Table 11.2).

Climatic descriptors derived from both RS information (Deblauwe et al. 2016) 
and weather station data (Hijmans et al. 2005) failed to predict spatial patterns of 
phylogenetic endemism (PE) when decoupled from space (R2 0.01–0.1, Table 11.2). 
Geography is naturally expected to impact maps of endemism because this analysis 
of geographical restriction of evolutionary history explicitly incorporates space in its 
calculations (Rosauer et al. 2009). Still, when this spatial imprint is removed from 
the data, we notice that contemporary climates are unable to predict the distribution 

Table 11.2  Predictive power of models using either RS-based variables (RS) or weather station-
derived variables (WC) as predictors of phylogenetic diversity (PD), phylogenetic endemism (PE), 
and species richness (SR) in three plant clades from the Brazilian Atlantic Forest: melastomes, 
bromeliads, and bignones 

Clade Predictors Predicted Full model R2 Non-space R2

Melastomes RS PD 0.96 0.61
PE 0.62 0.01
SR 0.97 0.61

WC PD 0.96 0.57
PE 0.62 0.02
SR 0.96 0.55

Bromeliads RS PD 0.91 0.37
PE 0.75 0.03
SR 0.92 0.37

WC PD 0.88 0.19
PE 0.74 0.02
SR 0.89 0.19

Bignones RS PD 0.94 0.58
PE 0.57 0.10
SR 0.96 0.72

WC PD 0.94 0.59
PE 0.57 0.10
SR 0.96 0.74

Numbers in bold have higher predictive power when comparing RS and WC for a single group
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of lineage restriction—in agreement with previous suggestions that historical cli-
mates, or the stochasticity of the processes associated with colonization or extinc-
tion, may have an important role in determining phylogenetic endemism (Carnaval 
et al. 2014; Rosauer and Jetz 2015).

Although the performance of the CAR models varied across diversity measures 
and taxa, the analyses decoupled from space recovered consistently lower predictive 
power in bromeliads, irrespective of diversity measures (Table  11.2). Unlike the 
other two groups, this clade is composed mainly of microendemics and represented 
only in a relatively small region of the Atlantic Forest (Fig. 11.1). We hypothesize 
that the larger influence of space, history, and chance events (particularly related to 
local extinctions) may be responsible for the lower correspondence between spatial 
patterns of biodiversity and climatic descriptors in groups of species that are nar-
rowly distributed. This being true, it is expected that the predictive power of correla-
tive models of biodiversity such as those presented here—including the use of RS 
data—will perform best in tropical groups  in which most species have relatively 
large ranges.

The spatial distribution of the residuals of the correlation between biodiversity 
metrics and climate data differed across clades. In melastomes, they were homoge-
neously distributed across the forest, while for both bromeliads and bignones large 
residuals of SR and PD were observed in areas with low overall diversity. In big-
nones, residuals were especially concentrated in the south—where large geographic 
extensions showed more or less PD than expected (Fig.  11.2). Particularly the 
southern portion of the forest shows higher PD of bignones than expected, given the 
models based on climate data. This may be related to these plants’ sensitivity to 
altitude, which limits their growth (Lohmann, pers. obs.). Bignoniaceae species are 
sensitive to temperature and precipitation, with abundance and species richness 
responding positively in warmer climates, and strongly negative in wetter climates. 
Thus, the species richness, or phylogenetic diversity, is increased in warmer and 
drier dry-season habitats (Punyasena et al. 2008). The south of the Atlantic forest is 
montane and the areas with larger residuals in South Brazil have dry, though cool 
winters. Given that no topographic variables were included in our models, this over-
prediction appears reasonable.

11.5  �Conclusions and Future Directions

Community-level data from three representative tropical plant groups that include 
lianas, shrubs, and trees demonstrate that the use of RS data describing temperature 
and precipitation accurately predicts the spatial distribution of two essential biodi-
versity metrics (SR and PD) in a biodiversity hotspot. This predictive power is 
reduced when the approach is applied to a clade of spatially restricted (narrow 
endemic) species, such as bromeliads. Across all plant groups, predictive power is 
lower for diversity indices highly influenced by historical contingency and spatial 
configuration, such as phylogenetic endemism. For predictive purposes, and at the 
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spatial scale of the Atlantic Forest, the performance of RS-based climate descriptors 
is comparable to, or slightly better than, that of weather station-based databases. 
These results show promise for predicting different dimensions of diversity in the 
tropics, based on RS data, especially for widely distributed groups. This approach 
may be particularly relevant in groups or regions for which direct or indirect species 
identification through RS (e.g., hyperspectral images) is feasible or available. It also 
may be extended to other groups of plants, and to animals. Future directions of this 
work include testing whether RS-based predictions of biodiversity work similarly 
well in other biological groups, biomes, and geographical areas, while also poten-
tially including additional variables of interest, such as topography and historical 
climates.
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Chapter 12
Remote Detection of Invasive Alien Species

Erik A. Bolch, Maria J. Santos, Christiana Ade, Shruti Khanna, 
Nicholas T. Basinger, Martin O. Reader, and Erin L. Hestir

12.1  �Introduction

Invasive alien species (IAS) are non-native species with a rapid spread potential that 
can have negative ecological, environmental, and economic effects on the environ-
ments where they have been introduced (Masters and Norgrove 2010). The current 
rate and variety of species invasions is unprecedented in the fossil record (Ricciardi 
2007). Global rates of invasion increased from around 8 records per year in 1800 to 
1.5 per day in 1996. Although this rate may be partly the result of better record 
keeping, the rate is consistent across most taxa and shows little sign of slowing 
down (Seebens et al. 2017). Driven by climate change, invasion is expected to con-
tinue apace as global temperatures continue to rise and human societies and econo-
mies become increasingly connected around the world (Penk et  al. 2016; van 
Kleunen et al. 2015).

E. A. Bolch (*) · C. Ade · E. L. Hestir 
University of California Merced, School of Engineering, Environmental Systems,  
Merced, CA, USA
e-mail: ebolch@ucmerced.edu; cade@ucmerced.edu; ehestir@ucmerced.edu 

M. J. Santos · M. O. Reader 
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12.1.1  �Invasive Alien Species and Global Environmental 
Change

Human-mediated IAS introductions, deliberate or unintentional, tend to be much 
faster than natural processes (e.g., wind, animal; Theoharides and Dukes 2007; 
Hulme 2009; Pyšek et  al. 2009; Seebens et  al. 2017). Invasion pathways differ 
between taxa; intentional transport (escape and release) is most important for plants 
and vertebrates, while unintentional transport is more significant for invertebrates, 
algae, and microorganisms (Saul et al. 2017). Roads, tracks, and waterways create 
natural and artificial corridors for invasion, exposing ecosystems to invasion, par-
ticularly in emerging economies where development is rapid (Mortensen et  al. 
2009; Masters and Norgrove 2010). Globally, the continued expansion of tourism, 
air transport, and trade is dramatically heightening propagule pressure and subse-
quent invasion (Hulme 2015).

Global environmental changes, particularly changes in climate and weather pat-
terns, nutrient cycles, and land use, generally drive increasing invasions while also 
making invasion prevalence, impacts, and feedbacks to the Earth system less pre-
dictable (Bradley et al. 2010; Dukes and Mooney 1999). These same change pro-
cesses can also alter IAS transport and introduction mechanisms, hindering 
monitoring and control (Hellmann et al. 2008; Walther et al. 2009) and making it 
more challenging to predict future spread. Moreover, these changes stress ecosys-
tems and increase invasion success (Simberloff 2000). Climate and land use changes 
drive species range shifts, potentially creating new invasion hotspots (Bellard et al. 
2013; Bradley et al. 2010) while decreasing invasion risk and increasing recovery 
potential in other regions (Allen and Bradley 2016). Thus, observing the geographic 
patterns of the spread of IAS is critical to understand their origins, pathways, and 
invasion processes on a changing planet.

12.1.2  �Biodiversity Impacts and Global Relevance

Biodiversity provides ecosystems with the capacity to respond to biotic and abiotic 
conditions and stress, often used as an indicator of ecosystem resilience. IAS 
threaten biodiversity through competition, hybridization, population reduction, and 
extinction of native species and modification of habitat. It has been estimated that 
42% of all threatened or endangered species are at risk primarily because of IAS 
(Pimentel et al. 2005). IAS are able to thrive because they arrive in new ecosystems 
without coevolved local competitors, parasites, and pathogens to regulate their 
numbers (Keane and Crawley 2002) and are potentially able to exploit resources 
and niche spaces that natives cannot (Byers and Noonburg 2003; Levine 2000). 
Hybridization with local organisms reduces genetic diversity and further increases 
extinction risk (Mooney and Cleland 2001). For example, cheatgrass (Bromus tec-
torum) introduction to the Great Basin in North America resulted in decreases in 
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biodiversity and dramatic changes in the ecosystem, as cheatgrass eliminated native 
competing shrubs (and thus species dependent on them) and increased fire fre-
quency in the region (Pimentel et al. 2005). Ecosystem services losses and subse-
quent economic impacts of IAS are also high, from agriculture, forestry, and 
fisheries production losses to decreased recreation and tourism revenues (Pimentel 
et al. 2005). As of 2005, direct costs of invasive species and their management in the 
United States alone reach around $120 billion per year, excluding the degradation 
of invaluable ecosystem services (Pimentel et al. 2005). Globally, costs of invasions 
and IAS management exceed those of natural disasters by an order of magnitude 
(Ricciardi et al. 2011).

The increasing economic and ecosystem impacts of IAS require international 
cooperation given the transboundary nature of IAS transport, spread, and impacts 
(Fig. 12.1). In recognition of the global threat IAS pose to biodiversity, ecosystems, 
economies, and livelihoods, the Convention on Biological Diversity (CBD) Aichi 
Target #9 specifically addresses IAS: “By 2020, invasive alien species and pathways 
are identified and prioritized, priority species are controlled or eradicated and mea-
sures are in place to manage pathways to prevent their introduction and establish-
ment.” The International Union for Conservation of Nature supports Aichi Target #9 
through its global network of scientific and policy experts in the Invasive Species 
Specialist Group (ISSG), maintaining several databases including the Global 
Invasive Species Database (GISD) and the Global Register of Introduced and 
Invasive Species (GRIIS). The Intergovernmental Science-Policy Platform on 
Biodiversity and Ecosystem Services (IPBES) administered by the UN Environment 
Programme (UNEP) includes Deliverable 3(b)(ii): “Thematic assessment on inva-
sive alien species and their control.” This indicates that IPBES will be assessing IAS 
status and producing a deliverable directly to policy-makers to assist in preservation 
of biodiversity and ecosystem services.

IAS-driven disturbances disproportionately affect developing countries, where 
livelihoods often depend on local natural resources that are threatened if IAS 

Fig. 12.1  2016 Estimates of global IAS introductions by country from the Global Invasive Species 
Database (GISD). (Data acquired from Turbelin et al. (2017) for reproduction)
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become prevalent (Masters and Norgrove 2010). Therefore, minimizing IAS spread 
is necessary to meet the targets in UN Sustainable Development Goal 15, Life on 
Land, which has a target focusing specifically on preventing introduction, control-
ling, and eradicating IAS. The European Environmental Agency (EEA 2012) has 
also developed an “invasive alien species in Europe” indicator summarizing the 
trends of invasions since 1900 and the greatest biodiversity threats. Meanwhile the 
US National Invasive Species Council coordinates and facilitates data interoperabil-
ity across data providers and users, including defining data standards, formats, and 
protocols and facilitating cooperation across sectors and governments (National 
Invasive Species Council 2016).

In order to reduce the pressure of IAS on biodiversity and ecosystems, globally 
integrated approaches to IAS prioritization, management, and control are needed. 
Fundamental to international cooperation is cross-border policy and cooperation 
and transboundary assessments that are implemented within a global monitoring 
framework (Latombe et  al. 2017). Following the Essential Biodiversity Variable 
(EBV) concept (see Fernández et  al., Chap. 18), essential variables for invasion 
monitoring have recently been proposed by Latombe et  al. (2017) to underpin a 
global monitoring system for IAS. Essential variables for IAS include occurrence, 
alien status, and alien species impact. Remote sensing (RS) is a valuable observa-
tion tool in this new EBV framework because it can be used to identify locations, 
cover, abundance, biomass, and other traits of IAS. Because it provides synoptic 
spatial, routine monitoring with fine scale, high-resolution RS can be used to iden-
tify sources of IAS and pathways for spread. RS-enabled IAS location data can 
inform control decisions and, with routine monitoring, can be used to quantify 
trends and predict invasion processes into the future to support policy decisions and 
management actions aimed at preventing undesired spread.

12.1.3  �Remote Sensing for Detection of Plant Invasions

RS has long been favored as a tool for IAS mapping, specifically for plants, due to 
its ability to provide synoptic views over large geographical extents. This provides 
an advantage over field surveys, which are often limited to a small areas and may be 
in difficult to access locations. Historically, RS has been crucial in IAS detection. 
As far back as the 1970s, color infrared (IR) photos captured from airplanes were 
used to target herbicide applications to control water hyacinth (Eichhornia crassipes) 
infestations (Rouse et al. 1975). Over time, the state of the science has progressed 
substantially. Current technologies such as hyperspectral imaging spectroscopy and 
light detection and ranging (lidar) make it possible to detect and differentiate plant 
species within the same functional groups. Coupled with advances in image pro-
cessing algorithms, these technologies have enabled accurate, repeatable RS mea-
surements over time, providing consistent monitoring records to support control 
efforts.
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Three factors make mapping IAS using RS most viable (He et al. 2015). First, 
when the IAS is the dominant growth form or has large homogeneous patches, it is 
easier to train a classifier to recognize it. For example, water hyacinth is sometimes 
the only IAS in lakes, so mapping it is as easy as separating bright green vegetation 
from spectrally dark water (Venugopal 2002). This is feasible with simple color IR 
aerial photography (Rouse et al. 1975) or multispectral satellite data such as that 
from Satellite Pour l’Observation de la Terre (SPOT) or Landsat. Second, when the 
target IAS has a unique phenology, it is easier to distinguish from native plants dur-
ing some parts of the year. For example, Andrew and Ustin (2008) identified peren-
nial pepperweed (Lepidium latifolium) during its flowering period, when it was 
spectrally most distinct from the surrounding marsh due to its unique white flowers. 
Temporally rich imagery can be used to identify the ideal time period for differen-
tiation along with high spectral resolution to distinguish phenological differences. 
Third, the target IAS has a unique chemistry or biophysiology. For example, Khanna 
et al. (2011) differentiated water hyacinth from other co-occurring floating aquatic 
macrophytes using differences in canopy water content, since water hyacinth is a 
succulent with a higher plant-water content than co-occurring species water prim-
rose (Ludwigia peploides) and water pennywort (Hydrocotyle ranunculoides). This 
requires a spectrally rich data set that is capable of quantifying canopy biochemis-
try. These three requirements are well matched with the three domains of RS data: 
spatial, temporal, and spectral.

Invasion detection often involves species mapping, which requires much more 
data than functional-type or general biodiversity mapping. Often hyperspectral 
imagery uses  phenology to time the image capture and additional ancillary data 
such as altitude are necessary. As mentioned, sensors collect information in three 
primary domains: spectral, spatial, and temporal (an additional fourth domain, 
radiometric resolution, is critical for aquatic and marine applications – see Sect. 
12.2.3 for more details). As a rule of thumb, hyperspectral imagery is rich in data in 
the spectral domain, aerial imagery from piloted and unpiloted aircraft in the spatial 
domain, and satellite imagery in the time domain. Each of these platforms and sen-
sor types has trade-offs between the three domains and is typically only strong in 
one. Selecting the best platform/sensor and fusing the collected imagery with appro-
priate supplementary data results in the best classification maps. Each species and 
habitat presents unique challenges for identifying and mapping IAS using RS, 
which we elaborate upon further in the chapter. Regardless of habitat, the general 
process of detecting and mapping IAS remains the same and consists of the follow-
ing steps (see also outlined Fig. 12.2):

	1.	 Identify the target species and/or area. What IAS is affecting biodiversity, eco-
system services, or other economic functions in your area (e.g., transportation)? 
What do you know about your target IAS (e.g., spectral characteristics, phenol-
ogy, ecosystem function, habitat requirements)? Do you know, or can you 
hypothesize, the IAS extent and community composition of other species in the 
area?
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	2.	 Determine the appropriate platform/sensor and identify/collect supplementary 
data based on species and habitat knowledge. Target species can be detected 
using direct or indirect methods. Direct detection uses spectral data and derived 
products from imagery. Indirect detection utilizes the ecological relationships 
between species and their environment to predict distribution.

Each species and habitat discussed in this chapter has specific characteristics 
that can be exploited to detect IAS. Exploitable differences can exist in the tem-
poral, spatial, or spectral domains. The temporal domain consists of data collec-
tion timing and revisit timing. For example, if an IAS flowers at an earlier or later 
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Fig. 12.2  General workflow for detecting IAS using RS. DEM, digital elevation models; PCA, 
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time than its surroundings, this information can be used to time image acquisition 
for when the target species appears most spectrally different. The spatial domain 
consists of pixel size and overall geographic coverage, and the spectral domain 
consists of the number of wavelengths, the position and bandwidth of wave-
lengths measured, and the spectral range of the sensor at which radiance can be 
measured reliably. Sensors typically have trade-offs among these domains based 
upon sensor design, size limitations, and data volume limitations. For example, 
in the spatial domain, there is a trade-off between overall coverage area or swath 
width and pixel size; both can be forced to increase, but at the expense of sensor 
size, which limits the platform it can be mounted on. There are also trade-offs 
between domains, mostly related to platforms. Most satellite platforms have 
larger pixel sizes than other platforms (20–100 s of meters) but have quick revisit 
time (days to weeks) and greater geographic coverage. Airborne platforms have 
a longer revisit time due to costs and logistics and smaller spatial coverage but 
offer smaller pixel size (centimeters to meters) and often support hyperspectral 
sensors. Unmanned aircraft systems (UAS) offer quick revisit time, on-demand 
deployment, and small pixel size but have very limited spatial coverage and lim-
ited spectral resolution due to size restrictions. 

When direct detection is not possible due to canopy cover or other factors, 
indirect methods can be used to predict species locations. Species knowledge 
regarding habitat constraints or coexisting species can be used to govern a model 
using other data products. These data include things like digital elevation models 
(DEMs), climate layers, soil moisture, and any factor restricting species location. 
In some situations, these data can also be combined with direct detection meth-
ods to improve results. 

	3.	 Enhance data and model/classify. A model or classifier can be thought of as a set 
of rules or a mathematical function that uses pixel data to assign or predict class 
membership. This can either be supervised, where training data (pixels or spectra 
that have been identified previously) are used to define classes, or unsupervised, 
where classes are formed based upon pixel spectral/statistical similarity. Usually, 
atmospherically corrected surface reflectance data are provided to the classifier. 
Often, image enhancement is conducted to increase the information content of 
the input data. In addition to reflectance data, enhanced products can also be sup-
plied to the classifier. Methods to enhance spectral data include spectral indices, 
principal component analysis (PCA), and minimum noise fraction (MNF). 
Spectral indices are combinations of spectral reflectance from two or more wave-
lengths that highlight a given reflectance or absorption feature and often indicate 
relative abundance of features of interest; for example, the Normalized Difference 
Vegetation Index (NDVI) is a normalized difference ratio of red and near-infrared 
(NIR) bands commonly used as an indicator of vegetation vigor. 

With hyperspectral data, many narrowband indices are available that provide 
additional data about plant traits, including light use efficiency from the photo-
chemical reflectance index (PRI; Gamon et al. 1997), canopy nitrogen from the 
normalized difference nitrogen index (NDNI; Serrano et al. 2002), canopy water 
content from the normalized difference water index (NDWI; Gao 1995), and a 
large number of leaf pigment indices [see Sims and Gamon (2002) for an 
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overview]. Continuum removal is another technique used to target absorption 
features. For each pixel reflectance, a convex hull is fit over the top of the spec-
trum, absorption features are normalized to that hull, and the depth of a specific 
absorption feature (e.g., leaf water content) can be quantified. PCA is a linear 
transformation method that maximizes the variance of the data. When applied to 
a hyperspectral image, it produces a series of components that correspond to 
linear combinations of the original bands aligned to represent the variation 
within the original data set, with the first component being the plane responsible 
for the most variation. This allows for determining the most significant charac-
teristics within an image that relate to classes. Minimum noise fraction transfor-
mation (MNF) rescales the noise in the data (a process called noise whitening), 
enabling the analyst to eliminate bands containing too much sensor noise and 
leaving only coherent image data. 

Commonly used classification techniques include random forest, a supervised 
machine learning algorithm that constructs many decision trees and utilizes their 
outputs to get an accurate class prediction based upon training data, and maxi-
mum likelihood estimation (MLE), a supervised classification method in which 
parameter values of a statistical model are determined that maximize the chance 
that the process described by the model was actually observed. All of these data 
enhancement and classification methods can be performed using open-source 
software, such as R (https://www.r-project.org/) and Python (https://www.
python.org/), where many packages are available to use, or in commercial soft-
ware, such as ENVI (https://www.harrisgeospatial.com/).

	4.	 Assess accuracy. One of the most important considerations is accuracy assess-
ment following mapping. Depending on the objectives of the study, some types 
of error may be acceptable, while some may not. Typical accuracy metrics for 
image classification include overall accuracy, user’s accuracy, producer’s accu-
racy, and Kappa coefficient. Overall accuracy is the probability that an image 
classifier will correctly classify a pixel. This metric does not account for the 
number of validation pixels per class and may be misleading if a similar number 
is not used for each class. User’s accuracy and producer’s accuracy may be better 
metrics for assessing the classification. User’s accuracy (error of commission) is 
the fraction of correctly classified pixels with regard to all pixels classified. 
Producer’s accuracy (errors of omission) is the fraction of correctly classified 
pixels with regard to all ground reference validation pixels. In some situations, 
such as automated weed management in agriculture, overall accuracy and pro-
ducer’s accuracy may not be as much of a concern as user’s accuracy because 
identifying small amounts of weeds (IAS) as crops may be okay, but spraying 
crops misidentified as IAS could be more damaging to crop yields than the IAS 
themselves. An example where maximizing producer’s accuracy may be more 
important would be in mapping IAS to understand species spread and the inva-
sion process; any omitted species data as changes are monitored over time could 
affect process understanding and spread predictions. The last metric, the Kappa 
coefficient, can be useful for comparing multiple classification methods within 
the same data set. The Kappa coefficient is a measure of how closely the resulting 
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overall accuracy of a classifier compares with expected accuracy, a random 
classification of pixels from the data set. One final consideration for accuracy 
assessment is the importance of having independent validation data that were not 
used in the mapping procedure. If accuracy is assessed with training data, it only 
measures how good the classifier is for those specific data that it was trained on, 
but the classifier may not be as accurate with other non-training pixels within 
the image. 

12.2  �Invasive Plants in Natural and Agroecosystems

Each ecosystem and IAS combination presents unique challenges for identification 
and mapping using RS. This is due to different landscape configurations, commu-
nity composition, canopy structures, climates, habitat characteristics, and plant phe-
nology. Each of these characteristics can be used to inform the optimal instrumentation 
for IAS detection and mapping. For this reason, we have separated IAS detection 
methods by biome and then split into more specific ecosystems and case studies.

12.2.1  �Forests

Around one-third of Earth’s land surface is covered by forests. Forests are critical 
ecosystems, holding a very large proportion of global biodiversity. They are respon-
sible for a large fraction of the global carbon storage and fluxes, strongly influence 
local and global water cycle processes, and provide fundamental goods and services 
to humanity (Foley et al. 2007). Globally, there are 26 types of forests, from taiga to 
tropical, all characterized by the unique ecological adaptations of trees to local cli-
mate, geology, and ecological conditions. 

Forests invasions come in two types: (i) tree invasions (13 trees are in the top 100 
world’s most invasive alien species, Lowe et al. 2000); and (ii) when other plants, 
such as vines and shrubs, or animals invade (Resasco et al. 2007; Cheng et al. 2007; 
Santos and Whitham 2010). Detection of invasion by tree species requires the direct 
detection of tree canopies (e.g., Asner et al. 2008a, b). Invasion of forests by other 
plants or animals can be detected directly, for example, when the IAS covers the 
canopy (Cheng et al. 2007), or indirectly, by measuring canopy leaf-off (Resasco 
et al. 2007; Wilfong et al. 2009), or through detection of pest impacts (Näsi et al. 
2015; Ortiz et al. 2013).

Several studies have used optical RS data to directly detect invasion by tree spe-
cies. One of the earliest approaches performed texture analysis on simulated satel-
lite panchromatic imagery from historical 2  m aerial photography to map the 
invasive acacia (Acacia mearnsii) in South Africa (Hudak and Wessman 1998). 
Ramsey III et al. (2002) used 0.5 and 1.0 m color-infrared aerial photographs to map 
Chinese tallow (Sapium sebiferum) in Louisiana and Texas. They used a k-means 
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classifier to discriminate IAS with relative success, attributed to the differences in 
senescence colors between the IAS and the native vegetation. A subsequent study 
scaled this approach to satellites, using a combination of Hyperion, Landsat 5, and 
aerial photos to define characteristic spectral signatures from 400 to 950 nm for 
Chinese tallow (Ramsey III et  al. 2005). Pearlstine et al. (2005) also used aerial 
photos with larger spatial resolution (37 × 25  m) to map Brazilian pepper tree 
(Schinus terebinthifolius) using texture analysis on red, green, and NIR bands to 
identify the IAS relatively well.

Multispectral satellite data have been used to map tree IAS with varying levels of 
success. Fuller (2005) performed a supervised classification of IKONOS (2 m) and 
Landsat ETM+ (30 m) data to detect broad-leafed paperbark (Melaleuca quinque-
nervia) in Florida; the timing of imagery was chosen to enhance IAS separability. 
Cuneo et al. (2009) also used Landsat Enhanced Thematic Mapper (ETM) data to 
map African olive (Olea europaea cuspidata) in Australia based on spectral dissimi-
larity with the native Eucalyptus spp. with an accuracy of 85% and very low confu-
sion between the species. More recently, decadal-scale time series afforded by 
sustained land imaging have enabled increased accuracy in cases where phenologi-
cal cycles can distinguish IAS. Diao and Wang (2016) used a long time series to use 
the phenological changes in tamarisk for high-accuracy classification. Hoyos et al. 
(2010) mapped glossy privet (Ligustrum lucidum) in Argentina using a time series 
of Landsat TM data and machine learning (support vector machines, SVM), achiev-
ing classification accuracies of 89%.

Several studies used imaging spectroscopy to map tree IAS (He et  al. 2011; 
Bradley 2014), e.g., tamarisk (Hamada et al. 2007; Carter et al. 2009), black cherry 
(Prunus serotina), black locust (Robinia pseudoacacia) and northern red oak 
(Quercus rubra) (Boschetti et al. 2007), Brazilian pepper (Lass and Prather 2004), 
and fire tree (Myrica faya) (Asner et al. 2008a, b). The studies determined charac-
teristic IAS spectral profiles (sensu Ramsey III et al. 2005), compared spectral pro-
files across species using techniques such as SAM (e.g., Lass and Prather 2004), and 
correlated them with ground measurements (e.g., Asner et al. 2008a, b).

Lidar in combination with imaging spectroscopy has been found useful for 
assessments of tree IAS (Huang and Asner 2009). For example, Asner et al. (2008a, 
b) combined imaging spectroscopy and lidar to detect fire tree in Hawaii and mea-
sure impacts on forest canopy biochemistry (Fig.  12.3). Hantson et  al. (2012) 
mapped black cherry and beach rose (Rosa rugosa) in the Netherlands, finding that 
the additional height information from lidar improved classification accuracy by 
12% over imaging spectroscopy data alone.

Direct detection of IAS on the tree canopy has also been studied. For example, 
Cheng et al. (2007) used imaging spectroscopy to detect kudzu (Pueraria montana) 
in a pine forest in Western Georgia, United States. They used an MNF transform and 
SAM to differentiate the spectral profile of the IAS from the native forest. Wu et al. 
(2006) mapped the invasive climbing fern (Lygodium microphyllum) in the Florida 
Everglades with a supervised classification of IKONOS imagery to show how it 
established in different parts of the forest. Although successful, their results under-
estimated fern extent in the understory.
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Indeed, invasion of the forest understory is relatively understudied. Dense cano-
pies mask understory contribution to the RS signal. To address this, researchers 
have turned to leveraging forest phenology to directly detect the understory when it 
is most visible. Resasco et al. (2007) mapped the historical spread of Amur honey-
suckle (Lonicera maackii) during leaf-off conditions of the native forest using the 
Soil Adjusted Atmospheric Resistant Vegetation Index calculated from Landsat TM 
and ETM+ from 1999 to 2006. Wilfong et al. (2009) found that using a difference 
image measuring the difference between leaf-on and leaf-off conditions better pre-

Fig. 12.3  Example output of each automated analysis step in the hyperspectral-lidar data fusion 
and invasive species detection process from Asner et al. (2008a, b). This 53 ha example of the study 
site in Hawaii shows (a) basic reflectance imagery that demonstrates the prescreening of the spec-
trometer image data by (b) minimum vegetation height modeling from lidar data (ground, black; 
shorter canopies, red/dark blue; taller canopies, yellow/white); (c) shadow masking based on 3-D 
structure of the canopies with respect to solar angle and sensor geometry (shadow, gray; sunlit, 
white); (d) live/dead fractional cover masking from AutoMCU (a spectral mixture analysis) mod-
eling (PV, green; NPV, blue; bare/shade, pink); and (e) the final detection of an invasive tree based 
on spectral endmember bundles and AutoMCU-S algorithm (invader, yellow/red; native, green)
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dicted Amur honeysuckle cover than a single image. Evangelista et al. (2009) used 
a species distribution model to predict tamarisk (Tamarisk ramosissima) distribu-
tion over time based on vegetation indices derived from Landsat ETM+ data, with a 
90% classification accuracy. Kimothi et al. (2010) used Indian RS satellite data to 
map another understory IAS, the West Indian lantana (Lantana camara), using tex-
ture analysis of images from September, February, and April. The dense leaf canopy 
meant separation of IAS was not possible in September, but classification accura-
cies were >90% in the other images after leaf fall. Barbosa et al. (2016) mapped 
subcanopy strawberry guava (Psidium cattleianum) outbreak with imaging spec-
troscopy and lidar and tested the accuracy of a machine learner, biased-SVM 
(BSVM), and mixture-tuned matched filtering (MTMF; a partial unmixing classifi-
cation algorithm similar in principle to MNF) across canopy layers. While both 
methods allowed the estimation of the fraction of canopy layers that were invaded, 
the BSVM used information across the entire spectrum, while the MTMF did not, 
which may limit the applicability of MTMF when spectra of IAS are similar to 
“background” native species.

Indirect methods are another alternative to study understory IAS.  Joshi et  al. 
(2006) mapped Siam weed (Chromolaena odorata) in the understory using Landsat 
ETM+ and an artificial neural network to predict forest density and canopy light 
penetration and then subsequently predict Siam weed seed production. They found 
that 93% of the IAS seed production was predicted by the light intensity reaching 
the understory and concluded that this method worked relatively well to detect the 
IAS, despite the spatial resolution limiting detection to well-established IAS 
patches.

In summary, the most common method to detect tree IAS and map their distribu-
tion are to use their characteristic spectral signatures and dissimilarity with that of 
the native vegetation (Lass and Prather 2004). Tree IAS likely affect both the for-
est’s spatial structure as reflected in texture metrics (Pearlstine et al. 2005) and its 
3-D structure, as shown with lidar (Asner et al. 2008a, b). To maximize the ability 
to detect invasive tree species, the use of the full visible (VIS) to shortwave infrared 
(SWIR) spectrum with imaging spectroscopy has shown clear advantages (Martin, 
Chap. 5), for example, in detecting the fire tree (Asner et al. 2008a, b) and for detect-
ing bamboo (Dendrocalamus sp.) and slash pine (Pinus elliottii; Amaral et al. 2015). 
Alternatively, other studies selected specific bands that maximized discrimination 
and eliminated potential noise from nondiscriminating parts of the spectrum 
(Boschetti et al. 2007). While the advantages of imaging spectroscopy are obvious, 
data are not yet readily available to detect and map many tree IAS, especially in 
early stage invasion stages, although the upcoming launch of several hyperspectral 
satellite sensors will soon change this. Many tree IAS have different phenology than 
the native forest, either staying green longer, greening earlier, or flowering or bud-
ding later (Landmann et al. 2015); or they may be evergreen in a deciduous forest 
(Diao and Wang 2016). Timing imagery acquisition to maximize phenological dif-
ferences has resulted in good classification accuracy (Ramsey III et  al. 2002). 
Finally, using pixel sizes that match a tree canopy allows the detection of single 
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invading trees (Bradley 2014). However, this can be very time-consuming, costly, 
and perhaps less systematic and viable across large areas or for early detection.

There are several analysis considerations for mapping tree IAS. A first, and per-
haps most important, aspect is that tree IAS detection is prone to higher classifica-
tion error (Bradley 2014) than other classifications, given the similarity in the 
spectral characteristics of trees to each other relative to other plant functional types. 
Spectral similarity between invasive and native trees may influence accuracy (Lass 
and Prather 2004), so ensemble classifications are recommended as well as other 
approaches that maximize spectral differences such as taking into account phenol-
ogy. The examples cited above illustrate the value of a good field sampling design 
(Ramsey III et al. 2002) that covers the diversity of canopy structures (Hudak and 
Wessman 1998) and community compositions within the area of interest, since het-
erogeneity affects overall classification accuracy. In all of the studies discussed 
here, we observed a trade-off between omission and commission errors, where clas-
sification accuracy seems to be positively correlated with commission errors. Thus, 
we recommend that several accuracy metrics should be reported rather than just 
overall accuracy to give a better understanding of which species contribute to com-
mission errors and which areas are more uncertain in IAS distribution maps.

12.2.2  �Rangelands and Grasslands

Grasslands cover approximately one-third of the Earth’s surface (Latham et  al. 
2014), account for at least 30% of primary production by terrestrial vegetation 
(Grace et  al. 2006), and, after forests, are the largest terrestrial carbon sinks 
(Anderson 1991; Derner and Schuman 2007; Grace et al. 2006). There are two main 
classes of grasslands, tropical/subtropical (also known as savanna) and temperate, 
which can further be described by three different subclasses: human generated, 
highly managed natural, and rangelands (Ali et al. 2016). Regardless of classifica-
tion, these regions serve as a major source of animal feed and are heavily influenced 
by changes in climate and fire dynamics (D’Antonio and Vitousek 1992; Brooks 
et  al. 2004). Contrary to popular belief, grasslands and rangelands harbor large 
amounts of biodiversity (Murphy et al. 2016); however, they are under threat as IAS 
continue to invade. This threatens biodiversity not only through direct losses by IAS 
replacing native grasses but also through indirect impacts to ecosystems by chang-
ing fire regimes (D’Antonio and Vitousek 1992; Balch et al. 2013), supporting wind 
erosion (Weisberg et al. 2017), and serving as a facilitator for plant viruses (Ingwell 
and Bosque-Pérez 2015).

IAS in grasslands may be monitored directly or indirectly because not all species 
or all grassland ecosystems are good candidates for RS measurements. IAS in grass-
lands can be difficult to monitor. They are often indistinguishable from native plants 
due to spectral similarities or the nature in which they grow—in small patches, 
mixed with native vegetation (Shafii et al. 2004). Often indirect methods are most 
appropriate because they do not rely solely on discrimination between similar 
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vegetation functional types. Indirect methods include multisource data for inferring 
IAS distributions and coupled RS observations and modeling. For example, the 
National Land Cover Database (NLCD), which is derived from Landsat data, has 
been used in combination with EROS Moderate Resolution Imaging 
Spectroradiometer (eMODIS) vegetation products (Jenkerson et al. 2010) to create 
a cheatgrass index based on phenology (Fig. 12.4; Boyte et al. 2015). Climate vari-
able models such as Daymet (Thornton et al. 2018) that use DEMs created from 
Shuttle Radar Topography Mission (SRTM) data have been used in combination 
with eMODIS vegetation products to monitor the spread of cheatgrass (Downs 
et al. 2016).

Phenological differences are helpful for distinguishing native from non-native 
grasses. Given their frequent temporal resolution and global coverage, satellite opti-
cal sensors, such as Landsat TM/ETM+/OLI, SPOT, Sentinel-2, or, in some cases, 
Moderate Resolution Imaging Spectroradiometer (MODIS), have been used in sev-
eral studies to map invaded grasslands. Cheatgrass, one of the top invaders in North 
America, greens up in early spring and senesces before native grasses, making it a 
suitable target species for RS approaches that leverage phenology differences 
(Fig.  12.4). Various studies across the United States have paired field data with 
multi-seasonal imagery selected during the green up (April–May) and senescent 
period to successfully map cheatgrass spread (Peterson 2005; Singh and Glenn 2009; 

Fig. 12.4  Cheatgrass phenological differences from native sagebrush (Artemisia spp.) shown 
using eMODIS NDVI. Note that sagebrush (non-cheatgrass) greens up later in the year, allowing 
for development of the cheatgrass index (Boyte et al. 2015; Boyte and Wylie 2017)
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West et al. 2017) and die-off (Boyte et al. 2015; Weisberg et al. 2017). Rather than 
just using images selected during green up and senescence periods, extracting 
phenology metrics from vegetation indices to refine cheatgrass classifications has 
also been successful (Bradley and Mustard 2008); however, in arid and semiarid 
environments, these indices can be highly influenced by rock and soil and should be 
used with caution (Singh and Glenn 2009). Huang and Geiger (2008) showed that a 
multi-date imaging approach can be successful even when natural phenologies of 
natives and nonnatives are similar. For example, native grasses and Lehmann lovegrass 
(Eragrostis lehmanniana) responded differently to unusual amounts of cool season 
precipitation, which allowed new tissues in invasive species to grow, making the two 
grasses distinguishable with multi-date imaging (Huang and Geiger 2008).

Imaging spectroscopy to map grassland IAS also often depends on differences in 
phenology, but the higher spectral resolution and typically higher spatial resolution 
afforded by airborne platforms often allow for more detailed and early detection 
maps. Image acquisition timing is important for species that exhibit differences in 
coloration throughout the year, such as flowering species or deciduous shrubs. In the 
case of leafy spurge (Euphorbia esula), hyperspectral instruments are better 
equipped to detect changes in flowering and thus have a higher success rate when 
compared to multispectral instruments (Mitchell and Glenn 2009). Leafy spurge has 
characteristic yellow flowers that bloom in early summer, and tamarisk leaves turn 
from yellow-orange to orange-brown in autumn before leaf drop. This distinct pig-
mentation enables remote detection using both imaging spectroscopy (Williams and 
Hunt Jr 2002; Glenn et  al. 2005) and multispectral data (Anderson et  al. 1993; 
Everitt et al. 1995; Evangelista et al. 2009). The blue-green color of new stems and 
the red-brown color of older stems help detection of spotted knapweed (Centaurea 
maculosa) from imaging spectroscopy (Lass et al. 2002; Lawrence et al. 2006). For 
early detection of goldenrod  (Solidago altissima), an invasive moist tall grass in 
Japan, hyperspectral images acquired during early spring before full development 
of the grass canopy make it easier to map the exposed understory (Ishii and 
Washitani 2013).

Differences in canopy architecture or plant morphological traits, such as plant 
height and pubescence, can also be exploited when plants share similar phenologies 
or imagery is unavailable when growth cycles show key differences. Broom snake-
weed (Gutierrezia sarothrae), for example, has an erect leaf canopy structure that 
results in a dark image response (Everitt et al. 1987; Yang and Everitt 2010). Spotted 
knapweed tends to inhibit the growth of other vegetation; the resulting increase in 
visible bare soil can help identify places where spotted knapweed grows (Lass et al. 
2002; Lawrence et al. 2006).

In summary, multispectral sensors that provide free and open access to global 
imagery are used regularly for IAS detection in grasslands because their predefined 
temporal resolution offers recurring overpasses and at the very least provides sea-
sonal imagery. This supports time series analyses and multi-date classification tech-
niques. Looking to the future, changes in grassland species composition are 
anticipated to have the largest impact on Africa because it is home to the largest 
savannas, which cover roughly 50% of the continent (Campbell 1996; Grace et al. 
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2006). In addition,  savannas in South American and Central Asia and temperate 
grasslands in the Western United States will also be heavily impacted. Thus, free, 
open-access, global mapping satellite RS data sets are especially important for 
grassland IAS detection and monitoring. These sensors lack the fine spatial resolu-
tion and full spectrum afforded by airborne imaging spectroscopy, which may be 
necessary to separate native and non-native species of the same functional type. 
However, multispectral imagery is often used for viewing widespread and abundant 
invasives, which is key for monitoring overall ecosystem invasion onset and die-off, 
but offers little help in terms of real-time or early IAS detection. In both cases, the 
minimum percent cover required for mapping can vary across similar ecosystems 
(Bradley 2014) and depends on sensor resolution and on how distinguishable the 
invader is from the background. Even when a non-native grass is spectrally distin-
guishable, an acceptable detection rate is not always possible when patch sizes are 
small relative to pixel resolution (Mladinich et al. 2006). Therefore, to ensure suc-
cessful mapping, IAS targets must differ from the native community spectrally, phe-
nologically, texture/morphologically, or architecturally (Bradley 2014). Analysis 
considerations must include a careful evaluation of the relationship between vegeta-
tion characteristics and sensor resolutions, particularly in the spatial, spectral, and 
temporal domains.

12.2.3  �Aquatic Ecosystems

Although they cover a small portion of the Earth’s surface, aquatic ecosystems are 
disproportionately important to global diversity. They are among the most diverse 
and productive ecosystems on Earth and provide vital ecosystem services (Tabacchi 
et al. 1998; Barbier et al. 2011). Aquatic ecosystems encompass multiple gradients, 
such as water intermittency, microtopography, and salinity, leading to complex 
environmental heterogeneity (Junk et al. 1989; Mitsch and Gosselink 2007). This 
mosaic of diverse environmental conditions supports high biodiversity through mul-
tiple niches (Tockner et al. 2000; Ward et al. 2002).

Biodiversity losses in coastal and freshwater aquatic ecosystems are among the 
highest in the world (Dudgeon et al. 2015; Waycott et al. 2009; Vörösmarty et al. 
2010). At least 30%–50% of the world’s wetlands have been lost (Finlayson 2012; 
Hu et al. 2017), and up to 35% of the extent of critical habitats like seagrasses and 
mangroves have been destroyed just in the twentieth century (UNESCO 2018). 
These ecosystems are among the most vulnerable to invasion because they are 
highly connected, are used extensively by humans, and often are geographically 
close to invasion foci such as ports or urban areas (Gherardi 2007; Williams and 
Grosholz 2008).

Plants in aquatic ecosystems can be broadly classified into five functional types 
or sets of species that occupy distinct spatial niches along the gradient from water 
to land and often have similar characteristics. The five functional types considered 
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here are from land to water: riparian forests with shrubs and trees, emergent reeds 
and sedges, floating macrophytes, submerged macrophytes and macroalgae, and 
phytoplankton. Differentiating among these functional types with RS is achievable, 
but species-level detection within each community is more difficult due to similar 
survival strategies. Each functional type has its own challenges regarding species 
detection. 

Many studies have successfully mapped IAS in aquatic environments using 
direct detection. Depending on the objectives of the study and the functional type 
being examined, spectral, spatial, and temporal requirements vary. In simple sys-
tems, high spatial resolution aerial photos can often be used to map species func-
tional types as well as single species by taking advantage of unique attributes or 
phenology (Marshall and Lee 1994; Everitt et al. 1999, 2003). Mapping multiple 
species within the same functional types has been less successful using aerial pho-
tos. In these situations, more spectral information is needed to differentiate at the 
species level due to varying community complexity and species attributes (e.g., 
Khanna et al. 2011). Multispectral data have also been used with varying levels of 
success to map IAS in simple systems such as lakes invaded by just one species 
(essentially a two-class system; Venugopal 2002) or lakes with floating and some 
submerged vegetation (a three-class system; Everitt et al. 2003; Verma et al. 2003; 
Albright et al. 2004). Many classification methods have been used within aquatic 
ecosystems with varying degrees of success, including unsupervised classifiers, 
such as k-means and ISODATA (Ackleson and Klemas 1987; Dogan et al. 2009) 
and simple supervised classifiers, such as maximum likelihood and minimum dis-
tance (Malthus and George 1997; Vis et al. 2003; Nelson et al. 2006; Jollineau and 
Howarth 2008; Phinn et al. 2008; Yuan and Zhang 2008; Dogan et al. 2009), as well 
as more advanced machine learning methods (Malthus and George 1997; Nelson 
et al. 2006; Hestir et al. 2008, 2012; Everitt et al. 2011; Santos et al. 2012, 2016). 
While some studies have been successful and have even been operationalized into 
routine monitoring for invasive species management and reporting (sensu Santos 
et al. 2009; Santos et al. 2016), in many studies it is difficult to judge classification 
efficacy because accuracy assessment is missing or unusual, often not having inde-
pendent validation data. Overall, machine learning algorithms seemed to have per-
formed best. Within functional types, some specific strategies seem to work best as 
well. We highlight these below.

12.2.3.1  �Riparian

Riparian plants are often more difficult to differentiate at the species level than emer-
gent and floating plants due to higher number of species and life forms, and a com-
plex canopy structure, similar to forest IAS detection. Riparian IAS sometimes grow 
in monocultures, which may be easier to detect (e.g., giant reed, Arundo donax). 
Other IAS can grow embedded in the native community similar to grasslands, mak-
ing them harder to map using RS (e.g., yellow star-thistle, Centaurea solstitialis). 
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From an RS perspective, the layered canopy, many species, and mixed pixels make it 
hard to map target IAS within this complex community mosaic.

Community complexity can often be overcome by taking advantage of differ-
ences in phenology. Acquiring imagery during flowering or senescence when the 
target IAS is most distinct from its surrounding vegetation may allow for detection 
at the species level. For example, Landsat ETM+ and QuickBird have been used to 
take advantage of correct timing and fine spatial resolution, respectively, to distin-
guish riparian IAS (Laba et al. 2008; West et al. 2017). Frequently, increasing spec-
tral data further has been necessary to detect riparian IAS. (Ustin et al. 2002; Laba 
et al. 2005; Hamada et al. 2007; Andrew and Ustin 2008).

Another concept used to map riparian plants is adding contextual information 
such as distance from channel and elevation (Fig. 12.5; Andrew and Ustin 2009). 
Contextual information can also help in improving accuracy of detection across 
various techniques (Maheu-Giroux and de Blois 2005; Andrew and Ustin 2008) or 

Fig. 12.5  A sample 
vertical cross-section of the 
lidar returns on a transect 
perpendicular to a given 
channel shows the 
relationships among 
ground cover, elevation, 
and distance to a channel 
at Rush Ranch, California, 
USA (top). Current and 
predicted distribution (3 m 
window topography 
model) of perennial 
pepperweed at Rush 
Ranch, California, USA, 
overlain on a true color 
mosaic of airborne 
hyperspectral imagery 
(HyMap). Potential 
distribution was mapped as 
the majority rule of 25 
individual classification 
tree models (bottom). 
(Derived from Andrew and 
Ustin (2009))
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in building species occupancy models based upon species ecological knowledge to 
predict future invasions or direction of spread (Andrew and Ustin 2009; Rocchini 
et al. 2015).

12.2.3.2  �Emergent

Within the emergent functional type, the canopy is relatively uniform, composed 
generally of only grasses, sedges, and reeds. These species are often mixed, and 
patch sizes remain small even among species tending to grow as monocultures. The 
canopy structure is typically erectrophilic, and spectral mixing with water is com-
mon, even with fine spatial scale imagery. In addition to spectral information and 
temporal information, the texture of invasive and native species patches can be lev-
eraged in mapping IAS and may be used to improve success. Samiappan et  al. 
(2017) used four methods to calculate texture indices as inputs into a SVM algo-
rithm to map common reed (Phragmites australis). They took advantage of the 5 m 
spatial resolution afforded by airborne (in this case UAS) imagery, though they 
cautioned such an approach is unlikely to work if patches of IAS are smaller than a 
few pixels or more mixed. However, texture has been shown to be advantageous 
even with moderate spatial resolution imagery. For example, Arzandeh and Wang 
(2003) successfully differentiated common reed and cattail  (Typha angustifolia) 
using Landsat TM by adding texture indices to increase pixel spectral information 
content. For these reasons, hyperspectral aerial surveys have offered the best data 
source for classifications for emergent communities. Using sensors such as CASI, 
AVIRIS, and HyMap, many studies have mapped the emergent community, differ-
entiating species within submerged and floating functional types (Hestir et al. 2008; 
Jollineau and Howarth 2008; Hunter et al. 2010; Khanna et al. 2011; Hestir et al. 
2012; Zhao et al. 2012). Occasionally, both spectrally rich and temporally strategic 
data have been used together to map IAS (Laba et al. 2005; Hamada et al. 2007; Pu 
et al. 2008). 

12.2.3.3  �Floating Macrophytes

Floating macrophytes have a simple canopy structure with vegetation growing close 
to the water surface. They can spread over large areas and often grow as monocul-
tures, so mapping them using RS has been relatively easy, except when two or more 
floating species co-occur in a single ecosystem (Khanna et al. 2011; Cavalli et al. 
2009). Floating macrophyte mats often appear very similar spectrally, for example, 
water hyacinth, water primrose, and pennywort (Centella asiatica) (Khanna et al. 
2011). Cavalli et  al. (2009) separated three floating species with Landsat ETM+ 
data using spectral linear mixture modeling trained by high-quality spectral libraries 
developed from field spectroscopy. However, without detailed spectral libraries 
for a location, hyperspectral data are needed to differentiate between similar, 
bright green uniform mats of floating species (Yang 2007; Khanna et  al. 2011). 
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Using hyperspectral data from HyMap and AVIRIS, Khanna et al. (2018) monitored 
how water primrose spread over a 12-year period (Fig. 12.6) and showed how it 
fundamentally changed biophysical and ecological characteristics of the ecosystem, 
including successional pathways.

12.2.3.4  �Submerged Macrophytes

Mapping submerged macrophytes and macroalgae presents additional challenges 
due to the presence of the water column. Detection of these plants is complicated by 
the combined effects of inherent optical properties (IOPs) of the water column, 
which are influenced by the diffuse attenuation of the water column itself and the 
absorbing and scattering properties of its dissolved and suspended matter, and the 
apparent optical properties (AOPs), which are controlled by weather, sun, and sen-
sor view angles (which can lead to sun glint or insufficient signal returns) as well as 
the influence of the air-water interface (Mertes et al. 1993; Bostater Jr. et al. 2004; 
Morel and Bélanger 2006; Hestir et  al. 2008). IOPs are difficult to account for 
because water quality and depth can vary spatially and temporally with runoff, geo-
morphological gradients, meteorological conditions, flow conditions, land use prac-
tices, tidal stage, and phytoplankton phenology and community changes (Vis et al. 
2003; Nelson et al. 2006; Hestir et al. 2008). Radiative transfer approaches are use-
ful for classifying submerged species. Typically, they use either use model inversion 
or look-up tables to solve the radiative transfer model in the water column to distin-
guish different optically active constituents (e.g., phytoplankton and other pigments, 
suspended non-algal particulates, colored dissolved organic matter) and differenti-
ate bathymetry and bottom type (see Odermatt et al. 2012; Giardino et al. 2018 for 

Fig. 12.6  Water primrose expansion into open water and submerged vegetation habitat (June 2008 
and November 2014) and finally into emergent marsh habitat (October 2016). (Reproduced from 
Khanna et al. 2018)
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comprehensive reviews of the approach). These approaches are often preferred 
because, being physics-based, they are in principle generalizable and transferable 
across sensors and systems (Giardino et al. 2010, 2012; Malthus et al. 2012; Hestir 
et  al. 2015). However, such approaches require detailed spectral information on 
specific water body IOPs, which are difficult to collect and not generally available 
(Matthews 2011; Lymburner et al. 2016). In these approaches, bottom type is typi-
cally mapped to just a few broad classes (e.g., sand/sediment, rock, submerged 
plants, coral), so species-level detections are not common in the literature (Dörnhöfer 
and Oppelt 2016). However, Santos et al. (2012) were able to show species-level 
discrimination of submerged macrophytes at the leaf level and could differentiate 
native from non-native submerged macrophytes at the canopy level from HyMap 
airborne imaging spectroscopy in a turbid estuary in California.

Often the dominant species is invasive, so even community-level maps can still 
reveal important processes about IAS spread and persistence and the effects of inva-
sion on ecosystem function. Santos et al. (2016) successfully mapped submerged 
macrophyte spread and persistence over several years using the airborne imaging 
spectrometer HyMap, highlighting invasion pathways (Fig.  12.7) in the upper 
San Francisco estuary in California, USA. Hestir et al. (2008, 2012) mapped sub-
merged aquatic vegetation using the same airborne imaging spectrometer and used 
those maps to show that increased vegetation cover significantly contributed to the 
increased water clarity of the system (Hestir et al. 2016).

To circumvent some of the confounding factors of the air-water interface and 
water column for mapping submerged macrophytes, hydroacoustics are often used 
for bed delineation and height and density quantification (Winfield et  al. 2007). 
These require intensive boat surveys (which limit access), do not provide species-
level discrimination, and can provide significantly different results for the same 
system due to lack of standardization in signal processing approaches (Radomski 
and Holbrook 2015). Recently it has been argued that RS imagery approaches are, 
despite several limitations, overall more efficacious than hydroacoustic surveys 
(McIntyre et al. 2018).

Fig. 12.7  (a) Map of submerged aquatic vegetation (SAV) spread near Sherman Island, CA, from 
2004 to 2008. (b) Map of SAV persistence from 2004 to 2008 at Sherman Island, CA
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12.2.3.5  �Phytoplankton

Commercial shipping and the exchange of ballast water is one of the main pathways 
of IAS spread in marine and aquatic environments around the world. It is difficult to 
characterize phytoplankton species as native or non-native due to limited invento-
ries, varying morphology and complex synonymy based on regional environmental 
differences, and the spontaneous “appearance” of new species (Olenina et al. 2010). 
Nonetheless, many phytoplankton species have been documented to have spread via 
ballast water (Subba Rao et al. 1994; Olenin et al. 2000), and species recorded in 
ships’ ballast water are increasing in abundance (Olenina et al. 2010). Rapid shifts 
in species composition and large harmful algal blooms in coastal and inland waters 
have cascading effects on community structure for waterfowl, marine mammals, 
fish, shellfish, and benthic communities and are a constant concern for biodiversity 
conservation and ecosystem managers (Anderson et al. 2002).

In the water column, different phytoplankton pigments have key spectral absorp-
tion features that can be resolved in order to make inferences about their functional 
type. Chlorophyll a, the key diagnostic pigment for many diatoms, absorbs strongly 
at 435–438 and 660 nm. Cyanobacteria, the common culprit of large-scale harmful 
“blue-green” algal blooms, show absorption features at 490–625 nm. Floating algae 
have spectral features in the 550–900 nm range. Mesodinium rubrum, the photosyn-
thetic ciliate that causes red tides, contains the pigment phycoerythrin, which fluo-
resces in the yellow peak (565–570 nm; Dierssen et al. 2015).

With the exception of key diagnostic pigments that allow direct estimation of the 
concentration of certain species (e.g., coccolithophores, Mesodinium), RS of phyto-
plankton species is typically limited to detection of phytoplankton functional types 
or groups (based on taxonomic criteria or biogeochemical function) or phytoplank-
ton size class (based on size range) (Bracher et al. 2017). Most detection algorithms 
rely on radiative transfer models that account for bio-optical properties (e.g., pig-
ment composition, absorption, and backscattering), empirical relationships that 
relate chlorophyll a concentrations measured via satellite with in-situ measurements 
of diagnostic marker pigments determined from high-performance liquid chroma-
tography (HPLC) or ecological models that predict phytoplankton functional type 
presence based on different abiotic and biotic parameters. Moisan et al. (2012) and 
Bracher et al. (2017) provide an overview on the state of the science for RS phyto-
plankton species detection. Sathyendranath et al. (2014) and Mouw et al. (2017) 
provide details on most of the current algorithms and procedures for phytoplankton 
functional type mapping from RS.

Mapping phytoplankton functional types in coastal and inland waters is still 
challenging, however. Current land missions lack the temporal resolution to make 
frequent, repeated observations at the scale of tidal, riverine, meteorological, and 
biotic processes (e.g., growth, grazing, senescence) that drive phytoplankton vari-
ability (Muller-Karger et al. 2018). Phytoplankton and water quality change on the 
scale of hours to days due to runoff, advection, and mixing. Kudela et al. (2015) 
used time series of field hyperspectral observations to show that phytoplankton 
blooms can be displaced by cyanobacteria in a few days. Hestir et  al. (2015) 
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documented similar rapid changes in cyanobacteria from hyperspectral measure-
ments. Chen et al. (2010) observed phytoplankton blooms that evolve over 2–3 days 
in Tampa Bay. After 13 years of observations in Long Island Sound, Dierssen et al. 
(2015) concluded that monthly measurements are insufficient to quantify episodic 
plankton blooms. While they documented a bloom of a ciliate that could only be 
detected with hyperspectral measurements, of yellow fluorescence, only one such 
image has ever been collected of this area and this was with the Hyperspectral 
Imager for the Coastal Ocean (HICO) that ceased operations in 2014. 

Mapping submerged phytoplankton, macrophytes, and macroalgae is one of the 
most challenging aspects of IAS detection in aquatic systems. Well-calibrated 
hyperspectral data with good radiometric quality is crucial when mapping sub-
merged phytoplankton, macrophytes, and macroalgae to the species level. Due to 
the low reflectance, noise can severely affect data. Because of signal attenuation 
within the water column, typically less than 10% of the signal measured at the top 
of the atmosphere comes from the water column and the submerged community. 
The reduction in signal as water depth increases above submerged species can be 
seen in Fig. 12.8. Thus, atmospheric correction, sensor performance, accuracy, and 
radiometric quality are especially important for the water column and submerged 
aquatic macrophytes (Muller-Karger et al. 2018). Space-based sensors designed to 
meet such requirements are targeted at oceans, with pixels on the order of 250–1000 
m, far exceeding the spatial resolution needed for macrophyte mapping. Recent 
land-observing sensors such as Sentinel 2A/2B, SPOT 6/7, and Landsat 8 OLI have 
higher signal-to-noise ratios and improved calibration algorithms. Hence, mapping 
submerged macrophytes could become more feasible, although mapping individual 
species is likely still a continuing challenge without high spectral resolution data.

In summary, RS of aquatic IAS requires moderate to fine spatial resolution, high 
spectral resolution, and, for submerged IAS, high radiometric resolution. We are 
optimistic that future global mapping missions with climate-relevant mission dura-
tions can improve riparian and aquatic IAS mapping by enabling time-based 

Fig. 12.8  Water column effects on reflectance of the submerged aquatic vegetation species horn-
wort (Ceratophyllum demersum), sago pondweed (Potamogeton pectinatus), and green algae 
(Chara spp.) from 5 cm water column height to 1 m water column height
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approaches such as phenology signatures. Even without high spectral resolution 
data, RS of aquatic macrophytes is progressing. For example, through radiative 
transfer modeling, it has been shown to be robust for mapping aquatic macrophyte 
morphological traits in temperate systems (e.g., leaf area index, fractional cover, 
and biomass) across floating, emergent, and submerged macrophytes, which can be 
used to better quantify nutrient uptake, community dynamics, and invasion hotspots 
(Villa et al. 2014, 2015, 2017). The rapidly developing science of drone and UAS 
imagery also raises the potential to map IAS using differences in texture or using 
segmentation tools to do object-based mapping, especially when the area being 
mapped is small.

12.2.4  �Agroecosystems

Agroecosystems are unique ecosystems due to the extraordinarily high anthropo-
genic interventions and pressures placed on them. Unlike other ecological systems, 
agricultural systems have more controlled environmental conditions with limited 
plant biodiversity. Crops are often grown as a monoculture, in uniform rows with 
highly regulated demography. Though crop species are often robust and herbicide 
resistant, many IAS are also developing resistance to herbicide, making them more 
invasive with increasing impacts on crops. With a rising global population, there is 
increased pressure on agricultural systems to increase productivity. IAS consume 
resources meant for crops and reduce yield, productivity, and income for farmers. 
In corn and soybean, two of the major crops grown in the United States losses due 
to IAS have been estimated at $17 billion in soybean and $27 billion in corn annu-
ally, approximately 50% of the yield of each of these crops (Soltani et al. 2016, 
2017). IAS can become established in agroecosystems as in any other system, 
through both natural (wind, water, animals, forceful dehiscence) and artificial 
(machinery, crop seed, livestock feed, spreading of crop, and livestock waste) 
means. The application of water and nutrients also complicates the system by 
enhancing IAS’ ability to compete with crops and reproduce. Often the effects of 
IAS depend on the crops present. Certain IAS may be problematic in some crops but 
not others due to crop management practices (time of planting, tillage, irrigation, 
mulch, registered herbicides, rotation). 

To effectively detect IAS in agricultural systems, RS must meet the challenge of 
detecting IAS before they become competitive with crops. Field spectroscopy has 
been shown to be effective for discrimination of IAS from crops (Basinger 2018; 
Koger et al. 2004a, b; Gray et al. 2009), but it is not the most efficient due to the short 
duration of such field campaigns, since detection must then occur within a small 
window during one growing cycle. Research has long been published on the use of 
satellites or other airborne sensors for IAS detection in agriculture (Hunt et  al. 
2007; Menges et al. 1985), but these methods often lack the spatial and/or temporal 
resolution needed to detect IAS intermixed with a crop species.
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One factor that aids in detection is that IAS tend to emerge in patches or patterns 
associated with farm management practices. For example, plants growing outside of 
the uniform row formations are often IAS and can be treated. Most studies typically 
investigate a single IAS. However, IAS are often intermixed, making them hard to 
distinguish from each other. Additionally, Basinger (2018) found that using field 
spectroscopy, IAS detection is not uniform across cropping systems and suggested 
that improved IAS detection may require crop-specific parameters for accurate IAS 
detection and control.

Hyperspectral data, as seen in Fig. 12.9, have also been demonstrated to enable 
detection of IAS density within the crop and determination of when in the planting 
cycle IAS are most readily detectable, especially during early growth stages 
(Basinger 2018). If only a few spectral bands are available, it can be very difficult to 
differentiate between species during the first few weeks after planting. So far, the 
most promising platform for IAS detection appears to be UAS. They have the neces-
sary spatial resolution to locate IAS at early stages in the growing cycle, before they 
can spread or be obscured by the crop canopy, and UAS can be launched whenever 
necessary to collect imagery.

The main challenges of using RS in agroecosystems are associated with data 
latency (which impedes rapid IAS management on the part of producers) and the 
necessity of early growth cycle detection (where many species appear similar). 
Current market solutions tend to focus on active sensors or the use of artificial light-
ing rather than passive sensors. Commercial early IAS management systems used 
active proximal sensors to spot and spray IAS with herbicides. However, while 

Fig. 12.9  Spectra of four crop species, cucumber (Cucumis sativus), peanut (Arachis hypogaea), 
soybean (Glycine max), and sweet potato (Ipomoea batatas), and four IAS, common ragweed 
(Ambrosia artemisiifolia), large crabgrass (Digitaria sanguinalis), Palmer amaranth (Amaranthus 
palmeri), and yellow nutsedge (Cyperus esculentus) over the first 10 weeks after being planted in 
2016. (Data from Basinger (2018))
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these systems can detect vegetation, they are not able to detect small IAS (Blackshaw 
et al. 1998) or distinguish between the crop and IAS. They thus rely solely on a 
priori assumptions about timing of emergence of IAS relative to crop species.

In summary, using RS in agroecosystems is only useful to growers within the 
timeline of crop cycles. IAS control is most effective when plants are small, but this 
is when they are also most difficult to detect and differentiate from the crop. IAS 
detection often requires high spatial and temporal resolution due to synchronous 
and asynchronous IAS emergence with the crop and sometimes high spectral reso-
lution to deal with similar appearances during early growth stages. Implementing 
data-based management decisions is difficult if monitoring is not near constant due 
to the necessity of rapid responses. Thus, the use RS for the control of IAS has seen 
limited adoption in agriculture, despite a long history of research. However, UAS 
have become more common because the technology now meets several of the 
requirements for RS of IAS in agricultural settings. 

12.2.5  �Urban Ecosystems

More than half of all people live in urban areas, and this proportion is expected to 
increase substantially during this century. Urban ecosystems differ from agricul-
tural or natural systems in terms of structural properties related to the built/natural 
ratio of the landscape; built area includes impervious and permeable built environ-
ments and the connecting infrastructure. Urban ecosystems have been colonized by 
increasing numbers of IAS (Paap et al. 2017; Hui et al. 2017). These ecosystems are 
unique because trees and other ornamental species in private and public city gardens 
are often non-native and can be sources of IAS to surrounding areas (Paap et al. 
2017; Mayer-Pinto et al. 2017). IAS richness in urban areas is positively correlated 
with housing density (Gavier-Pizarro et  al. 2010), urban wastelands (Bonthoux 
et  al. 2014; Maurel et  al. 2010), green infrastructure (Hostetler et  al. 2011), and 
roads (Rupprecht et  al. 2015). By harboring IAS, cities may unwittingly act as 
sources of IAS to surrounding agroecosystems and natural ecosystems (Paap et al. 
2017; McLean et al. 2017).

Use of RS for IAS detection and mapping in urban environments is essential to 
gauge the affect of urban plants, which are often non-native, on the surrounding 
ecosystems. Detection has been successful with many forms of RS. For example, 
Shouse et al. (2012) used a combination of 0.3 m color aerial photographs and mul-
tispectral Landsat data to map bush honeysuckle (Lonicera maackii) under the for-
est canopy in an urban park in Louisville, Kentucky, USA.  They conducted an 
object-based classification, a supervised classification, and constructed a species 
distribution model, with accuracies above 75%, especially for the object-based clas-
sification. This high accuracy can be attributed to extended greened-up seasons and 
high spatial resolution. Hyperspectral data has been used to detect Himalayan 
blackberry (Rubus armeniacus) and English ivy (Hedera helix) in nonforested areas 
of Surrey, British Columbia, Canada (Chance et al. 2016a). Classification accuracies 
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were higher than 75% for both; the potential for spectral separability was maxi-
mized by the choice of wavelength regions, and the researchers were able to increase 
accuracy using a random forest classifier, due to higher capability of under-canopy 
detection (Chance et al. 2016b). Because urban ecosystems are smaller than other 
ecosystems and more complex, high spatial resolution is necessary to detect IAS 
within the mostly non-vegetative ground cover.

Lidar with spectral data also has proven effective for mapping vegetation within 
urban areas. By combining lidar with hyperspectral imaging and a random forest 
classifier to map tree species including honey locust (Gleditsia triacanthos) in 
Surrey, British Columbia, Canada. Liu et al. (2017) further improved classification 
accuracy, showing the power of data fusion. Other studies have combined lidar data 
with IKONOS multispectral data to detect whether Chinese privet (Ligustrum 
sinense) invasion changed urban forest structure in Charlotte, North Carolina, USA 
(Singh et al. 2015). These researchers also found that a random forest built with 
lidar-derived metrics produced the best results.

RS of urban IAS, however, has some unique challenges. Because most of the 
ground is covered by manmade features, it is difficult to detect green areas and map 
and identify individual species (Alonzo et al. 2014). With sufficient spatial resolu-
tion, these challenges can be overcome. The most successful approach to date is to 
use a combination of hyperspectral and lidar, which yields spectral, structural, and 
height information.

In summary, detection of IAS in urban environments requires high spatial resolu-
tion to differentiate natural from built environments, high spectral resolution to 
identify species, and sufficient temporal resolution to detect IAS at different stages 
of invasion. While this is an emerging field with a growing literature, relatively few 
studies of IAS in urban environments have used RS data, and further research is 
needed in different geographical settings, invasion process phases, and urban den-
sity conditions.

12.3  �Summary, Conclusions, and Prospectus

Invasive species are a major direct driver of biodiversity loss because they outcom-
pete native species for local resources, eventually replacing or displacing them. 
They also cause indirect losses because they do not assume all of the ecological 
roles of the replaced native species. As they spread, IAS modify nutrient availabil-
ity, nutrient cycling, soil chemistry, water quality, hydrology, food webs, habitats, 
and other ecosystem functions (Gordon 1998; Scheffer et  al. 2003; Dukes and 
Mooney 2004; Hestir et al. 2016; Khanna et al. 2018), impairing ecosystem func-
tion. In addition to causing functional changes, IAS also modify ecosystem struc-
ture by physically changing canopy structures in forests and water quality in aquatic 
ecosystems. Increasing global changes related to climate, nutrient cycles, and land 
use will potentially change transport and introduction mechanisms of IAS in a way 
that provides a competitive advantage for new IAS, likely reducing effectiveness of 
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control strategies. The acceleration in global change and biodiversity loss degrades 
ecosystem resilience, threatening valuable ecosystem services. To preserve these 
services will require global cooperation on IAS monitoring and control with RS is 
a critical tool.

Each biome discussed in this chapter contains a unique complement of species. 
As a result, a different method of RS and data fusion works best for each. However, 
some methodologies can be valuable in all circumstances, such as increasing spec-
tral information content. If only one IAS is of interest and it differs from its sur-
roundings, multispectral data or use of photographs and texture analysis may be 
enough to identify and map it. However, in most cases there are multiple IAS com-
peting with one another and with native vegetation, with varying canopy complexity 
and functional types. In such scenarios, difference in phenological characteristics 
can be exploited for identification. For example, an IAS might be identified through 
differing flowering times, flower colors, or earlier or later periods of senescence 
relative to surrounding vegetation. This requires temporally dense data. In cases 
where the invasion scenario is not simple or the data are not temporally sufficient, 
fusion between RS and other data sources (e.g., habitat models, DEMs, climate 
models) can be used to improve accuracy.

Data collection in the three domains of RS (spectral, spatial, and temporal) can 
be optimized for a species based on the ecosystem type and image analysis approach. 
For forests, lidar data are often a good addition to spectral information because they 
can provide information on height and physical crown structure. For species below 
the forest canopy, indirect methods such as models based on ecological knowledge 
of the species may be necessary, or imagery may simply be collected during a leaf-
off period. IAS in grasslands often have similar spectral properties to natives, 
requiring hyperspectral data, strategic image timing, or indirect modeling methods. 
Aquatic ecosystems introduce many confounding factors due to presence of water 
and its associated processes, necessitating high radiometric quality and good cali-
bration. Because this biome is so complex, hyperspectral information and custom-
ized image timing are a must for differentiating IAS. Additionally, radiative transfer 
modeling is often necessary to detect submerged and water column 
IAS. Agroecosystems have minimal diversity, so fewer spectral data are required. 
However, frequent assessment is necessary to allow a timely response to minimize 
crop loss. RS detection of IAS in urban ecosystems requires varying methods and 
unique adaptations because of the high potential for introductions and unusual land-
scape features, such as impervious surfaces. 

These factors underscore the importance of mission design for two key data col-
lection platforms. First, airborne platforms (piloted and unpiloted), which are vital 
to rapid, local-scale assessments, must acquire data at key times relevant to IAS 
phenology. As temperatures and biodiversity losses continue to increase, plant phe-
nology is expected to continue to change (Primack et al. 2015; Wolf et al. 2017) and 
airborne acquisition strategies must adjust accordingly. Second, satellite platforms 
are critical to providing global-scale systematic monitoring of IAS.  Current and 
future missions must include high spectral resolution sensors with the capability to 
create climate-relevant time series (a duration on the order of approximately a 

E. A. Bolch et al.



295

decade) to characterize phenology for widespread IAS detection, particularly for 
grasslands and forests (Fig. 12.10). 

To date, most IAS management has been reactive. RS can help land managers see 
where IAS occur, target removal, monitor rates of growth and expansion, and evalu-
ate treatment effectiveness. The future of the field is in prevention. Novel research is 
starting to focus on invasion processes, impacts, and management assessments (e.g., 
Santos et al. 2009; Hestir et al. 2016; Santos et al. 2016). Further research is needed 
to understand how RS can be fully integrated into understanding the invasion pro-
cess, from arrival to establishment and spread. Freely available time series data 
alongside increasing amounts of field data related to early detection of IAS may 
allow the achievement of such a goal. For this reason, it is important to cultivate a 
cross-disciplinary understanding of the invasion process and the effects IAS on eco-
systems and biodiversity. Two promising developments that will increase support 
for IAS mapping and monitoring are the upcoming Surface Biology and Geology 
(SBG) global mapping hyperspectral satellite (Schimel, Chap. 19) and the use of 
UAS imaging spectroscopy. The new satellite offers potential to improve mapping 
of IAS on a global scale; though limited by spatial resolution, it will still be capable 
of species level identification in many situations. UAS offer high spatial resolution 
mapping on demand, providing flexibility and simplification of RS missions, reduc-
ing costs compared with manned flights, and improving safety. These two develop-
ments will drastically improve the volume of data being collected and, with scientific 
innovation, help minimize economic and environmental impacts of IAS (Fig. 12.11). 

Fig. 12.10  Accumulation 
of RS data over time 
makes RS a powerful tool 
for monitoring and 
understanding the spread 
of IAS, as well as filling an 
important role in IAS 
management. (Image 
credit: Vanessa Tobias, 
California Department of 
Fish and Wildlife)
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Chapter 13
A Range of Earth Observation Techniques 
for Assessing Plant Diversity

Angela Lausch, Marco Heurich, Paul Magdon, Duccio Rocchini, 
Karsten Schulz, Jan Bumberger, and Doug J. King

13.1  �Understanding Plant Diversity with Remote Sensing

Stress, disturbance, and resource limitations such as anthropogenic changes to eco-
systems all lead to changes in biodiversity and vegetation diversity (Cardinale et al. 
2012) on different scales of biological organization as well as disturbances in the 
interactions between trophic levels and ecosystem functions, impairing ecosystem 
services such as pollination or soil fertility (Cord et al. 2017). Vegetation diversity 
is multidimensional, multifactorial, and tremendously complex in time and space 
(Lausch et al. 2018a). This level of complexity can only be fully understood when 
monitoring approaches are applied to record different characteristics of vegetation 
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(i.e., phylo-diversity; taxonomic, structural, functional, and trait diversity on differ-
ent levels of biotic organization—molecular, genetic, individual, species, popula-
tion, community, biome, ecosystem, and landscape). Different processes and drivers 
influence the resilience of vegetation diversity (Fig. 13.1).

To record the status, stress, disturbances, and resource limitations in vegetation 
diversity, we have to differentiate between two monitoring approaches: (i) in-situ 
approaches, whereby the most important monitoring concepts are the phylogenetic 
species concept (PSC, Eldredge and Cracraft 1980), the biological species concept 
(BSC, Mayr 1942) and the morphological species concept (MSC, Mayr 1969) and 
(ii) physically based approaches of remote sensing (RS) (Lausch et  al. 2018b). 
Unlike in-situ approaches, RS records the biochemical, biophysical, physiognomic, 
morphological, structural, phenological, and functional characteristics of vegetation 
diversity at all scales, from the molecular and individual plant levels to communities 
and the entire ecosystem, based on the principles of image spectroscopy across the 
electromagnetic spectrum from the visible to the microwave (Ustin and Gamon 
2010). When compared with the traits approach of the MSC used by taxonomists, 
RS approaches are not able to record the same number and characteristics of traits 
or trait variations as the in-situ approaches (Homolová et  al. 2013; Lausch 
et al. 2016a).

Traits and trait variations that can be recorded using RS techniques are hereafter 
referred to as spectral traits (ST), and the changes to their spectral characteristics 
are referred to as spectral trait variations (STV). The overall approach is referred to 
as the remote sensing-spectral trait/spectral trait variations (RS-ST/STV) concept 
for monitoring biodiversity (Lausch et al. 2016b) as well as geodiversity (Lausch 
et al. 2019) (Fig. 13.7).

Traits bridge the gap between in-situ and RS monitoring approaches. Species 
traits have allowed us to take a completely new direction and to gain a better under-
standing of fundamental questions of status, stress, disturbances, resource limita-
tions, and resilience in biodiversity—i.e., “why organisms live where they do and 
how they will respond to environmental change” (Green et  al. 2008). Therefore, 
ecologists are increasingly focusing on traits rather than species to better understand 
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the status, changes, health, and resilience of ecosystems (Cernansky 2017) and the 
internal patterns and heterogeneity of communities and landscapes (Lausch et al. 
2015a). To understand the complexity of ecosystems, no one monitoring approach, 
no single model, scale, or RS platform on its own is sufficient to discern the effects 
of processes and different drivers of vegetation diversity (Lausch et al. 2018a, b).

This chapter introduces the different ranges of EO techniques for assessing veg-
etation diversity. The focus here is to give an overview of existing close-range RS 
platforms as well as air- and spaceborne RS platforms for assessing plant diversity.

13.2  �Range of EO Platforms to Assess Plant Diversity

RS sensors are mounted on different platforms such as camera traps or handheld, or 
they may have fixed supports (e.g., a tripod) or towers for field-based spectral mea-
surements. Drones, aircraft (airborne RS), or satellites (spaceborne RS) are also 
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Fig. 13.1  Schematic diagram of the different levels of vegetation organization from genes up to 
vegetation types showing characteristics of phylo-diversity, taxonomic diversity, structural diver-
sity, functional diversity, and trait diversity. This also shows how the different characteristics of the 
processes (the extent, process intensity, process consistency, resilience, and their characteristics) 
all influence the resilience and health of vegetation. (From Lausch et al. 2018a)
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used in field-based studies, depending on the spatial scale of the study (Gamon 
et  al., Chap. 16). In laboratories, cameras and sensors may be mounted in plant 
phenomics facilities or ecotrons (Fig. 13.2; Lausch et al. 2017). The characteristics 
of all RS approaches are the same, irrespective of the platform. Vegetation stress, 
disturbance, and diversity result in variations in spectral radiance or reflectance that 
are recorded using RS in a nondestructive manner. The RS sensor on the platform 
records the spectral radiance at a distance of just a few millimeters up to thousands 
of kilometers to the object of interest.

Fig. 13.2  Overview of different close-range, air-, and spaceborne RS platforms for assessing plant 
and vegetation diversity and vegetation health. (a) Laboratory spectrometer; (b) ash trees moni-
tored in a close-range RS spectral laboratory (manual) with imaging hyperspectral sensors AISA-
EAGLE/HAWK (Modified after Brosinsky et al. 2013); (c) automated plant phenomics facilities; 
(d) ecotrons (Modified after Türke et  al. 2017); (e) Global Change Experimental Facility 
(GCEF)/Helmholtz-Zentrum für Umweltforschung (UFZ), Germany as platforms with different 
RS sensors (photo: A.  Künzelmann/UFZ); (f) manual measuring with field spectrometer; (g) 
WSNs; (h) one sensor node of the WSN (Graphic, photo g, h by J. Bumberger and H. Mollenhauer/
UFZ); (i) flux tower with different RS instruments, test area grassland/UFZ; (j) flux tower with 
different RS instruments, test area Hohe Holz/UFZ (Photo i, j by C. Rebmann/UFZ); (k) mobile 
crane with RS sensors; (l) unmanned aerial systems (UAS)—drone with different RS sensors; (m) 
microlight of the UFZ with different RS sensors like the AISA-EAGLE (hyperspectral 400–
970 nm); (n) gyrocopter of the Institute for Geoinformation and Surveying, Dessau, Germany, with 
different RS sensors (Photo by L. Bannehr); (o) Cessna; (p) Spaceborne RS platforms. (Modified 
after Lausch et al. 2017)
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13.2.1  �Close-Range EO Approaches

13.2.1.1  �Spectral Laboratory

The reactions of plants to stress phenomena depend on the plant species (Müller 
2009; Teodoro et al. 2016). Teodoro et al. (2016) analyzed the different strategies of 
Brazilian tree species like Campomanesia pubescens (Myrtaceae), Eremanthus 
seidellii, and Lessingianthus warmingianus (Asteraceae) to cope with drought 
stress. The results showed different reactions and trade-offs to maintain plant func-
tioning under drought stress conditions. Moreover, the ability of different tree spe-
cies to adapt to climate change is still not well understood (Beck and Müller 2007). 
Reactions of woody plants to stress factors such as drought can often only be 
observed years later in the form of biochemical, physiological, or geometric changes 
to woody plant traits (Buddenbaum et al. 2015b). Therefore, specific in-situ investi-
gations need to be conducted on the stress reactions of different taxonomic plants to 
determine the spectral responses to different drivers.

With the help of close-range laboratory spectroscopy (see Fig. 13.2a, b), exten-
sive long-term stress monitoring can be carried out that takes into account entire 
vegetation periods as well as investigations over several years. Scenarios specifi-
cally targeted at investigating different stress factors such as stress from drought, 
ozone levels, fungal infestations, pesticide deposits, or temperature increases or 
decreases are conducted under comparable settings and environmental conditions, 
enabling good inputs for models and eliminating confounding factors. In addition to 
imaging and nonimaging spectrometer measurements, a broad range of parameters 
for vegetation traits, soil, and climate can be measured with in-situ approaches. 
Brosinsky et al. (2013) investigated the spectral response from the impacts of flood-
ing on the physiological stress reactions of ash trees Fraxinus excelsior L. over a 
3-month period, whereas Buddenbaum et al. (2015b) modeled the photosynthesis 
rate of young European beech trees under drought stress using hyperspectral visible 
infrared and hyperspectral thermal sensors. They created high spatial resolution 
(cm) maps of photosynthetic activity using the photochemical reflectance index 
(PRI), fluorescence, and temperature. Other approaches have derived the different 
phenology indicators of barley with imaging hyperspectral RS over its entire devel-
opment period (Lausch et al. 2015b).

13.2.1.2  �Plant Phenomics Facilities

One of the most important challenges in plant biology and vegetation stress physiol-
ogy is the qualitative, quantitative, and spectroscopic recording of plant species 
phenotypes to gain a better understanding of interactions between the genotype and 
the phenotype. The genotype of a plant species comprises its genetic information, 
while the phenotype represents the physiological, morphological, anatomical, and 
development characteristics as well as interactions with the environment, resource 
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limitations, and stress factors (see Cavender-Bares et al., Chap. 2). The interaction 
of the genotype with its environment give rise to the functional and structural traits 
of plants and their specific phenotype (Großkinsky et al. 2015a, b; Pieruschka and 
Lawson 2015). Insights into the role of genotype and phenotype in plant stress phys-
iology can be gained not only from recording individual plant spectral trait-stress 
factor interactions but also by including the entire genotype-epigenetic-phenotype-
environment matrix (Mittler and Blumwald 2010). This can be achieved by record-
ing phenotypical plant traits in plant phenomics facilities (Furbank 2009; Großkinsky 
et  al. 2015a, b) (see Fig. 13.2c). Due to the high number of plant species, plant 
phenomics facilities have been established all over the world that collaborate as part 
of the International Plant Phenotyping Network (IPPN, http://www.plant-phenotyp-
ing.org/), where in an automated and often robotic manner, noninvasive measure-
ment methods such as RS techniques are implemented, enabling a holistic and 
quantitative recording of the phenotype of a plant over its entire development period 
at a reasonable cost (Ehrhardt and Frommer 2012; Fiorani and Schurr 2013).

Plant phenomics facilities thus include comparable analyses of genotype-
phenotype interactions under experimental as well as natural growth conditions. 
The goal of plant phenomics facilities is to implement and develop innovative non-
invasive measurement methods and RS techniques such as stereo hyperspectral, 
RGB, thermal, and fluorescence cameras, laser scanning instruments, or x-ray 
tomographs (Fiorani and Schurr 2013). Data from such facilities are then saved in 
databases (Krajewski et  al. 2015) to make such information available for future 
research with airborne and spaceborne RS applications.

With plant phenomics facilities, crucial investigations have been carried out on 
the effects of different plant stresses on photosynthetic performance (Jansen et al. 
2009; Konishi et al. 2009; Rascher 2007). This research on chlorophyll fluorescence 
and its acquisition using spectroscopic techniques forms the basis for developing 
the Fluorescence Explorer (FLEX) sensors (Kraft et  al. 2012; Rascher 2007; 
Rascher et al. 2015). On the basis of its very high spectral resolution of 0.3–3.0 μm, 
FLEX will be the first satellite that is able to directly measure the solar-induced 
chlorophyll fluorescence and thus the stress levels in plants and other types of veg-
etation using RS.

13.2.1.3  �Ecotrons

Ecotrons are controlled environmental facilities (see Fig. 13.2d) for the investiga-
tion of plant and animal populations and ecosystem processes under near-natural 
conditions using noninvasive methods (Lawton et al. 1993; Türke et al. 2017). They 
differ from greenhouse experiments because not only plant populations, but interac-
tions between plant and animal populations, can be investigated. Furthermore, eco-
trons enable investigations of aboveground and belowground interactions, which 
drive the relationship between plant diversity and ecosystem function 
(Eisenhauer 2018).
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Ecological processes and material flows can be measured by ecotrons with non-
invasive methods, while at the same time, the environmental conditions are con-
trolled and regulated. Ecosystems that are investigated by ecotrons are thus closed 
systems. There is no undesired input or outflow of water, nutrients, resources, 
organisms, or gases, or input from undesired disturbance variables or stress factors. 
All changes taking place in such ecosystem processes are documented and can be 
compared with one another and with different scenarios in a standardized manner. 
In ecotrons, biodiversity is manipulated at different trophic levels at the same time. 
In this manner, the responses of different species and genotypes and species to 
stress, disturbances, or resource limitations and their effects on ecosystem functions 
can be examined. This approach enables a much better recording and understanding 
of aboveground and belowground interactions between different plant and animal 
species, microorganisms, and abiotic factors, as well as material and energy flows. 
The integration of close-range RS sensors in ecotrons is still very new and in need 
of further development if we are to understand the complete system of soil-
vegetation-climate-biotic interactions with spectral response.

13.2.1.4  �WSNs, Sensorboxes

WSNs can be used to record complex vegetation processes both extensively and 
continually in a noninvasive, cost-effective, and automated manner (Hart and 
Martinez 2006).

The implementation of wireless mobile and stationary sensor networks in ter-
restrial environmental systems (Fig. 13.2g, h) enables high-frequency in-situ infor-
mation to be recorded using various sensor types (e.g., thermal, multispectral, 
hyperspectral, soil moisture, air condition). Another advantage of mobile wireless 
ad hoc sensor networks is their self-organizing infrastructure, leading to significant 
reduction of cost and time consumption for installation, maintenance, and operation.

WSNs are being implemented more frequently in environmental and vegetation 
monitoring (Hwang et al. 2010; Mollenhauer et al. 2016) in agriculture and the food 
industry (Mafuta et al. 2013; Ruiz-Garcia et al. 2009), for monitoring terrestrial and 
underground conditions such as soils, and for aquatic applications (Yick et al. 2008). 
They have also been used for experimental platforms such as greenhouses or the 
GCEF (Mollenhauer et  al. 2016). In the context of vegetation health, WSNs are 
implemented to detect and verify forest fires in real time (Liyang Yu et al. 2005; 
Lloret et al. 2009) or to demonstrate the effects of the 2015 El Niño extreme drought 
on the sap flow of trees in eastern Amazonia (Mauro et al. 2016).

WSNs have also been used to record how important processes of soil-plant-
atmosphere interactions; vegetation processes such as transpiration, carbon uptake 
and storage, and water stripping from clouds are affected by climatic variation and 
the temporal and spatial structure of the vegetation interior in whole ecosystems 
(Oliveira et al. 2016). Teodoro et al. (2016) used WSN to demonstrate the interplay 
between hydraulic traits, growth performance, and stomata regulation capacity in 
three shrub species in a tropical montane scrubland of Brazil under contrasting 
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water availability. The results showed that these plant species employ different strat-
egies in the regulation of hydraulic and stomatal conductivity during drought stress 
and thus substantiate the need for setting up WSN for different plant species and 
communities (Teodoro et al. 2016).

Grassland ecology experiments in remote locations requiring quantitative analy-
sis of biomass, which is a key ecosystem variable, are becoming increasingly wide-
spread but are still limited by manual sampling methodologies. To provide a 
cost-effective automated solution for biomass determination, several photogram-
metric techniques have been examined to generate 3-D point cloud representations 
of plots, which are used to estimate aboveground biomass. Methods investigated 
include structure from motion (SfM) techniques (Kröhnert et al. 2018; see Fig. 13.3).

13.2.1.5  �Towers

Flux towers involve an integrated sampling approach (see Fig. 13.2i, j, k) that sup-
ports the acquisition of different ecosystem parameters such as carbon dioxide, 
water vapor, and energy fluxes as they cycle through the atmosphere, as well as 
vegetation and soil parameters. FLUX towers are often coupled with sensor tech-
nologies such as airborne RS or soil sensors. Towers acquire individual point and 
local area information and are of particular importance in terms of long-term in-situ 
measurement for the calibration and validation of air- and spaceborne RS data. By 
linking flux towers to an international network (FLUXNET, Baldocchi et al. 2001), 
greater understanding of ecological processes and changes to vegetation health has 
been achieved using RS (Chen 2016; Yang et al. 2016). Towers and mobile in-situ 
stations are often combined as global sensor networks. Furthermore, the physiologi-
cal reactions of plant species and communities depend on the taxonomy and phy-
logeny of plant species characteristics and numerous abiotic ecosystem variables as 
well as the intensity of land use (Garnier et al. 2007). Simple drones are also avail-

Fig. 13.3  Generated 3-D 
representations of 
Onobrychis viciifolia and 
Daucus carota using 
structure from motion 
(SfM) techniques as well 
as the use of a time-of-
flight (TOF) 3-D camera, a 
laser light sheet 
triangulation system, and a 
coded light projection 
system. (From Kröhnert 
et al. 2018)
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able, enabling a mapping of the distribution of plant species in mixed grassland 
communities using close-range imaging spectroscopy (Lopatin et  al. 2017). The 
special value of both fixed and mobile towers or simple close-range RS platforms is 
that vegetation diversity can be monitored more frequently and with a higher spatial 
resolution. Table 13.1 lists the advantages and disadvantages of close-range EO 
approaches to monitor and assess vegetation diversity.

13.2.2  �Air- and Spaceborne RS Platforms and Sensors

13.2.2.1  �Unmanned Aerial Systems (UAS)

In recent years, UAS has become an important RS technology in spatial ecology. 
Nowadays a plethora of platforms, including fixed-wing and rotor-based systems, 
can carry multispectral, hyperspectral, thermal, LiDAR, and radar sensors and can 
navigate autonomously on predefined routes using global navigation satellite sys-
tem (GNSS). With the increased availability and simplicity, such platforms are 
being used more and more in ecological research and monitoring (Anderson and 
Gaston 2013). In this context two essential characteristics of UAS are relevant:

	(i)	 High flexibility and low cost of operation: UASs offer high flexibility in terms 
of payloads, flight time, and flight specifications such as altitude, time of day, 
and weather condition. When compared with manned aircraft or satellites, it is 
much easier to plan and conduct an image acquisition campaign once a UAS 
and a trained pilot are available. Due to low fixed costs, UAS can be cheaper 
than manned planes and helicopters.

	(ii)	 High spatial and temporal resolutions: Within the technical and legal limita-
tions, flight heights of UAS can be freely set and typically range from a couple 
of meters to hundreds of meters. Depending on the sensor system, images with 
very high spatial resolution (<5 cm) can be acquired when flown at low alti-
tudes. The high flexibility of operation and the low image acquisition costs 
enable users to efficiently create multitemporal image series.

In the context of biodiversity monitoring, UASs are used in vegetated ecosystems to 
obtain optical images with high spatial and spectral resolution and 3-D point clouds 
of the Earth’s surface and vegetation structures.

In grassland ecosystems, high-resolution UAS images are used to map habitat 
types (Cruzan et al. 2016) or single target species such as weeds (Hardin and Jackson 
2005). In recent studies, proximal RS using scaffolds has been used to link species 
and functional diversity to spectral traits (Schweiger et  al. 2018). Here the high 
spatial resolution is of utmost importance because grassland plants are typically 
small and highly mixed (Lu et al. 2016). Very high spatial resolution imagery offers 
the potential for both community- and plant-based analysis (Lopatin et al. 2017). 
However, even with spatial resolutions <1 cm, species identification of individuals 
is challenging and might only work under favorable conditions such as low structural 
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Table 13.1  Close-range Remote Sensing (RS) approaches and their advantages and disadvantages 
for monitoring and assessing plant diversity

Close-range RS approaches Advantages Disadvantages

Spectral analyses of plant 
species
(Asner et al. 2015; Asner and 
Martin 2009)

I. �Basis for conducting 
research on the spectral 
characteristics of specific 
biochemical, biophysical, 
and morphological traits in 
various organs of plants, 
including leaves and flowers

II. �Storage in spectral databases 
for validation and calibration

III. �Basis for the spectral 
fingerprints (SFP) of the 
vegetation

IV. �Basis for conducting 
research on taxonomic, 
phylogenetic, genetic, 
epigenetic, or 
morphological-functional 
features

Analysis on molecular 
level
Geometric, structural, 
distribution, population, 
and community effects are 
not measurable

Spectral laboratory
(manual operation)
(Brosinsky et al. 2013; 
Buddenbaum et al. 2015a, b; 
Buddenbaum and Hill 2015; 
Doktor et al. 2014; Lausch et al. 
2013)
Plant phenomics facilities and 
ecotrons
(fully automatic operation)
(Ehrhardt and Frommer 2012; 
Fiorani and Schurr 2013; 
Furbank 2009; Großkinsky et al. 
2015a, b; Li et al. 2014; 
Pieruschka and Lawson 2015; 
Virlet et al. 2015)

1. �Long-term monitoring is 
possible (entire vegetation 
period, over several years, 
specific investigations of 
impact phases of stressors  
on plant plants)

2. �Experimental stress analyses 
are possible (drought stress, 
heavy metals, tropospheric 
ozone, flooding, flood stress, 
nitrogen loads, etc.)

3. �Extensive measurement 
program is possible for  
biotic, abiotic, and climate 
conditions within the spectral 
laboratory

4. �Storage in spectral databases 
for validation and calibration

5. �Comparative analyses can be 
conducted under natural or 
artificial conditions to 
investigate the influence of 
artificial light, geometry 
effects, or additional effects 
on the spectral signal

6. �Multisensor recording at 
specific plant development 
stages a possible

Development of the 
measuring boxes for the 
sensors (automated)
Age and development 
stages of trees are a 
limiting factor (often only 
trees up to age 5 can be 
recorded)

(continued)
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complexity, low spatial overlap, and low number of species (Lopatin et al. 2017). 
Schweiger et al. (2018) showed a strong relationship between functional diversity of 
grassland species and spectral traits collected using a hyperspectral sensor mounted 
on a scaffolding. Following this new approach, detection of individuals is no longer 
needed to monitor functional aspects of biodiversity. If models are to be developed 
that link the spectral signals to properties of plant diversity, it is important that both 
the field data collection and the image campaign are synchronized, particular in 
highly dynamic ecosystems such as grasslands with high land-use intensities. The 
high flexibility of UAS is a major advantage in such situations.

In vegetated ecosystems, vegetation structure is a key characteristic that is 
strongly related to the diversity of many taxa. UAS high-resolution images are used 
to characterize different aspects of vegetation structure: Getzin et al. (2014) used 
high-resolution RGB images to create canopy gap maps. They showed strong rela-
tions between spatial gap metrics and herbal plant species diversity in temperate 
forests. 3-D point clouds derived from UAS images can be used to characterize the 

Table 13.1  (continued)

Close-range RS approaches Advantages Disadvantages

Tower (flux tower) with different 
noninvasive measuring 
technologies as well as RS 
technology
(mobile, permanently installed)
http://www.fluxnet.ornl.gov/
Phenocams
(Brown et al. 2016)

Advantages II, IV, 1, 3, 4, 6 
above also apply
(a) �Links with international 

networks are possible
(b) �Important ground-truth RS 

information for plant health 
under natural growth 
conditions, with certain 
variables

Local results for a 
particular site, which do 
not enable results for 
extensive areas, but are 
limited to the forest stand 
under investigation
Primarily nonimaging 
sensor technology can be 
implemented

WSNs (WSN)
(Hwang et al. 2010; Liyang Yu 
et al. 2005; Lloret et al. 2009; 
Mafuta et al. 2013; Mauro et al. 
2016; Mollenhauer et al. 2015, 
2016; Oliveira et al. 2016; 
Ruiz-Garcia et al. 2009; Teodoro 
et al. 2016)

Advantages II, IV, 1, 3, 4, 6, a, b 
above also apply
 � Long-term monitoring with 

high time frequencies
 � WSN enables results over 

more extensive areas from the 
network distribution

 � Terrestrial sensor networks as 
well as aquatic WSNs are 
possible

The number of wireless 
sensor nodes determines 
the accuracy of 
information over extensive 
areas
Primarily nonimaging 
sensor technology can be 
implemented

Field measurements
(manual operation)
Long-term vegetation monitoring 
experiments
(Bruelheide et al. 2014; Hantsch 
et al. 2013; Hector et al. 2011; 
Scherer-Lorenzen et al. 2007)

Spectral measurements directly 
on trees
Investigation of geometric 
effects (different heights, 
recording angle)
Measuring various biochemical, 
biophysical, and structural 
variables in organs (roots, leaf, 
stem) of a tree
Recording microclimate 
information about soil, water, 
climate of a tree

Not applicable: IV, 1, 2, 3, 
4, 5, 6
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3-D vegetation structure, for example, by deriving canopy height models to charac-
terize the structural complexity (Saarinen et al. 2017) or by describing vegetation 
structures directly based on the vertical profiles of the 3-D point clouds (Wallace 
et al. 2016).

Currently, the efficient use of UASs is limited to areas of less than a couple of 
square kilometers. Therefore, their main application in the context of biodiversity 
assessments is for sample-based observations (e.g., plots, transects) where relation-
ships between spectral and structural traits and components of vegetation diversity 
can be established. Given the option to create dense time series at user-defined fre-
quencies with low effort, UASs offer scientists new opportunities for scale-
appropriate measurement of ecological phenomena (Anderson and Gaston 2013) 
such as phenological and other seasonal effects on canopy reflectance. Thus, they 
can be used to bridge the gap between scale of observation and the scale of the eco-
logical phenomena that long existed in the temporal and spatial domain when using 
air- or spaceborne platforms. Therefore, UAS technology needs to be considered as 
an important intermediate-scale technology for biodiversity monitoring systems 
and upscaling from field-based measurements and models to larger area estimation.

13.2.2.2  �Optical RS

The relationship between optical spectral variability over space or time and species 
diversity can be used to optimize the inventory of species diversity, so priority may 
be given to sites that are spectrally more different and hence more diverse in species 
composition (Rocchini et  al. 2005). Such analyses can be conducted at different 
spatial extents and resolutions, from a few meters [e.g., using high-resolution 
(~1–3 m multispectral) satellite data such as Worldview or GeoEye] to 10–30 m 
(e.g., Sentinel, Landsat) up to large spatial grain and extent [e.g., Moderate 
Resolution Imaging Spectroradiometer (MODIS) data from 250 m to 1000 m].

Alpha Diversity

Alpha diversity is the number of species living within a given local area and is a 
measure of within-ecosystem species richness. Most research dealing with RS-based 
estimates of alpha diversity has focused on mapping localized biodiversity hot 
spots, based on the spectral variation hypothesis (SVH, (Palmer et al. 2002)). The 
SVH states that the spatial variability in the remotely sensed signal, i.e., the spectral 
heterogeneity, is expected to be positively related to environmental heterogeneity 
and could therefore be used as a powerful proxy of species diversity. In other terms, 
the greater the habitat heterogeneity, the greater the local species diversity within it, 
regardless of the taxonomic group under consideration. Besides random variation in 
species distribution, higher heterogeneity habitats will host a higher number of spe-
cies each occupying a particular niche (niche difference model, Nekola and 
White 1999).
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Different modeling techniques have been used to model the local species 
diversity-spectral heterogeneity relationship, ranging from simple univariate mod-
els (Gould 2000), to multivariate statistics (Feilhauer and Schmidtlein 2009), to 
neural networks (Foody and Cutler 2003) and generalized additive models (GAMs, 
Parviainen et al. 2009). A number of different measures of spectral heterogeneity 
have been proposed and used to assess ecological heterogeneity and thus species 
diversity (Cavender-Bares et al., Chap. 2). Many of these are related to the variabil-
ity in a spectral space of different pixel values, such as the variance or texture in a 
neighborhood of the spectral response (Gillespie 2005) or the distance from the 
spectral centroid, which may be represented as the mean of spectral values in a 
multidimensional system whose axes are represented by each image band or by 
principal components where noise related to band collinearity has been removed 
(Rocchini 2007). Moreover, in addition to the use of common vegetation indices 
such as the Normalized Difference Vegetation Index (NDVI), some studies have 
demonstrated an increase in the strength of the relationship when using additional 
spectral information (e.g., Landsat bands 5 and 7 in the shortwave infrared (SWIR) 
(Rocchini 2007) and (Nagendra et al. 2010)).

Beta Diversity

While alpha diversity is related to local variability, species turnover (beta diversity) 
is a crucial parameter when trying to identify high-biodiversity areas (Baselga 
2013). In fact, for a given level of local species richness, high beta diversity leads to 
high global diversity of the area. This is one of the basic rules underpinning the 
concept of irreplaceability of protected areas (e.g., Wegmann et al. 2014).

In some cases spatial distance/dispersal ability might not be the only driver of 
species turnover, which seems to be more strictly related to environmental condi-
tions. Hence, models have been built to relate species and spectral turnover to 
explain their potential relationship and its causes (Rocchini et al. 2018b). In some 
cases, spatial distance accounted only for a small fraction of variance in species 
similarity, while environmental variation is expected to account for a much larger 
one. When using spatial distances, distance decay does not necessarily account for 
environmental heterogeneity (Palmer and Michael 2005), especially in heavily frag-
mented landscapes. Thus, the use of spectral distances for summarizing beta diver-
sity patterns may be more reliable because this method explicitly takes environmental 
heterogeneity into account instead of mere spatial distances among sites. Therefore, 
it is expected that the higher the spectral distance among sites, the higher their dif-
ference in terms of environmental niches, potentially leading to higher beta diversity.

A straightforward method for measuring beta diversity is to calculate the differ-
ences between pairs of plots in terms of their species composition using one of the 
many (dis)similarity coefficients proposed in the ecological literature (e.g., Legendre 
and Legendre 1998) and assess the spectral turnover variability derived remotely 
from the variation in species composition among sites. This has been mainly related 
to spectral distance decay models in which species similarity decays once spectral 
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distance increases, using all pairwise distances among N plots, based on an a priori 
defined statistical sampling design.

Another powerful method to estimate beta diversity is related to the so-called 
spectral species concept (Féret and Asner 2014). This approach is based on the pre-
liminary unsupervised clustering of spectral data, assigning each pixel to a “spectral 
species.” After spectral clustering, the image is divided into homogeneous elemen-
tary surface units, and a dissimilarity metric is then used to compute pairwise dis-
similarity between each pair of surface units. Finally, the resulting dissimilarity 
matrix is processed using nonmetric multidimensional scaling to project elementary 
units in a 3-D Euclidean space, allowing the creation of a map in the standard red-
green-blue (RGB) color system. Such a map expresses changes in species composi-
tion with changes in color or color intensity.

While the previously described methods are powerful in describing and estimat-
ing diversity from space, they are mainly related to spectral heterogeneity measure-
ment, with no direct relationship with drivers of diversity, such as climate drivers, 
which might be better estimated by thermal RS.

A very important milestone in biodiversity research was the development of 
plant functional types (PFTs) such as the Ellenberg indicator values (Schmidtlein 
2005) or the CSR-strategy types (C, competitive species; S, stress-tolerant species; 
R, ruderal species), which altered their functional traits as a consequence of the 
adaptation to changes in abiotic conditions and/or human pressures such as land-use 
intensity or management practices. Schmidtlein et al. (2012) developed the founda-
tions for linking RS with this biodiversity concept. Rocchini et al. (2018a) used this 
research as a basis for calculating a global biodiversity index, namely, “Rao’s Q.” 
The Rao’s Q is calculated on a set of CSR score maps (derived from Schmidtlein 
et al. 2012) to estimate the diversity of functional-type probability in space (Rocchini 
et al. 2018a, see Fig. 13.4).

Fig. 13.4  Rao’s quadratic diversity metric applied to a MODIS-derived 250 m pixel NDVI map of 
the world NDVI (date 2016-06-06, http://land.copernicus.eu/global/products/ndvi), resampled at 
2 km resolution with a moving window of 5 pixels. (Copyright: License number: 4466960473531. 
From Rocchini et al. (2018a)). Courtesy: Matteo Marcantonio
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13.2.2.3  �Thermal RS

Thermal RS detects the energy emitted from Earth’s surface as electromagnetic 
radiation in the thermal infrared spectral range (TIR, 3–15 μm). This energy can be 
radiated by all bodies with a temperature above absolute zero and is dependent on 
the surface temperature and the thermal properties (emissivity) of the observed tar-
get (Kuenzer et al. 2013; Künzer and Dech 2013).

Land surface temperature (LST) is one of the most important state variables 
representing the coupled interaction of the surface energy and water balance from 
local to global scale (e.g., Kustas et al. 2003). LST is highly influenced by the radia-
tive, thermal, and hydraulic properties of the soil-plant-atmosphere system and has 
therefore been recognized as one of the high-priority parameters of the International 
Geosphere and Biosphere Program (IGBP, Townshend et al. 1994).

Various RS platforms and sensors currently provide TIR data at different spatial, 
spectral, and temporal resolutions. The most common include the Advanced Very 
High Resolution Radiometer (AVHRR) onboard the Polar Orbiting Environmental 
Satellites (POES); Landsat 5, 7, and 8; the MODIS sensor on board the NASA Terra 
and Aqua satellite, the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) on the Terra Earth observing satellite platform; and Sea and 
Land Surface Temperature Radiometer (SLSTR) onboard the Sentinel-3 mission.

Although LST is rarely used by ecologists (Wang et al. 2010), a number of appli-
cations are closely linked to understanding landscape and biodiversity characteris-
tics. Most often, LST is taken as source to estimate evapotranspiration (see Krajewski 
et al. 2006 for a review). LST is highly controlled by atmospheric conditions, but 
also by stomata conductance and plant-available soil moisture (Bonan 2008). In this 
sense, monitoring of LST with sufficiently high spatial and temporal resolution is 
able to provide valuable information about the water and energy exchange between 
the soil-plant-atmosphere continuum and related photosynthetic activities of the 
vegetation (see Fig. 13.5). Differences in the spatiotemporal behavior of LST can 
therefore be related to different plant/species distributions and/or to differences 

Fig. 13.5  Optical (a) and TIR (b) image of a ScaleX field campaign test site in July 2016 at the 
TERENO pre-alpine grassland site, Fendt, Germany. Elevated land surface temperatures (yellow) 
are detected, especially for the rows of hay mounds facing the sun
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related to local energy, water, or nutrient conditions. Examples will be briefly 
described of methods to disentangle the effects of water, energy, and nutrients on 
plants in the context of vegetation.

Müller et al. (2014, 2016) applied principal component analysis (PCA) to extract 
dominant LST patterns from time series (28 scenes covering 12 years) of ASTER 
TIR images of the mesoscale Attert catchment in midwestern Luxembourg. The 
PCA-component values for each pixel were related to land use/vegetation data and 
to geological and soil texture data, indicating a strong information signal in the 
temporal dynamics of LST data with regard to plant diversity.

Environmental disturbances have been investigated (e.g., by Duro et al. 2007) 
making use of the negative relationship between vegetation density and 
LST. Mildrexler et al. (2007) proposed a disturbance detection index based on this 
principle that uses the 16-day MODIS Enhanced Vegetation Index (EVI) and 8-day 
LST.  They were able to successfully detect disturbance events such as wildfire, 
irrigated vegetation, precipitation variability, and the recovery of disturbed land-
scapes at the continental scale.

Sun and Schulz (2015) could demonstrate that an integration of TIR data from 
Landsat 5 and 8 was able to significantly enhance the classification results for dif-
ferent aggregation levels of land-use and land cover categories for a mesoscale 
catchment in Luxembourg. This indicates the high potential of TIR data to support 
more specific and selective plant species monitoring as relevant for biodiversity 
research.

Environmental stress induced by long-term heat waves and/or a limited avail-
ability of water is likely to reduce stomata conductance, limit transpiration, and 
thereby increase leaf surface temperature (Stoll and Jones 2007). The difference 
between air temperature and leaf temperature combined with information on vege-
tation density can serve as an indicator of plant stress. Hoffmann et al. (2016) used 
a spectral vegetation index and LST data from cameras mounted on UAVs to develop 
a water deficit index (WDI). The WDI was highly correlated to eddy covariance 
measurements of latent heat fluxes over a growing season, and that was used to map 
spatially distributed water demands of various crops.

Environmental stress may also cause changes in leaves and the structure of 
plants, dependent on their biophysiological characteristics. Buitrago et al. (2016) 
found that two plant species [European beech, (Fagus sylvatica) and rhododendron 
(Rhododendron catawbiense)], when exposed to either water or temperature stress, 
experience significant changes in TIR radiance. The changes in TIR in response to 
stress were similar within a species, regardless of the stress. However, changes in 
TIR spectra differed between species, and these differences could be explained by 
changes in the microstructure and biochemistry of leaves (e.g., cuticula).

Overall, the potential for exploiting LST information data in plant biodiversity 
research is manifold. While LST is easily measured by thermometers at the point 
scale, satellite RS TIR data are needed in order to derive LST routinely at high tem-
poral and spatial resolutions over large spatial extents. However, the derivation of 
LST from TIR data is a difficult task because such radiance measurements depend 
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not only on LST but also on surface emissivity and atmospheric conditions (Li and 
Becker 1993). Therefore, besides cloud detection and radiometric calibration, cor-
rections for emissivity and atmospheric effects have to be carried out. A large num-
ber of studies have addressed these issues in the past. It is beyond the scope of this 
section to summarize these studies, but an excellent review is provided by Dash 
et al. (2002).

13.2.2.4  �Light Detection and Ranging (LiDAR)

LiDAR is an active RS technique in which short pulses of laser light emitted from a 
scanning device are distributed across a wide area and their reflections from objects 
are subsequently recorded by a sensor. The distance to the objects can be calculated 
from the elapsed time and the speed of light. The absolute position of the reflection 
can be reconstructed using the position recorded by the Global Positioning System 
(GPS) and the orientation of the sensor determined by the inertial navigation system 
(INS). The result is a set of 3-D points that represents the scanned surface from 
which the pulses were reflected. More detailed descriptions of LiDAR technology 
can be found in Popescu (2011) and Wehr and Lohr (1999).

The primary characteristic that makes LiDAR well suited for monitoring plant 
biodiversity, vegetation structure, and landscape diversity is the penetration of light 
beams below the forest canopy. When a LiDAR beam hits the top of the canopy, the 
beam is reflected by leaves, needles, and branches, and the reflection is recorded by 
the receiver. If the energy of the beam is still high when it hits the first reflective 
surface, the beam will split and can penetrate farther through openings in the canopy 
until it hits additional vegetation, which can again cause reflections. This process 
continues until a massive reflector, such as a tree trunk or the ground, reflects the 
beam or until the signal becomes too weak. These properties of LiDAR beams allow 
a detailed reconstruction of 3-D vegetation structures below the forest canopy, 
which cannot be provided by passive RS techniques (Koch et  al. 2014). Hence, 
LiDAR RS is a valuable technique for monitoring plant diversity and vegetation 
structure, and it adds a further dimension to the properties of optical RS.

LiDAR systems can be classified as discrete-return systems or full-waveform 
systems, based on the capabilities of data recording. At the onset of LiDAR devel-
opment, sensors were only able to record either the first or the last reflection of the 
LiDAR beam, which is generally the top of trees and the terrain, respectively. As 
LiDAR evolved, discrete-return systems were developed, which were able to record 
a fixed number of range measurements per LiDAR beam, usually up to four to five. 
The returns were based on thresholds, which were integrated into the proprietary 
detection method (Thiel and Wehr 2004).

With the more recently developed full-waveform systems, the entire pathway of 
the LiDAR beam through the canopy can be detected and recorded (Wagner and 
Ullrich 2004). The post-processing of this data can be applied to theoretically 
extract an unlimited number of echoes. Moreover, with Gaussian decomposition—
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the standard procedure for waveform decomposition—additional echo attributes, 
such as amplitude and intensity of the return signal, can be provided, which can 
support the classification process. As a result, full-waveform data provide a much 
more detailed characterization of the vertical vegetation structure. In this way, 
important indicators for vegetation structure and biodiversity, e.g., vegetation height 
and cover of the different vegetation layers, can be estimated with a lower bias and 
higher consistency (Reitberger et al. 2008).

Nowadays, laser-based instruments are mounted on all kinds of RS platforms, 
including stationary or mobile scanners and terrestrial-, drone-, and aircraft-based 
platforms (e.g., the well-established airborne LiDAR scanning). To record a variety 
of structural parameters, it is possible to combine information from LiDAR sensors 
with optical, thermal, or radar RS sensors (Joshi et al. 2015, 2016). Li et al. (2014) 
provide an overview of 3-D imaging techniques for describing plant phenotyping of 
vegetation. Rosell and Sanz (2012) review methods and applications of 3-D imag-
ing techniques for the geometric characterization of tree crops in agricultural sys-
tems. Wulder et al. (2012) provide a review of LiDAR sampling for characterizing 
landscapes.

The LiDAR systems used for ecological applications generally have a beam foot-
print of less than 1 m diameter on the ground. These so-called small-footprint sys-
tems are preferred because they provide a good link between the LiDAR beam and 
the structural vegetation attributes that could subtly change as a consequence of 
stress or damage, sometimes within individual trees. By comparison, large-footprint 
systems have beam diameters of up to scores of meters on the ground; e.g., the 
Geoscience Laser Altimeter System (GLAS) instrument mounted on the Ice, Cloud, 
and land Elevation Satellite (ICESat) platform has a footprint of 38 m (Schutz et al. 
2005). Such systems can be used to model and map broad vegetation structural 
attributes and are well suited for detecting structural vegetation characteristics 
across large areas.

The most important environmental application of LiDAR is the precise mapping 
of terrain and surface elevations. Such digital terrain models (DTMs) or digital sur-
face models (DSMs) can be useful in determining topographic information impor-
tant for plant growth and monitoring of vegetation structure and biodiversity, e.g., 
changes in vegetation height or density resulting from succession or natural distur-
bance (Heurich 2008). Many filtering methods have been developed to extract ter-
rain elevation from point clouds, which produces DTMs with high spatial resolution 
and root mean square errors (RMSEs) of 0.15–0.35  m (Andersen et  al. 2005; 
Heurich 2008; Sithole and Vosselman 2004). No other RS technique has the ability 
to deliver DTMs of similar quality within dense vegetation. Recent studies show 
that it is even possible for LiDAR to detect objects located on the ground surface. 
Coarse woody debris, as an example, is an important indicator of past disturbances 
that might influence biodiversity because it provides habitat to a multitude of plant 
and animal species and plays an important role in the forest carbon cycle.

Because of its characteristics, LiDAR is well suited for measuring biophysical 
parameters of vegetation, such as tree dimensions and canopy properties. Two main 
approaches have been developed over recent years. The area-based approach is a 
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straightforward methodology in which the height distribution of the LiDAR beam 
reflections is analyzed for a given area. In the first step, plenty of different “LiDAR 
metrics,” e.g., maximum height or fractional cover, are calculated for each area. The 
second step is model calibration, where these metrics are compared to on-the-
ground survey data such as plant species richness, aboveground biomass (AGB), or 
vertical and horizontal vegetation structure. In the final step, the models are used to 
estimate the selected biodiversity indicators for large areas using square grid cells. 
Such an analysis is generally conducted using a priori stratification of structural 
vegetation types and plant species. In the years that followed, this methodology was 
proven to be able to determine key biophysical vegetation variables on a larger 
scale. To date, this method has been shown to deliver a precision of 4–8% for height, 
6–12% for mean diameter, 9–12% for basal area, 17–22% for stem number, and 
11–14% for volume estimations of boreal forests (Maltamo et  al. 2006; Næsset 
2002, 2007). Because of the highly accurate estimation of important vegetation 
structural parameters, the area-based approach was further developed and adapted 
to operational forest inventories in boreal forests of Scandinavia. Similar accuracies 
have also been achieved for the temperate zone, although the more complex 
vegetation structures in this zone, especially the higher number of tree and plant 
species and higher amount of biomass, led to less accurate estimations and more 
effort in stratification and ground measurement to obtain species-specific results 
(Heurich and Thoma 2008; Latifi et al. 2010, 2015).

The second methodology is the individual-tree approach, which has the objective 
of extracting data on single trees and modeling the tree properties. The procedure 
consists of four steps. In the first step, individual trees are delineated by dividing 
each crown into segments with techniques originally used for raster analysis, such 
as watershed analysis and local maxima detection (Heurich 2008; Persson et  al. 
2002). However, these techniques do not take advantage of the full information of 
the 3-D point cloud, and therefore, trees beneath the crown surface cannot be 
detected. For this reason, new methods based on 3-D point clouds have been devel-
oped over recent years (Tang et al. 2013; Yao et al. 2012). When these novel tech-
niques are employed, more than 80% of the trees of the upper canopy level can be 
detected. Moreover, tree detection in the lower canopy is much improved compared 
to 2-D techniques. In the second step, parameters of each tree (e.g., height, species, 
and crown parameters) are derived. Tree height can be determined by measuring the 
distance of the highest reflection of a LiDAR beam within the tree segment and the 
DTM, with an accuracy of less than 2  m and a slight underestimation (Heurich 
2008). The third step is the model calibration of the biophysical parameters of the 
tree, namely, diameter at breast height (DBH), volume, and biomass, using trees 
measured on the ground as a reference. The tree crown can be modeled using con-
vex hulls and alpha shapes. The fourth step involves the application of these models 
to predict DBH, volume, and biomass of all trees delineated by LiDAR. Based on 
these crown representations, basic attributes reflecting tree health can be derived, 
e.g., total volume, crown length, crown area, and crown base height (Yao et  al. 
2012). The extracted parameters of individual trees also form the basis for identify-
ing the tree species by calculating point cloud and waveform features within the 2-D 
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or 3-D representation of the tree and with the help of classification techniques 
(Reitberger et al. 2008). While differentiation between deciduous and coniferous 
trees is highly accurate (>80%, up to ca. 97%), differentiation within these classes 
is more difficult and leads to a higher classification error. Moreover, it is possible to 
distinguish between living trees, standing dead trees, and snags (Yao et al. 2012) 
and to map dead trees at the plot or stand level. However, 3-D LiDAR has its limita-
tions in differentiating between trees species and dead trees when not combined 
with multispectral optical data. One drawback of the individual-tree approach is that 
the LiDAR beam loses some transmission on its way through the canopy and is 
therefore not always suitable for smaller understory trees, which results in their 
underestimation. To overcome this problem, methods have been developed to pre-
dict diameter distributions of forest stands based on detectable trees in the upper 
canopy and LiDAR-derived information on the vertical forest structure and density 
(Lefsky et al. 2002).

In addition to the traditional parameters related to forestry, a multitude of traits 
that describe the ecological conditions of the forest can be estimated with LiDAR 
sensors. One key element for assessing plant diversity and vegetation structure is 
canopy cover, which is defined as the projection of the tree crowns onto the ground 
divided by ground surface area. This parameter can be easily obtained from LiDAR 
data by dividing the number of returns measured above a certain height threshold by 
the total number of returns. Many studies have proven the strong (R2 > 0.7) relation-
ship between this LiDAR metric and ground measurements. By using hemispherical 
images or other ground-based instruments for calibration, leaf area index (LAI) and 
solar radiation can also be derived from LiDAR data with a high precision over large 
areas (Moeser et al. 2014). Because canopy metrics are affected by sensor and flight 
characteristics, it is recommended that each campaign be calibrated to obtain high-
quality results. However, it has been shown that even without calibration, fairly 
reliable results can be obtained.

Vertical vegetation structure is highly relevant for the description of forest and 
vegetation heterogeneity and highly important for biodiversity studies. A widely 
used LiDAR metric for representing vertical canopy complexity is the coefficient of 
variation. High coefficient values correspond to more diverse multilayer stands, 
whereas low values represent single-layer stands. The coefficient of variation can be 
applied at point clouds, the digital crown model, or individual trees. Zimble et al. 
(2003) applied this principle and classified vegetation types according to stand 
structure with an overall accuracy of 97%.

Another approach is the partitioning of the vertical structure into different height 
layers in relation to ecological importance. Latifi et al. (2015) divided the canopy 
into height layers according to phytosociological mapping standards and found a 
strong relationship to various LiDAR metrics in regression models. Similar 
approaches were used by Ewald et al. (2014) to represent understory offering pro-
tection for birds and deer and to detect forest regeneration. A more recent study 
applied a 3-D segmentation algorithm to estimate regeneration cover with an accu-
racy of 70%. LiDAR-derived information about the vertical structure is also used 
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for the assessment of forest fuels and their vertical distribution, which are important 
input variables in forest fire models used in fire management.

In summary, LiDAR RS is a powerful tool for monitoring vegetation structure 
and plant diversity. It delivers detailed and accurate information about forest proper-
ties down to the scale of the individual tree and is therefore regarded as the gold 
standard for determining vegetation structure. Nowadays, LiDAR is widely applied 
in RS research as a reference to test the accuracy of other methods and is used in 
practical forest management in the boreal zone of Scandinavia (Næsset 2007). The 
development of new sensors will lead to multi- or hyperspectral LiDAR technology, 
which will combine the advantages of today’s LiDAR and optical sensors. These 
systems will be able to collect accurate 3-D information and calibrated spectral 
information without facing the problems of varying illumination in the tree crowns. 
Furthermore, the resolution of the data will increase, thereby enabling parameter 
extraction at the branch level.

13.2.2.5  �Radar

Several reviews have been conducted on radar alone or radar and optical sensors for 
vegetation applications relevant to habitat and biodiversity. They typically include 
classification of vegetation or land cover types, biophysical modeling of parameters 
such as biomass or tree height, and ecosystem disturbance detection and mapping 
(e.g., Balzter 2001; Treuhaft et al. 2004; Lu 2006, which includes summaries of four 
previous reviews; Lutz et al. 2008; Bergen et al. 2009; Lowry et al. 2009; Koch 
2010; Nagendra et  al. 2013; Tiner et  al. 2014; White et  al. 2015; Timothy et  al. 
2016; Baltzer 2017).

Systems and Techniques

Active radar is the focus of this section because the resolution of passive sensors is 
generally too coarse for all but large extent studies. In active radar, transmitted 
pulses interact with scattering elements of the surface in terms of their dielectric 
properties, size, and arrangement. In vegetation, moisture (increasing dielectric 
constant) and more complex stem-branch-leaf arrangements result in increased 
backscatter intensity. Much research has been conducted using physically based 
models to characterize and understand backscatter effects in vegetated canopies 
(e.g., Sun and Ranson 1995; Ningthoujam et al. 2016). Spatial and temporal varia-
tions in these properties associated with different vegetation types, age distribution, 
health, and management provide information or indicators of potential habitat and 
biodiversity. Radar data are available at different frequencies/wavelengths; X-, C-, 
and L-bands (2.5–3.75 cm, 3.75–7.5 cm, and 15–30 cm wavelengths, respectively) 
are the most common on satellite platforms. S-band (7.5–15 cm) has been deployed 
on a couple of satellites, and new S- and P-band (30–100 cm) satellite sensors are 
planned for the near future (e.g., NISAR L- and S-bands; NovaSAR S-band; 
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BIOMASS P-band). Backscatter of shorter wavelengths is generally from the upper 
canopy, while longer wavelengths penetrate farther into vegetation. Combining 
shorter and longer wavelength data can be advantageous to detect contributions of 
multiple scattering from different vertical portions of the canopy as well as ground 
surface scattering and double bounce ground-stem scattering. Transmitted and 
received radar signal polarizations [commonly horizontal (H) and vertical (V)] can 
provide information on vegetation composition and structure. Co-polarized signals 
(e.g., HH) respond more to trunk-ground configurations (double bounce scattering), 
particularly at longer wavelengths, while cross-polarizations (e.g., HV) respond 
more to canopy woody biomass (Ningthoujam et al. 2017). Combinations such as 
ratios (e.g., HH/HV) can therefore enhance spatial differences in scattering types 
and magnitude due to varying vegetation density (Mitchard et al. 2011). Similarly, 
steeper incidence angles generally penetrate farther into the canopy, particularly in 
leaf-on conditions, but multiple angles may enhance differences in vertical structure 
(Henderson and Lewis 1998). All of the above characteristics related to the degree 
of canopy penetration provide opportunity for analysis of vertical structural 
complexity and composition diversity by using multiple bands, polarizations, and 
incidence angles. Radar image texture information has also been found to be useful 
in classification (Simard et al. 2000) and biophysical modeling (Kuplich et al. 2005).

Polarimetric data, where phase information is preserved (Ulaby et  al. 1987), 
allows additional analysis of polarization parameters and, through decomposition 
analysis, the relative contributions from the various scattering mechanisms (e.g., 
surface, volume, double bounce) that are associated with canopy structural charac-
teristics. Commonly applied decomposition techniques include (van Zyl 1989; 
Cloude et al. 1996; Freeman and Durden 1998; Yamaguchi et al. 2005; Touzi 2007). 
Several others were designed to build on or correct issues with previous techniques 
(Hong and Wdowinski 2014). The Interferometric SAR (InSAR, e.g., Balzter 
(2001)), provides a plain language description) incorporates transmission from two 
different angles either simultaneously or in repeat passes (less preferable given 
potential decorrelation of the response signals between passes). The phase differ-
ences between the radar response signals can be used to estimate the scattering 
phase height center, which is associated with canopy density and arrangement. They 
can also be used to generate digital elevation models (DEMs), with longer wave-
lengths that penetrate the canopy being more suitable. Using multiple parallel base-
lines, SAR tomography has been used to construct a 3-D representation of a given 
volume such as a forest (e.g., Reigber and Moreira 2000).

Classification and Biophysical Modeling Applications

As with other RS technologies, landscape or vegetation diversity as an indicator of 
biodiversity can be mapped through thematic classification. This can be accom-
plished across a broad gradient from nonvegetated to dense vegetation classes, to 
map landscape cover types (e.g., Devaney et al. 2015) that may be associated with 
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the spatial distribution of biodiversity. For example, within the context of develop-
ing understanding of the spatial distribution of sensitive arctic shore habitat and 
biodiversity areas in the event of oil spills, Banks et al. (2014a) used decomposition 
parameters in a comparison of three unsupervised polarimetric classifiers for their 
potential in mapping multiple classes of substrate (nonvegetated), tundra vegeta-
tion, and wetland type. Similarly, Varghese et  al. (2016) classified water, settle-
ments, agriculture, shrub/scrub, and three forest density classes in a comparison of 
parameters derived from six decomposition techniques. In an analogous manner, 
specific classes within an ecotype can be mapped. For example, mapping the diver-
sity of given classes within a wetland complex (e.g., Touzi and Deschamps 2007; 
Gosselin et al. 2013; Dingle Robertson et al. 2015; Hong et al. 2015; Dubeau et al. 
2017) can aid identification of the variety of habitat conditions available and poten-
tial biodiversity. In general, radar data have not been found to provide consistently 
better overall classification accuracy than optical data. However, since radar data are 
typically complementary and not highly correlated with optical data, they can pro-
vide additional information for certain vegetation classes that can be distinguished 
by structure in cases where optically derived spectral reflectance and vegetation 
indices are similar. Thus, combining radar and optical imagery has often been 
shown to improve the accuracy of such classes over either data type alone (e.g., 
Bergen et al. 2007; Wang et al. 2009; Bwangoy et al. 2010; Banks et al. 2014b).

An alternative approach to thematic classification is estimation of vegetation 
structure parameters that can serve as indicators of potential habitat diversity or 
biodiversity, for example, the average or spatial heterogeneity of AGB, LAI, vegeta-
tion height, and stem and branch parameters. Luckman et al. (1997), Lucas et al. 
(2006), and Le Toan et al. (2004), among others, have reported that the backscatter-
AGB relationship typically saturates in the range of 100–150 t/ha. However, AGB 
spatial variability can be mapped in environments with lower vegetation density 
(e.g., Häme et al. 2013), and efforts to produce suitable models with a higher satura-
tion threshold by improving data information content are common. For example, 
use of the following has proven beneficial: cross-polarized (HV) data rather than 
co-polarized; longer wavelengths that penetrate deeper into the canopy (Santos 
et  al. 2003); ratios such as VV/HH (Manninen et  al. 2009 for LAI); shorter-to-
longer wavelength ratios such as C−/L-bands (Foody et  al. 1997); averaging of 
multitemporal data sets to reduce moisture/rain effects (Englhart et al. 2011); and 
integrating optical and radar data (Vaglio et al. 2017). Imhoff et al. (1997) modeled 
canopy parameters using steep incidence angle C-, L-, and P-band airborne radar 
and found strong correlations for C-HV and LAI, L-VV and branch surface area or 
volume, and P-VV with bole surface area or volume; these relationships were then 
used to map broad avian habitat classes. Bergen et al. (2009) combined biomass 
estimates from C- and L-band backscatter with Landsat vegetation classification, 
thereby improving habitat mapping for three bird species over use of vegetation 
type alone.

InSAR has been used to estimate canopy height and height variance, which can 
be an indicator of vegetation type, structural complexity, and age diversity. Canopy 
height is most commonly estimated from the difference between scattering phase 
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height center estimates derived from short wavelength (X- or C-band) InSAR and a 
ground DEM derived from longer wavelength InSAR (L- or P-bands, Neeff et al. 
2005; Balzter et al. 2007a) or from another source such as LiDAR (e.g., Kellndorfer 
et  al. 2004; Andersen et  al. 2008; Tighe 2012). Tighe et  al. (2009) applied this 
approach with the addition of correction factors for various forest ecotypes in US 
and Canadian environments from semiarid to boreal. Integrating polarimetric 
response with InSAR (i.e., PolInSAR; Cloude and Papathanassiou 1998) can 
improve InSAR estimates of tree height (e.g., Balzter et al. 2007b). Tomography has 
also shown promise in modeling the vertical distribution of canopy biomass, but 
multiple acquisitions must be conducted within a short time to minimize temporal 
decorrelation. The DEMs produced from InSAR can also be used to generate topo-
graphic indices for analysis of topographic complexity or roughness related to habi-
tat diversity and biodiversity (Turner et al. 2003; Kuenzer et al. 2014). Fusion of 
optical imagery and/or LiDAR with InSAR (e.g., as reviewed in Treuhaft et  al. 
2004) can also improve vertical canopy and topographic information.

Mapping of disturbance or environmental change can serve as an indicator of 
potential impacts on habitat diversity and biodiversity. Many studies have been con-
ducted in diverse applications that cannot be fully reviewed here. Most early appli-
cations were in mapping of deforestation, particularly in tropical regions where 
deforestation had become a major issue (e.g., Rignot et al. 1997; van der Sanden and 
Hoekman 1999). Temporal data have become widely used in land cover change 
analysis using classification approaches (e.g., Thapa et al. 2013), analysis of back-
scatter change (e.g., Whittle et al. 2012; Mermoz and Le Toan 2016), and biophysi-
cal modeling for biomass loss (e.g., Mitchard et  al. 2011). Other major radar 
applications of environmental change with implications for biodiversity impacts are 
burn and inundation detection and mapping. Early fire impact studies focused on 
backscatter variations related to burn intensity classes (e.g., Kasischke et al. 1992). 
More recent work has included temporal backscatter data in pre−/postburn analysis 
(e.g., Tanase et al. 2015) and polarimetric analysis and decomposition in modeling 
biomass changes due to fire (Martins et al. 2016). Radar is particularly useful in 
detecting inundation under vegetated canopies due to specular reflection off the 
water surface; in the case of inundated forests, penetration of the canopy by longer 
wavelengths occurs with double bounce scattering off the water surface and tree 
trunks (e.g., Kim et al. 2009) and phase differences between different polarizations 
(e.g., Rignot et al. 1997).

Overall, use of radar for biodiversity and landscape diversity analysis, modeling, 
mapping, and monitoring follows similar approaches to optical RS.  Diversity of 
land cover types or specific classes within a given ecotype may be directly mapped 
using classification or modeling, while estimation of biophysical variables can serve 
as indicators of spatial heterogeneity and potential habitat diversity or biodiversity. 
The main contributions of radar are in its unique response to vegetation structure 
that complements spectral reflectance characteristics of vegetation in the optical 
regions. With the multitude of wavelengths, incidence angles, and polarizations 
available, as well as the capability to acquire and process InSAR and polarimetric 
data, much promise has been shown for mapping and monitoring land cover diver-
sity- and biodiversity-related vegetation metrics. New satellite systems are being 
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developed, and particularly the 2021 BIOMASS P-band InSAR mission (Le Toan 
et  al. 2011) will provide consistent means for global biomass mapping and 
monitoring.

13.3  �Conclusion and Further Work

Traits, drivers, and effects on biodiversity exist on all spatiotemporal scales. Air- 
and spaceborne RS data capture processes and patterns in ecosystems, but often 
without the knowledge of the cause of the phenomenon and real high-frequency 
ground information. Therefore, close-range RS platforms that record RS informa-
tion at high frequency must be coupled with air- and spaceborne RS platforms (see 
Fig. 13.6).

No monitoring approach alone is sufficient, comprehensive, cost-effective, and 
flexible enough to perform vegetation health monitoring from local to global scales 
and for short- to long-term processes as well as to monitor changes in phylo-, taxo-
nomic, functional, and trait diversity and to assess the resilience of ecosystems. 
Therefore, the development and application of a multisource vegetation diversity 
and health monitoring network (MUSO-VDH-MN) is important where multisource 
data (close-range, air-, and spaceborne RS data) as well as different in-situ monitor-
ing approaches can be linked in an effort to compensate for the shortcomings of one 
approach with the advantages of another and to achieve additional benefits for VH 
monitoring. A future MUSO-VDH-MN should therefore contain the following ele-
ments (see Fig. 13.7):

Permanent  
Sensor Networks

Earth Observation Satellites 
(e.g. ENVISAT, Landsat, 
Sentinel, EnMAP)

Receiving station for 
transferring in-situ dataTransferring Remote 

Sensing Data

Value-added Earth 
Observation Data 
Products

Development / Validation of Value 
Added Products

Internet

Multi-parameter Data

Mobile ad-hoc 
Sensor NetworksAND

e

Fig. 13.6  Linking different approaches (high-frequency WSNs up to spaceborne satellites) with 
relative frequency monitoring, sensors, and different platforms of RS to better describe, explain, 
predict, and understand vegetation diversity with RS techniques as well as improve the calibration 
and validation of RS data. (From Lausch et al. 2018a)
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	 (i)	 Coupling of the different monitoring approaches (in-situ and RS) for plant 
diversity.

	(ii)	 The integration and linking of multisource data and RS platforms. MUSO-
VDH-MN should integrate the following data and site survey platforms:

Species/habitats: Data from site surveys for species, species lists, metabarcod-
ing, microgenomics (Bush et al. 2017), and phenotyping (Deans et al. 2015) 
and data from museums, lysimeters, plant phenomic facilities (Furbank 
2009), controlled environmental facilities (ecotrons, Lawton et al. 1993), 
long-term ecological research (Mueller et  al. 2010), spectral laboratory 
experiments, and biodiversity ecosystem functioning experiments 
(Bruelheide et al. 2014)
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Fig. 13.7  Overview of in-situ approaches—the phylogenetic species concept (PSC), the biologi-
cal species concept (BSC), the morphological species concept (MSC), and the RS-spectral trait/
spectral trait variation (RS-ST/STV) concept, which integrates the close-range RS approaches and 
the air−/spaceborne RS approach. The different in-situ and RS approaches are crucial for deter-
mining phylo-, taxonomic, structural, trait diversity as well as functional diversity, in order to be 
able to monitor and assess status, stress, shifts, disturbances, or resource limitations at different 
levels of vegetation organization. Components that need to be included for a future multisource 
vegetation diversity and health monitoring network (MUSO-VDH-MN): (I) linking of existing 
monitoring approaches; (II) integration of existing data, networks, and platforms; and (III) the use 
of data science as a bridge for handling and coupling big vegetation diversity and health data. 
(Modified after Lausch et al. 2018a)
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RS: optical (multispectral, hyperspectral), thermal, radar, LiDAR data, labora-
tory, tower, camera traps, WSNs, drones, and close-range, air- and space-
borne RS platforms. Additionally, it should link monitoring databases, 
networks, citizen science information, abiotic (soil, water, air) information, 
and social and economic information.

	(iii)	 Data science, linked open data, and semantic web as a bridge for understand-
ing and monitoring vegetation diversity. For further information see also 
Lausch et al. (2015c, 2018a, b) (Fig. 13.7).
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Chapter 14
How the Optical Properties of Leaves 
Modify the Absorption and Scattering 
of Energy and Enhance Leaf Functionality

Susan L. Ustin and Stéphane Jacquemoud

14.1  �Introduction

Leaves interact with light in ways that create a spectral footprint of the terrestrial 
environment of our planet. Most of the visible light penetrating the Earth’s atmo-
sphere is absorbed by leaves, and at wavelengths around 700 nm, just beyond the 
red visible bands, this pattern abruptly reverses, to reflect about half of the incoming 
light from 700 to 1000 nm. This region of rapid change in reflectance is termed the 
“red edge” and produces a distinct pattern in which the Earth’s albedo is brighter for 
wavelengths longer than the red edge than for shorter wavelengths (Arnold et al. 
2002; Montañés-Rodríguez et al. 2006). This pattern is a result of the abundance of 
green leaves in the terrestrial environment absorbing light for photosynthesis, with 
the red edge the manifestation of the long wavelength edge of chlorophyll pigment 
absorption. This is one example of how leaf optical properties (the absorption and 
scattering of different wavelengths of sunlight) permit detection of leaf functional 
properties.

Because the primary physiological processes and functional properties of seed 
plants are homologous, evolutionary constraints have optimized physiological prop-
erties (Jacquemoud and Ustin 2008; Ustin and Gamon 2010). This means that among 
higher plant species, concentrations of individual biochemicals in the suite of major 
biochemicals may vary. So considering overall biochemical traits, different species 

S. L. Ustin (*) 
Department of Land, Air and Water Resources, University of California Davis,  
Davis, CA, USA
e-mail: slustin@ucdavis.edu 

S. Jacquemoud 
Institut de Physique du Globe de Paris – Sorbonne Paris Cité, 8 Université of Paris Diderot, 
Paris, France
e-mail: jacquemoud@ipgp.jussieu.fr

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33157-3_14&domain=pdf
mailto:slustin@ucdavis.edu
mailto:jacquemoud@ipgp.jussieu.fr


350

may have different concentrations of biochemicals that together produce a distinct 
pattern. Minor biochemicals, such as specific defensive compounds, may reveal more 
about biodiversity by their presence or absence than by their concentrations.

In their paper on the worldwide leaf economics spectrum, Wright et al. (2004) 
showed that plant investments in leaf traits represent long-term adaptations to climate 
characteristics such as length of the growing season, air temperature, and precipita-
tion. Global research on the concept of relating leaf traits to ecosystem functionality 
(e.g., Wright et al. 2005; Ordoñez et al. 2009; Kattge et al. 2011) and the use of these 
properties to better understand functional adaptations has rapidly expanded.

In recent years, there has been strong interest in using optical properties to eluci-
date biodiversity patterns, and identification of functional traits with phylogenetic 
associations has become a key new objective of spectroscopy and remote sensing 
(RS) (Martin, Chap. 5; Meireles et al. Chap. 7. With rapid losses of biodiversity, 
there is a need to improve understanding, identify hot spots, and predict how pat-
terns of biodiversity may change in the future. This has led to renewed interest in 
whether the optical properties of plants can be understood in a phylogenetic context 
as well as their functional processes.

14.2  �On the Optical Spectrum of Seed Plants

There are many definitions of what constitutes the optical spectrum. Most narrowly, 
it is visible light—the part of the electromagnetic spectrum that can be seen by the 
human eye (wavelengths 400–700  nm). The full solar spectrum includes all the 
wavelengths of electromagnetic energy from the sun that reach the Earth’s surface. 
These wavelengths start in the zone of ultraviolet (UV) A (generally longer than 
370 nm) and include visible light, near-infrared (NIR, 700–1000 nm), and shortwave-
infrared (SWIR, 1000–3000 nm, also termed middle-infrared in some disciplines). 
Solar energy interacts with a leaf across the full range of wavelengths to produce the 
leaf’s optical properties, which are determined by its biochemical and biophysical 
characteristics. In recent years, with improved detector technology, it has become 
possible to measure reflected sunlight with satellite and airborne imagers that have 
sufficient spectral resolution to access the absorption patterns of an increasing num-
ber of chemical compounds. It is the variation in the full suite of chemistry and 
scattering properties that allows identification of plant species from their leaf spec-
tra— the patterns of absorption and reflection across all wavelengths that can be 
measured in the solar spectrum.

Seed plants have three basic types of leaves. Monocot and dicot leaves of angio-
sperms typically have a wide blade, and conifers have needle-shaped leaves. 
Figure 14.1 shows examples of typical spectra of evergreen (Quercus wislizeni) and 
deciduous (Quercus douglasii) dicot leaves, deciduous leaves of a monocot (Zea 
mays), and evergreen conifer needles (Pinus ponderosa). The overall shape of the 
leaf spectra is similar, with low reflectance across visible wavelengths due to absorp-
tion by photosynthetic pigments (Gates et  al. 1965). High reflectance is 
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characteristic of the NIR, where generally 10% or less of radiation is absorbed 
(Jacquemoud and Ustin 2008); intermediate reflectance is characteristic of the 
SWIR region (1500–2500  nm), where energy is primarily absorbed by water in 
leaves (Carter 1991) or by plant residues when leaves are dry. Cell wall compounds 
such as cellulose and lignin or other biochemicals found in the cytoplasm such as 
proteins and sugars account for many overlapping absorption features in the SWIR.

Differences between spectra in Fig.  14.1 relate to differences in biochemical 
composition and concentration of pigments, water, and cell wall structural materials 
or are due to the sources of scattering at either the leaf surface or from internal cel-
lular structures. Despite the similarity of overall shape, Fig. 14.1 clearly shows taxa-
specific differences in reflectance across the spectrum. These differences at the leaf 
scale contribute to our ability to map land cover types and distinguish plant com-
munities, genera, and species, as discussed in other chapters in this book.

Regardless of the diversity in leaf anatomy and morphology, biochemical and 
biophysical properties exhibit consistent absorption features in the optical spectrum 
and have been detected in modern high-fidelity airborne imaging spectrometers 
(e.g., Kokaly et al. 2009; Ustin et al. 2009; Féret et al. 2011; Asner and Martin 2016; 
Asner et al. 2015). The principles of spectroscopy indicate that many of the chemi-
cal compounds with absorption features in the solar spectrum (280–3000 nm) can 
be detected and identified based on their spectral reflectance features. Both 
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Fig. 14.1  Typical leaf spectra of evergreen and deciduous species, measured on field-grown 
leaves in June. Quercus douglasii (blue oak) is a deciduous dicot species, Zea mays (corn) is a 
deciduous monocot, Q. wislizeni (black oak) is an evergreen dicot species, and Pinus ponderosa 
(ponderosa pine) is a needle-leaf conifer
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differences in the amount of energy absorbed and the anatomical and morphological 
differences that enhance scattering of light at different wavelengths allow us to dif-
ferentiate related taxa. While this chapter is focused on the leaf scale, complications 
arise at larger scales; even when just scaling to the canopy, it can be difficult to 
detect leaf optical properties due to the presence of additional materials adding to 
the measured spectrum (e.g., live and dead leaves, flowers, fruit, bark, and under-
story, both vegetation and soil). However, in some cases, if the absorptivity of the 
material is weak, the absorption at the canopy [pixel] scale can be enhanced. An 
example of this is observed for foliar water content when measured on a single leaf 
or a spectrum from multiple leaves (e.g., Roberts et al. 2004; Kokaly et al. 2009). 
Our ability to measure leaf optical properties from airborne and satellite sensors 
varies with spatial scales, as discussed in Chap. 16.

14.3  �Leaf Reflectance Patterns

Reflectance is the fraction of light reflected from the leaf surface (Rs). It is com-
posed of two parts: specular reflectance, which reflects directly off the surface in the 
forward direction, and diffuse reflectance, which scatters light in all directions from 
the surface. Light can be specularly scattered at some wavelengths and diffusely 
scattered at others, depending on the scale of the roughness of the surface. Specular 
reflectance happens when light intersects a surface that is smooth, i.e., one with 
particles much smaller than the wavelengths contacting it. If the surface is rough, 
that is, composed of particles about the size of the wavelengths of light or larger, it 
will scatter light diffusely. Specular reflection is a leaf property that is determined 
by the structure and chemical composition of the cuticle; thus, differences among 
species are potentially related to biodiversity questions.

The fraction of light that is reflected from the interior of the leaf, Ri, is the diffuse 
or multiply scattered component. Some fraction of the beam of light that enters the 
leaf’s interior will be absorbed, some transmitted through the leaf, and some will be 
scattered back out of the upper surface of the leaf. Only the fraction of the incident 
light that is reflected from the interior of the leaf carries information about the bio-
chemical and structural properties of the leaf.

Reflectance patterns in the visible spectrum are primarily due to photosynthetic 
pigments that absorb about 90% or more of the incoming light (Gates et al. 1965). 
Water is the second strongest absorbing molecule in leaves; it absorbs strongly in 
the SWIR region, with several smaller vibrational overtone absorptions in the NIR 
(Carter 1991). Because there are no strongly absorbing molecules in the NIR, plants 
reflect or transmit all but about 10% of the incoming radiation in this region 
(Jacquemoud and Ustin 2008).

While the spectral shapes of leaves are generally consistent across all green 
plants, they differ between species and plant functional types. Evergreen leaves usu-
ally have thicker cell walls and smaller cells and are more compact than deciduous 
leaves. Consequently, their spectral signatures generally have lower reflectance in 
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the NIR and SWIR (Fig. 14.1). Phenological changes over the growing season are 
expressed in leaf reflectance by declining pigment and water contents and increases 
in the mass of secondary cell wall components as the growing season nears its end. 
Similar patterns are also observed when comparing leaves from mesic to arid 
habitats.

In late spring, when the leaves shown in Fig. 14.1 were measured, phenological 
differences are generally minimized because leaves are near their growth peak. The 
leaves in Fig. 14.1 show they have high water content as the water absorption fea-
tures in the NIR, around 970 nm and 1240 nm, are relatively deep for non-succulent 
leaves. Water causes absorption at all wavelengths longer than 1400 nm, decreasing 
reflectance across the spectrum. The small absorption feature observed near 
1800 nm is from cellulose and other related structural C (C) compounds. In addition 
to these few large absorption features, many small absorptions exist, only some of 
which are identified with a specific biochemical. The wide variety of secondary 
biochemicals that exist in plant leaves and their possible range of concentrations 
provides a spectral palette that can be used to identify individual species in opti-
cal data.

Clearly, the environmental conditions that a plant is exposed to, including soil 
properties, weather, and its phenological age, alter the leaf’s optical properties. The 
genetic heritage modulates the types of responses of a species to environmental 
conditions. The reflection of light from the leaf and transmission through the leaf 
are determined by what wavelengths of light are absorbed by the various biochemi-
cal compounds in leaves (chlorophylls, carotenoids, water, cellulose and lignin, pro-
teins, etc.) and the relative strength of the absorptions.

The scattering of light at the leaf surface depends on the structure of the epider-
mis, the waxes, cutin, and protrusions such as leaf hairs (Ehleringer et al. 1976) and 
on the orientation of the leaf to the beam of light (Comstock and Mahall 1985; 
James and Bell 2000). The variety of leaf properties are expressions of different 
adaptive strategies among species and are related to their functional traits (Serbin 
and Townsend, Chap. 3). For example, differences in epidermal structure cause 
leaves of one species to have a bluish powder coating, those of a different species to 
appear white, and those of another to have a shiny smooth green surface.

Within the leaf, scattering occurs between cells and between organelles within 
cells (Vogelmann 1993). Vogelmann et al. (1996a) used fiber optics to study scatter-
ing processes within cells and tissues to show how leaf anatomy modifies the inter-
nal light environment to optimize photosynthetic performance under different 
habitat conditions.

14.4  �Leaf Transmittance Patterns

Transmittance is the fraction of light that enters a leaf and is eventually scattered out 
the opposite surface. The transmittance spectrum approximates the reflectance 
spectrum, but they are not exact copies of each other. Transmittance can be greater 
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or lesser than reflectance (Knipling 1970; Wooley 1971; Jacquemoud and Ustin 
2008), depending on leaf thickness, number of leaves light passes through, and their 
optical properties. Thus, transmittance spectra carry information about leaf traits 
and biodiversity but are seldom used in remote sensing (RS) except in field-based or 
laboratory studies.

14.5  �Leaf Absorptance Patterns

The absorption of light is determined by the absorbing molecules in the leaf bal-
anced by the structural properties that scatter light, such as air spaces and water–air 
interfaces. In the visible spectrum, it is photosynthetic pigments, primarily chloro-
phylls and carotenoids that strongly absorb light. Other non-photosynthetic pig-
ments also absorb in this wavelength region, such as anthocyanins (a large and 
diverse group of flavonoids that are involved with leaf color but also colors of flow-
ers and fruit). Anthocyanins (and more generally flavonoids) provide photoprotec-
tion from UV light (Stapleton 1992; Steyn et  al. 2002)), such as in alpine 
environments or during early leaf development (Chalker-Scott 1999; Karageorgou 
and Manetas 2006) when the photosynthetic machinery is not fully developed. 
Figure  14.2 shows two adjacent evergreen shrubs in early spring, both widely 
planted cultivars, one (Photinia x fraseri) with red expanding leaves and the other 
(Xylosma congesta) with orange colored expanding leaves. Such differences could 
indicate pH differences in the vacuoles or different combinations of anthocyanin 
pigments, or combinations of anthocyanin and carotenoid pigments. Lee and Collins 

Fig. 14.2  Red and orange 
expanding leaves on 
adjacent shrubs. Color 
differences could represent 
different anthocyanin 
molecules, different pH 
environments in the 
vacuoles, or a mixture of 
carotenoid and anthocyanin 
pigments
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(2001) evaluated leaf ontogeny and found that spring leaf expansion was usually 
correlated with high anthocyanin pigments in the mesophyll tissue. Along with phe-
nolic compounds, anthocyanins provide protection of the pigment molecules during 
senescence (Matile 2000) and defensive functions against herbivory (Hamilton and 
Brown 2001) and during leaf senescence. Some molecules absorb in the UV and 
blue wavelengths, ranging from the simplest phenol to complex polyphenols like 
tannic acid. Kokaly and Skidmore (2015) recently demonstrated detection of a phe-
nolic absorption in plants at 1660 nm. Phenolic compounds often provide regulatory 
and defensive functions. Because of the great diversity of non-photosynthetic pig-
ments and photosynthetic accessory pigments (carotenoids), pigments provide a 
basis for discriminating among plant species in optical data. Suites of pigments 
often occur in specific families or clades in agreement with molecular phylogeny 
(Lee and Collins 2001).

In the NIR, there are no strongly absorbing compounds, so a high proportion of 
light is reflected or transmitted. Light is often scattered multiple times, increasing 
the probability of absorption before being reflected or transmitted out of the leaf. 
For example, Wooley (1971) reported 4% NIR absorptance in soybean (Glycine 
max), and Everitt et  al. (1985) found only 5% NIR absorptance in buffalo grass 
(Bouteloua dactyloides) leaves. Scattering within the leaf is related to the internal 
cellular structure, especially at cell membrane and air interfaces, where light can be 
reflected and refracted. Allen et al. (1970) showed the volume of intercellular air 
spaces was highly correlated with NIR reflectance. Multiple scattering of photons 
causes the NIR reflectance to be much higher than reflectance of visible or SWIR 
wavelengths, where absorptions by pigments and water result in single scattering 
processes (light is absorbed or scattered on its first interaction).

Secondary water absorption features in leaves are found around 980  nm and 
1240 nm (Carter 1991). The diversity of plant adaptations to different water regimes 
results in a wide range of leaf water contents among species. The percent water 
content is generally positively correlated with increasing leaf thickness, but the 
opposite may occur. Thus, a sclerophyllous leaf species like Adenostoma fascicula-
tum (chamise) can have higher leaf mass area (LMA = 1 divided by specific leaf 
area) and low water content, but a succulent species may have high water content 
and a high leaf mass per area (Ackerly et al. 2002; Vendramaini et al. 2002).

The SWIR part of the leaf spectrum is dominated by water absorption when the 
leaves are living and by leaf chemical constituents when dry. Many plant com-
pounds have absorptions in the SWIR, including cellulose, lignin, nitrogen (N), 
sugars, starch, and waxes. Interpretation of these absorption features in dry leaves is 
complicated because many molecules have absorptions at overlapping wavelengths 
and we lack the specific absorption coefficients to identify them in the data. The cell 
wall C compounds comprise the largest fraction of the dry biomass of a leaf, and the 
absorption feature around 1750 nm is generally attributed to these materials (Kokaly 
et al. 2009). Kokaly (2001) also identified two absorptions at 2054 nm and 2172 nm 
that cause broadening of the 2100 nm absorption feature due to N compounds. The 
complexity of relationships among species adaptations for water, structural carbo-
hydrates, and nutrients provides a strong basis for detecting species diversity in RS 
imagery, at least in local to regional studies (Asner and Martin 2016).
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14.6  �Physical Processes Underlying Leaf Optical Properties

Leaf anatomy and phylogeny determine how leaf cells (epidermis, mesophyll) and 
specialized tissues (xylem and phloem conducting tissues and the stomatal com-
plex) are arranged (Al-Edany and Al-Saadi 2012) and how this affects reflectance. 
There are many modifications, but the standard arrangement of cells and tissues in 
dicot plants is strongly asymmetric, commonly flattened in the dorsiventral orienta-
tion with the adaxial side of the leaf oriented upward (Fig. 14.3). This places the 
chloroplast-rich palisade parenchyma near the upper surface to intercept incoming 
light and the spongy mesophyll and large air spaces on the abaxial side of the leaf 
near the lower surface where all or most of the stomata are located. Clearly, this 
bifacial arrangement is adapted to facilitate gas exchange and photosynthesis 
(Parkhurst 1986). Leaves on plants grown under high light tend to have more com-
pact parenchyma than leaves in low light environments, which have more air spaces.

In another common arrangement, grass leaves are isobilateral with the interior of 
the leaf filled with generalized mesophyll parenchyma cells and stomata on both 
surfaces. Conifer needles are more cylindrical with the interior filled with general-
ized parenchyma cells and a centralized vascular bundle, separated from the meso-
phyll by an endodermal cell layer. Conifer needles are compact, with little air space 
between cells. This reduces the interior scattering of light within leaves and contrib-
utes to the low NIR reflectance of conifer needles compared with broadleaf plants.

Another leaf type has symmetrical palisade parenchyma on both the top and bot-
tom of the leaf. This is common in dicot species with extreme erectophile leaf ori-
entation, such as the hanging adult leaves of eucalyptus species such as Eucalyptus 
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Fig. 14.3  Dorsiventral cross section of a dicot leaf with the adaxial surface at the top. This is the 
most common structure of dicot leaves, with a distinct asymmetry oriented toward incoming light 
from the adaxial surface
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nitens. The more rounded juvenile leaves of this species have larger air spaces than 
the adult leaves, suggesting they may be adapted to more rapid growth but have less 
tolerance to drought (Gras et al. 2005). This type of adult leaf anatomy increases 
light interception at lower solar zenith angles closer to sunrise and sunset and 
enhances potential for photosynthesis.

The asymmetric leaf structure of typical dicots enhances capture of energy for 
photosynthesis by orienting the leaf upright, facilitated by branching angle and peti-
ole orientation. It makes a difference whether light enters the leaf from the upper or 
lower surfaces because the anatomical structures and biochemistry across the leaf 
are different. The effect of the asymmetric distribution on reflectance and absorp-
tance patterns is shown in Fig.  14.4 for photosynthetic light at two solar zenith 
angles entering the leaf from the upper or lower side of the leaf.

The downward flux constitutes most of the net flux when the solar zenith angle 
is higher (left side); when the solar zenith angle is lower (right side), the upward flux 
is much larger. The panel (14.4. #1 and 14.4. #2) with the typical dorsiventral orien-
tation has higher net flux through the epidermis than panels (14.4. #3 and 14.4. #4) 
with the abaxial side receiving the incident flux. About 20% of the net flux enters 
the palisade parenchyma in 14.4. #1 and 14.4. #2, while 14.4.#3 and 14.4. #4 show 
very low net flux. Because the chlorophyll concentration is highest in the palisade 
parenchyma, comparatively little photosynthesis occurs in the spongy mesophyll, 
with higher net flux of 675 nm light (suitable for chlorophyll a absorption in photo-
system II).

Panel 14.4. #1, with the typical dorsiventral orientation (adaxial side up) at the 
higher solar zenith angle, has higher net flux downward (about 20%) through the 
epidermis than Panel 14.4. #2 with the lower solar zenith angle, where the net flux 
is much lower in both palisade and spongy parenchyma and the upward flux is much 
larger. Panel 14.4. #3, with the abaxial side up, shows little difference in upward 
flux, but most of the net flux continues to be located in the palisade parenchyma. 
Panel 14.4. #4, with the abaxial side receiving the light at the lower zenith angle, has 
virtually no net flux into the palisade parenchyma and high upward flux in the abax-
ial epidermis. Because the chlorophyll concentration is highest in the palisade 
parenchyma, there is little photosynthesis elsewhere, even with high net flux of 
675 nm light (red wavelength region, suitable for chlorophyll a absorption).

14.7  �The Epidermis

The epidermis is the outermost layer of leaf cells and is generally one cell layer 
thick, but some species have several cell layers. The epidermis lacks pigments and 
is generally transparent to light. The outer cuticle surface is covered by wax to limit 
uptake and loss of gases, except at the stomatal complexes, which are generally 
located on the abaxial (lower) side of the leaf. Stomata are composed of two kidney-
shaped stomatal cells and two to four guard cells at the ends. The stomata are gener-
ally located above an open space in the mesophyll where gases can collect, termed 
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Fig. 14.4  Top panel illustrates the four orientations selected to simulate the absorption profiles of 
a dicot leaf. Lower panels show the distribution of relative downward flux Φ↓(z), dashed line; rela-
tive upward flux Φ↑(z), dash-dot line; and relative net flux Φn(z), solid line for light at 675 nm 
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25° (#1 and #3) and 65° (#2 and #4). Gray lines (filled circles) indicate the cumulative chlorophyll 
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the stomatal (or substomatal) cavity. The stomata open and close, regulated by tur-
gor pressure, to allow gases, including water vapor, C dioxide, and oxygen, to 
exchange between the outside air and the stomatal cavity. Because the anatomical 
structures of species are different across the interior of the leaf, their biochemistry 
is also specialized, causing the asymmetric distributions of reflectance and absorp-
tion patterns as light passes through the leaf, shown in Fig. 14.4, for photosynthetic 
light at two solar zenith angles entering from the lower side of the leaf.

Xerophytes and hydrophytes illustrate the extremes of leaf adaptations for cuti-
cle characteristics. Aquatic species that float on the surface like water hyacinth 
(Eichhornia crassipes) and water lily (Nymphaea sp.) have stomata on the upper, 
adaxial side that is open to the atmosphere. Submerged aquatic species, like 
Brazilian waterweed (Egeria densa), hydrilla (Hydrilla verticillata), and Eurasian 
watermilfoil (Myriophyllum spicatum), lack stomata or they are nonfunctional, and 
their cuticle is thin and reduced to allow direct gas exchange with the water. These 
species typically have other morphological traits that support adaptation to the 
aquatic habitat, including very small leaves. In contrast, xerophytes like semiarid 
grasses, e.g., the beach grass Ammophila breviligulata, and conifers or succulent 
species like agaves and cacti, have stomata in deep pits that reduce transpiration by 
retaining high vapor pressure in the cavity. In addition, other traits typically present 
in xerophytes include thick cuticles, pubescence, and a reduced stomatal complex. 
Leaf traits such as these tend to be clustered, representing a suite of adaptive traits; 
thus, to identify a taxon, we expect several traits to be present in particular configu-
rations; thus, potential identification is enhanced by patterns of traits (see Serbin 
and Townsend, Chap. 3; Morsdorf et al., Chap. 4; Bolch et al., Chap. 12).

14.7.1  �Surface Characteristics of Epidermal Cells

Epidermal cells can be coated with smooth wax, which enhances specular scattering 
off the surface of leaves. This type of surface scattering occurs when the leaf is 
oriented to cause forward scattering of incoming beam. Light specularly scattered 
from a leaf surface has the same wavelength composition and intensity as the incom-
ing beam, so it does not provide any information about the interior of the leaf. 
Smooth, waxy leaves having shiny, glabrous surfaces are often found in young 
leaves of broadleaf shrubs, trees, or herbaceous understory species. In woody plants, 
this is generally a mechanism to avoid absorbing excess photosynthetically active 
radiation under high light conditions. Species that have this trait include members 
of Cinnamomum in the laurel family (e.g., Cinnamomum camphora and C. par-
thenoxylon) and Magnolia grandiflora, which are found in warm subtropical habi-
tats, often in the understory.

The waxy cuticle or outer layer of the epidermis produces a 3-D structure of 
waxes and cutin of variable thickness and cell types that create a diverse range of 
textured surfaces and colors. Leaf traits like thick cuticles are common to a wide 
range of plants such as columnar cacti (e.g., Pilosocereus leucocephalus) and 
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conifer species like the blue Colorado spruce, Picea pungens. These plants are often 
found in high light or drought-stressed environments, or at high elevations, where 
they may be exposed to high UV radiation.

14.7.2  �Epidermal Cell Shape and Function

The outer (adaxial) surfaces of epidermal cells form convex shapes. This shape has 
been shown to focus light into the palisade parenchyma cells (Fig. 14.5), increasing 
light capture for photosynthesis (Haberlandt 1914; Martin et al. 1989; Bone et al. 
1989; Poulson and Vogelmann 1990). Light focusing is a widespread property in 
seed plants and is common in prairies, deserts, and deciduous forests (Vogelmann 
et al. 1996b), especially in plants from understory species (e.g., Medicago sativa, 
Impatiens spp.) and other species growing in low light conditions. Light focusing 
increases the photon density (up to 10×) inside the palisade parenchyma cells, and 
given the mobility of chloroplasts in the palisade parenchyma cells, they assist in 
optimizing the light environment within the leaf (Poulson and Vogelmann 1990).

The shape of the epidermal cells affects the focal length. By changing the turgor 
pressure in the epidermal cells, a plant can decrease focal length to increase the 
absorbing area in shaded habitats or increase it to penetrate deeper into the palisade 
parenchyma. This ability increases the probability of light absorption and thus is 
beneficial for leaves in low light environments (Vogelmann et al. 1996a, b; Smith 
et al. 1997).

Fig. 14.5  Refraction of 
rays at two different solar 
zenith angles of 0° 
(perpendicular to surface) 
and 15° off vertical in 
epidermal cells of 
Anthurium warocqueanum. 
Light is focused on the 
palisade parenchyma 
below the single layer of 
epidermal cells. 
(Reproduced from Poulson 
et al. (1989) with 
permission from the 
Optical Society of 
America)
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14.7.3  �Epidermal Cell Index of Refraction

As light passes into and through the epidermal cell walls and into mesophyll cells, 
it is scattered in new directions, based on differences in the velocity with which dif-
ferent wavelengths move between the cell solution and the air spaces. The refractive 
index determines how much the light is bent between different media, as described 
by the Snell–Descartes’ law, which says that the biochemical constituents of the leaf 
determine the speed of light passing through it relative to its speed in a vacuum. The 
effective refractive index of leaves varies with the biochemical composition of dif-
ferent species. It also varies with the wavelength of light, as seen when white light 
is split into its individual colors by a prism. Each wavelength is bent at a different 
angle, from 40° to 42°, causing separation of the colors. The angles of incidence and 
refraction at the interfaces between the mesophyll and the cell walls influence the 
leaf’s optical properties by affecting the probability that light is multiply scattered 
through the cell interior, escapes directly out of the leaf after the first interaction 
with a surface, or is absorbed.

The refractive index is a complex number in which the real part is the refractive 
index and the imaginary part is related to the extinction coefficient (also called the 
mass absorption coefficient), which accounts for light attenuation when photons 
pass through a medium. These values change across the optical spectrum, and it has 
not been easy to determine the refractive index for most plant compounds; only pure 
liquid water has been fully characterized. Thus, in most cases, the refractive index 
and extinction coefficient cannot be measured directly and must be estimated from 
measurements of properties that depend on them, such as reflectance and transmit-
tance. Since the 1950s, a long list of investigators have improved knowledge of the 
real and imaginary parts of the refractive index for water in different regions of the 
electromagnetic spectrum (e.g., Segelstein 1981; Hale and Querry 1973; Wieliczka 
et al. 1989) as shown in Fig. 14.6. Because these coefficients change with the phase 
of water (vapor, liquid, or solid) and its temperature, the phase needs to be specified. 
Curcio and Petty (1951) were among the first to accurately measure absorption 
coefficients for liquid water between 700 nm and 2500 nm at 20 °C; they identified 
absorptions at 760, 970, 1190, 1450, and 1940 nm. Except for the water absorption 
feature at 760 nm, the liquid water bands at 970 and 1190 nm are readily observed 
in canopy and leaf spectra. In the laboratory, we observe the much stronger liquid 
water absorptions at 1450 and 1940 nm; however, in satellite and airborne imagery, 
these wavelengths are usually saturated with atmospheric water vapor, which has 
significantly higher concentration over the full atmospheric column than does liquid 
water in the leaf. As with other molecular absorptions (pigments, liquid water, dry 
biomass, etc.), as the amount of water vapor increases, the wavelength bands on the 
shoulders of the absorption maximum also absorb energy, and the feature expands 
over more wavelengths. Generally, acquisition of airborne imagery is avoided under 
rainfall or high water vapor conditions because clouds obscure the ground in optical 
imagery; hence, archives have little data acquired under high liquid water atmo-
spheric conditions.
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14.8  �The Mesophyll

The leaf mesophyll includes all cells between the two epidermal layers and consists 
of one or more types of ground parenchyma, depending on the cellular specializa-
tion. Because these tissues are arranged differently in dicots, monocots, and coni-
fers, spectral responses frequently differ among the three groups. Other taxa, 
including mosses and ferns, also have different characteristic foliar anatomy and 
biochemistry that allows them to be distinguished from higher plants by their spec-
tral characteristics (Vogelmann and Moss 1993: Bubier et  al. 2007; Van Gaalen 
et al. 2007). Monocots and conifers generally have one type of ground tissue, called 
chlorenchyma, which are chloroplast-containing parenchyma cells, while dicot 
leaves typically have two types of parenchyma cells: elongated densely packed cells 
that are oriented perpendicular to the upper leaf surface and termed palisade paren-
chyma and irregular-shaped cells with a high proportion of air spaces in the tissue, 
called spongy mesophyll (Fig. 14.3). The mesophyll tissue also includes the vascu-
lar tissue that transports water and nutrients into the leaf and carbohydrates out of 
the leaf. These cells are generally within a larger tissue termed the vascular bundle, 
which includes xylem and phloem cells that conduct fluids and fiber cells and tra-
cheids that provide structural support for the leaf and the conducting tissue. The 
conducting cells are connected throughout the leaf in a network of veins.

Fig. 14.6  Liquid water absorption spectrum showing the imaginary part of the refractive index, 
the absorption coefficient. Created 1 July 2008, compiled by Kebes (https://commons.wikimedia.
org/wiki/File:Absorption_spectrum_of_liquid_water.png). Accessed 30 Nov 2018) at English 
Wikipedia CC by SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0). Based on Segelstein 
(1981), Hale and Querry (1973), and Wieliczka et al. (1989); other references at http://omlc.ogi.
edu/spectra/water/abs/index.html
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14.8.1  �Mesophyll Index of Refraction

The refractive indices of cell walls in the visible wavelengths have been empirically 
estimated to be 1.4 (Knipling 1970), 1.425 (Gausman 1974), and 1.415  in living 
cells and 1.53 in dried cell walls (Woolley 1975). It is very difficult to characterize 
the refractive index for pigments, cellulose, cell walls, proteins, etc. given our 
inability to measure them in situ. One reason the refractive index is known for so 
few plant biochemicals is that in their functional state, these cell constituents are 
bound to membranes in complexes with proteins and other molecules, so when they 
are isolated, their 3-D structure has been lost along with their bond structures and 
other molecular interactions. The function of proteins, pigments, enzymes, (includ-
ing ribulase-1,5-bisphosphate carboxylase, RUBP-Case, RuBisCO), and amino 
acids (all of which contain N) depends on their structure, and empirical methods 
have not worked well to obtain their absorption coefficients in vivo, so they cannot 
be accurately predicted in radiative transfer models. It has long been known that N 
is generally allocated proportional to optimal photosynthesis (Field and Mooney 
1986). More than half of all leaf N is allocated to photosynthetic proteins (Makino 
and Osmond 1991; Hikosaka and Terashima 1996). Because N forms many types of 
bonds, it has been necessary to estimate the total concentration of foliar N from 
training data in empirical models, based on either photosynthesis models or statisti-
cal models like partial least squares and other self-learning methods (see Serbin and 
Townsend, Chap. 3). In recent years, statistical methods have become the preferred 
approach to estimate leaf N concentration. These can be accurately applied as long 
as the new data have the same statistical structure and ranges as the original test 
data. The total concentration of foliar N is often predicted directly from empirical 
models using methods like partial least squares regression (Smith et  al. 2002; 
Ollinger and Smith 2005; Singh et  al. 2015) or, more recently, by self-learning 
methods, such as wavelets, used by Cheng et al. (2014) to estimate leaf mass area 
(dry weight · area−1). These methods can easily be overfitted, so care is needed to 
produce a realistic result (Féret et al. 2011). Nonetheless, these models can be accu-
rate for the vegetation types and concentrations they are trained against, and they are 
being used to estimate functional properties and biological diversity (Asner et al. 
2014a, b; Asner and Martin 2016; Féret et al. 2014a, b).

14.8.2  �Molecular Absorption Processes

For a wavelength of light to be absorbed, the amount of energy in a photon must 
equal the specific energy difference between the resting (ground) state of the elec-
tron (S0) and its excited state in an allowable unoccupied higher energy level 
(Fig. 14.7). It is the separation of water into an H+ and an OH– ion that provides the 
electron that is transferred through the electron transport chain in photosynthesis. 
The magnesium ion in the tetrapyrrolic ring of the chlorophyll molecule helps ini-
tially stabilize the charged state long enough to transfer it to a phaeophytin in the 
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excited P680∗ complex and from there to plastoquinol, the first step in the electron 
transport chain. The energy is passed to the cytochrome b6f complex and to plasto-
cyanin in the path to the reaction center at photosystem I (PS I) and, from there, 
ultimately to NADP+ and ADP. In their reduced state, they provide energy to reduce 
CO2 to a 3-C sugar in the Calvin cycle. The enzyme catalyzing the CO2 reduction 
reaction is RuBisCO, which is the most abundant protein on Earth (Ellis 1979; 
Cooper 2000; Raven 2013).

14.8.3  �Leaf Biochemistry and Energy Absorption 
in the Solar Spectrum

The chemistry of plant species may be highly variable in terms of secondary com-
pounds, but essential physiological functions are similar. Because seed plants share 
a common ancestry and face common requirements to survive, younger species 
retain structures based on their genetic heritage to capture and use sunlight. For a 
species to survive in a particular environment, the suite of leaf traits must be consis-
tent with long-term patterns of environmental resources, and investments in plant 
tissues and biochemical composition are determined by metabolic activities, as 
illustrated by correlations among environmental conditions, leaf chemistry, and 
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physiological functions and as shown in the TRY leaf trait database (Kattge et al. 
2011). Studies show loose stoichiometric relationships between different biochemi-
cal elements such as C, N, and phosphorus and growth rates and biomass accumula-
tion. Although the relationships vary with conditions and species, typically, C shows 
relationships with X (biochemical) where the C/X ratio increases under nutrient-
limited growth, increasing light intensity, and partial pressure of CO2 and as a func-
tion the species (Sterner et al. 2002).

We expect that to maintain high levels of productivity, leaf chemistry associated 
with light harvesting and reduction of CO2 must be correlated, such as chlorophyll 
a and b and N concentrations, and correlations with other nutrients and water con-
tent are all available at appropriate levels for leaves to achieve high productivity. 
This is formulated in concepts of plant functional morphology (Tilman 1985; 
Chapin et  al. 1993), which emphasize trade-offs in allocation of resources. For 
example, allocation should shift to shoots under low light and high nutrient condi-
tions and to roots under high light and low nutrient conditions. Ackerly (1999) show 
that under conditions of high fertility, high rates of growth produce self-shading in 
older leaves that are lower in the canopy. This limits available light and results in 
declining rates of assimilation for older leaves. Field (1983) reported that older 
leaves had reduced N concentrations and photosynthetic potential. Other studies 
have shown that canopies with steep light gradients exhibit greater declines in pho-
tosynthetic capacity than those with small gradients (Mooney et al. 1981). These 
relationships result in high nutrient environments being favorable to deciduous trees 
with high growth rates, low C/N ratios, and high rates of leaf and root turnover. 
Under low nutrient conditions and high light environments, plants exhibit slower 
growth rates and higher root/shoot ratios. Competition would favor slow growth and 
low stature species with high nutrient retention and higher C/N ratios. The ratio of 
leaf dry mass per unit leaf area seems to be highly correlated with growth potential, 
and species with low mass per unit area have high potential growth rates and high 
rates of C uptake, while species with high leaf mass area have low growth potential 
but are generally more stress tolerant (Wright et al. 2004). Of course, all species fall 
somewhere on this range, but annuals are expected to be at the higher growth end, 
deciduous woody species are expected to have higher values than evergreen species, 
and those with thick leathery evergreen leaves are expected to score among the low-
est values.

Today, with the development of imaging spectrometry, there is active research 
aimed at understanding the significance of different assemblages of leaf traits (and 
their associated chemistry), the roles they play in adaptation for specific habitats, 
and how they can be detected from spectral patterns measured with optical sensors 
(Féret and Asner 2014a; Asner et al. 2014b, 2015; Serbin et al. 2015; Singh et al. 
2015; Couture et al. 2016). The concept of detecting plant traits has jumped from 
RS and ecological research to rapid testing of crop breeding of new genotypes 
through high-throughput phenotyping (Araus and Cairns 2014; Li et al. 2014). The 
current procedures are derived from precision farming but involve high spatial reso-
lution (using differential GPS) multiple RS inputs, commonly including lidar, ther-
mal infrared, imaging spectrometers, fluorescence imagers, and multiband imagery 
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to rapidly characterize phenotypic variability in relation to desired crop attributes 
like resistance to disease or other stressors while retaining high growth potential 
(Bai et al. 2016; Tanger et al. 2017). Such combined methods would provide better 
resolution of biodiversity in natural systems than use of a single instrument data type.

14.8.4  �Photosynthetic Pigments

Light absorption by pigments in the chloroplast produces a unique absorption pat-
tern in the visible spectrum, with higher absorption in the blue and red wavelengths 
than in the green wavelengths. All higher plants have chlorophyll a and b in their 
photosynthetic tissues. Absorption features in the visible to NIR part of the spec-
trum are predominantly caused by excitation of electrons in a process call electronic 
transitions, in contrast with bending and stretching of molecules in the infra-
red bands.

Chlorophyll b is nearly identical to chlorophyll a (Fig. 14.8) except that an alde-
hyde replaces the methyl on the chlorin ring, opposite the phytol tail. This differ-
ence affects which wavelengths are absorbed; chlorophyll b has peak absorptions at 
450  nm and 642  nm) blue–green), whereas chlorophyll a absorbs primarily at 
590–720 nm (orange–red). Because its absorption peaks in these bands are at longer 
(455 vs. 429 nm) and shorter (642 vs 659 nm) wavelengths than chlorophyll a, chlo-
rophyll b can transfer its excited electron to the reaction center of chlorophyll a 
(P680). The chemical composition and structure of accessory pigments increase the 
range of wavelengths that can capture energy for photosynthesis. While all seed 
plants all share chlorophyll a and b, they differ in the concentrations of the suite of 
carotenoids found in chloroplasts. The composition of chlorophylls, carotenoids, 
and anthocyanin pigments in different species provide a basis for using remote sens-
ing data to differentiate species and perhaps phylogenetic relationships among 
related species and could contribute to biodiversity monitoring.
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The optical properties of pigments have been characterized after extraction from 
chloroplasts (Fig. 14.9). However, these properties are not the same as they are in 
the intact chloroplast and leaf because extraction alters the chemical environment 
and destroys the bond structure in their functional state of the pigment–protein com-
plexes. The light-harvesting pigment–protein complexes are associated with other 
molecules in the chloroplast that affect their three-dimensional configuration and, 
hence, their absorption patterns. The polarity and water content of the solvents used 
to extract chlorophylls also shift their peak absorption wavelengths (Lichtenthaler 
1987, Fig. 14.9).

One alternative to using extractive chemistry to determine the absorption coeffi-
cients of pigments is to use inversion of radiative transfer models. The PROSPECT 
family of models are the most widely used leaf optical properties models; the recent 
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version, PROSPECT-D (Féret et al. 2017), used a large database of leaf spectra and 
chemistry to predict the in-situ absorption coefficients for chlorophyll, carotenoid, 
and anthocyanin pigments. Figure 14.10 shows that the modeled absorption coeffi-
cients of in-situ pigments are broadened and compressed relative to the extracted 
pigments.

14.8.5  �Accessory Pigments

In the light-harvesting complex, chlorophyll b and carotenoids enhance capture of 
photons and pass them to the reaction centers of the two photosystems. Carotenoids 
are produced in plastids in all plant organs (Beisel et al. 2010); however, those in leaf 
chloroplasts are critical to photosynthetic functioning. Carotenoid species are under 
constant synthesis and degradation (Beisel et al. 2010), although total concentrations 
remain approximately equal to the concentration of chlorophyll a. Carotenoid mol-
ecules are composed of 40-C polyene backbone structures with different side chains. 
Common chloroplast carotenes include α-carotene and β-carotene, which have oxy-
gen-free structures and are considered primary carotenoids due to their photosyn-
thetic function. Lutein and other forms of carotenoids that have oxygen in their 
structure are known as xanthophyll pigments; they help regulate energy in the chlo-
roplast (Lichtenthaler 1987). Concentrations of specific carotenoids and pool size 
vary between species (Thayer and Björkman 1990) and with environmental 

Fig. 14.10  Specific absorption coefficients for total chlorophyll and carotenoids derived from 
PROSPECT-D (Féret et al. 2017) are shown in solid lines. Dashed lines are the specific absorption 
coefficients from PROSPECT 5 (Féret et al. 2008). The specific absorption coefficients of antho-
cyanins were measured by Peters and Nobel (2014). (From Féret et al. (2017), reprinted with per-
mission from Elsevier)

S. L. Ustin and S. Jacquemoud



369

conditions such as sun vs. shade, cold temperature, and others (Thayer and Björkman 
1990, Demmig-Adams and Adams 1992, Hannoufa and Houssain 2012). For exam-
ple, some species with shade-grown leaves may have high concentrations of 
α-carotene, and some with sun-grown leaves have only trace concentrations (Thayer 
and Björkman 1990). Comparing among species with shade-grown leaves, concen-
trations of lutein or neoxanthin can vary as much as factors of two (Thayer and 
Björkman 1990). Such differences in concentrations of specific carotenoids and/or 
their pool sizes provide potential for use in identifying biodiversity patterns if remote 
sensing instruments and analytics have power to resolve some of these differences.

14.8.6  �Xanthophyll Pigments

Oxygen-containing carotenoids contribute to regulation of photosynthetic function-
ing. For example, a reversible bond changes between violaxanthin and zeaxanthin 
as light environments change from low light to high light conditions, causing a 
small increase in reflectance around 530 nm that protects the photosynthetic reac-
tion center from the additional light. Gamon et al. (1992) provided the first experi-
mental evidence that this signal could be measured with spectrometers. The 
photochemical reflectance index (PRI) by Gamon et al. (1992) has had extensive 
use and is assumed to follow short-term (minutes to hours) xanthophyll cycle 
changes; over longer periods, the PRI more likely represents changes in chloro-
phyll/carotenoid ratios (Gamon et al. 2015).

14.8.6.1  �Apparent Concentration vs. Actual Concentration

In some cases, the apparent concentration of a chemical is overestimated or under-
estimated due to the probability of light interacting with weakly or strongly absorb-
ing chemicals in nonhomogeneous media. An in  vivo phenomenon termed the 
detour effect increases the probability of absorption for nonhomogeneous distribu-
tions of weakly absorbing molecules (Fukshansky et  al. 1993; Terashima et  al. 
2009). This effect lengthens the optical path length within the leaf and increases 
photon scattering, enhancing the potential for a weakly absorbing molecule to inter-
act with the photon (Terashima et al. 2009). A different phenomenon termed the 
sieve effect has, generally speaking, an opposite effect. The sieve effect decreases 
the expected absorption by concentrating strongly absorbing molecules (pigments, 
water, and other compounds) in a small area of the cell volume (e.g., in organelles). 
Consequently, the molecules have more limited opportunities to interact with a pho-
ton and be absorbed. It effectively reduces the path length, and its effect is most 
noticeable at wavelengths where light is strongly absorbed [e.g., chlorophyll pig-
ments in the blue and red wavelengths (Evans et al. 2004) or water in the SWIR 
(Baranoski and Eng 2007)]. Terashima et al. (2009) show that for weakly absorbed 
light such as in green wavelengths, the loss of absorption due to the sieve effect is 
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minimal, while the gain in absorption by the detour effect is large. The detour effect 
can increase absorption at 550  nm sufficient to rival absorption in blue and red 
bands for photosynthesis. Such interactions make quantifying the concentrations of 
specific compounds and correctly attributing their impact on physiological pro-
cesses subject to potentially significant errors. Despite difficulties in separating the 
effect of each pigment in the leaf, the in vivo spectral shapes of different species are 
fairly conservative within related taxa and are often distinctive of the taxonomic 
group over much of the wavelength region between 450 nm and 700 nm; these pat-
terns have been used to identify genera, species, and even phenotypes (Asner and 
Martin 2016; Junker and Ensminger 2016).

14.8.7  �Non-photosynthetic Pigments

Anthocyanins are a diverse group (more than 540 pigments identified in nature; 
Anderson and Francis 2004) of colored, water-soluble flavonoids found in the vacu-
oles of many seed plants (Hrazdina et al. 1978). Pigment colors range from blue to 
red, depending on pH. Anthocyanins have been associated with many benefits to 
plants (Lee and Gould 2002). They attract pollinators and animals that disperse 
seeds and fruits, protect plants growing at high elevations from UV light, and pro-
tect against cold (Chalker-Scott 1999; Lee 2000). Anthocyanins are common in 
understory plants (Lee 2002). The protective mechanism of anthocyanins in leaves 
develops during early stages of leaf expansion (e.g., young leaves in Fig.  14.2) 
before leaves are photosynthetically functional in some species (Landi et al. 2015). 
Lee and Collins (2001) showed within-family phylogenetic relationships of antho-
cyanins for 399 woody tropical taxa. Other flavonoids also contribute to physiologi-
cal regulation, providing chemical signals to other parts of the plant or to other 
plants, or promoting or inhibiting interactions with other organisms. Because of 
their strong absorption in the red wavelengths, anthocyanins can be confused with 
chlorophylls, resulting in overestimation of photosynthetic capacity. Gitelson et al. 
(Gitelson 2012) developed semi-analytic three-band models to separately estimate 
the concentrations of chlorophylls, carotenoids, and anthocyanin foliar pigments. In 
collaboration with Gitelson, Féret et al. (2017) updated most recent PROSPECT-D 
model (Féret et al. 2017) fusing a linear relationship among six independent data 
sets between predicted and measured anthocyanin. Féret et al. (2017) improved the 
specific absorption coefficients for chlorophylls, carotenoids, and anthocyanins as 
shown in Fig. 14.10.

14.8.8  �Brown Pigments

When pigments and their protein complexes degrade, they form colored chemical 
residues. These are poorly described but constitute the “brown” pigments or colored 
pigment residues in the leaf when it senesces and dies. These result from oxidation 
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and polymerization of cell constituents. Without pigment residues, cellulose and 
other cell wall materials would be a nearly colorless white. Regardless of plant spe-
cies, there is a general trajectory of color change over time. Brown pigment residues 
produce the shades of light tan colors found in recently dead leaves. The residues 
further degrade and become darker over winter. Eventually, they become dark 
brown and chemically and spectrally indistinguishable from humus (Ziechmann 
1964). The visible near-infrared shape of the absorption spectrum for recently dead 
plant residues is generally monotonic, lowest at 400 nm and increasing in a polyno-
mial curve to about 900 nm.

14.9  �Leaf Water Content

The optical properties of water are better known than those of any other plant bio-
chemical. In recent years, there have been several attempts to improve the absorp-
tion coefficients for liquid water; but since there have been no major changes, we 
assume this property is mostly resolved for liquid water.

The optical properties of water are known with much greater precision than are 
those of pigments or other molecules. Water absorptions are due to vibration of the 
molecules, with a vibrational frequency that approximates simple harmonic motion 
when excited by absorbing a quantum of energy. Because hydrogen atoms are small, 
vibrations have large amplitude. Water vapor has three fundamental vibrational 
modes with the dipole moments changing in the direction of the vibration 
(Fig. 14.11). The first mode for liquid water at 25 °C is symmetric stretching; in this 
case, both hydrogen ions vibrate simultaneously, which is at mode ν1 with a 3050 nm 
absorption feature. The second vibrational mode is bending the covalent bonds, 
which occurs when the two hydrogen atoms vibrate by moving toward and away 
from each other. This bending mode is at mode ν2 and it causes a strong absorption 
at 6080 nm. The third mode is asymmetric stretching that results from one hydrogen 
ion being attracted toward the oxygen while the other moves away. The absorption 
wavelength for this ν3 mode is 2870  nm. Vibrational modes for liquid water at 
shorter wavelengths (401–1900 nm) are combination modes. Vibrational modes are 
restricted in liquid water and ice by hydrogen bonds. Libration describes the back-
and-forth rotation of the hydrogen ions in liquid water when its motion is restricted.

The infrared spectrum of water results from vibrational overtones and combina-
tions with librations. Palmer and Williams (1974) conducted a detailed study, 
including verification of prior authors (e.g., Hale and Querry 1973) and reported 94 
optical constants between the UV and the NIR.  They report liquid water values 
related to those in Table 14.1 for measurements taken at 27 °C to be 769, 847, 973, 
980, 1205, 1443, 1786, and 1927 nm. Kou et al. (1993) established absorption coef-
ficients for ice between 1440 and 2500 nm, showing that these peaks are at longer 
wavelengths than those of liquid water when measured at warmer temperatures. 
Wieliczka et al. (1989) developed an improved measuring device, measured the real 
part of the refractive index, and used it with Kramers–Kronig methods to compute 
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the imaginary part. Buiteveld et al. (1994) conducted detailed measurements of pure 
water over temperatures from 25 to 40.5 °C and improved absorption coefficients 
over the range of 300–800 nm. Féret et al. (2017) combined these in developing the 
PROSPECT-D model and tested the inversion on leaf data from six data sets with a 
total of 521 leaves. From this, they derived the absorption coefficients for pure 
water, shown in Fig. 14.12 covering the 400–2500 nm region.

The atmosphere is nearly always saturated with water vapor at 1450  nm and 
1940  nm (Fig.  14.13). Published imaging spectrometer data are typically shown 
with these wavelengths deleted since only in the driest deserts is there a possibility 
of observing the ground surface from airborne or satellite sensors (see also 
Segelstein’s (1981) absorption coefficients, Fig.  14.6). A series of increasingly 
strong water vapor absorptions are observed from the visible region, around 512 nm 
to the SWIR at–2500 nm. Because the absorption maximum of each phase of water 
at 940–1020 nm is offset by 30–40 nm, it is possible to identify and quantify whether 
water is present in vapor, liquid, or solid phases in imaging spectroscopy data hav-
ing bandwidths of 5–10 nm. The second absorption region for detecting the three 
phases of water is located at 1100–1300 nm. Absorptions are too strong beyond 

Fig. 14.11  The vibration modes in liquid water from overtone and combined overtone bands in 
the near-infrared (NIR)

Table 14.1  Vibrational–rotational transitions for water vapor, liquid water (near 100 °C), and ice

Gas Liquid (near 100 °C) Liquid (near 0 °C) Ice Vibrational assignment
Wavelength
(nm)

Wavelength
(nm)

Wavelength
(nm)

Wavelength
(nm)

723 740 770 800 3 ν1 + ν3

823 840 847 909 2 ν1 + ν2 + ν3

1025 967 979 942 2 ν1 + ν3

1250 1160 1200 1135 ν1 + ν2 + ν3

1492 1425 1453 1380 ν1 + ν3

1780 1786 1780 – ν2 + ν3+ νL

1988 1916 1938 1875 ν2 + ν3

From Workman and Weyer (2008), modified with permission from Taylor and Francis
ν1 is the symmetric stretch, ν2 is the bending mode, ν3 is the asymmetric stretch, and
νL is the undefined “intermolecular mode”
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these wavelengths to easily measure them in the optical region. Airborne imaging 
spectrometer data use one or both of the two wavelength regions (940–1020 nm and 
1100–1300 nm) for calibrating an RT model for absorptions and scattering in the 
atmosphere to fit to the measured spectrum. The water vapor, liquid water, and ice 
concentrations are then estimated from the best fit of the RT model.

Fig. 14.12  Féret et al. (2008) developed a new absorption coefficient for water for the PROSPECT 
4 and 5 model built by combining data from Buiteveld et al. (1994) at 400–800 nm, Kou et al. 
(1993) at 800–1232 nm, and Wieliczka et al. (1989) at 1232–2500 nm. The model was evaluated 
by testing on six independent leaf data sets. (Reproduced by permission from Elsevier)
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14.10  �Cell Wall Constituents

The organic compounds that make up the cell wall comprise about 75–90% of the 
dry weight of the leaf. They vary with the location in the leaf, by phenology (sea-
son), with environmental stressors, and by species. They also vary depending on 
whether the walls are primary or secondary structures or part of the vascular bun-
dles. Common constituents include cellulose, hemicellulose, lignin, proteins, and 
pectins. They are large molecules of variable molecular composition; their –OH 
units form extensive hydrogen bonds that link the molecules together, providing 
both flexibility and strength. They form solid structures and are mostly insoluble. 
This makes them poor candidates for spectroscopy, so they are generally measured 
with other techniques.

Cellulose is the most abundant organic polymer on Earth (Klemm et al. 2005). It 
is a polysaccharide forming a straight chain of many to thousands linked D-glucose 
units (Fig. 14.14a) with a nonreducing end (shown on left) linked to repeating glu-
cose units by oxygen and ending with a reducing oxygen ion. The –OH groups form 
hydrogen bonds across chains, holding them together and providing structure. 
Species can be identified based on the relative abundance of these molecules.

Hemicellulose refers to any of several heteropolymers that form the matrix poly-
saccharides in most plant cell walls (Fig. 14.14b). Hemicellulose monomers include 
hexoses and fructoses such as xyloglucans, xylans, and glucans. Figure 14.15 illus-
trates some differences in hemicellulose subunit structures. Their chemical compo-
sition is similar to that of cellulose, so they are spectrally similar and are not 
generally separately identified in leaf spectra. The structure of these molecules, 
however, varies between species, suggesting that they could contribute to identify-
ing biodiversity from RS data and possibility different species or related species.

Lignins are a widely distributed class of complex amorphous organic, branched, 
and cross-linked polymers (Fig. 14.14c) of the approximate composition C31H34O11. 
They form the structural materials of cell walls and other support tissues in leaves, 
such as the walls of tracheids in the vascular system. Lignin is unusually heteroge-
neous in composition and lacks a defined primary molecular structure. Figure 14.14c 
illustrates the cross-linked phenol units that make it very slow to decompose. 
Eventually, the recalcitrant residues become a major fraction of the soil humus. 
Humus is important in the global C cycle for sequestering soil C and nutrients and 
retaining soil moisture. Lignins interact with soil organic matter and N turnover 
rates, and this affects lignin stabilization (Thevenot et al. 2010), so they are impor-
tant in biogeochemical cycling. The variety of lignin molecules found in different 
plant species makes quantification difficult, but some forms are known to occur in 
specific plant clades, providing a basis for estimating diversity between lower vas-
cular plants, conifers and angiosperms (Weng and Chapple 2010) (Fig. 14.15).

Although fundamental frequencies are known for C–H, C=O, C–N, O–H, and 
N–H bonds, dried and powdered leaf materials have overlapping spectral properties 
of various cell wall molecules, proteins, enzymes, amino acids, sugars, starches, 
waxes, and other biomolecules that make it difficult to isolate specific molecules 
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(Curran 1989) and nearly impossible to untangle their spectral properties in intact 
leaves, at least with the spectral resolution and models available today. However, the 
variability in these properties makes it possible to use various regression, classifica-
tion, and self-learning techniques to identify genera or species without knowing 
exactly the biochemical composition that identifies them. Features in the NIR and 
SWIR are relatively weak and spectrally broad, having originated as harmonics 
(integer multiples of the fundamental frequency) and overtones (frequencies higher 
than the fundamental frequency) from wavelengths in the UV and middle-infrared 
ranges (2500–6000 nm).

While the absorption spectra are not identical, cellulose, starch, and sugar have 
strong similarities due to their hydrocarbon chain chemical structures. The 
PROSPECT models continue to consider these compounds together as “dry matter 
content,” given the uncertainty in their absorption coefficients. Retrieval of dry mat-
ter in the models permits estimation of dry biomass; when expressed on a leaf area 
basis, this yields leaf mass area (dry biomass/leaf area), a measure shown to be 
highly correlated with photosynthetic production (Poorter et al. 2009). The presence 
or absence of various lignins, humic acids, and aromatic polyphenols can be deter-
mined from absorptions at 1420 and 1920 nm that are related to O–H bonds and 
C=O vibrations, with shoulders at 1700 and 2100 nm that are related to aromatic 
C–H bonds (Ziechmann 1964). Kokaly and Skidmore (2015) recently reported a 
narrow feature for aromatic C–H bonds in phenolic compounds of various woody 
species and non-hydroxylated aromatics at 1660 nm. Phenolic compounds are gen-
erally considered important in plant defense.

Curran (1989) noted that absorption features in leaves are broadened by multiple 
scattering and often interfere with one another. He cites an example where the first 
overtones of the N-H and O-H stretch overlap for most of their width. Thus, most 
studies have opted to analyze spectral data and relationships by identifying taxa or 
identifying leaf traits using various statistical methods such as multiple stepwise 
regression (e.g., Serrano et al. 2002), partial least squares regression (PLSR; e.g., 
Smith et al. 2002; Ollinger et al. 2008), discriminant function analysis (Filella et al. 
1994), continuum removal (Kokaly and Clark 1999; Kokaly 2001), wavelets (Cheng 
et al. 2011, 2012, 2014; Kalacska et al. 2015), or a combination of PLSR, nested 
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random effects–analysis of variance, and discriminant function analysis (Asner and 
Martin 2011; Asner et al. 2014b). Newer methods include Gaussian methods and 
various types of deep learning (Eches et al. 2011; Verrelst et al. 2012; Bazi et al. 
2014; Sun et al. 2015) Some authors also combine leaf and canopy radiative transfer 
models with empirical models (e.g., Asner et al. 2014a, b; Gatellu-Etchegorry and 
Bruniquel-Pinel 2001). Féret et al. (2008), in developing PROSPECT 5, modified 
the specific absorption coefficient shown in Fig. 14.16 for dry matter (a composite 
representing the chemistry of dry leaves) based on a spectrum from Frederic Baret 
(CNES, unpublished) that Jacquemoud et al. (2009) tested against 245 dry leaves in 
the LOPEX93 database (Hosgood et al. 1995).

14.11  �Conclusion

Researchers have sought to understand the optical properties of plant leaves for the 
past century or more. Great strides have been made in recent years, but much 
remains to be resolved before the full chemistry of leaves can routinely be deter-
mined from spectroscopy. This is a period of dynamic growth, at least partially 
because of the interdisciplinary research community— spanning physics, engineer-
ing, botany, ecology, RS, statistics, computer science, and modeling— that is inter-
ested in solving these problems. Much of the current interest originates from a 
desire to accurately quantify climate change impacts on global ecosystems, better 
understand global biodiversity patterns and their functional traits, find ways to mon-
itor changes in global biodiversity, understand sustainability of production of natu-
ral and agricultural ecosystems, and better understand global biogeochemical 
cycles, specifically the C, N, and water budgets. Based on the number of papers 
estimating biodiversity and the methods applied, it is clear this is an active area of 

Fig. 14.16  Composite 
absorption coefficient for 
dry leaf chemistry used in 
the PROSPECT 4 and 5 
model that was modified 
from earlier PROSPECT 
versions. Jacquemoud et al. 
(2000) and Féret et al. 
(2008), with permission 
from Elsevier
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research but also that we are still at the early stages of using optical features to 
determine alpha, beta, and gamma biodiversity and to develop robust measures for 
more completely understanding species mixtures and biodiversity.
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Chapter 15
Spectral Field Campaigns: Planning 
and Data Collection

Anna K. Schweiger

15.1  �Introduction

Field spectrometry is the measurement of spectral properties of (Earth) surface fea-
tures in the environment (McCoy 2005) and is particularly relevant to plant biodi-
versity detection. Generally, molecular composition and arrangement and scattering 
properties of the measured media influence the spectral response (Goetz et al. 1985). 
Spectral characteristics of plants depend on chemical, structural, anatomical, and 
morphological leaf characteristics and whole plant traits, including plant height and 
shape, canopy architecture, branching structure, and the distribution of foliage 
within canopies (Cavender-Bares et al. 2017; Ustin and Gamon 2010; Serbin and 
Townsend, Chap. 3; Ustin and Jacquemoud, Chap. 14). Plant spectra provide a 
wealth of information about how plants use nutrients, light, and water; how these 
resources are shared within plant communities; and how patterns of resource use 
influence ecosystem functions and processes, including nutrient and water cycling 
and the provisioning of resources and habitat for other trophic levels. Spectroscopy 
of vegetation and plant biodiversity is part of the larger field of biophysics, which 
uses theories and methods of physics, such as optics, to understand biological 
systems.

For a long time, field campaigns were regarded as relatively unimportant for 
remote sensing (RS)  studies. Using the term “ground data” or, more generally, 
“surface reference data” instead of “ground truth” has been suggested, since the lat-
ter implies that field data can be easily collected and are relatively “error-free” 

A. K. Schweiger (*) 
Department of Ecology, Evolution and Behavior, University of Minnesota,  
Saint Paul, MN, USA 

Institut de recherche en biologie végétale, Université de Montréal, Montréal, QC, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33157-3_15&domain=pdf


386

(Justice and Townshend 1981). In RS studies, ground data still are mainly collected 
for accuracy assessments or the validation of map products. Most often, land cover 
or vegetation maps are produced through image interpretation (Bartholomé and 
Belward 2005; Bicheron et al. 2008). Although the importance of accuracy assess-
ments has been pointed out in the literature (Stehman 2001; Justice and Townshend 
1981; Johannsen and Daughtry 2009), validation of map products usually means 
using high-resolution RS images to validate coarser resolution maps (Congalton 
et al. 2014). Map validations are often based on agreement among random points 
(Stehman 2001)—i.e., the extent to which land cover classes that random points fall 
into match the investigator’s interpretation of land cover visible in an image. While 
this procedure makes sense for global map products distinguishing few vegetation 
classes, local map products clearly benefit from the collection of ground data for 
validation. However, the importance of ground reference data goes far beyond map 
accuracy assessments. In fact, ground reference data are essential for remote sens-
ing of plant biodiversity. Collecting ground reference data during spectral field cam-
paigns provides a great opportunity to bridge the gap between RS science and 
ecology, two fields that are uniquely positioned to together develop methods to 
assess biodiversity across large spatial scales, continuously and in a detailed way. 
These assessments are needed to provide information about the current status of 
ecosystems; to predict the distribution of biodiversity, ecosystem function, and eco-
system processes into the future; and to counteract detrimental changes in ecosys-
tems associated with global change. One reason to advocate for field campaigns is 
that remotely sensed images, which provide information pixel by pixel, always 
obscure part of the information on the ground, with the amount of hidden informa-
tion depending on pixel size (Atkinson 1999). In order to understand the informa-
tion provided by remotely sensed images of vegetation, it is critical to study the 
spectral characteristics of plants, their links to plant traits, and their influence on 
ecosystem properties at the sub-pixel level, because spectral variation is progres-
sively lost when spectra of individual plants and non-vegetation features blend 
together at increasing spatial resolutions (Atkinson 1999).

This chapter deals mainly with planning field work and the collection of vegeta-
tion spectra with field spectrometers on the ground, which can subsequently be 
linked to other ecological data and/or RS data to investigate biological phenomena. 
Data collection for airborne spectroscopy is discussed as well, while other RS meth-
ods such as unmanned aerial systems (UASs), towers, and trams are covered in 
more detail in Gamon et al. (Chap. 16). Focus is also placed on data organization 
and management, particularly because these aspects of planning tend to receive less 
attention than, e.g., planning of sample collection, yet they are critical to a success-
ful field campaign.

This chapter was written in full awareness that “good practices” are ever-
evolving. The relative importance of, and acquisition methods for, ground data, 
including ecological data, depends on the research question, on the project goals, as 
well as on study scale, spectroscopic methods and RS data used, budget, time, site 
accessibility, and the personnel and their training (Justice and Townshend 1981). 
Likewise, spectral processing standards evolve and software goes out of date 
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quickly. The examples included in this chapter are intended to illustrate what worked 
in particular situations and to point out pitfalls to avoid; many other approaches are 
as valuable. Flexibility (knowledge about different techniques and tools, a plan B, 
etc.) is important for adjusting to particular circumstances and challenges. The “best 
practice” is probably to learn about several “good practices”; read protocols; talk to 
field ecologists, data administrators, geographic information system (GIS) profes-
sionals, programmers, and communication experts; and get some hands-on experi-
ence. A selection of excellent protocols is available from Australia’s Terrestrial 
Ecosystem Research Network (TERN, http://www.auscover.org.au/wp-content/
uploads/AusCover-Good-Practice-Guidelines_web.pdf), the Field Spectroscopy 
Facility at UK’s Natural Environment Research Council (NERC, http://fsf.nerc.
ac.uk/resources/guides/), the US National Ecological Observatory Network (NEON, 
http://data.neonscience.org/documents), the Global Airborne Observatory (GAO, 
https://gao.asu.edu/spectranomics), and the Canadian Airborne Biodiversity 
Observatory (CABO, http://www.caboscience.org), among others. For more in-
depth coverage of particular topics, see texts on the general principles of RS (e.g., 
Warner et al. 2009) and RS of vegetation (e.g., Jones and Vaughan 2010; Thenkabail 
et al. 2012), field methods in RS (e.g., McCoy 2005), spatial statistics (e.g., Stein 
et al. 2002), vegetation sampling (e.g., Bonham 2013), and plant trait measurements 
(e.g., Perez-Harguindeguy et al. 2013).

15.1.1  �Why Plan? The Data Life Cycle

Central to every field campaign are the research questions and proposed explana-
tions outlined in the form of testable hypotheses. It seems natural that planning the 
science (What data do we need to tackle our questions? What methods are avail-
able?) and planning the logistics (Where do we collect data and when? What 
resources do we need?) often rank above planning data organization and communi-
cation. However, starting a project with a data management plan (DMP) has a series 
of advantages. A DMP integrates several planning aspects in a structured way; it 
ensures the long-term sustainability of a project and its data, which is important not 
only because sustainability furthers scientific advancement (e.g., through data shar-
ing and the reuse of data in meta-analysis) but also because it provides accountabil-
ity for spending resources on research. DMPs are usually required in research 
proposals and make, through self-defined standards on data acquisition, data for-
mats, documentation, and archiving, scientific work, including collaborations, more 
effective.

Funding sources often have their own guidelines about the structure and content 
of a DMP. Although only some of them might be required or relevant for a particular 
project, common components include:

•	 Data collection and documentation: description of the types, formats, and vol-
umes of data and samples and other materials collected, observed, or generated 
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during a project, including existing data sources; description of the methods for 
data collection, observation, and generation, including derivative data; standards 
for ensuring data quality, including repeated measurements, sampling design, 
naming conventions, version control, and folder structure; description of the 
documentation standards for data and metadata format and content; and the soft-
ware used for analyses

•	 Ethical, legal, and security issues: details regarding the protection of privacy, 
confidentiality, security, and intellectual property rights, including information 
about access, use, reuse, and distribution rights; the time of data storage; possible 
changes to these rights over time; and strategies for settling disagreements

•	 Archiving: description of storage needs for data, samples, and other research 
products; plans for long-term preservation, access, and security, including details 
on the parties and organizations involved; backup strategies; selection criteria for 
long-term storage; community standards for documentation; and file formats

A DMP covers all aspects of the data life cycle (Corti et al. 2014), including the 
following phases:

•	 Discovery and planning: designing the research project and planning data man-
agement; planning data collection and consent for data sharing; outlining pro-
cessing protocols and templates; and developing strategies for discovering 
existing data sources

•	 Data collection: collecting data, including observations, measurements, record-
ings, experimentations, and simulations; capturing and creating metadata; and 
acquiring existing third-party data

•	 Data processing and analysis: entering, digitizing, transcribing, and translating 
data and metadata; checking, validating, cleaning, and anonymizing data, where 
necessary; deriving, describing, and documenting data and metadata; analyzing 
and interpreting data; producing research outputs; authoring publications; citing 
data sources; and managing and storing data

•	 Publishing and sharing: establishing copyright of data; creating discoverable 
metadata and user documentations; publishing, sharing, and distributing data and 
metadata; managing access to data; and archiving

•	 Long-term management: migrating data to best format and suitable media; back-
ing up and storing data; gathering and producing metadata and documentation; 
and preserving and curating data

•	 Reusing data: conducting secondary analysis; undertaking follow-up research 
and conducting research reviews; scrutinizing findings; and using data for teach-
ing and learning

Compiling a DMP, establishing guidelines for data and metadata collection and 
documentation, and outlining data use policies early in the planning phase is good 
practice. Starting discussions about how to organize data during or after data collec-
tion is a difficult task; reorganizing file structures, renaming files, and explaining 
and setting up new data structures will rarely be a top priority once data collection 
has started, and new data sets are ready to work with. Many organizations and 
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agencies have their own standards (e.g., https://ngee-arctic.ornl.gov/data-policies) 
and can provide a good starting point when thinking about one’s own.

Communication strategies are another planning aspect that should not be over-
looked (Sect. 15.2.2). Timely communication with site administrators is not only 
central to receiving permits and critical information; it also brings opportunities for 
public engagement during fieldwork, which is one of the most publicly visible parts 
of the scientific process. Even if site visits last for only a couple of hours, planning 
is important. Interactions with the public can happen at any time, so being prepared 
to answer questions and give a brief project overview in plain language, and perhaps 
having a flyer ready to hand out, can provide valuable opportunities for science 
communication. The support of stakeholders, such as site managers, local commu-
nities, and authorities, not only is important for a successful research project but 
also plays a critical role in determining the degree to which ecological research 
enters in public discourse and ultimately results in broader impact. Moreover, field-
work brings opportunities for connecting researchers from different disciplines, 
which can aid in developing a common language, lead to new collaborations, and 
make projects more effective. Good research plans and communication strategies 
increase the chances for fruitful exchanges.

From the perspective of a project’s feasibility in terms of time, personnel, and 
budget, proper planning allows field campaigns to stick to their schedule (which is 
important because ecological processes change over time) and to the collection of 
data that are relevant for answering particular questions (it is easy to keep bolting on 
new measurements that slow down and jeopardize the main focus of a study). 
Moreover, adjusting to particular situations and handling challenges becomes easier 
when a detailed plan and the reasons behind it are clearly communicated to the 
research team. Clarity on the daily responsibilities and the project aims also help to 
keep research teams motivated.

15.1.2  �Spectral Models and Scales of Measurement

Models are simplified descriptions of some aspect of the world and usually how it 
works (Fleishman and Seto 2009; Horning et  al. 2010). Modeling is a multistep 
iterative process to formulate, by abstraction and idealization, a representation of 
reality (conceptual model), specify it mathematically (mathematical model), and 
“solve it,” which usually involves translating the math into computer code (compu-
tational model; Dahabreh et al. 2017). Models are used to test hypotheses, to assess 
relationships between response variables and factors that influence them, to investi-
gate interactions between parts of a system, to make predictions about how a system 
will likely behave in the future, and to test how well models calibrated with data 
from the past fit current conditions (also known as hindcasting). Ideally, a model 
describes the full extent of the phenomenon of interest, but in practice, there are 
limits to the variables that can be determined in any given study. These limits can be 
formally described by model boundaries, which are as any ordering/bordering 
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system an attempt to say something about (or attain power over) what is incom-
pletely understood (or under-controlled; Jones 2009; Szary 2015). For the purpose 
of this chapter, model boundaries illustrate the situations under which a model is 
likely valid to some degree; ideally, likelihood and degree of validity are mathemati-
cally established. Model boundaries can be biological (e.g., specific to ecosystems, 
species, life stages), physical (e.g., specific to latitudinal, geological, hydrological, 
and topographical extents, or specific in time and place), or political (e.g., specific 
to regions or countries). Further, models can be classified as reductionist or system-
based, quantitative or conceptual, correlative or mechanistic, static or dynamic, and 
hybrids thereof (Horning et al. 2010). Model boundaries and modeling approaches 
should be determined early in the planning phase and reported. Some model limita-
tions are likely beyond the researcher’s control, such as instances in which data can 
only be acquired within certain political units. However, the choice of model to 
describe a particular system should be made deliberately; and the modeling approach 
should determine data collection, and not vice versa.

The data needed to investigate a phenomenon of interest with spectroscopy 
depend not only on the research question, the modeling approach, and model bound-
aries but also on the aim of the analysis (e.g., model calibration, validation, interpre-
tation) and the level of spectral data acquisition (leaf-level spectroscopy, proximal, 
airborne, satellite RS; see Sect. 15.3., Gamon et al. Chap. 16). Data for model cali-
bration and validation should match the conceptual model’s boundaries (e.g., the 
model’s temporal and spatial scale) and the modeling approach. For example, while 
quantitative and correlative models are ideally based on relatively uncorrelated or 
orthogonal variables, conceptual and mechanistic models ideally include all vari-
ables relevant for a particular study system. Drawing inferences from models and 
applying them to make predictions are only justifiable when model accuracy has 
been assessed (Horning et al. 2010); a model can give a very accurate description of 
a particular system, but one would not know until its accuracy is assessed.

Model calibration describes the process of determining the values of parameters 
so that model outputs fit the observed data. Internal validation refers to testing a 
model’s ability to explain the data used to populate the model. One common method 
for this is cross-validation. During cross-validation, the data set is split into calibra-
tion and (internal) validation data, the calibration data are used to fit the model, the 
model coefficients are applied to the validation data, and predicted and measured 
values from the validation data are statistically compared to assess model fit. Usually 
the data are split repeatedly, and model statistics (and often model parameters) are 
averaged across the number of splits. In k-fold cross-validation, k indicates the 
number of random data subsets or splits. One subset is omitted from model calibra-
tion and used for validation, and the process is repeated until all subsets have been 
left out once. For small data sets, leave-one-out cross-validation is particularly use-
ful; here, only one sample is omitted from model calibration and used for validation, 
and the process is repeated until all samples have been left out once. In contrast to 
internal validation, external validation refers to a model’s ability to predict observa-
tions not used for model development (Dahabreh et al. 2017), which is critical for 
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evaluating model performance and transferability. External validation involves 
either leaving out samples from the internal calibration-validation process or col-
lecting additional independent data, followed by the evaluation of agreement 
between model output and observed data without any attempt to modify model 
parameters to improve fit.

Spectral models can be categorized into empirical-statistical and physical mod-
els and combinations between the two (see Verrelst et al. 2015). Empirical-statistical 
models are based on the relationship between the spectral behavior of certain spec-
tral bands or the entire spectrum (the predictors or independent variables) and the 
vegetation characteristic(s) of interest (the dependent variable(s)). Empirical-
statistical models generally use regression or clustering algorithms and aim to pre-
dict vegetation characteristics or class membership from a population of spectral 
data that were not included in the modeling process. For calibrating empirical-
statistical models, it is essential to collect representative field data (see Sect. 15.2.3). 
Generally, this means that for the ecosystem, time of year, and area of interest, data 
should cover the range of values for which predictions are intended to be made or 
the number of vegetation classes with suitable replication, as well as the range of 
environmental conditions present in that area. Sample size should be large enough 
and samples distributed evenly across the expected range of values, classes, and 
environmental gradients to allow samples to be left out from model development 
and enable external validation.

Regression techniques are generally used for modeling and predicting continu-
ous vegetation characteristics, such as biomass and chemical or structural composi-
tion (Ustin et al. 2009; Serbin et al. 2014; Schweiger et al. 2015a, b; Couture et al. 
2016), or relative proportions of vegetation properties, such as the abundances of 
species, plant functional types, or vegetation types (Schmidtlein et al. 2012; Lopatin 
et al. 2017; Fassnacht et al. 2016; Féret and Asner 2014; Schweiger et al. 2017). 
Univariate, multivariate, linear, and nonlinear regressions are common for modeling 
and predicting vegetation characteristics from few spectral bands or from spectral 
indices. Spectral indices are used to infer vegetation status, including plant stress, 
and ecosystem parameters, inducing productivity, from empirical or physical rela-
tionships between spectra and plant traits. Many spectral indices have been pub-
lished (see, e.g., https://cubert-gmbh.com/applications/vegetation-indices/). The 
most widely used indices include the normalized difference vegetation index 
(NDVI; Rouse Jr et al. 1974; Tucker 1979), an indicator of vegetation greenness, 
and modified versions such as the soil-adjusted vegetation index (SAVI; Huete 
1988) and the photochemical reflectance index (PRI; Gamon et al. 1992). The NDVI 
and its variants have been shown to correlate well with biomass, LAI, and the pho-
tosynthetic capacity of canopies. The PRI estimates light-use efficiency and can be 
used to estimate gross primary productivity (GPP) and assess environmental stress 
(Sims and Gamon 2002). Spectral indices can also be used directly to estimate cer-
tain environmental characteristics (Anderson et  al. 2010; Pettorelli et  al. 2011; 
Wang et al. 2016). For example, the NDVI has been used for predicting and map-
ping taxonomic diversity (e.g., Gould 2000), the rationale being the expected 
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increase in ecological niches with increasing energy or resources in ecosystems 
(Brown 1981; Wright 1983; Bonn et al. 2004). In addition, advances in sensor tech-
nology allow capturing aboveground productivity in ecologically meaningful units, 
such as the annual amount, variation, and minimum of photosynthetically active 
radiation (fPAR), which has been found to explain global patterns of mammalian, 
amphibian, and avian diversity to a substantial degree (Coops et al. 2018). The idea 
behind spectral indices is that they are generally applicable and transferable; how-
ever, ground reference data are still needed to assess their accuracy. In addition, 
site-specific data are also needed to recalibrate spectral indices, for example, by 
selecting the optimal wavelengths for the sensor used and by estimating site-specific 
model coefficients, because index responses often vary with the particular context.

Latent variable methods, such as partial least squares regression (PLSR) and 
partial least squares discriminant analysis (PLSDA), were developed for chemomet-
rics and specifically deal with the high degree of autocorrelation inherent in data 
with high spectral resolution (Wold et al. 1983; Martens 2001). PLSR is a standard 
method for modeling and predicting continuous vegetation characteristics and 
PLSDA for determining class membership from spectral data. Clustering methods, 
including principal component analysis (PCA), principal coordinate analysis 
(PCoA), and linear discriminant analysis (LDA), are frequently used to explore pat-
terns, such as the degree to which species or plant functional types cluster separately 
from each other in spectral space. In addition, machine learning algorithms [e.g., 
random forest (RF) or support vector machines (SVNs)] and deep learning methods 
[e.g., convolutional neural networks (CNNs)] can be used for classification prob-
lems, including the identification of vegetation types based on physiognomic attri-
butes (e.g., forest, shrubland, grassland, cropland), for the detection of plant 
pathogens and other stresses (Pontius et al. 2005; Herrmann et al. 2018), and for 
species detection (Clark et al. 2005; Fassnacht et al. 2016; Kattenborn et al. 2019).

Physical models are based on causal physical relationships between electromag-
netic radiation and vegetation properties; in spectroscopy, these models are called 
radiative transfer models (RTMs). For leaf optical properties, the RTM PROSPECT 
(Jacquemoud and Baret 1990; Jacquemoud et al. 2009) models leaf reflectance and 
transmittance based on leaf chlorophyll a and b content, “brown pigment” content, 
equivalent water thickness, leaf dry matter content, and a leaf structure parameter 
indicating mesophyll thickness and density. For modeling optical properties of can-
opies, leaf-level RTMs can be combined with canopy RTMs (Jacquemoud et  al. 
2009), which incorporate structural canopy parameters, including leaf area index 
(LAI, the ratio of leaf area to ground surface area), leaf inclination, a hot spot 
parameter (a function of the ratio of leaf size to canopy height), as well as soil 
reflectance and measurement characteristics, including sun and viewing angle. 
Frequently used canopy RTMs include SAIL (Verhoef 1984), GeoSAIL (Huemmrich 
2001), and DART (Gastellu-Etchegorry et al. 2004). Although RTMs do not model 
all interactions between plants and light, because they cannot incorporate all char-
acteristics of leaves and vegetation canopies that influence the spectral response, 
they are useful for simulating spectra and retrieving estimates about plant 
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characteristics. In “forward mode,” RTMs simulate spectra from the vegetation 
parameters incorporated into the model, e.g., by using the expected range of values 
for chlorophyll content, SLA, and other parameters, in certain ecosystems or for 
certain species. In “backward mode,” RTMs estimate vegetation characteristics 
from spectra (Vohland and Jarmer 2008; Weiss et al. 2000). Model inversion is usu-
ally done by running an RTM in forward mode and systematically varying the input 
parameters using lookup tables (LUT) with different trait combinations, until the 
measured spectral signal is sufficiently well approximated. The most plausible input 
parameter combinations can then be averaged to provide estimates of vegetation 
traits. In principle, RTM inversion can be conducted without ground reference data 
collected on-site (e.g., when input parameters can be sourced from plant trait data-
bases, such as TRY; Kattge et al. 2011) or determined based on expert knowledge. 
However, inversion of RTMs is generally an ill-posed problem in the sense that 
there is not a single solution but rather multiple solutions to model inversions (i.e., 
multiple input parameters can yield the same output spectra). Ground reference data 
are important for RTMs because they can be used to limit the ranges of possible 
input values (Combal et al. 2003) and are essential for model validation.

15.2  �Planning Field Campaigns

This section includes thoughts about data organization (Sect. 15.2.1) and communi-
cation (Sect. 15.2.2), before covering the planning of data collection in more detail 
(Sect. 15.2.3).

15.2.1  �Data Organization

Data organization schemes help define and implement guidelines to make project 
management and collaborations more efficient and ensure long-term project sus-
tainability and the reproducibility of research (https://ropensci.github.io/reproduc-
ibility-guide/). Guidelines for folder structure, file names, documentation, file 
formats, data sharing and archiving, version control, and data backups are all part of 
data organization. When archiving is handled by a third party, researchers need to 
consider how to structure data and metadata to match external requirements. 
Generally, it is good practice to work backward and start with identifying where 
project data will be stored long term and which data and metadata standards will 
make long-term storage possible and data sets discoverable and reusable later. For 
instance, it is important to use community standards for taxon names, units, and 
keywords and to store data in file formats that are nonproprietary (open), unen-
crypted, and in common use by the research community. The US Library of 
Congress has released a recommended file format statement (http://www.loc.gov/
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preservation/resources/rfs/) and provides detailed format description documents for 
different categories of digital data, including data sets, images, and geospatial data. 
Once data characteristics for long-term storage are known, one can define short-
term storage structures and the workflow leading from raw data collection, to 
cleaned-up data, to preliminary and final results and products. Data backups should 
match the original data structure so recovery requires only a few minutes. Ideally, 
backups are done automatically, continuously, and incrementally, and data history is 
preserved. Data recovery should be tested on a regular basis. Additionally, it is 
important to check how long data backups are being sustained. When storage space 
is limited, it makes sense to use a time-dependent structure, such as keeping daily 
backups for a year, biweekly backups for 3 years, and monthly backups thereafter. 
Several resources provide details about good data management practices, including 
the Oak Ridge National Laboratory Distributed Active Archive Center (https://daac.
ornl.gov/datamanagement/) and the rOpenSci initiative (https://ropensci.github.io/
reproducibility-guide/).

Fundamentals of data organization include (see, e.g., Cook et al. 2018):

•	 Definition of file/folder content: Keep similar measurements in one data file or 
folder (e.g., if the documentation/metadata for data are the same, then the data 
products should all be part of one data set).

•	 Variable definition: Describe the variable name and explicitly state the units and 
formats in the metadata; use commonly accepted names, units, and formats and 
provide details on the standards used (e.g., SI units, ISO standards, nomenclature 
standards); use format consistently throughout the file; use a consistent code 
(e.g., −9999) for missing values; and use only one variable per measurement 
(e.g., avoid reporting coordinates in more than one coordinate system or time in 
several time zones).

•	 Consistent data organization: Do not change or rearrange columns in the origi-
nal data; include header rows (first row should contain file name, data set title, 
author, date, and companion file names); use column headings to describe the 
content of each column; include one row for variable names and one for variable 
units; and make sure either each row in a file represents a complete record (with 
columns representing all variables that make up the record) or each variable is 
placed in an individual row (e.g., for relational databases).

•	 Stability of file formats: Avoid proprietary formats, and prefer formats encoding 
information with a lossless algorithm (e.g., text, comma/tab-separated values, 
SQL, XML, HTML, TIFF, PNG, GIF, WAV, postscript formats).

•	 Descriptive file names: Use descriptive, unique file names; use ASCII characters 
only and avoid spaces (e.g., start with ISO date, followed by descriptive file 
name: 20180430_siteA_plotB_vegSurvey); remember that file names are not a 
replacement for metadata; explain naming structure of files in metadata; organize 
files logically; and make sure directory structure and file names are both human- 
and machine-readable (check operating or database system limitations on file 
name length and allowed characters).
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•	 Processing information: Consider including information on software or pro-
gramming language and version; provide well-documented code and informa-
tion about data transformation.

•	 Quality checks: Ensure that data are delimited and lined up in proper columns; 
check that there are no missing values (blank cells); scan for impossible and 
anomalous values; perform and review statistical summaries; and map loca-
tion data.

•	 Documentation: Document content of data set; reason for data collection; inves-
tigator; current contact person; time, location, and frequency of data collection; 
spatial resolution of data; sampling design; measurement protocol and methods 
used, including references; processing information; uncertainty, precision, accu-
racy, and known problems with the data set; processing information; assump-
tions regarding spatial and temporal representativeness; data use and distribution 
policy; ancestors and offspring of data set (including references to 
publications).

•	 Data protection: Create backup copies often and without user interference (auto-
matically, continuously, incrementally); three copies (original, on-site external, 
off-site) are ideal; test restoring information; and use checksums to ensure that 
copies are identical.

•	 Data preservation: Preserve well-structured data files with variables, units, and 
values defined; documentation and metadata records; materials from project 
wiki/websites; files describing the project, protocols, and field sites (including 
photos); and project proposal (at least parts) and publications in open-access 
archives. Check platform standards for data archiving beforehand.

The best way to organize data depends on the project, size of the team, and 
degree of interaction among team members, among other things. It is good practice 
to think about ways to organize data early in the project-planning phase and to 
include at least the core project team in these discussions. However, differences in 
personal work styles can be a challenge for reaching agreements; the larger the 
team, the more difficult this becomes. In such cases, top-down approaches to data 
organization can be a good option, especially ones that have been tested before. 
Laying out data organization schemes at an early project stage and inviting people’s 
feedback at this stage is good practice. Clearly, there should be room for discussion 
during later project stages as well (particularly when the existing organization 
scheme is not working as expected), but generally adjustments become more com-
plicated the longer projects are running. Data organization schemes are intended to 
make daily workflows, data exchange, and data archiving easier; they should not 
cause an extra workload. Research teams are much more likely to adapt a particular 
organizing scheme when it is simple and intuitive, and everyone is much more likely 
to stick to a system when its benefits are obvious. In the end, even the best organiza-
tion structure fails when no one is following it.

15  Spectral Field Campaigns: Planning and Data Collection



396

Box 15.1  An Example of Folder Structure
It can be advantageous for research groups and institutions to implement com-
mon data standards and a file structure that forms the backbone of a data 
organization scheme and does not have to be discussed for every new project. 
Data standards also promote reproducible research. One option is to set up file 
directories separated by content. The example below structures a higher-level 
directory (e.g., the project directory) into docu_work, docu_pub, orig_data, 
data_work, data_pub, gis_work, gis_pub, maps, and printout folders. The key 
feature of this structure is the distinction between work folders, containing 
work in progress and intermediate results, and pub folders, containing the 
final versions and results. After the completion of a project, the orig_data, 
maps, printout, and all pub folders are archived (publicly and internally), 
while all work folders get deleted from a public or shared drive. Backups are 
kept at a certain frequency for a certain amount of time (e.g., daily backups 
for a year, biweekly backups for 3 years, monthly backups for 10 years), and 
personal copies can of course be kept as long as necessary. A folder structure 
like this makes archiving data easy because at each project stage it is clear 
which data sets, documents, and products will be preserved. The pub, orig_
data, and maps folders should contain everything a person without knowledge 
about the project would need to repeat the analysis, including basic project 
background and workflow descriptions in the docu_pub folder, but nothing 
unnecessary, such as intermediate results. One testable reproducibility goal 
could be that a person with appropriate analytical skills but without any infor-
mation about the project would be able to re-create and explain a main result, 
including the rationale behind the analysis, after 1 workday without any exter-
nal help. For GIS heavy projects, it may make sense to separate analysis, 
results, and products based on geospatial data from those using other data 
sources. In this example, map products are reproducible based on data from 
gis_pub and the layouts found in the maps folder.

Short Description of Contents and Management  
of Example Folder Structure
Folder 
type Content description and management

docu 
folders

These are for the proposal, project descriptions, documentation of workflows, 
planning documents, minutes of meetings, manuscripts, photos, etc. File names 
could, for example, start with the ISO date followed by a descriptive name. Files 
are usually organized into subfolders. Typical file formats include .doc, .txt.,  
.pdf, and .tiff. The docu_work folder is deleted after the project is finished. The 
docu_pub folder contains the final versions in a non-editable format, such as  
.pdf. It should contain the essentials of the project background and all workflows 
needed to repeat the analysis; detailed descriptions should either be left out or 
clearly flagged, e.g., as “additional information.” The docu_pub folder also 
includes information about the use of corporate or project identity styles (use of 
logos, colors, fonts, etc.). This folder gets archived after the project is finished
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15.2.2  �Communication

Communicating plans for fieldwork and applying for necessary permits in a timely 
manner avoids unnecessary complications. Essentially, the earlier researchers get in 
touch with site administrators, the better. Regulations vary, but obtaining necessary 
permits can take months, especially in areas with a high protection status. Often, 
research proposals are evaluated by a panel. However, it is good practice to get in 
touch with site administrators before writing a detailed proposal because local regu-
lations might influence project plans, including changes to the location, timing, and 
duration of data collection; the equipment used; and the number of people on site. 
In addition, it is good practice to figure out logistics, such as transportation of peo-
ple and equipment, early in the planning phase. Early communication provides time 
to understand the rationale behind a research plan and to adjust the plan 

Folder 
type Content description and management

orig_
data 
folder

This folder includes raw data acquired during the project. These data never get 
changed. “Read only” permission is advisable; metadata files describing the 
data sets are critical. It is good practice to check backup copies when new data 
sets are added. From here data can be copied to the data_work folder, e.g., if 
the format needs to be changed or different data sets are being combined into a 
master data set. This folder can contain proprietary file formats, in which case it 
is important to include details about the software and version used to access 
files. This folder gets archived after the project is finished

data 
folders

These are where analyses happen. The folders usually contain subfolders, e.g., 
for code, data input, and data output. Work copies of data copied from 
orig_data are saved here. Metadata describing any changes to the original data 
are important, including variable transformations, references for methodology, 
software, and version used. Typical file formats are .csv and .txt. The data_work 
folder includes preliminary results and is deleted after the project is finished. 
All analysis steps are being documented in the docu folders. The data_pub 
folder contains final scripts, final results, compiled master data sets, etc. This 
folder gets archived after the project is finished

gis 
folders

These are similar to data folders but for geospatial data. This folder contains 
geo data that have been modified from the original data. Processing details are 
included in the metadata; original data remain in orig_data. Typical file formats 
include geotiff, .tiff, and .shp. The gis_work folder is for intermediate steps and 
is deleted after the project is finished. The gis_pub folder is for final results and 
gets archived

maps 
folder

This folder is for data associated with maps, layouts, and styles. It gets archived 
after the project is finished. All paths in maps should refer to data in the 
data_pub or orig_data folders when the project is finished

printout 
folder

This folder contains final products including publications, maps, posters, and 
presentations, usually in a non-editable format. This folder gets archived after 
the project is finished
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appropriately. Often, it is not until details are questioned that it becomes clear which 
aspects of a research plan are critical and which can be handled somewhat more 
flexibly.

For research projects planned on or close to Indigenous lands, it is critical to 
inquire early in the planning process about local procedures and ethical guidelines. 
Generally, site administrators would be the first points of contact and should be 
aware of how to communicate the research objectives to the Indigenous communi-
ties and judge the level of involvement required (e.g., between short- and long-term 
studies). However, it is important for researchers to initiate this inquiry and to seek 
additional guidance if needed. For both short- and long-term projects, familiarizing 
oneself with ethical frameworks for research with Indigenous communities and/or 
on Indigenous lands (e.g., Claw et al. 2018) is good practice.

15.2.3  �Planning Data Collection

Remote sensing of plant biodiversity typically includes the comparison of ecologi-
cal or spectral data collected on the ground with remotely sensed images, often 
through a model that considers scale effects. Two aspects are critical to data collec-
tion: (i) sampling representative areas and/or individual plants that can be aligned 
with the imagery and (ii) sampling at high spatial accuracy and a level of precision 
that matches the sensor. With these two points in mind, the following sections dis-
cuss area selection (Sect. 15.2.3.1); value ranges (Sect. 15.2.3.2), which are impor-
tant for model representativeness and thus also of interest for the validation of 
physical models; and sampling design (Sect. 15.2.3.3), with a particular focus on 
empirical-statistical analyses. Data collection is typically formalized in a sampling 
plan. A sampling plan describes data acquisition, recording, and processing 
(Domburg et al. 1997) and includes the first elements of the data life cycle (see Sect. 
15.1.1). Consequently, the plan will likely include decisions about the area selection 
and variables measured, logistical constraints, sampling and analysis methods, sam-
pling design, sampling protocols, estimation of measurement accuracy/precision, 
and operational costs.

Sampling is a method of selection from a larger population carried out to reduce 
the time and cost of examining the entire population (Justice and Townshend 1981). 
In the case of sampling plant biodiversity at a particular field site, we are generally 
selecting individual plants to represent local populations of a set of species that 
capture the range of functional and phylogenetic variation in a site or represent the 
dominant species. Data collection balances accuracy and representativeness against 
time and budget. Two questions are central to planning data collection: (i) Which 
population(s) is (are) best suited to answer the specific research question(s)? and (ii) 
Is (are) the population(s) adequately represented by the sampling scheme? During 
the early planning phase, it is important to get a sense of which environmental fac-
tors cause variation in the samples to be collected and variables to be measured 
(Johannsen and Daughtry 2009) and to choose research sites accordingly. This 
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requires researchers to familiarize themselves with the conditions at the site. It is 
also critical to define at an early planning stage how the data will be analyzed and 
to choose the sampling design and sample size accordingly (see Sect. 15.2.3.3). 
Improper randomization in particular can lead to biased conclusions based on inap-
propriate assumptions (De Gruijter 1999).

15.2.3.1  �Area Selection

It is rarely possible to describe all aspects of an ecological phenomenon of interest 
in a single study. Model boundaries help clarify the conditions under which a model 
is likely valid (see Sect. 15.1.2). Research areas represent conceptual model bound-
aries, including ecosystem(s), plant community(ies), species, and geographic loca-
tion. Although it is good practice to formulate model boundaries first and pick 
research areas accordingly, in practice model boundaries usually need to be adjusted 
after selecting a research area to reflect the conditions at the site. Formulating the 
model first and refining it during the planning process help clarify a study’s limita-
tions; stating them clearly is important for the analysis and further synthesis work.

Once model boundaries have been formulated, it is important to investigate 
which environmental conditions influence the response and explanatory variables in 
the study system and how they are spatially distributed. Generally, it is critical to 
cover the range of environmental conditions, both biotic and abiotic, for which 
model inferences are being made, including the diversity and distribution of vegeta-
tion communities, plant species, successional gradients, soil types, soil moisture 
and nutrient gradients, aspects, slopes, land uses, microclimatic conditions, animal 
communities, pathogens, and other factors determining environmental heterogene-
ity in a study area. Accounting for the variation of every factor might not be possi-
ble, but many environmental factors are correlated. If possible, it is good practice to 
investigate the covariance structure of environmental factors based on previous 
studies and existing data and to focus on a few factors that are expected to have the 
most effect on the phenomenon of interest. Data collection might need to be limited 
to a smaller area than anticipated due to a high degree of environmental heterogene-
ity and/or time constraints, which affects the range of conditions for which conclu-
sions can be drawn. However, it is generally advantageous to work with sound 
models for small areas with a limited degree of environmental variation than to 
work with weaker models for larger areas. Testing model predictions outside the 
model boundaries can provide important insights regarding model transferability, 
the comparability of ecological conditions, and differences and similarities in eco-
system function between areas.

Maps, local sources, and other research groups can provide important informa-
tion regarding environmental variation in a research area. Again, it is helpful to 
contact site administrators early to gain access to resources and build connections to 
other research groups. Local administrators can often give advice regarding the tim-
ing and location of sample collection, including practical considerations such as 
accessibility. Visiting a potential research area can be extremely helpful during the 
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planning phase. Often, it is easier to discuss issues and concerns in person, and see-
ing the conditions on site facilitates decision-making. Joining another research 
group for some time in the field or accompanying a person who knows the area well 
provides a great way to get to know an area. Covering the heterogeneity of a research 
area is important for all aspects of remote sensing of plant biodiversity, including 
collecting spectral references for image processing and sampling ground data (such 
as vegetation spectra and vegetation samples) for model calibration, validation, and 
interpretation. For example, empirical line correction (ELC, Kruse et  al. 1990, 
Broge and Leblanc 2001), a common method for correcting atmospheric and instru-
ment influences on remotely sensed data, utilizes ground measurements of invariant 
surfaces (e.g., pavements, rocky outcrops, snow, water, calibration tarps) that can be 
readily identified in the image and/or for which accurate location data has been 
acquired. As for any empirical method, the performance of ELC depends on the 
representativeness and accuracy of the input data, and model transferability is lim-
ited. Thus, target surfaces for ELC should ideally be distributed across the area of 
interest (e.g., located across all flight lines) and cover differences in altitude, slope, 
and aspect (see Sect. 15.3.3.2).

Sampling biodiversity in a way that fits remotely sensed data means incorporat-
ing the heterogeneity of a research area but also requires thinking about the size and 
shape of sampling units. Generally, sampling units should be delineated to encom-
pass areas with similar environmental conditions. Remotely sensed imagery are 
usually raster data, so ground measurements need to represent areas rather than 
points. The optimal size of the sampling units on the ground depends on the spatial 
heterogeneity and spatial resolution of the imagery. Sampling units that are smaller 
or the same size as the pixels in the imagery are usually unrepresentative (Justice 
and Townshend 1981). Pixel shifts are a common consequence of image processing, 
and averaging RS data across several pixels is common practice for noise reduction. 
As a general guideline, the minimal dimensions of a representative sampling unit 
can be calculated as A = P ∗ (1 + 2 L) (Justice and Townshend 1981), with P being 
the pixel dimensions of the image and L the accuracy of image alignment in number 
of pixels. For example, if the spatial resolution of an image is 3 m and a one-pixel 
shift is expected to occur during image processing, the minimal size of an internally 
homogeneous sampling area would be 3∗(1 + 2 ∗ 1) = 9 m × 9 m. This makes it 
possible to capture similar environmental conditions even when the image pixel that 
should align with the sampling unit’s center pixel has shifted one pixel in either 
direction or when averaging the center pixel and its neighboring pixels (Fig. 15.1). 
In this particular context, internal homogeneity does not mean that the sampling 
unit can only consist of one particular feature but rather that all features should be 
evenly distributed throughout the unit. In other words, to be considered internally 
homogeneous, a sampling unit does not have to consist of a single plant species of 
one particular age or size class; it can consist of different species and individuals as 
long as their spatial distribution is comparable among the pixels within that unit. For 
example, the center pixel in Fig. 15.1a is not representative for the sampling unit 
because species abundance varies among the nine pixels; the sampling area is inter-
nally heterogeneous. In contrast, the center pixel in Fig. 15.1b is representative for 
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the sampling unit because species abundance is similar among the nine pixels; the 
sampling area is internally homogeneous.

Another way to determine the minimum size of sampling units for RS studies are 
structural cells, which are defined as area units that are large enough to fully capture 
the variation within one particular feature on the ground, such as the variation in the 
spatial distribution of individual plant species within a plant community or the vari-
ation in the terrain characteristics within a particular topographic feature (Grabau 
and Rushing 1968). If the size of a structural cell is larger than the image pixel plus 
its accuracy buffer, structural cells should be preferred; their size can vary depend-
ing on the variation of the environmental feature of interest. It is also worth men-
tioning that pixels as seen by a sensor are not square but elliptic and that surrounding 
pixels contribute substantially to the signal detected per focus pixel (Inamdar et al. 
2020). Theoretically, elliptic or hexagonal sampling units, representing shapes that 
are frequent in nature, should capture local environmental conditions better than 
square plots. However, since remotely sensed images are usually subsampled to 
make pixels quadratic, a case for square sampling plots can be made. As pointed out 
earlier (Sect. 15.1.2), drawing hard boundaries around any natural feature is notori-
ously flawed because gradients are the norm and abrupt changes the exception. 
Thus, it is good practice to specifically sample ecotones and other transition zones 
if possible—or, if not, to acknowledge that a model might not be representative for 
transition zones when they are not sampled. Generally, a sampling unit can be con-
sidered adequately described when measurements within that unit cover the varia-
tion of the characteristic of interest. Thus, it is not necessary to sample entire 
sampling units when they are internally homogeneous (Fig. 15.1b). For example, 
when the plant species composition in every 1 m2 in a 9 m × 9 m research plot 
closely resembles that of every other 1  m2, it is sufficient to conduct a species 

Fig. 15.1  (a, b) Internally heterogeneous and homogeneous sampling units. (Adapted from 
Justice and Townshend 1981)
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inventory within 1 m2, ideally in the plot center. Likewise, it can be expected that the 
chemical composition of the biomass clipped in a 1 m × 20 cm strip in the central 
1 m2 is representative for the chemical composition of the vegetation in the entire 
9 m × 9 m plot, given that the clip strip captures the variation in species composi-
tion, height, and age-class distribution within the central 1 m2.

The accuracy and precision of the surveying equipment used for measuring plot 
coordinates is another aspect to consider when determining the minimal size of 
homogeneous sampling units; ideally, measurement errors should be estimated 
under field conditions and added to the minimal size of the sampling unit. 
Additionally, edge effects influence remotely sensed data. Sampling units should be 
placed sufficiently far from landscape features, such as open soil, gravel, snow, 
water, large rocks, roads, footpaths, bridges, and trees (when working in grass-
lands), that influence the spectral properties of adjacent areas. Depending on the 
time of day of image acquisition, shadow effects from tall objects such as trees, 
mountains, or buildings need to be taken into account as well.

15.2.3.2  �Range of Values

For the remote sensing of biodiversity, the range of conditions (time of year, value 
range, species, and environmental context) used to calibrate a model should cover 
the range of conditions for which inferences or predictions should be made. For 
example, extrapolating beyond the range of values relies on the assumption that the 
estimated relationship holds beyond the investigated range. This cannot be assumed 
without additional information, because nonlinearities (e.g., saturating curves) are 
common in ecological data, especially when covering large areas and multiple envi-
ronmental gradients and ecosystems.

For modeling continuous data with regression-style empirical-statistical 
approaches, the sampling design should cover the expected range of values in the 
area of interest with a sufficient number of evenly distributed samples. Predictions 
outside the calibrated range are not reliable because deviations from the 1:1 line 
between measured and predicted values (Fig. 15.2a) increase at the lower and upper 
ends of the distribution (Fig. 15.2b). During model validation the entire range of 
values should be covered as well, specifically paying attention to the value range 
most important for the research question(s). When the tails of the distribution are of 
interest for predictions, it is good practice to include a number of extreme values in 
the validation. These values can be used for updating the model, extending model 
validity beyond the previously calibrated range or beyond previously covered envi-
ronmental contexts (Fig. 15.3c).

However, a larger range of values and environmental contexts is not automati-
cally better. Empirical-statistical models are context specific. Transferability beyond 
the time of year, value range, species, and environmental context for which they are 
calibrated cannot be assumed without a test. The power of empirical-statistical 
methods lies in their ability to fit the data. Thus, empirical-statistical models should 
be calibrated for the range of values and the environmental conditions that are most 
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relevant for answering a specific research question. Extending the calibrated range 
beyond the range of values for which predictions are being made generally decreases 
model accuracy for these values, as compared to a more narrowly defined model 
that fits that range.

For classification models, including empirical-statistical clustering and super-
vised classification methods, covering all classes of interest with a similar and suf-
ficiently large number of samples is also important. However, the range of values/
environmental conditions question is more nuanced. On the one hand, it can be 
advantageous to include all major classes as end-members for classification, even 
when not all of them are of interest for prediction. For example, when the aim is to 
differentiate broadleaf and needleleaf forest using remotely sensed imagery, it 
makes sense to include other classes present in the image, such as grasslands, roads, 
and water bodies, as well. The reason is that when broadleaf and needleleaf forest 
are the only two classes used for model calibration, the model will, when applied to 
the full image, try to assign grassland, road, and water pixels to these two forest 
types, decreasing model accuracy. On the other hand, too many extra classes can 
make it difficult for a model to differentiate among the classes of interest. If one is 
interested in differentiating two forest types, it would probably not make sense to 
use tree species as input classes, because a species differentiation model is likely 
overall less accurate than a model trained on just the two forest types of interest. 
Stepwise approaches to such classification problems are often helpful. First, one 
could differentiate broader classes such as vegetation, roads, and water bodies from 
each other; then, forest from grassland within the vegetation class; and finally dif-
ferent forest types within the forest class (for more details see textbooks on remote 
sensing of vegetation, e.g., Jones and Vaughan 2010; Thenkabail et al. 2012, and 
specific topics, such as on deep learning approaches to image classification, e.g., 
Cholet and Allair 2018).

Areas from within the calibrated value range are usually prioritized during model 
interpretation. Nevertheless, visits to areas with vegetation or other site characteris-
tics at the edge of or beyond the calibrated range can be insightful regarding the 
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Fig. 15.2  (a) A calibrated model (solid black line) generally deviates to some degree from the 
ideal 1:1 relationship (dashed black line) between measured and predicted values; (b) the deviation 
becomes more pronounced when predicting samples outside the calibrated range of values (red 
dots); (c) using the measured values of these samples (green dots) for calibrating a new model 
extends the range of values for which the model is valid (green solid line; note that in this case the 
samples are not evenly distributed such that model performance in the gaps of the value range, i.e., 
between black and green points, is unknown)
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limits of a model’s applicability. Field visits are ideal for investigating how environ-
mental context and time of year influence model performance and for determining 
under which conditions a model performs well or poorly.

15.2.3.3  �Sampling Design

A good approach to deciding on a sampling design and to planning data collection 
for remote sensing of plant biodiversity in general is to start at the end and think 
about (i) what type of modeling result or product would be most useful with respect 
to the research question (such as a hypothesis test at a given significance level or a 
map of a variable with a given accuracy), (ii) what kind of data analysis would lead 
to that result, (iii) what data properties are needed for the specific analysis, and (iv) 
how these data can be collected efficiently (De Gruijter 1999).

In a spatial context, a sampling design assigns a probability of selection to any 
set of points in a research area, while a sampling strategy is defined as the combina-
tion of sampling design and the estimator of the variable of interest, for which sta-
tistical quality measures (such as bias or variance) can be evaluated (De Gruijter 
1999). Sampling designs can be model-based or design-based; the two approaches 
use different sources of randomness for sample selection and model inferences 
(Brus and DeGruijter 1993; Domburg et al. 1997). Harnessing as much information 
about spatial variation as possible, including maps of the study region and theory 
about spatial patterns, facilitates finding an efficient sampling design for both 
model- and design-based sampling strategies.

Model-based sampling is based on geostatistical theory and evaluates uncertain-
ties by using a fixed set of sampling points while the pattern of the values of interest 
varies according to a defined random model of spatial variation (De Gruijter 1999). 
Model-based sampling strategies are, for example, used for kriging, a spatial inter-
polation method that uses measured point values to estimate unknown points on a 
surface. The ideal situation for using a model-based sampling scheme is when the 
desired result should be the prediction of values at individual points or of the entire 
spatial distribution of values in the research area (i.e., a map), when a large number 
of sample points can be afforded to calculate the variogram (~100–150 sample 
points, Webster and Oliver 1992), and, most importantly, when a reliable model of 
spatial variation is available, the spatial autocorrelation is high, and there is a strong 
association between the model of spatial variation and the variable of interest. The 
association between a geostatistical model and the variable of interest is particularly 
important, because the final inferences about the spatial distribution of the variable 
of interest are based on the model of spatial variation (De Gruijter 1999; Atkinson 
1999). However, it is often difficult to decide if model assumptions are acceptable 
because several decisions for defining the spatial structure (e.g., about stationarity, 
isotropy, and the variogram) are subjective (Brus and DeGruijter 1993).

Ecological systems are often too complex to use model-based inference with 
much confidence (Theobald et  al. 2007). Nevertheless, if a tight relationship 
between a geostatistical model and nature is expected, model-based sampling 
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schemes are useful, for example, to find at a defined accuracy the optimal sampling 
grid orientation and spacing for kriging methods (see, e.g., Papritz and Stein 1999) 
and to define ideal locations for additional sampling points when some sampling 
points are predefined or spatially fixed. Moreover, model-based sampling encom-
passes methods such as convenience sampling (sampling at locations that are easy 
to reach) and purposive sampling (sampling sites chosen subjectively to represent 
“typical” conditions). Although no formal statement of representativeness can be 
made for these methods (Justice and Townshend 1981), and they are not appropriate 
for accuracy assessments (Stehman and Foody 2009), they can provide valuable 
information in a geostatistical context (for an introduction to geostatistics, see, e.g., 
Atkinson 1999, Chun and Griffith 2013).

Design-based sampling is based on classic sampling theory. It evaluates uncer-
tainty by varying the sample points while the underlying values are unknown but 
fixed (De Gruijter 1999). Statistical inferences from design-based sampling are 
valid, regardless of spatial variation and patterns of spatial autocorrelation, because 
no assumptions about spatial structure are being made. Design-based sampling 
schemes can be classified depending on how randomizations are restricted. Two or 
more designs can be combined (De Gruijter 1999; Fig. 15.3):

•	 Simple random sampling (Fig. 15.3a): No restriction is placed on randomization; 
all sample points are selected with equal probability and independently from 
each other.

Fig. 15.3  Examples of sampling designs: (a) simple random, (b) stratified random, (c) two-stage, 
(d) cluster, (e) systematic, and (f) spatial systematic sampling. (Adapted from De Gruijter 1999)
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•	 Stratified random sampling (Fig. 15.3b): The area is divided into subareas (strata; 
small squares), and simple random sampling is performed in each stratum. This 
reduces the variance at the same sampling effort or the sampling effort at the 
same variance. Strata can be based on maps of environmental parameters (soil 
types, vegetation types, aspect, etc.) and can have any shape. Cost functions can 
be included for determining sample size. Generally, more points are sampled in 
larger, more variable, or cheaper to sample strata.

•	 Two-stage sampling (Fig. 15.3c): The area is divided into subareas (also called 
principle units, PUs), but only a random subset of these subareas is sampled; 
within a subarea, sample points are selected with equal probability. This cluster-
ing of points is more time-efficient but less precise than simple random sampling.

•	 Cluster sampling (Fig. 15.3d): Predefined sets of points (clusters) are sampled. 
The starting point of each cluster is selected at random; the geometry of the clus-
ter is independent of the starting point (e.g., transects with equidistant points 
extending in opposite, predefined directions from the starting point). The regu-
larity of the clusters makes sampling more time-efficient but less precise than 
simple random sampling.

•	 Systematic sampling (Fig. 15.3e): Similar to cluster sampling, a predefined set of 
points is selected at random, but only one cluster is selected (e.g., a random grid); 
interference with periodic variations can be avoided by combining systematic 
sampling with a random element (e.g., two-stage sampling combined with clus-
ter sampling).

•	 Spatial systematic sampling (Fig. 15.3f): Randomization restrictions are used at 
the coordinate level; the area is split into strata, and one point is selected at ran-
dom. The points in the other strata are not selected independently but follow a 
specific model (e.g., a Markov chain).

It is good practice to conduct a sensitivity analysis for estimating the sample size 
needed to detect differences in the parameter of interest with the desired level of 
confidence (Johannsen and Daughtry 2009). The sample size needed to estimate a 
statistical property with a chosen probability depends on the sampling scheme, the 
desired error rate, and the variation of the ecosystem property of interest (which can 
be approximated from existing data or a pilot study or based on literature values and 
experience). Details for estimating sample sizes for the sampling designs mentioned 
above are given by De Gruijter (1999). However, error rates of spectroscopic mod-
els of vegetation characteristics also depend on the measurement accuracies of veg-
etation and spectral data and the tightness of the association between the property of 
interest and spectral data. For example, as a rule of thumb, the smaller the amount 
of the chemical compound of interest and the less precise the laboratory method 
used to determine that compound, the more samples will be needed for building a 
sound model. Similarly, for classification models, the number of samples needed to 
differentiate classes with a desired accuracy will depend on intra- and interclass 
variation or the distinctiveness of classes. In other words, when projecting samples 
from different classes into spectral (or more generally, feature) space, model accu-
racy for class differentiation depends on the number of classes, the spread of the 
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distribution of values within classes, and the distance among the class centroids. As 
before, the strength of the relationship between classes and their spectral character-
istics and measurement accuracies should be taken into account when deciding on 
sample sizes. As a rule of thumb, a minimum of 50 samples per class and 75–100 
samples per class for more than 12 categories or areas larger than 4000 km2 has been 
suggested (Congalton and Green 1999), but fewer samples can provide sufficient 
accuracy when classes are relatively dissimilar. Tracking error propagation is impor-
tant for assessing the performance of spectral models (Singh et al. 2015, Wang et al. 
2019, Serbin and Townsend, Chap. 3); ideally, the accuracy of laboratory analysis 
should be included in error assessments, as well.

For empirical-statistical models that combine vegetation characteristic and spec-
tral measurements, stratified random sampling is often a good choice. Stratifying a 
research area based on ecologically relevant environmental variation helps cover the 
heterogeneity of a research area and the range of values of the vegetation character-
istics of interest. A range of methods for automating sampling designs are available 
for R, including the packages spsurvey (Kincaid and Olsen 2016), spcosa (Walvoort 
et al. 2010), spatstat (Baddeley and Turner 2005), and spatialEco (Evans 2017), and 
ArcGIS, including the Geospatial Modeling Environment (Beyer 2010) and the 
Reverse Randomized Quadrant-Recursive Raster algorithm (RRQRR, Theobald 
et al. 2007). However, it can be difficult to automate sampling design completely, 
especially in natural ecosystems with limited accessibility. Moreover, for studies 
with a RS component, it can be difficult to select research plots that are internally 
homogeneous and located far enough from objects that influence the spectral signal 
of neighboring pixels (see Sect. 15.2.3.1) automatically. Under such circumstances, 
a mix of automated sampling based on GIS data and informed decision-making 
(convenience/purposive sampling) can be a good option. For example, information 
about environmental factors and gradients influencing the vegetation characteristics 
of interest and other relevant information about the study area, such as accessibility 
and travel time, can be used as input into a GIS and used as strata. Random points 
per stratum can be created automatically and used, for example, to define larger 
polygons within which the exact location of research plots is determined in the field. 
When vegetation characteristics are expected to vary along gradients, cluster sam-
pling of plots at predefined intervals along these transects is a good choice—but 
again, it might be necessary to adjust these distances to avoid objects influencing the 
spectral signal of the plots or to find internally homogeneous areas. In this context, 
areas can be considered “internally homogeneous” when their biotic and abiotic 
characteristics are comparable, which means that they can actually show a high 
degree of small-scale heterogeneity (e.g., situations changing every 5 cm) as long as 
this small-scale heterogeneity creates a similar mosaic at the measurement scale 
(e.g., 1 m2 is comparable to the adjacent 1 m2; see Sect. 15.2.3.1). It is important to 
report the reasons for deviating from common sampling schemes in the methods.

When working at the level of individual plants, sampling random points within 
research plots makes it possible to capture interindividual variation, which can be 
important, for example, when scaling functional traits of individual plants to plot-
level estimates (Wang et  al. 2019; Serbin and Townsend, Chap. 3). Random 
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sampling combined with species identification can also be used as an alternative to 
detailed botanical inventories because species frequencies approximate fractional 
cover when a sufficiently large number of points are sampled within a plot. For 
approximating fractional cover, it is good practice to choose random points (e.g., 
using the point frame method; Heady and Rader 1958; Jonasson 1988) and not ran-
dom individuals within plots, to avoid overrepresenting species with more lateral 
growth. When botanical inventories are available, stratified random sampling within 
plots with plant species as strata followed by abundance weighting based on species 
fractional cover or biomass is a good way for capturing vegetation composition and 
for scaling traits of individuals to plot-level estimates. In plant communities where 
species abundances are unequally distributed, it is important to think about the pros 
and cons of sampling all species vs. sampling the most abundant species and of 
sampling all species at the same frequency vs. sampling more abundant species at 
higher frequencies (Table 15.1).

Table 15.1  Sampling options for several example situations

All species—same 
frequency

Most abundant 
species—same 
frequency

All species—
depending on 
abundance Random point method

•	 Rare species are 
expected to have a 
disproportionally 
large influence on 
the vegetation/
ecosystem 
characteristic of 
interest

•	 Investigating traits 
of species is an 
important part of the 
study

•	 Vegetation 
community traits 
are calculated using 
species means 
multiplied by 
fractional cover or 
biomass, and the 
range of intraspe-
cific variation is 
expected to be 
similar for all 
species

•	 Botanical invento-
ries are available

•	 Species with 
abundances above a 
certain threshold are 
expected to be the 
main source of 
variation influenc-
ing the vegetation/
ecosystem 
characteristic of 
interest

•	 The influence of 
rare species is 
expected to be 
negligible; their 
traits are not 
specifically studied

•	 Vegetation 
community traits 
are calculated using 
species means 
multiplied by 
fractional cover or 
biomass, and the 
range of intraspe-
cific variation is 
expected to be 
similar for all 
species

•	 Botanical invento-
ries are available

•	 The effect of 
species on the 
vegetation/
ecosystem 
characteristic of 
interest is expected 
to depend on their 
abundance

•	 No inventory data 
are available, but 
species can be 
differentiated in the 
field

•	 Investigating traits 
of species or scaling 
traits of individuals 
to plot-level 
(community) 
estimates is not 
important for the 
study, or a 
minimum number 
of samples per 
species is being 
collected

•	 Species functional 
identity and/or 
intraspecific variation 
is expected to capture 
the influence of 
individual taxa on the 
vegetation/ecosystem 
characteristic of 
interest better than 
species mean traits

•	 Taxonomic identity 
of individuals is not 
possible to deter-
mine, or not essential 
for the study

•	 Investigating traits of 
species or scaling 
traits of individuals 
to plot-level 
(community) 
estimates is not 
important for the 
study, or species can 
be differentiated and 
random points are 
being used to 
approximate species 
fractional cover or 
biomass

•	 No inventory data 
are available
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15.3  �Field Data Collection

Spectra of plants can be acquired across scales (see Gamon et al., Chap. 16), includ-
ing at the leaf level, using proximal RS techniques (e.g., handheld spectrometers, 
robotic systems, UASs), airborne instruments, and satellite systems. For leaf-level 
studies, it is often of interest to collect information about taxonomic identity (spe-
cies or clade), functional type (e.g., based on life form, growth form, dispersal type), 
functional traits (e.g., based on samples for chemical or structural analysis, growth 
measurements), developmental stage, and stress symptoms (e.g., signs of disease, 
herbivory, drought). For canopy-level studies, it is common to collect information 
about community composition and cover, spatial arrangement (or clustering), gap 
fractions, plant and canopy architecture (e.g., leaf area index, leaf angle distribution, 
branching structure, stem diameter, stratification), community biomass, and com-
munity traits. Additional data often collected together with vegetation spectra 
include soil characteristics (e.g., chemistry, water content), elevation, slope, and 
aspect. Important metadata include time and precise location, observer, nomencla-
ture used, and photos, from which, for example, cover fractions can be estimated. 
Ideally data are recorded digitally to avoid the time and sources of error associated 
with transcriptions, and it is good practice to develop and test protocols for stan-
dardized data collection. Information should always be recorded as precisely as 
possible. For example, in grasslands it would be unnecessary to record vegetation 
height in classes because recording vegetation height at the cm level takes about the 
same amount of time, and classes can always be aggregated later if needed. Working 
together with other research groups can make it more efficient to collect additional 
data. This requires coordination at an early planning stage.

Offering educational opportunities might be part of the mission of a research 
area, and site administrators might be able to help with hiring students or techni-
cians. However, it is advisable to focus on collecting the most ecologically relevant 
data, using well-trained personnel and sound methods, including appropriate sam-
pling design and large enough sampling size, rather than collecting various kinds of 
data of poorer quality. For studies with a RS element, it is important to acquire 
accurate and precise coordinates of research plots and/or individuals to match their 
locations to the image data. Triangulation can be used to estimate plot coordinates 
from ground control points, and relative positions of individuals within plots can be 
estimated from plot coordinates. The level of accuracy and precision needed depends 
on the spatial resolution of the imagery, but professional surveying equipment can 
be needed. Again, early planning is important, because finding rental equipment can 
become difficult during peak season. Purchasing insurance for expensive equipment 
might be advisable. Research areas might have periodic surveying campaigns. 
Including research plots in such campaigns is a great option but requires marking 
plots temporarily; posts made out of a light but rot-resistant wood (e.g., larch, 
spruce) are well suited for this.

The following sections give some examples about spectral data acquisition at 
different levels of measurement; for details on the collection of ecological, non-
spectral data, see textbooks on ecological methods (e.g., Sala et al. 2000; van der 
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Maarel and Franklin 2012). As mentioned in the introduction (Sect. 15.1), the 
choice of methods will depend on the research question, the site conditions, equip-
ment, and personnel available, among other things. There are many good protocols 
available (see Sect 15.1); familiarizing oneself with a couple of options and their 
advantages and limitations and testing them under specific scenarios is generally 
good practice.

15.3.1  �Leaf-Level Spectroscopy

A typical setup for leaf-level spectroscopy consists of a spectrometer, light source, 
fiber-optic cable, leaf clip or integrating sphere, and user interface. Leaf-level spec-
trometers can be classified into VNIR instruments, usually covering the visible to 
the beginning of the near-infrared (NIR) portion of the electromagnetic spectrum (~ 
350–1000 nm), and full-range instruments, covering additional wavelengths in the 
NIR and the shortwave-infrared (~350–2400 nm). Generally, VNIR instruments use 
a silicon array detector, which does not require cooling, making VNIR instruments 
relatively light and easy to carry. Full-range instruments use additional indium gal-
lium arsenide (InGaAs) photodiodes, which require cooling, to detect the longer 
wavelengths in the less energetic infrared part of the spectrum, making instruments 
heavier and less stable. The conditions at the field site should be kept in mind when 
choosing an instrument. If the spectrometer needs to be carried for longer times and 
does not come with its own backpack, some extra effort is required to figure out a 
good packing solution, especially for the fiber-optic cable, which can be easily dam-
aged. It is good practice to check with the instrument companies if warranties are 
still valid when instruments are transported without their shipping cases; additional 
insurance might be worth considering.

A number of leaf clips are commercially available; some are easier for one per-
son to handle and/or better suited to measure narrow leaves, such as conifer needles 
and grass blades, than others, and there is room for design improvements (e.g., 
using 3D printers). Leaf clip measurements can be used to calculate reflectance (the 
ratio of detected to incident light), which most instruments do internally, while mea-
surements with integrating spheres can be used to calculate reflectance, transmit-
tance, and absorptance. Leaf clip measurements are generally faster. Ideally, leaves 
should cover the entire field of view of the sensor; special protocols are available for 
narrow leaves (Noda et al. 2013). It is important to note that measurements with 
different setups and among different instruments cannot be directly compared (Hovi 
et al. 2017). One relatively laborious way to make measurements comparable (e.g., 
to include data from different instruments in one study) would be estimating empiri-
cal transfer functions. This requires measuring the same leaf samples with the 
instrument setups to be compared. Empirical transfer functions can be estimated for 
each wavelength and applied to transform measurements from one spectrometer 
and setup to the other, given that measurement conditions are comparable between 
model development and application.
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Typically, measurements start with assembling the spectrometer, fiber-optic 
cable, light source, and leaf clip or integrating sphere, turning on the instrument and 
light source, and giving them some time (e.g., around 15–30 minutes) to warm up 
and stabilize. Meanwhile, the user interface can be connected to the spectrometer 
and folders can be organized. For instruments that are operated from a bench, it is 
important to find a stable position; ideally, neither the instrument nor the fiber-optic 
cable should be moved between measurements. The same applies to instruments 
operated from a backpack; the setup should be as consistent and stable as possible. 
To avoid damage to the fibers, it is important to avoid bending fiber-optic cables, 
including at connections between the fibers and the instrument. Generally, it is good 
practice to use and transport fiber-optic cables as stretched out as possible. A good 
option is coiling longer fiber-optic cables loosely while allowing for enough play at 
connections between cable and instruments and between cable and leaf clip/inte-
grating sphere to keep angles around 180°. It is important to keep the fiber-optic 
cable away from branches when walking through vegetation, because it can be 
snagged and broken.

One way to test if the instrument has warmed up and is stabilized is to measure 
an invariant surface, such as a reflectance standard. Before starting sample measure-
ments, it is time to take reference measurements, including measurements of so-
called dark current (the background signal from the instrument), which some 
instruments take automatically, and white references (materials that approximate 
Lambertian surfaces, which reflect light at all angles equally or are perfectly dif-
fuse). Dark current measurements correct for instrument noise, while white refer-
ence measurements determine the light entering an instrument and allow the 
calculation of reflectance (and transmittance). White references are usually made of 
polytetrafluoroethylene, better known by its commercial name Spectralon. They are 
available in different sizes and shapes; some leaf clips have built-in white refer-
ences, but they are difficult to keep clean. It is important to keep white references as 
clean as possible, because even small traces of dirt and oil affect the spectral signal. 
Reference panels should only be held by their sides (touching the surface should be 
avoided), and they should be covered after each measurement. Depending upon 
usage and field conditions, frequent cleaning according to the manufacturer’s 
instructions may be necessary.

Generally, a white reference reading should be made before the first measure-
ment and whenever conditions (e.g., temperature, the arrangement of the fiber-optic 
cable, instrument, or lamp settings) change. However, it might be more practical or 
accurate to take white reference measurements at regular intervals, such as every 
10 minutes, for each sample, or after a certain number of measurements, and to take 
additional measurements when needed. It is good practice to plot the reflectance 
spectrum of each white reference measurement and to save the spectrum. The 
reflectance of the white reference should be around 100% for all wavelengths except 
for the beginning and end of the spectrum, which are generally noisier; deviations 
from 100% or excessive noise can indicate a dirty panel, or issues with the cooling 
system, lamp, instrument setup, or a low battery. Measurements should be taken 
immediately after sample collection, because leaves dry out quickly. For most 
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purposes, if samples need to be stored before measurement, they should be kept 
cool, moist, and dark and measured as soon as possible. It is good practice to keep 
the intensity of the light source at the minimum needed for a good signal-to-noise 
ratio, because leaves can get burned by the lamp. Defining a threshold for a “good” 
measurement, for example, based on the reflectance at the so-called NIR shoulder, 
which is the highest point of the reflectance curve at the beginning of the NIR, can 
be helpful. Spectral measurements should be made under dry conditions; instru-
ments can be damaged by water, and water films alter the spectral characteristics 
of leaves.

Measurement protocols should specify how many leaves per plant to measure 
and which leaves to select. Generally, this means clarifying if a study deals with 
“ideal” or “average” plant individuals and if an entire plant should be characterized 
or only certain layers, such as the top canopy. Measuring mature, healthy, sunlit 
leaves is a good strategy for characterizing species or functional groups. For studies 
dealing with disease detection, asymptomatic and symptomatic leaves should be 
measured, ideally at different stages of the disease. Selecting leaves at random, 
including all ages, canopy layers, and stress levels, can make sense when aiming to 
relate leaf chemistry to ecosystem processes or when scaling leaf-level chemistry to 
plot-level estimates. If the aim is to characterize entire individuals, leaves from all 
canopy layers can be included, with the number of measurements per layer reflect-
ing plant size, growth form, and architectural complexity. However, when leaf-level 
spectra are being matched to spectra acquired with RS, it makes sense to select only 
leaves from the layer that is captured by the sensor (i.e., from the top of the canopy). 
If possible, measuring the midvein should be avoided. Measuring different spots on 
the same leaf is also usually unnecessary, at least for small- to medium-sized leaves, 
because spectral variation at the leaf level is generally small. However, it is impor-
tant to check the quality of every spectrum. Ideally, quality checks are done imme-
diately after each measurement; bad measurement can be flagged for subsequent 
filtering, which considerably reduces preprocessing time.

15.3.2  �Proximal Canopy-Level Spectroscopy

Proximal canopy spectra can be sampled with handheld spectrometers, robotic sys-
tems, and UASs. One important differentiation is between nonimaging and imaging 
systems. Nonimaging spectrometers integrate over a defined amount of time the 
spectral reflectance of an illuminated area; the output is one spectral curve per mea-
surement. Instruments used for leaf-level spectroscopy (Sect. 15.3.1) fall into this 
category. The same instruments can be used in a handheld mode or mounted on a 
platform to sample spectra at the proximal canopy level, and the reach of instru-
ments can be expanded using long fiber-optic cables attached to a beam. Creative 
solutions include mounting a spectrometer on a bike and using it as a mobile plat-
form (see “reflectomobile” in Milton et al. 2009). Imaging spectrometers sample 
spectra in a spatially resolved fashion. The collected data are commonly represented 
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as data cubes, with x- and y-axes representing the spatial extent of the imaged area 
and the z-axis representing the spectral response measured across the wavelength 
range (Vane and Goetz 1988). Commonly used systems are push-broom and whisk-
broom imagers, which are usually operated from a moving platform. Alternatively, 
the imaged scene can move while the imaging spectrometer scans the samples, 
which is, for example, possible using conveyor-belt-like setups in the laboratory.

It is important to know the footprint, or ground field of view (GFOV), of remote 
sensing instruments. For nonimaging systems, the footprint equals the measured 
area on the ground; for imaging systems, it determines image and pixel size. The 
footprint depends on the field of view (FOV) of the sensor and the distance between 
sensor and measured object (h), and it is calculated as GFOV = tan(FOV/2) ∗ h ∗ 2 
(Fig. 15.4). Foreoptic lenses can be used to narrow or expand an instrument’s FOV, 
which is particularly relevant for handheld nonimaging systems. For spectrometers 
operated using robotic systems or UASs, the footprint is typically regulated by 
adjusting the height of the sensor above the ground; the farther away, the larger the 
GFOV, imaged area, and pixel size.

Handheld spectrometers and accessories need to be sturdy and easy to carry, 
particularly when collecting data over longer periods of time and in areas that can-
not be reached by car. Spectrometers covering the VNIR range of the electromag-
netic spectrum are usually small, such that neck straps securely attached to the 
instrument are often sufficient. Full-range spectrometers are heavier and typically 
need to be fit into a backpack, which means that cable connections have to be robust; 

Fig. 15.4  Calculating the ground field of view (GFOV) based on the field of view (FOV) and 
height (h) of the sensor above the ground: GFOV = tan(FOV/2) ∗ h ∗ 2
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the entrance point of the fiber-optic cable in particular needs to be flexible, yet sta-
ble. Furthermore, it is important that the fiber-optic cable can be stored securely 
during transportation to avoid damaging the fibers and that the instrument is prop-
erly ventilated to avoid overheating. Changing the orientation of the fiber-optic 
cable changes the amount of light reaching the detector. Thus, it is good practice to 
ensure that the entire setup can be assembled easily in the same way every time. For 
spectrometers that are being used outside, the exterior should be made of materials 
that do not easily overheat when exposed to sunlight; polymeric surface films that 
provide radiative cooling (Zhai et al. 2017) could reduce the problem of overheating.

Often it is easier to collect data with handheld spectrometers in two-person 
teams, one person carrying the instrument and measuring and the other operating 
the computer and checking the data. However, it can be advantageous to have a 
system in place allowing one person to operate the spectrometer alone when needed. 
Vendor trays are a good option for carrying laptops while taking measurements. 
Small handheld devices can be very useful for collecting data, but their small screens 
make data checks difficult, and it can be impractical to name and rename files on 
small devices. Instrument software using voice control would be an advantage in 
this regard. Furthermore, when one person is operating a portable spectrometer, the 
white reference needs to be securely stored and in reach of the user. It is also impor-
tant that backpacks fit comfortably, which means adjustable straps, cushioning, and 
ventilation. As with leaf-level spectrometers, instrument and light source should be 
switched on at least 15–30 minutes before data collection to allow the instrument to 
warm up and stabilize. Like other passive RS systems, handheld spectrometers 
should ideally be operated under stable illumination conditions, which is rarely pos-
sible. However, clear sky and no haze are a good place to start. Reference measure-
ments (white reference and, if needed, dark current) should be taken before the first 
measurement and whenever illumination or temperature changes (after breaks, 
when adjusting the backpack, changing the sampling position, etc.). Again, it is 
good practice to take references at regular intervals, e.g., every 10 minutes, because 
of changing solar angle, ambient temperature, and sky conditions and to take addi-
tional references when needed. During measurements, the entrance optic of hand-
held systems should be positioned as far away from the body as possible (i.e., by 
stretching out the arm holding the fiber cable) to avoid measuring one’s own shadow. 
In flat terrain, measurements should be taken in nadir position (i.e., with the fiber 
optic pointing directly down). In steep terrain, it is advantageous to point the fiber 
optic at a right angle toward the slope. It is good practice to wear nonreflective 
clothing and shoes in dark shades as stray reflected light off clothing can affect the 
spectral measurements.

At midlatitudes, the best time for measurements, given clear sky, is around solar 
noon (i.e., when the sun is at its highest point in the sky), whereas in the Arctic and 
the Tropics, time of day is usually less important than sky conditions. Generally, at 
midlatitudes, spectral measurements should be taken when the sun elevation angle 
(the angle measured from the horizon to the center of the sun) exceeds 45°; angles 
exceeding around 50° are better. For example, a good time window for canopy spec-
troscopy (sun angle >45°) for Minneapolis, MN, on June 21 would be from around 
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10:00 am to 4:30 pm. At midlatitudes, the longest time window for sun elevation 
angles greater than certain angles occurs around summer solstice, while around the 
equator, it is around the equinox. Calculators for sun position can be found online, 
such as from the National Oceanic and Atmospheric Administration (NOAA, 
https://www.esrl.noaa.gov/gmd/grad/solcalc/).

15.3.3  �Airborne Campaigns

This section covers flight planning and some aspects of reference data collection for 
image processing. Remote sensing of plant biodiversity typically involves matching 
ecological and spectral data collected on the ground to remotely sensed images. Key 
aspects to match ground and remote sensing data include choosing vegetation plots 
that match the spatial resolution of the imagery (i.e., plots that are representative for 
at least one pixel) and collecting accurate coordinate information at a relevant preci-
sion for the remote sensor; this and more is covered in Sect. 15.2.3 and the begin-
ning of Sect. 15.3.

15.3.3.1  �Flight Planning

Flight planning for airborne imaging spectroscopy campaigns starts with deciding 
on the best time window(s) for the flight(s). The ideal time depends on the research 
question, but generally it is when the phenomena of interest are most pronounced. 
For example, for modeling and mapping aboveground productivity, peak biomass 
could be a good time for acquiring airborne images; for differentiating plant spe-
cies, early or late growing season could be the times of year when certain species 
are most distinctive; for modeling and mapping plant disease or plant stress, differ-
ent symptoms could be expressed at specific times of the year.

Schedules for flight crews are usually tight; thus communicating ideal flight win-
dows early (i.e., at least several months in advance) is important. It is also critical to 
communicate flight windows to site administrators as soon as possible (see Sect. 
15.2.2). On the one hand, it might be important to limit disturbance (e.g., trampling 
or destructive sampling) at the site during the week(s) leading up to a flight and to 
have no people and/or equipment on-site during the time of the overflight. On the 
other hand, other research groups might be interested in data collection around the 
time of the overflight. Ideally, airborne data are collected under clear sky conditions 
and low humidity. It is good practice to take the typical weather conditions at the 
site into account and plan flights at a time of year with generally good sky condi-
tions, if possible.

Typically, the next steps of flight planning include determining the desired pixel 
size and drawing the flight lines. The ideal pixel size depends, again, on the goal of 
the study and the study system. Image pixels can be larger for modeling biomass 
and chemical composition at the plant community level than for predicting 
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functional traits or species identity of individuals. The desired pixel size (within the 
limits of instrument and platform) determines flight altitude and swath width. 
Airplanes need to fly lower and slower to acquire images with smaller pixels result-
ing in narrower flight lines. Thus, there is a trade-off between pixel size and the area 
covered with a single flight line or during one flight. Generally, flight lines should 
overlap 15–25% to ensure full area coverage. Flight lines can be stitched together in 
a process called mosaicking, but spectra from the same pixels from different flight 
lines vary, because of changing sun angles and atmospheric conditions over the 
course of the day. In part, these differences can be accounted for during atmospheric 
correction, but not perfectly. Given inevitable constraints, covering a research area 
in fewer flight lines or a single line and working with larger pixels could be an 
option, depending on the phenomenon of interest.

At midlatitudes, flights approximately ±2 h from solar noon are often ideal; solar 
noon times can be looked up, for example, on the NOAA website (https://www.esrl.
noaa.gov/gmd/grad/solcalc/). When images are acquired around solar noon, flight 
lines are often oriented in a north-south direction to align the flight direction with 
the principle plane of the sun and to prevent the plane from casting a shadow on the 
image. However, in areas such as the Tropics, it might be better to fly in the morning 
or afternoon because of cloud formation during the middle of the day. In the morn-
ing, flight lines oriented southeast-northwest are a good option; in the afternoon, 
flight lines oriented southwest-northeast may be preferable. The sun azimuth angle 
(i.e., the angle between the sun’s position and north along the horizon: north equals 
0°, east equals 90°, etc.) can be used as flight-line bearings. Additionally, it is sel-
dom possible for flight crews to commit to specific dates and exact times, so the sun 
azimuth angle for the approximate time of overpass is generally fine as a bearing. 
Drawing separate sets of flight lines for different times of day is also an option. 
Again, information on sun azimuth angles for specific dates, times, and locations 
can be found online. During the time window of the light, it is often a judgment call 
if sky conditions are “good enough” for image acquisition; the costs of having the 
plane, air, and ground crews wait for a delay are important factors to consider. 
Generally, although cumulus clouds obscure parts of the image, they are preferable 
over cirrus or stratus clouds, which keep changing illumination conditions resulting 
in overall low-quality image data.

15.3.3.2  �Reference Data Collection for Image Processing

In summary, the most important steps in image processing are:

•	 Radiometric correction: Sensors record electromagnetic radiation in digital 
numbers (DNs). During radiometric correction, DNs are converted to at-sensor 
radiance using sensor- and pixel-specific radiation sensitivity coefficients. 
Information about the sun’s geometry, including Earth-sun distance and solar 
angle, is used to convert at-sensor radiance to top of the atmosphere (TOA) 
reflectance.
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•	 Spectral correction: Every pixel contains spectral information recorded at 
slightly different wavelengths, which are standardized to a common wavelength 
interval in this step.

•	 Atmospheric correction: Atmospheric correction transforms TOA reflectance to 
surface reflectance using information about atmospheric conditions and aerosol 
properties at the time of image acquisition. This can be done with atmospheric 
radiative transfer models (e.g., MODTRAN, Berk et al. 1987), some of which are 
included in image processing software; dark subtraction, the subtraction of val-
ues from dark image pixels; or ELC (explained below).

•	 Geometric correction (including geometric resampling, orthorectification, and 
georeferencing): Geometric resampling makes pixels square (initially they are 
elliptic). Orthorectification corrects image distortions caused by sensor tilt, flight 
altitude, and changes in surface terrain, creating planimetric images, which allow 
direct measurement of distances, areas, and angles. Geometric resampling and 
orthorectification require information about camera properties, the sensor posi-
tion recorded by the inertial measurement unit (IMU), and an accurate digital 
elevation model (DEM), which provides information about terrain height (eleva-
tion above sea level). Georeferencing aligns images to a specific coordinate sys-
tem. This is frequently done using ground control points (GCPs).

Ground reference data collected for image processing frequently include GCPs 
for georeferencing and reference spectra for image calibration/validation proce-
dures and atmospheric correction with ELC.  Generally, GCPs need to be easily 
identifiable in the acquired images; road intersections, corners of buildings, and 
trees are good choices. Accurate and precise coordinates of GCPs can be either 
determined from existing georeferenced imagery, in which case it is good practice 
to check if the features still exist, or measured on the ground. For ELC, the reflec-
tance of large calibration targets on the ground is measured with a handheld spec-
trometer during the overflight. At-sensor radiance is transformed to ground-level 
reflectance by applying bandwise transformation coefficients estimated based on 
the difference between sensor and calibration target spectra (Smith and Milton 
1999). Essentially, this subtracts atmospheric influences from the spectra recorded 
by the sensor. Calibration targets should meet several requirements. They need to be 
identifiable in the images; when in doubt, location data should be collected. 
Furthermore, calibration targets should allow the extraction of several pixels from 
the image, so they should be sufficiently large (e.g., targets measuring 7 × 7 pixels 
allow using 5 × 5 pixels from the image after removing the pixels at the edges). In 
addition, calibration targets should be Lambertian as possible (i.e., they should 
reflect light equally in all directions, independent of viewing angle). Ideally, calibra-
tion targets should include the range of values in the image, which means including 
targets with low and high reflectance. Good options are calibration tarps in different 
shades (e.g., white, gray, and black) that are as spectrally invariant as possible. Tarps 
can be made of boat canvas (e.g., acrylic-coated woven polyester) and should 
include grommets, so that they can be tightly pulled and secured with pegs. 
Calibration tarps should be placed in flat areas with short vegetation. Ideally, one set 
of tarps is placed in the center of each flight line and measured exactly at the time 
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of overflight, such that each flight line can be corrected separately. However, when 
multiple sets of tarps are not an option, a single set of tarps can be placed in a central 
area instead. Other surfaces can be used for ELC, including water bodies, road inter-
sections, rooftops, snow, and ice. Ideally, these targets are distributed throughout the 
image and are measured at the time of the overpass. However, it might be difficult 
to find already existing calibration targets that are spectrally stable and uniform; for 
example, the reflectance of lakes can vary substantially depending on the distance 
from the shore and currents; snow and ice are often less spectrally uniform than 
expected due to surface irregularities, dust, and algae growth; and asphalt concrete 
varies spectrally depending on the aggregate composition (bitumen varies less). If 
possible, limiting movement and traffic around calibration targets during measure-
ments and image acquisition is advantageous for reducing the amount of dust and 
dirt (e.g., when using calibration tarps or roads), as well as limiting surface distur-
bance and shadow cast (e.g., when using snow). However, prioritizing calibration 
target quality over quantity is good practice. For example, measuring one set of 
spectrally stable tarps in a flat area in the center of an image is preferable over mea-
suring several natural calibration targets that are likely not as spectrally uniform and 
might be difficult to locate precisely.

15.4  �Conclusions

As ecologists and remote sensing scientists are coming together to develop methods 
for the continuous assessment and monitoring of plant biodiversity, connecting the 
local to the global scale, studies of species to communities and ecosystems, and 
ecological resources to human needs and values become more and more feasible. 
Field campaigns are essential to this effect, because only (the repeated process of 
generating) ecological knowledge and data (including spectral measurements of 
plants) make it possible to understand better what is happening to the ecosystems 
and species we care about and why. Thanks to the ecological data revolution, remote 
sensing and organismal data as well as climate, land use, and socioeconomic data 
are becoming increasingly publicly available. At the same time, bioinformatics and 
cyberinfrastructure promote innovative ways for data handling, storage, and visual-
ization and for integrating and analyzing these data across scales. Harnessing this 
amount of data requires developing and documenting data standards that facilitate 
collaborations across disciplines, data integration across sites and scales, data dis-
covery for meta-analysis, and model re-calibrations. This makes the planning of 
data collection with consideration of the data life cycle as important as the data col-
lection itself. It is important in the face of our current and future challenges and 
opens a wealth of opportunities in biodiversity science.
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Chapter 16
Consideration of Scale in Remote Sensing 
of Biodiversity

John A. Gamon, Ran Wang, Hamed Gholizadeh, Brian Zutta, 
Phil A. Townsend, and Jeannine Cavender-Bares

16.1  �Introduction

Biodiversity is critical to ecosystem function and provides many goods and services 
essential to human well-being (Hooper et  al. 2012; Tilman et  al. 2012). Despite 
centuries of effort, we lack a comprehensive account of global biodiversity, at a time 
the world is facing a sixth mass extinction due to human disturbance and climate 
change (Barnosky et  al. 2011). Effective management of biological resources to 
preserve diversity and maintain ecosystem function in a rapidly changing world 
remains difficult, in part due to sampling challenges and lack of globally consistent 
data sets. Sampling biodiversity using traditional field methods alone simply cannot 
address this need, leading to recent calls for remote sensing (RS) as part of a global 
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biodiversity monitoring system (Scholes et  al. 2012; Pereira et  al. 2013; Turner 
2014; Jetz et al. 2016; Geller et al. Chap. 20).

In response to this need for a more complete accounting of biodiversity, there 
have been several recent attempts to define Essential Biodiversity Variables (EBVs), 
many of which involve RS (Pereira et al. 2013; Turner 2014; Vihervaara et al. 2017; 
Fernández et al., Chap. 18). However, most of the appeals for a global biodiversity 
monitoring system involving RS have not fully addressed the topic of how RS would 
be used or what aspects of biodiversity would be measured. A review of the litera-
ture on biodiversity assessment via RS reveals a wide array of methods and defini-
tions of biodiversity (Table 16.1), most of which are strongly scale-dependent in the 
measurements and/or in the definitions of biodiversity. Many of these RS studies do 
not directly address standard biological metrics of species diversity (e.g., alpha or 
beta diversity; Whittaker 1972; see also Chap. 1), but may be indirectly related to 
biodiversity through characterization of habitat, dominant vegetation, or vegetation 
functional traits, some of which can, in principle, be captured with proposed EBVs 
(Pereira et al. 2013; Kissling et al. 2018), but often involve mismatches between 
sampling scales and the biodiversity variables being sampled.

With the advent of hyperspectral sensors and imaging spectrometers, a growing 
number of studies have utilized optical diversity, or the variability in vegetation 
optical properties (also called spectral diversity) to assess species diversity (typi-
cally alpha or beta diversity), or to address plant traits related to functional diversity. 
These methods offer the opportunity to directly detect species and functional diver-
sity, but also require close attention to scale (Asner et al. 2015). In this chapter, our 
primary focus is on these latter RS methods involving optical RS, with the under-
standing that other RS methods can also make important contributions to our under-
standing of biodiversity.

Table 16.1  Examples of biodiversity-related studies using different methods of optical remote 
sensing

Method Reference(s)

Habitat assessment Kerr et al. (2001), Nagendra et al. (2013)
Community composition (dominant 
species mapping)

Wang et al. (2004), Roth et al. (2015), Franklin and 
Ahmed (2018)

Productivity assessment Gould (2000), Psomas et al. (2011), Gaitán et al. 
(2013)

Plant trait assessment Asner and Martin (2009), Singh et al. (2015), 
Chadwick and Asner (2016)

Optical diversity assessment Féret and Asner (2014), Schäfer et al. (2016)

J. Gamon et al.
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16.1.1  �Why a Chapter on Scale?

A key thesis of this chapter is that much of the uncertainty in the RS of biodiversity 
arises from the lack of attention to sampling scale, which affects both traditional 
biodiversity metrics and our ability to detect biodiversity remotely. In most cases, 
the sampling scales of typical satellite or airborne RS methods do not match those 
of our biological definitions or biodiversity measurements on the ground, confound-
ing our interpretation of biodiversity from RS. In part because of scale mismatches, 
the interpretation of remotely sensed data from one time or place often cannot be 
applied to another, and we lack a universal, operational approach to RS of biodiver-
sity. For RS of biodiversity to be meaningful, a careful consideration of scale is 
essential.

The purpose of this chapter is to address this need, with the goal of contributing 
to the design of an effective, operational global biodiversity monitoring system. Our 
primary focus is on optical diversity (a.k.a. “spectral diversity”) using passive opti-
cal RS in the visible to shortwave-infrared (VIS-SWIR) range (400–2500  nm) 
because this approach allows species and functional diversity assessment. However, 
we acknowledge that other methods, including lidar (Asner et  al. 2012; Lausch 
et al., Chap. 13, this volume), can also make important contributions to our under-
standing of biodiversity. Our key examples involve optical studies of terrestrial veg-
etation primarily at the level of alpha and beta diversity (Whittaker 1972), with the 
underlying assumption that vegetation diversity may be related to the diversity of 
other trophic levels via surrogacy (Magurran 2004) or to belowground diversity via 
biogeochemical cycling (Madritch et al. 2014; Madritch et al., Chap. 8). Similarly, 
in aquatic environments optical diversity (often expressed as “ocean color”) can 
reveal dynamic structure related to the distribution of phytoplankton (Moses et al. 
2016; Muller-Karger et al. 2018) and benthic organisms (Goodman and Ustin 2007), 
and scaling principles discussed here may apply in these cases. While a comprehen-
sive assessment of all aspects of biodiversity in all environments is beyond the 
scope of this review, our hope is that the principles discussed here with a primary 
focus on terrestrial vegetation will enable progress toward an operational global 
biodiversity monitoring system involving RS.

16.1.2  �What Is Optical (Spectral) Diversity?

Optical diversity can be defined and measured in many ways. It is often based on 
spectral reflectance of leaves and canopies, in which case the term “spectral diver-
sity” is often applied. One definition is based on the number of different kinds of 
reflectance spectra (“spectral types,” “spectral species,” or “spectral signatures,” 
Fig. 16.1) present in a given area, a direct analogy to the biological concept of spe-
cies diversity (Féret and Asner 2014). The categorical spectral type concept pre-
sumes distinct and stable spectral patterns exist for a given species. However, this is 
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usually not the case, in part because species’ spectra are dynamic and in part because 
intraspecific spectral variation may approach or exceed that of interspecific varia-
tion, particularly when the full range of environmental conditions is expressed 
(Roth et al. 2015). For these reasons, the number of distinguishable spectral types 
does not always match the number of species in a given area.

An alternate definition refers to the amount of spectral variability in a given area 
using statistical metrics of spectral information content, which can be measured 
many ways (Table 16.2). This concept has an early expression in the spectral vari-
ability hypothesis, which stated that variation in spectral characteristics scales with 
species richness (Palmer et al. 2000, 2002). In recent years, this concept has been 
further developed in many studies that explore the links between expressions of 
spectral variability and metrics of biodiversity, typically at the level of alpha or beta 
diversity (Baldeck et al. 2014; Féret and Asner 2014; Wang et al. 2016; Wang et al. 
2018a; Gholizadeh et al. 2019).

Many spectral variability methods derive from information theory, which pro-
vides a rich array of methods for assessing the abstract “information content” or 
“entropy” in a given data set (Table 16.2). One simple method expresses spectral 
variation as the coefficient of variation (CV) spectrum for a given region, which can 
then be averaged into a single metric (Fig. 16.1). At this point, it is not entirely clear 
if there is a “best” method, because most of these methods work to some degree and 
their strength of correlation may vary with the circumstances (e.g., Gholizadeh 
et al. 2018).

The fundamental reason spectral patterns reveal underlying biological diversity 
is that plant reflectance spectra contain information on plant structure and chemical 
composition (Ustin and Jacquemoud, Chap. 14) that can differ slightly between spe-
cies or functional types (Ustin and Gamon 2010) and can indicate different evolu-
tionary histories (Schweiger et al. 2018; Meireles et al., Chap. 7, this volume). Thus, 
another way to utilize spectral information is to directly relate spectral patterns to 
plant functional traits (Serbin and Townsend, Chap. 3), providing a link between 
optical diversity and functional diversity (Cavender-Bares et al. 2017; Schweiger 
et al. 2018).

The topic of how to measure spectral diversity remains an active area of research, 
and the “best” metric is likely to vary depending upon the particular context and 

Fig. 16.1  Top panel: contrasting canopy reflectance spectra of boreal tree seedlings (Picea glauca, 
an evergreen conifer, and Populus tremuloides, a deciduous angiosperm) illustrating spectral 
regions (arrows) influenced by leaf traits (categorized here as pigments, biochemicals, water, and 
structural features). Also shown are examples of green, red, and near-infrared (NIR) bands to illus-
trate the more limited spectral coverage provided by most airborne cameras and many satellite 
sensors. Middle panel: mean (+/− SD) spectral for experimental tree plots of varying species rich-
ness (SR: 1, 2, 5, and 8). Species include Acer negundo, Fraxinus pennsylvanica, Picea glauca, 
Pinus contorta, Populus balsamifera, Populus tremuloides, Larix sibirica, and Prunus virginiana. 
Bottom panel: coefficient of variation (CV) spectra for the same plots. Inset: average CV for each 
level of species richness (1, 2, 5, and 8). (Data from canopy reflectance spectra sampled in 
Edmonton, Alberta, (summer 2013) using a full-range spectrometer (PSR 3500, Spectral Evolution, 
North Andover, MA, USA.). From (DeLancey 2014))
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purpose. Rather than provide a detailed summary of all the possible methods used, 
we present the concept of spectral information content as a viable proxy for multiple 
dimensions of biodiversity at the species, functional, or genetic and phylogenetic 
levels (Cavender-Bares et al. 2017; Schweiger et al. 2018; Cavender-Bares et al., 
Chap. 2, this volume) and note that recent reviews (e.g., Wang and Gamon 2019) 
consider this topic in more detail.

16.2  �What Is “Scale” and Why Is It Important?

“Scale” has several definitions and is used as both a noun and a verb. As a noun, it 
refers to a level of observation and can have several dimensions, including spatial, 
temporal, spectral, and biological. As a verb, it refers to the act of examining a phe-
nomenon at multiple levels, usually referring to transcending spatial scales, as in 
“upscaling” (extrapolation from fine-scale data to a coarser scale) or “downscaling” 
(interpreting underlying patterns or mechanisms from coarse-scale data).

Discussions of scale have a rich history in both biology and RS. In biology, scale 
typically refers to levels of organization (genetic, cellular, organismal, species or 
population, community or ecosystem, etc.). Biodiversity can be defined at many of 
these levels, requiring different study approaches (Bonar et al. 2011). Biological 
systems typically exhibit complex, nonlinear interactions, and feedbacks, resulting 
in emergent properties and thus requiring evaluation across multiple levels of orga-
nization (Heffernan et al. 2014). Scale can also refer to sampling scale, as in the 

Table 16.2  Examples of methods and metrics used to assess optical diversity, several of which are 
based on information content

Method (metric) Reference(s)

Values or variance of vegetation indices (e.g., the 
Normalized Difference Vegetation Index, NDVI, or 
Enhanced Vegetation Index, EVI)

Gould (2000); Fairbanks and McGwire 
(2004); Gaitán et al. (2013); Tuanmu 
and Jetz (2015)

Measures of variance (e.g., coefficient of variation, 
CV)

Rey-Benayas and Pope (1995); Lucas 
and Carter (2008); Somers et al. (2015)

Measures of spectral angle (e.g., Spectral Angle 
Mapper, SAM)

Kruse et al. (1993); Gholizadeh et al. 
(2018)

Measures of area or volume in spectral or principle 
components space (e.g., convex hull area or volume)

Dahlin (2016); Gholizadeh et al. (2018)

Principal components analysis (PCA) Oldeland et al. (2010); Rocchini et al. 
(2011); Asner et al. (2012)

Regression methods (e.g., partial least squares 
regression, PLSR)

Fava et al. (2010)

Spectral classification (clustering) methods Schäfer et al. (2016); Paz-Kagan et al. 
(2017)

Some methods (e.g., principle components, partial least squares analysis, and spectral clustering 
methods) are often used as an initial step in a multistep procedure, and some studies combine more 
than one approach
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grain size and extent of field sampling (Turner et al. 1989). There is an abundant 
literature on the importance of considering scale when exploring ecological phe-
nomena (Ehleringer and Field 1993; Levin 1992) and a number of “scaling rules” 
have emerged. For example, Levin (1992) stated the importance of matching the 
scale of observation to the phenomenon (and grain size or patch size) in question, 
and specific rules of sample grain size have been developed (e.g., O’Neill et  al. 
1996). However, these rules are often violated when remotely sensing biodiversity.

In RS, scale has several aspects or dimensions (Malenovský et al. 2007). The 
spatial dimension typically refers to the pixel size (grain size) and spatial extent of 
a remotely sensed image. The temporal dimension can refer to the time of sampling, 
repeat frequency, or temporal extent of sampling. The spectral dimension includes 
band position, bandwidth (full width half maximum, FWHM, and sampling inter-
val), and range. The directional or angular dimension, including the illumination or 
viewing angle, leading to variations in anisotropic reflectance and the bidirectional 
reflectance distribution function (BRDF), is also an important scale dimension in 
optical RS, as it strongly influences the ability to detect signals present in reflec-
tance spectra (Schaepman-Strub et al. 2006; Malenovský et al. 2007; Gamon 2015). 
These scale dimensions often interact, with the effects of one influencing the effects 
of another, so it is often best to consider multiple scale dimensions together. A con-
sideration of sampling scale in all these dimensions is relevant to a discussion of RS 
of biodiversity. Sampling across scales often reveals critical information that is not 
apparent from a single-scale observation alone. Below, we consider these scale 
effects in more detail by providing examples of how these dimensions impact bio-
diversity assessment from RS.

16.2.1  �Biological Scale

Biodiversity exists across multiple scales of organization from genes to biomes. A 
detailed discussion of the various “dimensions” of biodiversity at different scales of 
organization is beyond the scope of this chapter and has been reviewed elsewhere 
(e.g., Magurran 2004; see also Cavender-Bares et al., Chap. 2, this volume). In the 
context of this chapter, a key challenge lies in matching the scale of the measure-
ment approach to the biological scale of organization, a topic considered in the sec-
tions below.

16.2.2  �Spatial Scale

Optical instruments used for sampling biodiversity range from laboratory spectrom-
eters and proximal field spectrometers to airborne and satellite-based imaging spec-
trometers, with grain sizes (pixel sizes) covering approximately six orders of 
magnitude (Fig.  16.2). If we include the molecular cross-section of DNA (e.g., 
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when determining genetic diversity), our grain sizes span an even wider range, from 
roughly 2 nm (in the case of the DNA double helix; van Holde 1989) to roughly 
1 km (for “Pando,” a large clonal aspen stand (DeWoody et al. 2008), a range of 
approximately 12 orders of magnitude). A rule of thumb for distinguishing spectral 
differences is that the sampling grain size should be smaller than the cross-section 
of the target (e.g., leaf or individual canopy crown in the case of individual plants; 
Woodcock and Strahler 1987). These numbers imply that the sampling grain size 
needs to span an extremely wide range to properly match all our definitions of bio-
diversity. Clearly, this is not possible from a single instrument, but can be consid-
ered in multi-scale field campaigns employing multiple instruments and platforms. 
Additional challenges arise when designing a field campaign to validate remotely 
sensed biodiversity data. Many field sampling methods for species richness entail 
quadrat or transect sampling (Bonar et al. 2011), neither of which is well-matched 
to the size, shape, and location of typical airborne or satellite pixels. Moreover, our 
classical definitions of biodiversity at different scales (alpha, beta, or gamma) reflect 
relative rather than absolute spatial scales and often poorly match the scale of both 
field sampling and RS.  These challenges of scale mismatch abound and require 
careful attention to definitions and sampling protocols.

Similar issues of scale mismatch arise when exploring plant traits with RS. It 
is unclear how well the ability to detect leaf traits transcends spatial scales, with 
some studies suggesting certain leaf traits (nitrogen content) cannot be detected 
at the sampling scale of a typical aircraft or satellite pixel (Knyazikhin et  al. 
2013). However, many leaf traits (if not all) can be detected at the canopy scale 

Fig. 16.2  Schematic of a proposed, multi-scale, global biodiversity monitoring system. Satellite 
imaging spectrometry would provide the context for understanding patterns in time and space, and 
regional and proximal sampling would provide sampling at progressively finer scales. This design 
would be replicated systematically around the world, using field sampling plots for different 
biomes (indicated by parallelograms). Note that spatial scale (sampling grain size, typically mea-
sured as optical cross-section or pixel size) associated with various optical sampling methods span 
roughly six orders of magnitude
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(i.e., the scale of an individual plant crown), particularly when appropriate sam-
pling and scaling methods are followed, suggesting that scale-appropriate RS 
methods can often resolve trait differences associated with functional or species 
diversity (Townsend et al. 2013; Asner et al. 2015). This is particularly relevant 
to airborne data, where pixel sizes often approximate those of individual tree 
crowns, allowing individual traits to be distinguished (Asner et al. 2015; Singh 
et al. 2015), but calls into question the accuracy of trait retrievals when the pixel 
sizes are much larger than individual canopies, as is the case for most sat-
ellite RS.

Not surprisingly, a review of the recent literature suggests strong effects of 
spatial scale on the ability to detect biodiversity using optical RS. Most of this 
research has been conducted in North American prairie, with relatively short-
statured vegetation, so may be biased by the relatively small plant crown sizes 
(roughly 10 cm). One set of studies, conducted using tallgrass prairie species at 
the Cedar Creek Ecosystem Science Reserve in Minnesota (USA), used pixel 
sizes ranging from 1 mm (sampled on the ground) to 1 m (sampled from aircraft) 
and found a significant correlation between optical diversity and alpha diversity 
at finer scales (1 mm to 10 cm), but most of the information on alpha diversity 
was lost at pixel sizes larger than about 10 cm, roughly the size of many plant 
crowns (Fig. 16.3, red line). Another study conducted at Wood River in Nebraska 
(USA) using airborne data found a strong relationship (R2) between optical 
diversity and alpha diversity for prairie species at pixel sizes of 0.5–1  m and 
noted that the optical diversity-alpha diversity relationship was markedly weak-
ened at progressively larger spatial scales (up to 6 m) (Fig. 16.3, black line). A 
third study, conducted at Mattheis Ranch in southern Alberta (Canada), found an 
intermediate relationship between the two other prairie sites (Fig.  16.3, blue 
square).

These studies have significant implications for attempts to sample optical diver-
sity from aircraft or satellite sensors and illustrate the importance of matching sam-
pling scale (pixel size) to crown size when designing airborne campaigns. Clearly, 
there is a strong scale-dependence of the optical diversity-biodiversity relationship, 
but this scale-dependence varies between study sites, even for the same biome (prai-
rie grassland, in this case). These site differences have been attributed to a number 
of possible factors, including the degree of disturbance (fire regimes, invasion by 
exotic weeds, or subsequent weed removal), the size of the plot (sampling extent) 
relative to the pixel (grain) size, and the differences in species richness between 
studies. The Wood River site was less disturbed, with less bare ground and larger, 
more species-rich plots than the Cedar Creek site (Gholizadeh et  al. 2019). It is 
likely that multiple features influence the scale dependence of the optical diversity-
biodiversity relationship, illustrating that the larger context and experimental design 
of a study can matter.

We know less about the scale dependence of these relationships for other biomes 
where explicit scaling experiments involving the RS of biodiversity have not yet 
been conducted. Despite unanswered questions, these experiments in prairie eco-
systems demonstrate the importance of spatial scale and support the idea that can-
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opy crown size is an important factor in scale dependence. These findings have clear 
implications for studies using airborne and satellite platforms where the pixel sizes 
often exceed the crown sizes of common plant species.

16.2.3  �Temporal Scale

The temporal dimension is rarely considered in most RS campaigns; many RS stud-
ies are based on a single overpass (e.g., a single aircraft image or satellite image), or 
at best a few overpasses, limiting the opportunities for examining temporal effects. 

Fig. 16.3  Scale dependence of the optical diversity-biodiversity relationship from three experi-
mental studies in prairie grasslands: Cedar Creek, Minnesota, USA (red), Wood River, Nebraska, 
USA (black), and Mattheis Ranch, Alberta, Canada (blue). (Data combined from Wang et  al. 
(2016) and Gholizadeh et al. (2018, 2019))
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A typical field campaign might focus on an optimal time to collect data from a RS 
perspective (e.g., the dry season in the tropics or the summer growing season in 
higher latitudes). However, biological communities are inherently dynamic, and the 
visibility of different species changes with ontogeny, season, and over longer time 
spans due to disturbance, invasion, succession, climate change, and other processes. 
Consequently, our ability to detect species richness will vary with time, often in 
ways that are poorly understood. The few studies that have investigated the temporal 
aspect of biodiversity using RS or spectral reflectance demonstrate the importance 
of temporal dynamics when examining the optical diversity-biodiversity links.

A study of California chaparral (Zutta 2003) found a clear seasonal dependence 
in the ability to distinguish plant functional types using reflectance spectra 
(Fig.  16.4a). Different methods involving contrasting spectral indices and bands 
yielded distinct seasonal patterns, indicating the importance of the spectral dimen-
sion (further discussed below) and illustrating interactions between temporal and 
spectral dimensions. In that study, photosynthetic and flowering phenology contrib-
uted to the seasonal patterns observed. Similarly, when evaluating several functional 
leaf traits with spectral reflectance in tropical species, Chavana-Bryant et al. (2017) 
found a clear seasonal effect on the trait retrievals using PLSR, again emphasizing 
an interaction between temporal and spectral dimensions. A study of optical diver-
sity for prairie species also revealed strong phenological effects that were different 
at the leaf and canopy scales, demonstrating an interaction between temporal and 
spatial scale (Fig. 16.4b). Clearly, the temporal dimension should be considered in 
any study of the RS of biodiversity, yet most studies have been limited to a single 
time frame, limiting the power to distinguish biodiversity. These examples also 
demonstrate that measurement technique (e.g., instrument foreoptics) and interact-
ing scale effects can influence optical diversity.

16.2.4  �Spectral Scale

The advent of hyperspectral sensors, both imaging and nonimaging, provides rich 
opportunities for exploring spectral features related to biodiversity. Approaches 
range from detection of species or functional traits to methods based on the infor-
mation content of the spectra themselves (Fig. 16.1; Table 16.2). All of these meth-
ods require attention to spectral scale, including spectral resolution and range, 
which influence biodiversity detection in complex ways. Furthermore, our methods 
of analysis, ranging from simple vegetation indices to more complex full-spectral 
statistical methods (Table 16.2), explore the spectral dimension in different ways 
and to varying degrees. To date, relatively few studies have explicitly addressed 
spectral scale in the context of biodiversity detection, but most show that more spec-
tral information is generally better than less (e.g., Asner et al. 2012). Consequently, 
hyperspectral sensors are more informative than multiband sensors, and full-range 
(VIS-SWIR) detectors are usually more useful than limited range (e.g., VIS-NIR) 
detectors for detecting plant traits or biodiversity. The importance of spectral scale 
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Fig. 16.4  (a) Ability (% accuracy) of spectral variability to distinguish plant phenological types 
(evergreen, winter deciduous, drought deciduous, and annual) in California chaparral (Santa 
Monica Mountains, California, USA, Dec 1998–Sept 1999). Input variables include reflectance at 
all wavelengths (450–1000  nm), three physiological indices derived from reflectance 
(Photochemical Reflectance Index, PRI; Water Band Index WBI, and Normalized Difference 
Vegetation Index, NDVI) and indices derived from the coefficients produced in discriminant analy-
sis. (From Zutta (2003).) (b) Phenology of optical diversity (convex hull area in spectral space) at 
the leaf (black) and canopy (red) scale for prairie vegetation sampled at the Cedar Creek Ecosystem 
Science Reserve, Minnesota, USA, in summer 2014. Leaf-scale data sampled with a leaf clip and 
canopy-scale data sampled with a straight fiber yielding a field-of view of approximately 10 cm 
diameter. Canopy data are available as “Phenology Canopy Spectra Big Biodiversity Experiment 
Cedar Creek LTER 2014” on EcoSIS (doi: https://doi.org/10.21232/C2Z070)

in biodiversity detection can be readily seen when comparing multiband data (mea-
sured from a drone) to hyperspectral data (measured from a tram system) for Cedar 
Creek; in this case, multiband drone imagery failed to detect different alpha diver-
sity levels, despite pixel sizes (2.3 cm) that were intermediate between those of the 
hyperspectral sensor (Fig. 16.5).
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A number of studies have demonstrated that some wavebands provide more 
information than others, and this information can vary seasonally (Zutta 2003; 
Chavana-Bryant et al. 2017; see also Fig. 16.4). Similarly, visible bands (revealing 
pigment composition) and NIR bands (revealing structural information) respond 
differently to spatial scale (Wang et al. 2018b) or sampling angle (Gamon 2015) 
illustrating the functionally distinct responses of these different spectral regions 
(Fig. 16.1) and providing further evidence of interactions between the spectral, spa-
tial, and angular dimensions of scale.

16.2.5  �Angular Scale

Illumination and view angle both interact with vegetation structure to influence the 
shape and intensity (brightness) of reflectance spectra. While these effects have 
been well-studied in RS and can be characterized by the BRDF for a particular 
surface (Malenovský et  al. 2007), angular information has generally not been 
employed in detection of biodiversity. A few studies have noted that the BRDF 
response can help distinguish vegetation types (Gamon et al. 2004), suggesting that 

Fig. 16.5  Effect of spatial and spectral scale on the relationship between optical diversity (mea-
sured as the coefficient of variation) and Simpson Index, a measure of alpha diversity combining 
species richness and evenness (Simpson 1949). Data collected by a hyperspectral sensor on a tram, 
sampled at two resolutions (1 cm = red dots, 10 cm = blue dots) (for methods see Wang et al. 
2018a) and a multispectral sensor on a drone (resolution = 2.3 cm, black circles) (Parrot Sequoia, 
Parrot Drones, Paris, France). All data measured at the Cedar Creek Ecosystem Science Reserve
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angular information may be useful in biodiversity detection. Sensor view angle 
affects different spectral regions differently, illustrating an interaction between 
angular scale and spectral scale (Gamon 2015). With the advent of lidar (Asner et al. 
2012) and structure-from-motion (SFM; Wallace et al. 2016) to characterize plant 
3-D structure, angular information can now be better understood and effectively 
integrated with optical RS to improve biodiversity or plant trait detection.

16.3  �Implementing Scaling Approaches

Properly addressing scale effects in biodiversity detection requires explicit attention 
to scale in all its dimensions and designing a study approach that transcends scale 
limitations. Scaling methods can be empirical or theoretical. Typical empirical 
methods involve a multi-scale sampling strategy, often using multiple RS instru-
ments operating at different scales, along with traditional field sampling for valida-
tion. Often, a goal of such field campaigns is to aggregate fine-scale data to be used 
as validation for coarse-scale data (e.g., Cohen and Justice 1999; Wehlage et  al. 
2016), yet aggregation tends to obscure spectral variability at the scale of individual 
leaves or plant canopies and undercuts the goal of detecting local (alpha) biodiver-
sity with optical diversity. On the other hand, sampling at progressively larger scales 
often involves transitions from local (alpha) to regional (beta) diversity, creating the 
opposite effect of increasing optical diversity with increasing pixel size, and these 
transitions can themselves be scale-dependent and vary with vegetation type 
(Fig. 16.6).

The complexity of scaling effects involving the transition from alpha to beta 
diversity is briefly illustrated in Fig. 16.6, which illustrates optical diversity (CV in 
this case) calculated for different regions along a transect crossing several plant 
communities, including woodland, grassland, and experimental grassland plots at 
the Cedar Creek Ecosystem Science Reserve, Minnesota (USA). In this case, the 
highest optical diversity values occur at edges, points of abrupt landscape transi-
tions marking the boundaries between adjacent communities (i.e., ecotones), an 
effect commonly seen in remotely sensed images (Paz-Kagan et al. 2017). In this 
complex landscape, (and in contrast to the plot-level patterns shown in Fig. 16.3), 
CV generally increases with spatial scale, reflecting a transition from alpha to beta 
diversity with increasing spatial lag (pixel sizes). Interestingly, this transition occurs 
at about 10  m  ×  10  m in the manipulated grassland (see arrow and blue curve, 
Fig. 16.6), matching the plot sizes in this experiment, but occurs more gradually in 
the natural grassland (black curve, Fig.  16.6). These patterns seem to contradict 
findings of declining optical diversity in grasslands with increasing pixel size 
obtained at finer scales (1 mm to 1 m in Wang et al. 2018a) (see also Fig. 16.3). This 
comparison illustrates that the patterns of scale dependence are themselves scale 
dependent and can differ within the same landscape or for different communities 
depending upon both individual crown size and larger landscape structure. These 
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Fig. 16.6  Optical diversity, expressed as coefficient of variation (CV) derived from reflectance 
spectra, along a transect (yellow line, top panel) crossing forest and prairie communities at the 
Cedar Creek Ecosystem Science Reserve, Minnesota. This image cube (top panel) was collected 
on July 22, 2016, using an imaging spectrometer (AISA Eagle, Specim, Oulu, Finland) mounted 
on a fixed-wing aircraft (Piper Saratoga, Piper Aircraft, Vero Beach, Florida, USA) operated by the 
University of Nebraska Center for Advanced Land Management Information Technologies 
(CALMIT) Hyperspectral Airborne Monitoring Program (CHAMP). Images were collected from 
a height of approximately 1435 m and a speed of approximately 177 km/h, providing a ground 
pixel size of approximately 1 m2. The imaging spectrometer provided hyperspectral images cover-
ing 400–970 nm with 10 nm spectral resolution (FWHM). Airborne data were collected and pre-
processed by Rick Perk from CALMIT.  A–G indicate particular points of interest, including 
transition points between communities (A, C, E, grassland (B), forest (G), and the Cedar Creek 
biodiversity experiment (F). CV has been calculated at various pixel sizes (3  m  ×  3  m to 
96 m × 96 m); bottom panels to illustrate the effect of spatial resolution on retrieved optical diver-
sity, illustrating a general increase in CV with pixel size, but this pattern varies between woodland 
(G) and natural (B) vs. experimental (F) grassland plots
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observations agree with a body of RS literature that show wide variation in patterns 
of scale dependency for different landscapes using geostatistical approaches, with 
the local variance a function of the relative sizes of the pixels and the discrete targets 
themselves (e.g., Woodcock and Strahler 1987). For these reasons, the spatial aggre-
gation approaches often used in other fields (e.g., plant productivity) may actually 
confound the detection of optical diversity at certain scales. Consequently, optical 
diversity (alpha or beta diversity) or variation in plant traits from RS requires par-
ticular attention to scaling methodologies (e.g., Asner et al. 2015).

By providing both fine-scale patterns (Fig. 16.3) and the larger context of land-
scape structure, imaging spectroscopy (Fig. 16.6) provides a valuable tool for fur-
ther, more detailed studies, and can help define the proper scale at which alpha and 
beta diversity can be most effectively sampled. Remotely sensed data can also be 
used to define patterns of geodiversity, the physical template influencing biodiver-
sity (Record et al., Chap. 10, this volume). Geostatistical approaches that examine 
optical diversity as a function of distance, analogous to the use of semivariograms 
(Curran 1988), can help design appropriate sampling methodologies by illustrating 
the influence of landscape features (e.g., ecotones or different vegetation types) on 
optical diversity (Fig.  16.6). Imaging spectrometry can also reveal temporal 
dynamics and disturbance patterns that can provide additional context for under-
standing both the drivers and the consequences of biodiversity changes. Furthermore, 
image spectrometry can be used to assess the relationships between optical diversity 
and ecosystem function (e.g., productivity) over large areas (Wang et  al. 2016; 
Schweiger et al. 2018). For these reasons, satellite and airborne RS can be a power-
ful complement to local and regional field studies of biodiversity.

Other approaches to scaling involve the use of models for upscaling or downscal-
ing, including radiative transfer models and statistical models (Knyazikhin et  al. 
2013; Malenovský et  al. 2019; Verrelst et  al. 2019). While potentially powerful, 
such models are generally limited by the lack of suitable data, bringing us back to 
the need for experimental studies incorporating empirical methods. Ultimately, a 
combined empirical and theoretical framework that explicitly considers multiple 
dimensions of scale is needed to advance our knowledge of biodiversity detection 
with RS.

16.4  �Designing a Scale-Aware Biodiversity Monitoring 
System

To be truly robust, a global biodiversity monitoring system will need to consider 
scale in all the dimensions discussed here. Biological concepts (e.g., grain size and 
extent) often have a direct analog to RS concepts (e.g., pixel size and extent). Ideally, 
we should design our instrument and optical sampling protocols to match our sam-
pling scale to a particular organizational scale of biodiversity. While specific sam-
pling rules have been proposed (e.g., Justice and Townshend 1981), the general rule 
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of thumb that the pixel size must be smaller than the size of the individual sampling 
unit (e.g., typical plant canopy) is a good starting point, and this has been supported 
by studies discussed above (see Fig. 16.3).

However, matching instrument to organizational scale remains a challenge; we 
typically have a poor match between the pixel size and sampling extent and the 
organism size and distribution on the ground, often due to the practical constraints 
of field sampling (in the case of biological studies) and instrument design (in the 
case of RS). Most remote sensing instruments are designed for a particular airborne 
or spaceborne platform with physics and engineering requirements in mind. The 
detector response is constrained by the amount of electromagnetic energy available, 
which in turn determines the sensor design, pixel size, and spectral resolution 
needed to achieve a given signal-to-noise ratio. Greater signal-to-noise ratios can be 
attained by reducing the spectral resolution (combining narrow bands into broad-
bands, e.g., via spectral binning), or by reducing spatial resolution (e.g., pixel bin-
ning), but these choices limit the ability to distinguish individuals, species, and 
functional types due to the degradation of spectral and spatial information. Orbital 
and altitudinal considerations also determine the pixel size obtainable from a par-
ticular sensor platform. Together, these constraints often reduce the ability to 
properly distinguish individual organisms or vegetation functional types. Adding to 
this mismatch, field sampling (including plot size, transect size, and location) is 
often limited by practical considerations of personnel, time, and budget and is rarely 
designed with RS in mind.

Improvements in sensor design and novel sampling platforms can relax these 
impediments, but with trade-offs. For example, flexible airborne platforms, emerg-
ing unmanned aerial vehicles (UAV) systems, or robotic ground-based systems 
(Wang et  al. 2018a, b) provide useful platforms for testing the effects of spatial 
scale, but may not always have the temporal or spectral coverage desired for biodi-
versity detection (Fig. 16.5). Plans to deploy global satellite imaging spectrometers 
with frequent repeat visits (Schimel et al., Chap. 19) offer new ways to explore the 
temporal dimension with high spectral resolution and wide spectral range, although 
at relatively coarse spatial resolution. Consequently, a key application of satellite 
RS can be to provide the larger context within which effective sampling regimes can 
then be defined at finer scales.

Due to these inherent limitations and trade-offs between scale dimensions, we 
suggest that the ideal global monitoring system would be an integrated, multi-
component system, combining RS at different scales (satellite and aircraft sensors) 
with proximal sensing (ground optical sensors and field sampling of biodiversity) 
(Fig. 16.2). Such a system would operate within a clearly defined scaling frame-
work, incorporating empirical and modeling approaches, with explicit attention to 
sampling scale in each of the dimensions mentioned above. Although rarely used in 
RS, explicit experimental approaches involving cross-scale and cross-instrument 
comparisons should be a key capability of an effective global biodiversity monitor-
ing system. With a multi-scale system, it would be possible to express results (e.g., 
spectral variability) as a function of sampling scale (pixel or grain size; see Figs. 16.3 
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and 16.6), much in the way that semivariograms are used to express landscape struc-
ture (Curran 1988). These patterns could be compared to the driving variables, 
including the underling patterns of “geodiversity,” (Record et  al., Chap. 10, this 
volume). Such a system would reveal ideal spatial scales for sampling alpha and 
beta diversity and would help reveal the causes of biodiversity patterns at multiple 
scales, as illustrated in Figs. 16.3 and 16.6.

Such a scale-aware global biodiversity monitoring system could incorporate and 
integrate many aspects of existing networks such as NEON (Hopkin 2006), Forest 
GEO (Anderson-Teixeira et al. 2014), and many others (see Geller et al., Chap. 20), 
but would provide many benefits currently not provided by existing biodiversity 
monitoring efforts. The system would require global imaging spectrometry with 
repeat coverage, revealing global patterns in time and space and providing essential 
context for more detailed studies at higher spatial resolution (see Schimel et  al. 
Chap. 19). More detailed resolution could be achieved by a fleet of regional aircraft 
carrying imaging spectrometers at a spatial resolution matching the crown sizes of 
many shrub and tree species (e.g., Kampe et al. 2010). For even more detailed sam-
pling resolution needed for smaller statured vegetation or for resolving individual 
leaf traits, UAVs, robotic, or tower-mounted imaging spectrometers could be 
deployed at key sites. These methods would be coupled to systematic ground 
sampling of species composition (alpha and beta diversity) using traditional field 
sampling methods, along with leaf and canopy optical properties (using field spec-
trometry) for a detailed assessment of plant traits. Radiative transfer models and 
statistical scaling methods (Serbin and Townsend, Chap. 3) could provide a frame-
work for integrating and analyzing data across scales.

A systematic global evaluation of optical diversity across multiple scales could 
readily detect dynamics in biodiversity, identify causes biodiversity changes, 
adapt to these changes, and help to identify monitoring and conservation priori-
ties. By integrating diversity metrics with measures of ecosystem function, our 
understanding of the ecosystem impacts of biodiversity would be enhanced, allow-
ing better management for resilience. On our rapidly changing planet, such a sys-
tem would enable the monitoring required for sustainable management of 
ecosystems globally.
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Doreen S. Boyd, Gabriela Schaepman-Strub, and Maria J. Santos

17.1  �Introduction

In the face to accelerated environmental change, being able to assess different 
aspects of plant biodiversity, such as those related to, e.g., the productivity or health 
of an ecosystem, repeatedly at large spatial scales, is increasingly important. The 
recent decade has seen an explosion of in-situ databases necessary to assess such 
patterns and processes, often cover large parts of the Earth (e.g., plant functional 
traits, phenology (PhenoCam networks)), and integrating this data with remotely 
sensed products enables assessment at critical scales which would otherwise be 
impossible or extremely costly to do.

However, RS data comes with limitation of their own, and despite of the many 
opportunities offered by RS data, certain aspects and scales of biodiversity are 
currently not measurable using RS technology alone. Thus, the combination of RS, 
in-situ and other auxiliary data, provides the most powerful approach to assessing 
ecosystem functioning and conservation at large spatial scales.
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The means and uses of RS to link biodiversity with other relevant ecosystem 
metrics are manifold, and some are covered in detail in other chapters within this 
book. A compilation of some of the major RS data types and sensors used for veg-
etation analyses at the landscape scale are provided in Fig. 17.1. Here, we discuss 
strengths, weaknesses, and caveats of linking RS with in-situ data to address the 
themes of ecosystem functioning and conservation of biodiversity.

Fig. 17.1  Non-exhaustive compilation of some of the major RS data types and sensors used for 
vegetation analyses at the landscape scale, revisit times (line style and symbols), spatial resolution 
(from low resolution at the top to high resolution at the bottom), sensor types (colors), and years 
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Fig. 17.1  (continued)  active (x-axis). For airborne data, it was assumed that theoretically, data 
can be available for the past although these data will be very sparse and not easily accessible. In all 
cases, highest possible spatial and temporal resolutions are shown. This might not be the case for 
all bands covered by these sensors. Where satellites are currently active or proposed, they are pre-
sented here as being active into the future; this is subject to change and should be reviewed fre-
quently. Codes after sensor names: “not continuous, ∗∗ ATSR-1/2 also contained a Microwave 
(MW) sensor, ∗^ 16-day revisit with one satellite, 8 days if using data from both, ∗^∗ 2 satellites 
proposed—details specific to Biosphere observations, ∗∗∗ Film and digital. Green and red boxes 
refer to the examples given in the text, enclosing MODIS and ALOS PALSAR sensors. Other than 
Kite, UAV, and declared airborne methods, all instruments are either satellites or sensors carried by 
a satellite. Many satellites have a payload of a range of instruments; where this is the case, hyper-
spectral or multispectral units have been presented. Many satellites also carry panchromatic sen-
sors, which are not represented in this figure. (For more information, see Toth and Jóźków et al. 
(2016) and Khorram et al. (2016))

17.2  �Ecosystem Functioning

Pettorelli et al.’s (2017) framework for monitoring ecosystem functions at all scales 
lends itself well to the flexibilities and strengths provided by RS. We consider eco-
system functions as those attributes related to the performance of an ecosystem that 
are the consequence of one or more ecosystem processes (Lovett et al. 2005). With 
respect to plant diversity, the attributes underpinning functions that benefit plant 
species (and indirectly fauna and humans) are crucial. Such functions include pol-
lination, water regulation, disturbance regulation, supporting habitats, and biologi-
cal control. The measurement and monitoring of these ecosystem functions often 
relies on a remotely sensed proxy. For example, the ecosystem function of green-
house gas regulation could be monitored with RS-based measurements of emissions 
from fires, as provided by Moderate Resolution Imaging Spectroradiometer 
(MODIS) and expected from missions such as Environmental Mapping and Analysis 
Program (EnMap) and the Surface Biology and Geology imaging spectrometer 
(currently under planning to replace the cancelled HyspIRI mission). The advantage 
of such sensors is their moderate to high spatial and temporal resolution that creates 
dense time series. Analyzing ecosystem functions over large scales can provide 
information on drivers of species diversity and abundance change, as well as aspects 
that affect human well-being such as those related to ecosystem services (ES). 
Ecosystems provide regulating, provisioning, and cultural and supporting services 
to society, such as nutrient regulation, the provision of food, and waste treatment 
(De Groot et  al. 2002; Ma 2005). Detailed techniques for mapping ES at large 
scales (Englund et al. 2017) and rapid assessments (Meyer et al. 2015; Cerreta and 
Poli 2017) are discussed elsewhere. Although ES functions and processes are 
closely related, “services” implies inherent contributions to humans and an attached 
monetary or cultural value (De Groot et al. 2002). All ESs are under increasing 
threat due to pollution, overexploitation, land use change, and climate change, with 
concerns of overstepping the “safe operating space for humanity” (Rockström 
et al. 2009).

We choose to focus on a few contrasting ecosystem functions in this chapter, 
with particular focus on those that plants provide or require for survival and fitness; 
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further details on other ecosystem functions can be obtained in Pettorelli et  al. 
(2017). The narrative below focuses on satellite RS measurements because they are 
widely accessible and offer a relatively inexpensive and verifiable means of deriving 
data with complete spatial coverage in a consistent manner over large areas with 
(near) appropriate temporal resolutions, thus offering great potential for tracking 
change in ecosystem functions (Cabello et al. 2012; Nagendra et al. 2013). However, 
these satellite measurements can (and should) be integrated with a host of other data 
sources that are remotely acquired; these are also discussed where appropriate.

17.2.1  �Pollination

The transport of pollen between plants is crucial for reproduction. Different pollina-
tion types exist with varying distributions in space and time. The ecosystem func-
tion of pollination is under varying threats especially with declines in abundance 
and the loss of the organisms providing the service (e.g., bees) (Vanbergen et al. 
2013; IPBES 2016). Thus, up-to-date information on pollination is extremely 
important.

Two distinct RS approaches can be used to study this function: (i) direct RS of 
different pollination types and (ii) remotely sensed indicators of pollination (i.e., 
vegetation phenology or biomass as an indicator). The former is challenging because 
many pollination traits cannot be directly measured with RS sensors due to the sig-
nal contribution of some pollination traits (nectar content, flower structure, etc.) 
being too low relative to other surface components. Alternatively, Feilhauer et al. 
(2016) posited that different pollination types might be inferred from leaf and can-
opy optical traits (leaf area index, leaf tilt angle, mean canopy height, cover, specific 
leaf area, leaf dry matter content, leaf dry mass; see also Olinger 2011), allowing for 
an indirect classification of plant pollination types. Using data acquired by an air-
borne hyperspectral sensor, pollination types were related to canopy reflectance in a 
way that allows their discrimination, opening the potential to expand this approach 
to other ecosystems and different phenological stages. Such an approach should 
benefit from upcoming satellite missions equipped with hyperspectral sensors, for 
example, the German EnMAP and the Chinese GF-5 Hyperspectral Imager 
(Fig. 17.1). Further, pollination traits such as floral display size may have too little 
of a signal to be discernible from other surface components with RS, although sev-
eral studies have been able to detect flowers with hyperspectral airborne sensors 
and use the information to, for example, detect invasive species (see Bolch et al., 
Chap. 12, in this book).

Plant phenology is another ecosystem function directly linked to pollination, 
since any change in the phenological cycle may affect interactions such as 
competition between plant species and mutualism with pollinators (Buitenwerf 
et al. 2015). Any direct alteration in functional or taxonomic plant diversity as a 
result of change in vegetation phenology is further compounded by both short- and 
long-term climatic changes. RS has demonstrated capacity for measuring and 
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monitoring vegetation phenology (Cleland et al. 2007) and thus indirectly detecting 
pollination (Neil and Wu 2006). In the next section, we describe how RS can be 
used to measure phenology.

17.2.2  �Phenology

Recent climate change has shifted phenology and associated species distributions 
globally. This has in turn increased the risk of extinction for affected species through 
the alteration of development rates of species or by altering the timing of environ-
mental cues that affect a species’ presence in the community (Yang and Rudolf 
2009). Ongoing climatic and phenological changes are expected to further increase 
this risk. Moreover, the extent to which changes in vegetation phenology will feed 
back into the climate system by modifying albedo and hence cloud formation is a 
major source of uncertainty in climate change projections (Zhao et al. 2013). Recent 
work on land surface phenology has focused on assessing changes in phenology 
globally (rather than regionally) over long time periods as is now afforded by the 
Earth Observation (EO) archive (Ganguly et al. 2010). Buitenwerf et al. (2015) used 
phenomes (83 phenologically similar zones) in their global study of 32  years 
(1980–2012) and showed via metrics extracted from the normalized difference veg-
etation index (NDVI) record that most of Earth’s land surface has undergone some 
form of change in the seasonal pattern of vegetation activity. Other studies used 
alternative indices, such as the MERIS Global Vegetation Index (MGVI) and 
Terrestrial Chlorophyll Index (MTCI), from the now defunct Envisat platform and 
MODIS Enhanced Vegetation Index (EVI). Indeed, comparison between these indi-
ces for a temperate deciduous forest showed that MTCI corresponded more closely 
with vegetation phenology from ground observations and climatic proxies than any 
of the other indices (Boyd and Foody 2011). This finding suggests that the Envisat 
MTCI is best suited for monitoring vegetation phenology, advocated by its sensitiv-
ity to canopy chlorophyll content, a proxy for the canopy’s physical and chemical 
alterations occurring during phenological cycles (Boyd et al. 2012). These studies 
also point to the value of increasing both the temporal and spatial sampling of veg-
etation phenology. Limitations to spatial resolution mean that satellite-derived data 
represent land surface phenology rather than direct vegetation phenology and are 
therefore too coarse to detect critical individual, species, or community-level 
responses. Further improving the temporal sampling means that those challenges to 
using satellite data, including high sensitivity to effects of clouds and atmospheric 
conditions, could be overcome. With the recent launch of the ESA Sentinel-2 and 
Sentinel-3, this improvement in data characteristics is assured to go forward.

Key to applying data from these or any satellite for the derivation and study of 
phenology, however, are accurate calibration and atmospheric correction to obtain 
surface reflectance data. National Oceanic and Atmospheric Administration (NOAA) 
satellite sensors have legacy calibrated data. For the Landsat and Terra/Aqua sat-
ellites, calibrated top-of-atmosphere radiance and surface reflectance products are 
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delivered directly to the users. While Sentinel satellites are calibrated, users are pro-
vided with top-of-atmosphere reflectance and have to perform the atmospheric cor-
rection (using plug-ins such as sen2cor (http://step.esa.int/main/third-party-plugins-2/
sen2cor/)). That said, Vuolo et al. (2016) have demonstrated very good agreement 
between calibrated Sentinel-2 and Landsat-8 data for six test sites. A Harmonized 
Landsat and Sentinel-2 land surface reflectance data set is now readily available 
(Claverie et al. 2018).

The requirement for high-temporal-resolution RS data has, since 1982, been 
provided by the NOAA Advanced Very High Resolution Radiometer (AVHRR) 
sensor and its successors, with much regional scale analyses undertaken using 
NDVI (Reed et  al. 2009). Capturing the seasonal pattern of photosynthetically 
active radiation absorbed by the land surface, using repeated measures of vegeta-
tion indices such as NDVI throughout the year for an area of interest, allows depict-
ing the cycle of events that drive the seasonal progression of vegetation through 
stages of dormancy, active growth, and senescence. Several phenological metrics 
can be extracted from the temporal sequence, relating to leaf-on and leaf-off, 
length of growing season, peak of growing season, trough, and measures of sea-
sonal amplitude (integral, trough), and their patterns over time and space. Specially 
written and customizable open-source software, such as TIMESAT (Eklundh and 
Jonsson 2015) and QPhenoMetrics (Duarte et al. 2018), afford some robustness to 
the study of phenology.

With this emphasis on using satellite RS of land surface phenology to assess 
changes in vegetation, validation of extracted metrics is imperative. Three principal 
approaches are suitable, all of which use observations taken at ground level. The 
first relies on collaboration between experts to ensure suitable spatial and temporal 
coverage. The PEP725 ground phenology database generated as a result of the Pan 
European Phenology (PEP) project (a European infrastructure to promote and facil-
itate phenological research, education, and environmental monitoring) is one exam-
ple (Templ et al. 2018). The second approach is an extension of the first and uses 
citizen science projects where the public exploits Web 2.0 technologies and contrib-
utes ground-based observations (Kosmala et al. 2016). The idea of citizens as sen-
sors is not new, but full use of their input still requires effort. This is the focus of a 
current European Union (EU) Horizon 2020 project, LandSense (https://landsense.
eu/). The third approach uses proximal sensing (often automated systems) to pro-
vide detailed information at particular locations (e.g., traffic cameras, Morris et al. 
2013; archived TV video footage, De Frenne et al. 2018; and webcams, e.g., the 
PhenoCam project, Richardson et al. 2018). However, as Brown et al. (2016) pointed 
out, these technological advances present challenges with respect to data standards. 
These authors suggest that continental-scale ecological research networks, such as 
the US National Ecological Observatory Network (NEON) and the EU’s Integrated 
Carbon Observation System (ICOS), can serve as templates for developing rigorous 
data standards and extending the utility of PhenoCam data through standardized 
protocols for ground-truthing.
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17.2.3  �Carbon Storage

Biomass estimates are fundamental to estimate carbon fluxes and stocks and link 
them to carbon credit initiatives. Active RS such as laser scanning provides funda-
mental data on canopy structure useful to include in allometric equations to estimate 
biomass (Chave et al. 2014). For example, the analysis of first returns from laser 
scanning is used to estimate canopy height (Bouvet et al. 2017). Recent Terrestrial 
Laser Scanning (TLS) technology shows promising advances in more accurate esti-
mates of biomass because it allows for a first-order estimate of diameter at breast 
height. Further, TLS analysis is able to provide more precise representation of tree 
structure, allowing for moving beyond the assumed cylindrical shape of a tree trunk 
used for many biomass estimates. Novel methods also make it possible to fit geo-
metric shapes along not only the trunk but also the branches and stems, giving a 
more precise estimate of the woody component of trees and producing more reliable 
estimates of biomass.

Another area of active research in carbon storage and credits is the estimation of 
tree cover and the number of trees per pixel, because even if the biomass per tree is 
correctly estimated, it is scaled to regional or global estimates by a multiplier of tree 
density. MODIS offers a tree cover product (as a layer within the Vegetation 
Continuous Fields product) systematically and repeatedly at a global scale, but this 
product makes some assumptions on the minimum cover of trees needed to be 
detected by the MODIS sensors. In addition, it is important to estimate the contribu-
tion of non-tree functional types such as shrubs and grasslands to the carbon storage 
and credits calculations. Current assessments of the performance of reducing emis-
sions from deforestation and forest degradation (REDD+) programs have shown 
varied success; most are linked to the quality of the biomass estimates, which are 
fundamental to calculate the carbon potential of a given ecosystem as a fraction 
(often assumed around 1/2) of its biomass.

17.2.4  �Challenges

Although there is a clear role for RS for monitoring ecosystem functions (see 
Serbin and Townsend, Chap. 3; Martin, Chap. 5), there are still many challenges to 
be overcome to ensure its full potential is realized. Many acknowledge the lack of 
an acceptable framework that brings together the many proxies for ecosystem 
functioning that can be directly remotely sensed (e.g., Asner and Olinger 2009; De 
Araujo Barbosa et al. 2015). But fundamentally there is a need to improve the RS 
estimates of the many proxies that are used to infer the ecosystem functions of 
interest. Developments in methodologies for processing, analyzing, and interpret-
ing RS data will serve to improve the mapping accuracy and monitoring opportuni-
ties. However, those developments cannot exist in isolation; a dialogue between 
computational scientists and those concerned with ecosystem functions must occur 
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for the full potential of RS to be realized (Cabello et al. 2012; Paganini et al. 2016). 
Coupled with this is the need for advances in sensor technologies that will enable 
accurate, timely data with the right thematic, i.e., where interpretation of the sen-
sor’s raw data can provide the information necessary for applications in ecosystem 
function and biodiversity. Further, data should be open access, maintained, and 
interoperable (Pettorelli et  al. 2017), particularly given the plethora of existing 
local to regional scale data capture initiatives by airborne methods based on drones 
or airplanes (Cord et al. 2017). Finally, RS proxies will often need to be combined 
with field measurements to accurately represent the desired ecosystem function 
(e.g., Tong et al. 2004). Indeed, joint analyses of satellite data with in-situ measure-
ments or process measurements in the lab may be essential steps to the refinement 
and increased capacity and utility of satellite-based indicators for ecosystem func-
tion monitoring (see also Meireles et al., Chap. 7, in this book). This is likely to be 
a nontrivial task, particularly in highly dynamic situations.

17.3  �Conservation

Global environmental change has led to major losses, changes, and erosion of bio-
diversity and ecosystem function and counteracted to some extent by conservation 
action. Conservation science focuses on understanding the distribution of organ-
isms, their rarity status, the viability of populations, drivers and disturbances, and 
current and future restoration need. RS has been increasingly used to answer con-
servation science questions and applications (Rose et  al. 2015), namely, species 
mapping (see Chaps. 9, 10, and 11 in this book by Record et al.; Paz et al.; Pinto-
Ledezma), biodiversity monitoring (Feret and Asner 2014; Rocchini et al. 2017), 
detecting invasive alien species (see Bolch et al., Chap. 12, in this book), assessing 
vegetation condition, monitoring carbon storage and credits, and assessing habitat 
extent and condition (see Record et  al., Chap. 10, in this book), among others 
(Bustamante et al. 2016; Lawley et al. 2016; Niphadkar and Nagendra 2016; Reddy 
et al. 2017). Here, we focus on aspects of conservation related to the abovemen-
tioned measures of ecosystem function at large scales.

17.3.1  �Biodiversity Monitoring

RS has long been recognized as useful for biodiversity measurement (Stoms and 
Estes 1993; Turner et  al. 2003; Turner 2014), and more recently it has emerged 
prominently in biodiversity monitoring, through essential biodiversity variables 
(Pereira et al. 2013; Skidmore et al. 2015; Pereira et al. 2015). Rose et al. (2015) 
identified the top ten applications of RS in conservation, namely, for species distri-
bution and abundance, movement and life stages, ecosystem processes, climate 
change, rapid response, protected areas, ecosystem services, conservation effective-
ness, changes in land use/cover, and degradation and disturbance regimes.
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Beyond land cover classification, one of the most extensive uses of RS data is to 
produce distribution maps of species, communities, and ecosystems (Kerr and 
Ostrovsky 2003). Most RS studies of biodiversity focused on mapping species using 
all kinds of information from optical, radar, and Light Detection and Ranging 
(LiDAR) data. Nagendra (2001) reviewed the potential of RS data for assessing 
biodiversity, namely, species mapping and species diversity and habitat mapping, 
and concluded that at the time the most feasible application of RS would be to map 
species distributions and habitat, the former at smaller spatial scales and the latter at 
larger scales. RS data such as those from Landsat and other multispectral sensors 
have been widely used to map species and vegetation communities (Xie et al. 2008). 
There is now a growing literature on identifying species in many case studies. 
However, use of imaging spectroscopy for species identification needs to be under-
stood at a more fundamental level—especially the development of generalized 
methodologies and rules for detection and mapping, which is an area of active 
research today. Conceptually, we have yet to resolve how to identify unique spectral 
signatures for the estimated 400,000 extant plant species or groups of species (i.e., 
functional types or optical types; Ustin and Gamon 2010). In contrast to geologic 
minerals, which are often spectrally distinct, all land plants share a common basic 
metabolism and biochemistry. This fundamental similarity makes identification of 
plant species difficult. The interactions of a spectral signal with environmental con-
ditions and shifts in spectral signatures through phenological stages contribute to 
spectral variation, in addition to the characteristic properties of individual species 
(Ustin and Jacquemoud, Chap. 14). In recent years, with the advent of hyperspectral 
sensors and the fusion of these data sets with other auxiliary data, novel avenues to 
map and monitor biodiversity have emerged. These new data sets make it possible 
to directly discriminate species in terrestrial and freshwater ecosystems (Jones and 
Vaughan 2010; Turak et al. 2017; Choa et al. 2012; Fassnacht et al. 2016) and assess 
relationships between the diversity of spectra and the diversity of species and the 
fundamentals of the spectral diversity hypothesis (i.e., that the diversity of spectral 
profiles generally predicts diversity of species, Nagendra 2001), which are pre-
sented in other chapters of this book (see especially Schweiger, Chap. 15; Cavender-
Bares et al., Chap. 2). A recent study highlights the relation of spectral diversity to 
functional and phylogenetic components of biodiversity (Schweiger et  al. 2018), 
and this topic is covered in more detail in Meireles et al. (Chap. 7).

Another avenue in which RS can contribute to biodiversity monitoring is through 
its use in species distribution models (SDMs) (see Pinto-Ledézma and Cavender-
Bares, Chap. 9; Paz et al., Chap. 11). SDMs are empirical statistical approaches that 
predict the spatial distribution of species (Guisan and Zimmermann 2000), and the 
choice of environmental predictors is fundamental for SDM. RS measurements of 
vegetation condition (Turner et al. 2003), ecosystem productivity (Running et al. 
2004), and seasonality (Reed et al. 1994), among others, are now available over time 
series (e.g., Landsat time series; Kennedy et al. 2014) and might be used in SDMs 
(Bradley and Fleishman 2008; He et al. 2015) making it possible to predict species 
distributions over time. Although the use of RS in SDMs is widely advocated and 
applied, it has yet to be scaled to most species, especially non-plant taxa. Promising 
progress toward the inclusion of RS products in SDMs includes responses to 
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nutritional value (Sheppard et al. 2007), food resources (Coops et al. 2009), sea-
sonal variation (Bischof et al. 2012), and combined effects of climate and land use 
changes (Santos et al. 2017). Upcoming sensors are expected to provide even better 
and more diverse measurements of ecosystem processes and other information that 
might be relevant to map species distributions at finer spatial, temporal, and spectral 
resolutions (e.g., Sentinel satellites; Berger and Aschbacher 2012). Further, through 
SDMs we can expand our capacity to monitor taxonomic groups beyond plants, 
providing a broader understanding of the dynamics and dimensions of biodiversity, 
its feedbacks and interactions, and its change.

Yet another way in which RS can be useful in biodiversity monitoring is to detect 
animals using unmanned aerial vehicles with visible and thermal sensors and 
LiDAR data. Nagendra et al. (2013) concluded that despite the potential for RS in 
monitoring habitat, the integration has not happened yet because of technical chal-
lenges of conducting and accurately interpreting image analyses, insufficient inte-
gration between in-situ data and expert knowledge RS data, and lack of funding and 
platforms that provide such services and capacity in an accessible way globally. 
However, progress in this domain includes the provision of environmental data lay-
ers from RS sources in Movebank, a major animal movement data repository. 
Environmental data are directly extracted at the recorded locations and interpolated 
to the date and time of each GPS fix (Dodge et al. 2013). This allows animal move-
ment ecologists to easily extract environmental variables co-registered in space and 
time with their animal location data.

Current RS capabilities allow for improving species mapping and monitoring 
such as the local species pool (i.e., alpha diversity, Feret and Asner 2014) as well as 
to move beyond species (Jetz et al. 2016) to measure and monitor other components 
of diversity such as compositional turnover (i.e., beta diversity, Leitão et al. 2015; 
Schwieder et al. 2016; Rocchini et al. 2017). There were a few attempts to map spe-
cies richness using Landsat TM multispectral data to calculate NDVI as a proxy for 
species richness with limited success (Gould 2000). The spectral resolution of 
imaging spectrometer data today is sufficiently fine to implement and test the spec-
tral diversity hypothesis (Feret and Asner 2014) because plant species exhibit a set 
of traits that respond to light at different wavelengths (plant optical types, Ustin and 
Gamon 2010). Novel findings, however, show some limitations to the application of 
the spectral diversity principles at larger spatial resolutions (Schmidtlein and 
Fassnacht 2017), and more studies are needed to identify challenges and opportuni-
ties of this approach to mapping and monitoring biodiversity.

17.3.2  �Vegetation Condition

There have been many efforts to move beyond species assessments toward functional 
aspects, which include vegetation condition. The current wealth of time series data 
from sensors like NOAA AVHRR, MODIS, or Landsat allows measurements of eco-
system phenology, seasonality, and changes in onset of seasons and assessment of 
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ecosystem condition. Vegetation condition is the measurement of the vegetation 
response to stress (Liu and Kogan 1994). High or good condition corresponds to 
green, photosynthetically active vegetation, while stress such as water and nutrient 
limitations, pest outbreaks, and fire results in low or poor condition, after accounting 
for seasonal changes.

Physiologically, plants respond to stress by reducing chlorophyll activity and 
subsequently expressing other pigments. Plants also respond to stress by closing 
their stomata and reducing gas and water exchanges, which results in cells becom-
ing turgid under water stress. These responses can be measured in the RS signal in 
both the visible and near infrared (NIR). In the visible the signal switches from a 
weak to a stronger reflectance signal due to chlorophyll absorption of red and blue 
wavelengths. Water stress can be measured in the NIR because as cells become 
turgid, they increase scattering of NIR radiation and therefore change the measured 
signal. One advance toward systematic measurements of vegetation condition is the 
Australian BioCondition (Lawley et al. 2016). This approach provides a framework 
to systematically assess terrestrial biodiversity condition—“[t]he similarity in key 
features of the regional ecosystem being assessed with those of the same regional 
ecosystem in its reference state”—using attributes like fraction of large trees, tree 
canopy height, recruitment of canopy species, native plant richness, size of patch, 
and connectivity. Thus, such in-situ measurements of vegetation condition can be 
linked to RS estimates to better provide an assessment of an ecosystem’s stress level 
and ability to function and to provide services like habitat provisioning. In the next 
section, we will cover the later issue.

17.3.3  �Habitat Intactness and Critical Transitions

Habitat intactness may be defined temporally or spatially as either (i) the degree to 
which the condition of the vegetation that forms habitat has not changed beyond 
what is expected from natural processes such as phenology and other dynamics or 
(ii) the spatial pattern of a given habitat, its degree of connectivity or fragmentation, 
and its edge extent. An active area of research on the potential of RS for conservation 
is the assessment of habitat intactness. Nagendra et al. (2013) employed RS to esti-
mate how habitat has been changing in several regions of the Western Ghats in 
India. Coops et al. (2008, 2009) developed a dynamic habitat index using time series 
satellite data and showed its potential to monitor habitat condition in Canada. Later 
the approach was expanded to other regions, and dynamic habitat indices have been 
used as predictors of the richness of other taxa (Hobi et  al. 2017). Coops et  al. 
(2018) have now expanded it globally and have shown how these data sets mimic 
global biodiversity patterns. These data sets are currently available at http://silvis.
forest.wisc.edu/data/DHIs-clusters/ and can be very useful to monitor protected 
area performance.

RS data are increasingly applied across large spatial scales to study stable state 
conditions of habitats and assess early warning signals for catastrophic shifts. 
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For example, the relationship between stable ecosystem states and rainfall can be 
inferred from the global probability density of forests extracted from remotely 
sensed forest cover and its relation to rainfall (Verbesselt et  al. 2016). Temporal 
autocorrelation of NDVI time series and vegetation optical depth from radar over 
tropical forests indicated a reduced rate of recovery (critical slowing down) when 
tall canopy trees of intact forests under decreasing rainfall approached a tipping 
point, inducing high mortality. The rainfall threshold was at a similar level as the 
one indicated for stable state transitions from the spatial analysis. Similar to the 
temporal warning signals, the patch size distribution of spatially patterned ecosys-
tems, such as arid ecosystems, showed a meltdown when approaching extinction 
(Dakos et al. 2011). High-resolution RS data across large spatial scales and patch 
size analysis can therefore be used to assess the extinction risk of these vulnerable 
ecosystems under decreasing rainfall conditions.

17.3.4  �Protected Area Monitoring

RS plays an essential role in monitoring natural ecosystems, especially in protected 
areas. Human pressure over these areas has changed dramatically over the last 
decades (Geldmann et al. 2014), justifying a need for monitoring. Perhaps the two 
most influential papers that first demonstrated the usefulness of RS to monitor bio-
diversity in protected areas were Liu et al. (2001), which showed ecological degra-
dation in protected areas designed to protect giant pandas (Ailuropoda melanoleuca), 
and Asner et al. (2005), which mapped deforestation in the Amazon with Landsat 
data and showed large rates of deforestation within legally designated protected 
areas. In 2007, the journal Remote Sensing of Environment published a special issue 
on monitoring protected areas in which a series of papers provided a framework for 
establishing monitoring programs, presented techniques and methods to make oper-
ational the use of remotely sensed data in protected area monitoring, and showcased 
a few examples linking remotely sensed data to models used to inform ecological 
assessments (Gross et al. 2008). RS can aid monitoring of many aspects of biodiver-
sity (Cavender-Bares et  al., Chap. 2; Gamon et  al., Chap. 16) and ecosystem 
functioning within protected areas, including forest extent, land use/land cover 
change, local species pool and turnover, invasions (Bolch et al., Chap. 12), and car-
bon dynamics. The technical aspects of how RS can address some of these issues 
are presented in other chapters; here we review a few selected examples.

One of the major uses of RS in monitoring protected areas involves assessing 
land cover change and dynamics, for example, due to anthropogenic or natural dis-
turbance. Liu et al. (2001) used Landsat data to estimate changes in forest cover and 
giant panda habitat before and after a reserve was created and showed how the 
Wolong Nature Reserve was becoming progressively more fragmented and how this 
resulted in crucial loss of habitat for the giant panda. Koltunov et al. (2009) showed 
how selective logging in the Amazon region led to different forest dynamics and to 
land cover change. Asner et al.’s (2005) seminal work was followed by global maps 
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of deforestation and was also produced using the Landsat archive (Hansen et al. 
2013), which have been used to track deforestation dynamics and development 
frontiers (Potapov et al. 2017). These data sets are now freely available for initia-
tives such as the Global Forest Watch (https://www.globalforestwatch.org/), in 
which the dynamics of deforestation can be monitored within and outside protected 
areas. These initiatives are fundamental to downscale global biodiversity goals to 
local scale action (Geijzendorffer et al. 2018). The quality of the forest classification 
in the Hansen et al. (2013) product is, however, limiting. In this data set, any pixel 
with >25% tree cover is considered a forest, and there is no distinction between 
naturally occurring forests and planted forests (e.g., eucalyptus or oil palm planta-
tions) or forests planted for REDD+ programs. While these readily available prod-
ucts are fundamental to monitoring protected areas, they still rely on careful 
interpretation of their results on the ground. Asner and Tupayachi (2017) showed 
the extent of mining in the Amazon, and within this system, road development has 
long been shown to lead to deforestation and land cover changes within and outside 
protected areas. For example, Gude et  al. (2007) showed how land use change 
around Yellowstone National Park could increase the risk to biodiversity inside the 
park. Svancara et al. (2009) showed areas surrounding US national parks are more 
protected and natural than areas farther away but had higher human population den-
sity and subsequently higher conversion risk for the parks’ ecosystems and natural 
processes.

Such changes in land cover might result in changes in habitat availability and 
quality both outside and within protected areas. For example, Taubert et al. (2018) 
showed global patterns of tropical forest fragmentation follow a power-law distribu-
tion, which suggests that tropical forest fragmentation is close to a critical point. 
Santos et al. (2017) showed how the extent of habitat for small mammals in Yosemite 
National Park has changed in the last 100 years and that these habitat changes might 
in some cases counteract negative effects of climate change on species persistence. 
Platforms such as the Global Forest Watch (mentioned above) and the Global 
Surface Water Explorer from the EU Joint Research Centre show ways by which 
this integration may be achieved. Novel satellite configurations also show unex-
pected potential to monitor ecosystems and their responses to disturbance, provid-
ing potential new avenues for further integration at conservation-relevant scales.

17.3.5  �Challenges

Two main challenges are more immediate in the conservation applications of 
RS. The first is that it is important to move beyond considering biodiversity as only 
number of species, and novel approaches looking at the four dimensions of biodi-
versity (genetic, species, function, and ecosystem structure) are necessary. Jetz et al. 
(2016) provide a framework for such an approach, and several chapters in this book 
(see Record et al., Chap. 10, in this book) already show the state of the art of the RS 
potential in these areas.
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The second is that there is a growing need that conservation moves beyond pro-
tected areas to protected landscapes, which include livelihoods. Remotely sensed 
supporting services include habitat, nutrient cycling, terrestrial and aquatic primary 
production, soil formation, and provision of biological refugia, but there is an acute 
lack of RS applications in the study of cultural ES with the exception of cultural 
heritage and recreation (Andrew et al. 2014; de Araujo Barbosa et al. 2015; Cord 
et  al. 2017). Similar to the concept of essential biodiversity variables, indicators 
have been developed to allow fast and efficient assessment of ES across large spatial 
scales. One of these indicators is the recently proposed Rapid Ecosystem Function 
Assessment (REFA, Meyer et al. 2015). REFA builds on a suite of core variables 
such as aboveground primary productivity, soil fertility, decomposition, and polli-
nation. While many of these could theoretically be assessed using RS technology, 
the concept was developed for in-situ measured data. On the other hand, Cerreta and 
Poli (2017) propose a GIS-based framework with scalable and transferable method-
ology to rapidly assess multiple ecosystem functional features of a landscape using 
a multi-criteria spatial decision support system. While none of these approaches has 
been implemented for the use of RS technology at large spatial extents, there is 
potential for setting up near-real-time systems of fast ES assessment. One issue with 
extending temporal coverage and amount of ESs covered, despite increasing 
amounts and quality of remotely sensed data products, is the lack of ground data 
necessary to validate satellite outputs (Jones and Vaughan 2010). Alternatives to 
traditional validation approaches based on comparison with ground data are new 
methods such as the application of process models to test the consistency of time 
series of more complex satellite data products (Loew et al. 2017).

17.4  �Data Availability and Issues

Large amounts of auxiliary data from RS and other sources are now freely available, 
together with the models and technology necessary to process disparate data in 
geospatial frameworks. To take advantage of the full range of aspects covered, 
increase the reliability of different data sets, and account for data uncertainty as 
much as possible, auxiliary data sources are often used in tandem with RS data. For 
example, satellite and census land use data can be integrated to scale 
administrative-level information to the globe (Ellis et al. 2013), and vegetation indi-
ces from satellites can be combined with local ecological knowledge to improve 
assessments of ecosystem degradation (Eddy et al. 2017). We provide an overview 
of the most frequently and widely integrated remotely sensed and auxiliary data 
products using approaches discussed at the end of this chapter. We focus on data 
sources that are useful in assessing plant diversity-related aspects at the landscape 
scale. In a recent review, Englund et al. (2017) found RS-related publications to use 
the term landscape rather loosely as describing studies at anything between 24 and 
122 million ha. Here, we define landscape as referring to studies going beyond 
local, plot-level scales and generally not past country-level scales, although many 
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methods and data products will be applicable to continental and global scales, too. 
Where the RS data products are described in other chapters, we only report on non-
remotely sensed products; otherwise, references to both are given. Details of data, 
spatial, and temporal resolution as well as the formats available are given in 
Table 17.1.

17.4.1  �In-Situ Biodiversity-Related Data

Decades of field work by dedicated researchers, their assistants, and students have 
resulted in collection of large amounts of biodiversity data, including plant species 
records on geographical location and abundance, traits of individual species, tax-
onomy, and phylogenetic data, as well as information on associated parameters such 
as pollination or dispersal and growth. This plethora of information is often scat-
tered, hidden in scientific publications and a range of online (and offline) databases, 
herbaria, and agency reports. One means of retrieving relevant data semiautomati-
cally from online sources is web scraping. Tools have been developed that make this 
a viable option for people who are not experts in languages routinely used for creat-
ing web pages and applications. These include several R packages (e.g., rvest, xml2, 
httr, TR8), Python libraries (e.g., Beautiful Soup), online tools (e.g., Nokogiri), and 
software assisting with identifying relevant CSS selectors on websites (e.g., Selector 
Gadget).

Recent efforts to cover this step and make dissemination of data more traceable, 
convenient, and standardized have resulted in large databases covering all the aspects 
discussed above. For example, large global databases exist for plant functional traits 
(e.g., TRY, Kattge et al. 2011), plant community data (species co-occurrences; sPlot, 
Dengler and sPlot Core Team 2014), plant phylogeny (e.g., TreeBASE, Smith and 
Brown 2018; Open Tree of Life), species distributions (e.g., Global Biodiversity 
Information Facility (GBIF), and botanical description and identification tools 
(e.g., JSTOR’s Global Plants) to name just a few.

Some issues with using such large databases, however, are unavoidable. 
Regarding plant phylogeny data, one needs to be aware of the lack of molecular data 
associated with most species of plants resulting in many phylogenetic placements 
being based on data at the genus or even family level (Smith and Brown 2018). 
Where genetic data are available at the species level, large uncertainties with regard 
to the placement of many taxa remain (Smith and Brown 2018), and, increasingly, 
genetic sequences have not yet been linked to species names (so-called dark taxa). 
Species distribution data, on the other hand, are known to have an inherently large 
spatial sampling bias (see, e.g., Fig. 17.2) and generally lack absence data, which 
can inflate the effect of sampling bias even further (Barbet-Massin et  al. 2012; 
Kramer-Schadt et al. 2013; Beck et al. 2014; Maldonado et al. 2015).

On the other hand, in the case of trait data, for example, TRY—a global database 
of plant functional traits—has been shown to be biased toward more extreme trait 
values, that is, frequently measured species consistently have higher or lower trait 

17  Integrating Biodiversity, Remote Sensing, and Auxiliary Information for the Study…



464

Ta
bl

e 
17

.1
 

N
on

-e
xh

au
st

iv
e 

ex
am

pl
es

 o
f 

ke
y,

 g
lo

ba
l, 

op
en

 a
cc

es
s 

au
xi

lia
ry

 v
ar

ia
bl

es
; s

om
e 

so
ur

ce
s;

 th
ei

r 
m

ax
im

um
 s

pa
tia

l a
nd

 te
m

po
ra

l r
es

ol
ut

io
n;

 a
nd

 th
e 

av
ai

la
bl

e 
da

ta
 f

or
m

at

V
ar

ia
bl

e
So

ur
ce

s
M

ax
im

um
 r

es
ol

ut
io

n
D

at
a 

fo
rm

at
Te

m
po

ra
l

Sp
at

ia
l

So
ils

Ph
ys

ic
al

/c
he

m
ic

al
So

ilG
ri

ds
 (

H
en

gl
 e

t a
l. 

20
17

)
St

at
ic

25
0 

m
R

as
te

r

G
eo

lo
gy

L
ith

ol
og

y/
m

in
er

al
og

y
G

L
IM

 (
H

ar
tm

an
n 

an
d 

M
oo

sd
or

f 
20

12
)

St
at

ic
<

10
 k

m
R

as
te

r
G

en
er

al
O

ne
G

eo
lo

gy
St

at
ic

V
ar

ie
d

R
as

te
r/

ve
ct

or
To

po
gr

ap
hy

L
an

d 
to

po
gr

ap
hy

, o
ce

an
 

ba
th

ym
et

ry
E

T
O

PO
1

St
at

ic
1 

ar
c 

m
in

R
as

te
r

SR
T

M
St

at
ic

1 
ar

c 
se

c
R

as
te

r
H

yd
ro

lo
gy

V
er

tic
al

 s
oi

l, 
gr

ou
nd

w
at

er
 

re
se

rv
oi

r
W

at
er

G
A

P
(F

lö
rk

e 
et

 a
l. 

20
13

)
D

ai
ly

5 
ar

c 
m

in
R

as
te

r

Pe
rm

ea
bi

lit
y 

an
d 

po
ro

si
ty

G
L

H
Y

M
PS

(G
le

es
on

 e
t a

l. 
20

14
)

St
at

ic
10

0 
km

2
V

ec
to

r

G
lo

ba
l r

es
er

vo
ir

s/
da

m
s

G
R

an
D

(L
eh

ne
r 

et
 a

l. 
20

11
)

St
at

ic
C

ou
nt

ry
V

ec
to

r

Ir
ri

ga
te

d 
ar

ea
s

G
lo

ba
l i

rr
ig

at
io

n 
m

ap
s 

(S
ie

be
rt

 e
t a

l. 
20

13
)

St
at

ic
5 

ar
c 

m
in

R
as

te
r

W
at

er
 u

se
d 

fo
r 

ir
ri

ga
tio

n
FA

O
ST

A
T

St
at

ic
C

ou
nt

ry
V

ec
to

r
R

iv
er

s 
an

d 
la

ke
 c

en
te

rl
in

es
N

at
ur

al
 E

ar
th

St
at

ic
10

 m
V

ec
to

r
L

ak
es

 a
nd

 r
es

er
vo

ir
s

N
at

ur
al

 E
ar

th
St

at
ic

10
 m

V
ec

to
r

C
lim

at
e

Te
m

pe
ra

tu
re

/ p
re

ci
pi

ta
tio

n
C

H
E

L
SA

(K
ar

ge
r 

et
 a

l. 
20

17
)

M
on

th
ly

30
 a

rc
 s

R
as

te
r

C
R

U
 T

S 
v.

 4
.0

1 
(H

ar
ri

s 
et

 a
l. 

20
14

)
M

on
th

ly
 (

19
01

–2
01

6)
0.

5°
R

as
te

r
Pr

ec
ip

ita
tio

n
T

R
M

M
3-

ho
ur

ly
 (

19
98

–2
01

6)
0.

25
°

R
as

te
r

C
H

IR
PS

D
ai

ly
 (

19
81

–2
01

6)
0.

05
°

R
as

te
r

E
va

po
tr

an
sp

ir
at

io
n

M
O

D
IS

, N
A

SA
Y

ea
rl

y/
8-

da
y 

(2
00

0–
20

10
)

50
0 

m
R

as
te

r

F. Schrodt et al.



465

So
ci

oe
co

no
m

ic
Po

pu
la

tio
n 

de
ns

ity
T

he
 W

or
ld

 B
an

k
Y

ea
rl

y
C

ou
nt

ry
V

ec
to

r
N

A
SA

5-
ye

ar
ly

30
 a

rc
 s

R
as

te
r/

ve
ct

or
H

ea
lth

/
D

em
og

ra
ph

y
T

he
 W

or
ld

 B
an

k
Y

ea
rl

y
C

ou
nt

ry
V

ec
to

r
G

lo
ba

l H
ea

lth
 D

at
a 

E
xc

ha
ng

e/
W

H
O

Y
ea

rl
y

C
ou

nt
ry

V
ec

to
r

N
ut

ri
tio

n
T

he
 W

or
ld

 B
an

k
Y

ea
rl

y
C

ou
nt

ry
V

ec
to

r
G

D
P

T
he

 W
or

ld
 B

an
k

Y
ea

rl
y

C
ou

nt
ry

V
ec

to
r

E
du

ca
tio

n
T

he
 W

or
ld

 B
an

k
Y

ea
rl

y
C

ou
nt

ry
V

ec
to

r
U

N
E

SC
O

Y
ea

rl
y 

to
 5

-y
ea

rl
y

C
ou

nt
ry

V
ec

to
r

R
oa

d 
ne

tw
or

ks
O

pe
nS

tr
ee

tM
ap

M
in

ut
el

y-
m

on
th

ly
V

ar
ia

bl
e

V
ec

to
r

R
oa

ds
/r

ai
lr

oa
d/

ai
rp

or
ts

/p
or

ts
N

at
ur

al
 E

ar
th

St
at

ic
10

 m
V

ec
to

r
L

an
d 

us
e

Ir
ri

ga
te

d 
ar

ea
s

In
te

rn
at

io
na

l W
at

er
 M

an
ag

em
en

t I
ns

tit
ut

e
St

at
ic

10
 k

m
R

as
te

r
L

an
d 

us
e

L
an

dS
en

se
 (

Fr
itz

 e
t a

l. 
20

17
)

St
at

ic
 (

20
11

–2
01

2)
30

0 
m

–1
 k

m
R

as
te

r
W

ild
er

ne
ss

 a
nd

 h
um

an
 im

pa
ct

L
an

dS
en

se
 (

Fr
itz

 e
t a

l. 
20

17
)

St
at

ic
 (

20
11

–2
01

2)
30

0 
m

–1
 k

m
R

as
te

r
G

lo
ba

l m
ap

 o
f 

ra
in

fe
d 

cr
op

pe
d 

ar
ea

s
In

te
rn

at
io

na
l W

at
er

 M
an

ag
em

en
t I

ns
tit

ut
e

St
at

ic
10

 k
m

R
as

te
r

Pr
ot

ec
tio

n 
st

at
us

W
or

ld
 d

at
ab

as
e 

on
 p

ro
te

ct
ed

 a
re

as
 (

U
N

E
P-

W
C

M
C

 2
01

7)
M

on
th

ly
V

ar
ia

bl
e

V
ec

to
r

L
an

d 
co

ve
r

L
an

d 
co

ve
r

U
SG

S
St

at
ic

 (
19

92
–1

99
3)

1 
km

R
as

te
r

E
SA

 G
lo

bC
ov

er
 V

2
St

at
ic

30
0 

m
R

as
te

r
L

an
dS

en
se

 (
Fr

itz
 e

t a
l. 

20
17

)
St

at
ic

 (
20

11
–2

01
2)

30
0 

m
–1

 k
m

R
as

te
r

M
O

D
IS

12
C

1
Y

ea
rl

y 
(2

00
1–

20
13

)
50

0 
m

R
as

te
r

FA
O

 S
H

A
R

E
St

at
ic

1 
km

R
as

te
r

N
at

io
na

l G
eo

m
at

ic
s 

C
en

te
r 

of
 C

hi
na

 
G

lo
be

L
an

d3
0

St
at

ic
30

 m
R

as
te

r

C
or

in
e 

(E
ur

op
ea

n 
E

nv
ir

on
m

en
t A

ge
nc

y)
St

at
ic

 (
19

90
, 2

00
0,

 2
00

6,
 

20
12

, 2
01

8)
C

ou
nt

ry
R

as
te

r/
ve

ct
or

M
os

ai
c 

an
d 

fo
re

st
/n

on
-f

or
es

t
Ja

pa
n 

A
er

os
pa

ce
 E

xp
lo

ra
tio

n 
A

ge
nc

y 
PA

L
SA

R
St

at
ic

 (
20

07
–2

01
0)

25
 m

R
as

te
r

G
lo

ba
l f

or
es

t c
ha

ng
e

U
ni

ve
rs

ity
 o

f 
M

ar
yl

an
d 

(H
an

se
n 

et
 a

l. 
20

13
)

Y
ea

rl
y 

(2
00

0–
20

17
)

30
 m

R
as

te
r

(c
on

tin
ue

d)

17  Integrating Biodiversity, Remote Sensing, and Auxiliary Information for the Study…



466

Ta
bl

e 
17

.1
 

(c
on

tin
ue

d)

R
el

at
ed

 to
 

in
-s

itu
 p

la
nt

 
di

ve
rs

ity

Fu
nc

tio
na

l t
ra

its
T

R
Y

 d
at

ab
as

e
(K

at
tg

e 
et

 a
l. 

20
11

)
St

at
ic

V
ar

ie
d

V
ec

to
r, 

po
in

t

Fi
ne

 r
oo

t t
ra

its
FR

E
D

 (
Iv

er
se

n 
et

 a
l. 

20
18

)
St

at
ic

V
ar

ie
d

V
ec

to
r, 

po
in

t
C

o-
oc

cu
rr

en
ce

s
sP

lo
t d

at
ab

as
e 

(D
en

gl
er

 a
nd

 s
Pl

ot
 C

or
e 

Te
am

 
20

14
)

St
at

ic
Pl

ot
 lo

ca
tio

n
V

ec
to

r

Ph
yl

og
en

y 
(n

o 
br

an
ch

 le
ng

th
s)

O
pe

n 
T

re
e 

of
 L

if
e

St
at

ic
N

on
e

Po
in

t
Se

ed
 p

la
nt

 p
hy

lo
ge

ny
 (

w
ith

 
br

an
ch

 le
ng

th
s)

Sm
ith

 a
nd

 B
ro

w
n 

(2
01

8)
St

at
ic

N
on

e
Po

in
t

Ta
xo

no
m

y
iN

at
ur

al
is

t
(c

ro
w

d 
so

ur
ce

d)
St

at
ic

N
on

e
ID

A
ng

io
sp

er
m

 P
hy

lo
ge

ny
 G

ro
up

St
at

ic
N

on
e

ID
G

lo
ba

l P
la

nt
s 

(J
ST

O
R

)
St

at
ic

N
on

e
ID

B
io

di
ve

rs
ity

 c
ha

ng
e

D
or

ne
la

s 
et

 a
l. 

(2
01

8)
18

74
–2

01
6

15
8 

cm
2 –

10
0 

km
2

V
ec

to
r

Sp
ec

ie
s 

di
st

ri
bu

tio
ns

G
lo

ba
l B

io
di

ve
rs

ity
 I

nf
or

m
at

io
n 

Fa
ci

lit
y 

(G
B

IF
)

St
at

ic
V

ar
ie

d
V

ec
to

r, 
ra

st
er

, 
po

ly
go

n

V
ar

ia
bl

e
So

ur
ce

s
M

ax
im

um
 r

es
ol

ut
io

n
D

at
a 

fo
rm

at
Te

m
po

ra
l

Sp
at

ia
l

F. Schrodt et al.



467

values than species missing in TRY (Sandel et al. 2015). Although plant functional 
traits are conventionally measured at the peak of the growing season and in full light 
conditions (top of canopy) (Pérez-Harguindeguy et al. 2013), one of the most com-
monly measured traits, specific leaf area (SLA) has been shown to have values in 
TRY that are typical of partial canopy shading (Keenan and Niinemets 2016). Due 
to the extremely diverse nature of studies contributing data to the TRY database, 
most entries have on average only three traits measured simultaneously, which 
makes multivariate analyses at the individual plant level extremely challenging 
(Schrodt et al. 2015).

These issues are mainly due to studies represented within these databases not 
necessarily following standardized protocols (e.g., Pérez-Harguindeguy et al. 2013), 
studies having different foci, data from opportunistic sampling (Maes et al. 2015) 
being mixed with data from directed approaches, and rare species, from a purely 
statistical viewpoint, being less likely to be measured. As such, avoiding them at the 
database level, especially where such a large number of data entries are managed in 
open access databases (e.g., Version 4 of TRY contained almost seven million trait 
records), is currently virtually impossible. An additional challenge when using trait 
data in tandem with RS is the lack of geo-referenced measurements within trait data-
bases. For example, only about 60% of all data points within TRY are geo-referenced 
with variable levels of precision.

Fig. 17.2  Number of species distribution databases reporting the presence of two tree species: 
Abies alba (right) and Corylus avellana (left) across Europe. Color shows 0.5° raster including 
geo-references of A. alba or C. avellana presence, ordered from red (only one database reports 
presence of the species in this pixel) to dark blue (all seven examined databases report presence of 
the species in this pixel). Note the strong country border-related pattern for C. avellana. The num-
ber of pixels as a percentage of the total number of “presence pixel” where all seven databases 
agree is indicated in the plot (3.65% and 5.32%). Seven species distribution databases covering 
Europe were analyzed, including the Atlas Florae Europaeae, GBIF (status Nov. 2017), European 
Vegetation Archive, EUFORGEN (EU Forestry Commission), data from Brus et al. (2012), data 
collated by colleagues from the University of Leipzig (DE), and the FunDivEUROPE project 
(Baeten et al. 2013)
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This leaves it to the data user to work around and with the data issues. Means of 
dealing with some of the aforementioned challenges regarding data availability and 
quality are (i) gap filling of missing trait data (Swenson 2014; Schrodt et al. 2015) 
and (ii) spatial extrapolation of plant traits (Butler et al. 2017), accounting for “dark 
diversity,” i.e., the portion of species absent from species distribution data such as 
biodiversity maps (Ronk et al. 2015). Care must be taken to avoid circularity (e.g., 
using phylogeny to gap fill trait data when including an aspect of taxonomy or phy-
logeny in subsequent analyses). In addition, a possible lack of representativeness 
throughout analyses should be considering, as well as the fact that different 
approaches might require different data collection protocols (e.g., statistical versus 
process models).

17.4.2  �In-Situ Abiotic Factors

Much abiotic information, including data from the lithosphere, atmosphere, hydro-
sphere, and cryosphere, can be assessed remotely (see Record et al., Chap. 10, in 
this book for a thorough discussion, including access to climatological data). 
However, many important aspects are only accessible from in-situ sources. These 
include, for example, soil chemical and physical characteristics, geomorphology, 
and subsurface hydrology (see Table 17.1). Many are available at static temporal but 
relatively high spatial resolutions with high associated uncertainties in geolocation, 
bias due to different sampling efforts depending on the location, etc. For example, 
Generalized Linear Interactive Modelling (GLIM), a lithology and mineralogy data 
source, has been shown to be highly biased by country boundaries—an issue that is 
perpetuated in other products using GLIM, such as the SoilGrids database (Hengl 
et  al. 2017), resulting in error propagation to higher-level agglomerate analyses. 
Other challenges include breakdown of concepts and assumptions related to up- and 
downscaling of composite products (e.g., inter-cell redistribution of soil water at 
fine spatial resolution, which can be ignored at coarser resolutions) and a lack of 
knowledge about parameters and processes acting at different resolutions (Bierkens 
et al. 2015).

17.4.3  �Socioeconomic Factors and Land Use

Socioeconomic aspects are often ignored in assessments of plant biodiversity at the 
landscape scale, despite the obvious imprint humans have left on most of the globe. 
For example, Abelleira Martínez et al. (2016) found that studies linking local plant 
trait measurements to environmental gradients without accounting for anthropo-
genic effects on these traits render them of limited use due to the multivariate nature 
of the processes governing observed patterns. The same applies to studies integrat-
ing in-situ plant trait variability with land cover types, e.g., for ES assessments 
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without explicitly taking into account human modification of the landscape through 
management, engineered novel communities, land use history, and heterogeneous 
landscapes (Abelleira Martínez et  al. 2016). Anthropogenic aspects that can be 
assessed easily and incorporated into landscape scale analyses include data on pop-
ulation density, socioeconomics, and pollution (see Table 17.1).

Land use is another important anthropogenic aspect but less easily assessed at 
the landscape scale using RS techniques alone. This is mainly due to the same land 
cover (which refers to the physical characteristics of a landscape) having the poten-
tial of belonging to different land use categories (referring to the human use of this 
landscape). For example, the land cover class forest could be within the land use 
category natural primary forest or heavily managed degraded forest. Consequently, 
large-scale land use mapping depends on auxiliary data such as that coming from 
open access crowdsourced land cover and land use data to improve ground-truthing 
and validation (Fritz et al. 2017) and a combination of RS data sources, such as 
fusion of spaceborne optical data with radar data (Joshi et al. 2016).

At the other end of the spectrum of land uses are the human modified, urbanized, 
and infrastructure types such as cities and roads. RS has demonstrated a great poten-
tial to map impervious surface and more limited success in detecting roads. There 
has been a growing interest in urban ecology because more than half of the global 
population now lives in cities, and there is a growing interest to increase healthy 
urban living that combines well-being and biodiversity (Botzat et al. 2016). The first 
step to reach this goal is to create urban green belts (Hostetler et al. 2011), which are 
expected to bring about increasing numbers of native species and increased con-
nectivity (Aronson et al. 2017). However, urban areas are also linked to high rich-
ness (Gavier-Pizarro et al. 2010) and spread of invasive species (Hui et al. 2017), 
and small urban centers are sources of invasive plants into natural areas (McLean 
et al. 2017).

RS of urban (invasive) plant species is covered in another chapter in this book 
(see Bolch et  al., Chap. 12). Roads are more difficult to retrieve with RS alone, 
although the fishbone patterns in the Brazilian Amazon are evident in Landsat data 
(Alves and Skole 1996). Initiatives like OpenStreetMap can provide auxiliary data 
to improve the accuracy of RS-only estimates. These data are fundamental to assess 
global roadless areas and fundamental for maintaining biodiversity processes and 
avoiding deleterious effects of fragmentation.

17.4.4  �Land Cover

Among the most traditional applications of RS are those related to the estimation of 
biophysical variables (e.g., tree density, vegetation health). AVHRR, Landsat, 
Sentinel-2, and MODIS are the most widely used sensors for this purpose, but integra-
tion of optical RS with LiDAR technology significantly improves the estimation and 
assessment of vegetation structure due to added horizontal and vertical information 
of vegetation properties (e.g., canopy height) (Lim et al. 2003). Studies combining 
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optical, LiDAR, and radar RS have been applied to study interactions between biotic 
(i.e., vegetation) and abiotic (i.e., soil, geomorphology) elements at landscape scales 
and to quantify the carbon cycle and biomass.

Land cover is another commonly analyzed measure (in their recent review, Ma 
et  al. (2017) analyzed 254 experimental cases and 173 scientific papers on the 
subject) that has been shown to be highly sensitive to the classification method 
applied, with the optimal approach depending to a large extent on spatial resolution, 
differences between land cover types, and training set size. Land cover maps are 
often used to derive landscape structural features such as patch size, isolation, and 
perimeter-to-area ratio.

Such landscape metrics can be assessed using patch matrix models (PMM), 
which are most suitable for high-hemeroby (low naturalness and high anthropo-
genic pressure, e.g., urban) landscapes due to reduced spatiotemporal heterogeneity, 
while gradient models (GM) are recommended for low-hemeroby landscapes (e.g., 
undisturbed forest) (Lausch et  al. 2015). While PMMs are relatively well estab-
lished and easy to use, disadvantages include that heterogeneity information might 
be lost, patches tend to have sharp boundaries, and results are highly sensitive to 
misclassifications of land cover and use metrics (Lausch et al. 2015). GMs, on the 
other hand, are more complex to use and require more computing capacity and RS 
expertise while being less susceptible to loss of heterogeneity information and arti-
ficially sharp boundaries (Lausch et al. 2015). Both models use a variety of data as 
inputs, including hyperspectral and LiDAR RS as well as in-situ data, thereby tak-
ing full advantage of opportunities offered by each methodology.

17.5  �Methods to Integrate Remotely Sensed Measures 
of Plant Biodiversity with In-Situ Plant Diversity, 
Abiotic, and Socioeconomic Data

Studies of plant diversity at the landscape level frequently require a mix of data 
sources from various sensors as well as in-situ data (Table 17.1, Fig. 17.3). There 
are thus three main reasons for integrating measures of biodiversity-related vari-
ables across different data sources: (i) combining data from different sensors to 
make use of different vegetation aspects measured (e.g., MODIS vs. Advanced 
Land Observation Satellite Phased Array type L-band Synthetic Aperture Radar 
(ALOS PALSAR)); (ii) combining different sensors to simulate higher spatiotem-
poral and spectral resolutions to save financial resources or account for gaps in 
available RS data (e.g., Zeng et al. 2017); and (iii) combining in-situ with RS data 
for upscaling and validation.

The process of integrating, combining, and correlating data from different sen-
sors and data types of different temporal and spatial scales is not straightforward. 
Challenges are numerous and include sensor calibration, the propagation of uncer-
tainties from individual data sets with inherent and variable uncertainty and impre-
ciseness, outliers and spurious data, bias due to spatial autocorrelation, differences 
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Fig. 17.3  Example work flow to correlate biomass (k) with human population density (f). Raw 
data from a variety of sources needs to be integrated, including Sentinel-2 (a), Landsat (b), and 
LiDAR (c) from RS as well as modeled land cover (d, INEGI 2013), plot level in-situ biomass 
measurements (e), and raw population density data (f, GPWv4 2016). After general data checking 
and cleaning (which is advisable for any data source), atmospheric and geometric corrections are 
performed on the remotely sensed data using software such as ENVI or SNAP, followed by trans-
formation of the bands—in this case, calculation of the NDVI vegetation index (g). Radar data are 
classified into ground and nonground points using LAStools software, followed by application of 
a digital terrain and height canopy model to derive a canopy height map (h). Aboveground biomass 
(AGB, k) is calculated using the NDVI, canopy height, and (to validate the model) ground data and 
vegetation map (i). (j) Rasterized population density map, (m) pixelwise regression between (k) 
and (l). Please note no visible difference between (j) and (l) due to resampling, resulting in only 
small changes in pixel size
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in geospatial data registration and alignment, and different processing frameworks 
(see Quattrochi et al. 2017 for a thorough discussion).

Figure 17.3 presents an example workflow that depicts the steps required to 
assess if there is a correlation between biomass and human population density in a 
coastal area of Mexico. In this case, since biomass cannot be inferred directly from 
RS sources (as described elsewhere in this book), several preprocessing and pro-
cessing steps are required. Preprocessing steps include data preparation (data clean-
ing, atmospheric and geometric corrections), data transformation (e.g., from tabular 
into rasterized data) and fusion, running of auxiliary methods such as classification 
methods, and application of digital terrain models and height canopy models. 
Processing steps incorporate the use of allometric equations using in-situ plot level 
measurements of plant biomass in that area, which are also used as training and vali-
dation data to formulate the final aboveground biomass model fusing RS with in-situ 
data. Here, we present examples of techniques dealing with some of the abovemen-
tioned challenges in aligning different sensors, fusing data from these different sources 
across space and time, training fusion methods, and validating results.

17.5.1  �Fusion

Data fusion is an invaluable tool to assess patterns and processes of biodiversity at 
large spatial scales and integrate data across different aspects of remotely sensed 
plant diversity, abiotic, and socioeconomic factors. Data fusion allows integration of 
data from different sensors and of diverging spatial, spectral, and temporal extent to 
produce outputs of increased fidelity and usefulness. Fusion is often performed to 
account for limitation in one data source, e.g., where single data rather than time 
series data are available in the sensor of interest (Carreiras et al. 2017) or to resa-
mple low-resolution data from one spaceborne RS channel using data from another, 
high-resolution channel on the same sensor.

In the example mentioned above (Fig. 17.3), the authors chose to use optical data 
from MODIS and radar data from ALOS PALSAR, and for their successful fusion, 
it is important to consider the different spatial resolutions, temporal data availabil-
ity, and sensor characteristics (Fig. 17.1). This kind of constellation is frequently 
used to map a range of land cover and land use characteristics, including change, 
conversion, and modification where detailed information on both broad land cover 
classes from optical data and detailed surface roughness and moisture information 
from radar images are required (Pereira et al. 2013; Dusseux et al. 2014; Stefanski 
et al. 2014).

Different fusion techniques are applied to spaceborne or airborne sensors. For 
example, Sankey et al. (2018) described an approach to fuse unmanned aerial vehi-
cle (UAV) LiDAR with hyperspectral data using a decision tree classification tech-
nique and found the combined use of these sensors provided more accurate 
assessments of 3D analyses of plant characteristics and plant species identification 
at submeter spatial resolutions.
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A common application of fusion is an increase of spatial or spectral resolution, 
either accounting for limitations in the available data or imitating high-cost systems 
using low-cost alternatives, e.g., in precision agriculture. For example, Zeng et al. 
(2017) developed a system imitating very high spatial resolution hyperspectral 
measurements such as those required for the calculation of some vegetation indices 
(VI) using low-cost UAV-mounted sensors and fusing multispectral imagery with 
spectrometer data using Bayesian imputation and principal component analysis. 
Data fusion can also be applied when linking RS data to in-situ data. In their recent 
review, Lesiv et al. (2016) compared different algorithms fusing RS with crowd-
sourced data for forest cover mapping, including geographically weighted logistic 
regression (GWR), naïve Bayes, nearest neighbor, logistic regression, and classifi-
cation and regression trees (CART), finding GWR to perform slightly better where 
input data were disparate.

In its simplest form, fusion can be a basic overlay of high- (spectral/spatial/tem-
poral) resolution data over low-resolution data. However, as Lesiv et al. (2016) and 
others have shown, it is worth comparing different fusion techniques. Several stud-
ies have performed such comparisons but mainly with respect to land cover classi-
fication and specific to certain sensors and spatiotemporal scales (e.g., Caruana and 
Niculescu-Mizil 2006, Clinton et al. 2015). Consequently, Liu et al. (2017) recom-
mend routine use of statistical comparisons between different fusion techniques 
(e.g., a Wilcoxon signed-ranks test for two algorithms or a Friedman test with Iman 
and Davenport extension if more than five algorithms are compared) to detect the 
optimal solution for a given application.

17.5.2  �Assimilation

In essence, data assimilation is an extension of data fusion, linking noisy RS mea-
surements with the outputs from imperfect numerical models to optimize estimates 
of measures that are not directly observable from RS [e.g., for detailed, high spatio-
temporal drought monitoring (Ahmadalipour et al. 2017) or, in the example given in 
Fig. 17.3, to derive biomass estimates using a combination of canopy height, digital 
terrain, and aboveground biomass (AGB) modeling]. Advantages of data assimila-
tion include enhanced quality control, the ability to take into account errors and 
uncertainties in data and models simultaneously, gap filling in data-poor locations 
and where insufficient temporal information is available, and improved parameter 
estimation in models.

However, data assimilation can also result in circular and inconsistent analyses. 
The end user needs to be aware that many remotely sensed variables [e.g., leaf area 
index (LAI)] are based on models incorporating ancillary information and are thus 
not independently retrieved. In our example, land cover might already be used as an 
information layer to tune the RS LAI retrieval within the data assimilation step. 
Thus, using LAI as biodiversity variable and adding land cover as an explanatory 
variable could be problematic (inconsistent if from different sources or circular). 
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This illustrates the importance of carefully considering all input variables at different 
steps of the data fusion and assimilation process before using a RS product for 
further analyses.

A range of data assimilation techniques is available, from univariate (scalar) and 
multivariate (vector) 3D and 4D Kalman filter to ensemble methods that are particu-
larly suitable where large sets of parameters are required and models are complex 
(for details see, e.g., Bouttier and Courtier 2002; Evensen 2002).

17.5.3  �Validation

Like any other source of data, spaceborne remotely sensed products have errors and 
uncertainties associated with them. Validation is thus an ongoing challenge, although 
a number of guidelines and recommendations for best practice exist. For example, 
the NASA Land Product Validation Subgroup has published a framework for prod-
uct validation and inter-comparison, as well as a “guide to the expression of uncer-
tainty in measurement” (Schaepman-Strub et  al. 2014). In the case of remotely 
sensed LAI, the list of auxiliary parameters with associated uncertainties that should 
be considered when validating LAI measures is long. It includes input data [land 
cover, radiometric calibration error, geometry, aerosol optical depth at 550 nm, can-
opy condition (chlorophyll, dry matter, and moisture content), understory reflec-
tance and geolocation (sensitivity to terrain slope), sensor noise (especially for dark 
targets such as dense vegetation), clear sky top-of-atmosphere radiance, bidirec-
tional reflectance distribution function (BRDF) modeling uncertainty, canopy and 
understory modeling uncertainty, and geometric considerations (where products are 
gridded in map projection systems of varying shape and area, Fernandes et al. 2014). 
A detailed overview of validation techniques used across different levels of RS data 
is given in Zeng et al. (2015), and guidelines on terminology, unified satellite valida-
tion metrics, and strategies, as well as explicit examples of RS validation tech-
niques, including their mathematical basis, are provided in Loew et  al. (2017). 
Luckily for the end user, many of these validation steps are performed by the respec-
tive satellite agencies (e.g., the European Space Agency (Dorigo et al. 2017) and 
NASA (Justice et al. 2013). However, being aware of the complexity of this endeavor 
and the importance of considering both the target variable (e.g., LAI) and its associ-
ated quality measure (e.g., uncertainty) as provided by the space agencies is of 
utmost importance to ensure appropriate use of RS products.

Apart from validating spaceborne RS data, validation techniques are also used to 
evaluate the quality of modeled secondary indices, as well as to assess uncertainty 
propagation after data fusion [e.g., accounting for uncertainty due to variable data 
quality of in-situ or crowdsourced data (see, e.g., Comber et al. 2016) or to validate 
downscaled RS products and airborne RS products]. For instance, crowdsourced 
data have been used to validate a high-resolution global land cover map (Fritz et al. 
2017), and in-situ measurements of LAI collected simultaneously with airborne 
hyperspectral images were used to validate canopy radiative transfer models in 
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agricultural landscapes (Haboudane et al. 2003). In its simplest form, validation is 
a pixelwise comparison of presumably high accuracy (often in-situ) data with the 
remotely sensed or modeled data, using an x-fold validation approach (splitting the 
in-situ data into training and validation data) if some of the in-situ data are needed 
for model development or downscaling. For an overview of more complex tech-
niques see, for example, Montesano et al. (2016) for Landsat-derived tree cover, 
Lesiv et al. (2016) for crowdsourced forest cover, Joshi et al. (2016) for optical- and 
radar-derived land use, and Sun et al. (2017) for in-situ validated land cover.

With the rapidly growing availability of RS and auxiliary data, validation can 
become a time-consuming and complex task. Thus, increasingly, web-based valida-
tion systems are being developed that integrate big data access and storage, adjust-
ment, and different intercomparison and validation techniques simultaneously (e.g. 
Sun et al. 2017).

One of the potential issues with the data fusion and assimilation methods described 
above is that they are often applied globally without testing whether variables and 
correlations remain stable in space and time (Comber et al. 2012). This is a recognized 
problem, and solutions have been proposed for over a decade (e.g., geographically 
distributed correspondence matrices, Foody 2005) with new approaches being con-
tinually proposed. Often these are specific for certain applications, such as net primary 
production (Wang et al. 2005), epidemiology (Khormi and Kumar 2011), biomass 
(Propastin 2012) or population segregation (Yu and Wu 2013). One recently proposed 
more generic approach is that of locally geographically weighted correspondence 
matrices, which combine categorical difference measures (Pontius and Milones 2011, 
Pontius and Santacruz 2014) with spatially distributed kappa coefficient, user, and 
producer accuracy estimates—with code to run these tests in R being available, e.g., 
see packages gwxtab, differ and RSLcode (available on github (https://github.com/
lexcomber/RSLcode)) (Comber et al. 2017). All of these draw attention to the fact 
that, even after performing data cleaning, fusion, assimilation, and validation steps, 
local approaches, data, and techniques cannot necessarily be directly transferred from 
one location and spatiotemporal resolution to another.

17.6  �Conclusions

We are living in an increasingly data-rich world, in which not only more but also 
more accurate and reliable data are available on many aspects related to plant biodi-
versity, both from remotely sensed as well as in-situ measurements. Increasingly, 
limitations and potential circularities inherent to these data are acknowledged, often 
aided by the provision of associated estimates of uncertainties and dedicated inter-
comparison studies. Techniques are being developed that enable even nonexperts to 
account for and learn from these. Even in the case of data limitations, however, our 
ability to map all aspects of biodiversity over large spatial and temporal scales has 
increased exponentially over the last decade, and monitoring and understanding 
ecosystem functions is easier than ever before. Nevertheless, significant challenges 
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remain, including scaling mismatches, misuse of data and techniques, insufficiently 
high spatiotemporal resolution of RS data, biases in in-situ data, and many more. It 
is imperative that we acknowledge and work with these challenges to devise even 
more accurate and suitable approaches to assessing biodiversity for the study of 
ecosystem function, conservation, and other applications at large spatial scales.
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Chapter 18
Essential Biodiversity Variables: 
Integrating In-Situ Observations 
and Remote Sensing Through Modeling

Néstor Fernández, Simon Ferrier, Laetitia M. Navarro, 
and Henrique M. Pereira

18.1  �Introduction

Which facets of biodiversity are changing, and what is the magnitude and direction 
of these changes? How is biodiversity responding to the variety of human pres-
sures? Are the management policies put into place effective to tackle the impact of 
those pressures? While the scientific community has been addressing these ques-
tions for decades, the information gap in biodiversity science remains a major obsta-
cle for reducing the large uncertainties associated with answering those questions. 
Technological advances, collection of data by an increasing number of scientists 
and volunteer citizens, and increased access to Earth observations (EO) should help 
reduce this gap. Yet quantitative information is still limited, as has been its ability to 
inform important international commitments such as the Aichi Biodiversity Targets 
in response to the global biodiversity crisis (Tittensor et al. 2014). Data collection 
and monitoring protocols are often adopted by scientists, public administrations, 
and environmental organizations with no effective international coordination, and 
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there is no consensus on adopting priority metrics to quantify biodiversity change. 
While strengthening efforts to reduce the multiple biases present in biodiversity 
data remains critical (including spatial, temporal, and taxonomic biases, among oth-
ers; Meyer et al. 2016; Proença et al. 2017), parallel efforts are needed to consoli-
date data from in-situ and remote sensing (RS) EO so as to increase their usability 
and information value.

The concept of essential biodiversity variables (EBVs) was proposed in 2013 as 
a framework to prioritize, integrate, and consolidate biodiversity observations and 
monitoring programs worldwide (Pereira et al. 2013). Since then, EBVs have gained 
acceptance among scientists, along with the interest and endorsement of the policy-
making community, including the Convention on Biological Diversity (e.g., 
Decision XI/3  in UNEP/CBD/COP/11/35) and the Intergovernmental Science-
Policy Platform on Biodiversity and Ecosystem Services (IPBES). By providing an 
integrative framework for quantifying biodiversity change in time, EBVs also hold 
great potential for advancing research on biodiversity and responses to pressures 
and conservation actions. However, the concept is still evolving, and divergent 
viewpoints have emerged on what actually constitutes an EBV. Here we discuss 
recent progress in defining an operational EBV framework and the importance of 
this framework for biodiversity data integration. We start with discussing key attri-
butes of EBVs. We then describe recent conceptual developments in support of their 
implementation. Finally, we illustrate the role of biodiversity models as a corner-
stone for integrating data obtained from in-situ and satellite RS EO to support global 
assessments of biodiversity change and as a critical component of a global biodiver-
sity monitoring system (Geller et al., Chap. 20).

18.2  �The EBV Framework

18.2.1  �Definition of Essential Biodiversity Variables

EBVs are defined as a minimum set of complementary measurements needed to 
detect and document biodiversity change across all levels of biodiversity, from 
genes to species and ecosystems (Pereira et al. 2013). EBVs are part of a larger fam-
ily of Essential Variables (EVs) that was first conceptualized by the climate com-
munity with the Essential Climate Variables (Box 18.1).

Like all EVs, EBVs must meet the criteria of feasibility, cost-effectiveness, and 
scientific and policy relevance. Additional characteristics that might be specific to 
the EBVs are generalization (to the best extent possible) across terrestrial, marine, 
and freshwater realms and scalability. Importantly, the EBVs evolved from initially 
covering multiple aspects of the Driver-Pressure-State-Impact-Response (DPSIR) 
framework to focusing exclusively on biological state variables (i.e., EBVs describe 
the condition or the status of a particular biological entity). This is not to say that 
nonbiological variables are irrelevant for EBVs. On the contrary, some of these 
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variables, such as temperature, fire occurrence, or elevation, may be extremely 
important (e.g., as covariates in biodiversity models); however, they do not consti-
tute EBVs themselves. Furthermore, EBVs can be analyzed in relation to other vari-
ables to attribute biodiversity change to specific pressures and drivers (Pereira et al. 
2012), to predict how different biodiversity metrics might behave with different 
scenarios of change (Kim et al. 2018), and to assess the effectiveness of manage-
ment policies for biodiversity and ecosystem services (Geijzendorffer et al. 2016).

EBVs are best understood as the level of integration between primary observa-
tions, including in-situ and RS EO, and indicators of biodiversity change, calculated 
for a given spatial reporting unit (country, set of protected areas, etc.; Fig. 18.1). The 
power of EBVs emerges from their flexibility to incorporate new data as technology 
evolves and/or more exhaustive primary data are collected. This is already the case 
with the advent of citizen science and the technical progress made with, for instance, 
metagenomics, metabarcoding, field sensor networks, and RS (Turner 2014; Bush 
et  al. 2017; Haase et  al. 2018; Muller-Karger et  al. 2018a). This means that the 
underlying measurement, coverage, and frequency of primary observations are 
likely to change (Fig. 18.2). Likewise, the needs of end users in terms of biodiversity 
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Fig. 18.1  EBVs are intermediate products between primary observations and biodiversity change 
indicators. Observations obtained with different methods and protocols require different levels of 
integration, often with the use of biodiversity models, to consolidate the information in an 
EBV.  The EBV cube typically structures biological measurements in a space defined by geo-
graphic and temporal references and a biological entity, such as species or ecosystem class. While 
end users (including scientists, managers, public administrations, and international policy forums 
and bodies) determine the need for indicators, they also influence the implementation of observa-
tion systems. However, the EBV remains the same so that it is complemented with new primary 
data, e.g., from repeated in-situ surveys or future satellite missions
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change indicators have evolved in the past and will continue to do so. However, the 
EBVs are designed to remain conceptually stable, making them adaptable to differ-
ent and unforeseen users’ needs. For example, even though the methods used to 
acquire and integrate data on species occurrence, and the indicators it can inform 
on, are likely to change in the future, the species distribution variable remains 
essential.

Fig. 18.2  Framework of the six classes of EBVs grouped by species-focused and ecosystem-
focused approaches

Box 18.1 Essential Variables
Essential variables (EVs) emerged from the need for openly available data 
sets with transparent production processes that offer an appropriate spatial 
and temporal coverage to allow their use in policy- and decision-making 
(Bojinski et al. 2014). As a result, EVs are meant to allow the development of 
indicators that can support dynamic users’ needs while being resilient to 
changing and/or evolving observation systems (Reyers et al. 2017). From a 
pool of candidate variables, both science and technology will determine 
which are feasible, cost-effective, and, most importantly, relevant, and thus 
essential (Bojinski et al. 2014). In practice, although EVs can be interpreted 
and adapted differently among disciplines, the process of their development 
and endorsement remains similar, with a community of practice that self-
organizes to provide both the scientific foundation (research, data, monitor-
ing) and technical guidance to produce those EVs.

EVs were first adopted by the climate community as the Essential Climate 
Variables (ECVs) in the early 1990s, to respond to the needs of Parties of the 
United Nations Framework Convention on Climate Change and the 
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18.2.2  �A Space-Time-Biology Cube

The data structure of an EBV can be described as a hypercube and has analogy to 
a multidimensional data array in computer programming. The first two dimensions 
of the hypercube are space (latitude and longitude) and time, while the third dimen-
sion represents biological entities (Fig.  18.1). The latter dimension can, for 
instance, describe taxonomy in a species-centered EBV (see below), and values 
will inform the presence/absence or population abundance (e.g., Kissling et  al. 
2018a). Unlike the Essential Climate Variables (ECVs), the biological dimension 
of the EBVs makes them especially challenging in terms of developing the concep-
tual framework and producing the EBV data products. For ecosystem-level EBVs, 
this dimension can also inform ecosystem structure metrics (e.g., extent of differ-
ent habitat types) or functions (e.g., primary productivity) in the time-space coor-
dinates. The hypercube thus provides an intuitive representation of the EBV 
concept and at the same time has a direct translation in data computing language 
that suits implementation. Other EBVs are also more challenging to represent with 
three dimensions, even more so when considering that their value is likely to 
change depending on the spatial scale and extent, as is the case for the community 
spatial turnover.

18.2.3  �Six EBV Classes

Each EBV measures a particular attribute (property) of a given entity (object). 
EBVs are grouped into six broad classes based on similarities and differences in the 
attributes and entities they address (Fig. 18.2). These classes are sets of variables 

Intergovernmental Panel on Climate Change, but the concept has since been 
expanded to go beyond climate science, including with the Essential 
Biodiversity Variables (EBVs) and the Essential Ocean Variables (EOVs, 
Miloslavich et al. 2018). While there is value in increasingly expanding the 
concept to other domains, a coordinated approach within disciplines to define 
and prioritize the EVs and avoid the duplication of efforts is currently being 
discussed within the Group on Earth Observations (GEO). One example is the 
joint effort by the Marine Biodiversity Observation Network of the Group on 
Earth Observations Biodiversity Observation Network (GEO BON) and the 
Global Ocean Observing System (GOOS) of the Intergovernmental 
Oceanographic Commission (IOC) to streamline the marine observations that 
underpin the EBVs and EOVs (Muller-Karger et al. 2018b). The discussion 
on EVs is also permeating other domains, such as agriculture, health, and 
disaster risk reduction (Reyers et al. 2017).
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describing the structure, composition, and function of biodiversity across its hierar-
chical levels (Noss 1990). The entity addressed by an EBV can be of two broad 
types, distinguished by the approach used to define the set of organisms forming 
this entity.

In the first approach, entities are formed by grouping organisms primarily on the 
basis of their species identity. In other words, EBVs of this broad type measure 
particular attributes of species—i.e., genetic diversity within a species in the case of 
the Genetic Composition Class; distribution and abundance of a species in the 
Species Populations Class; and traits of a species in the Species Traits Class.

The second approach to forming entities involves grouping organisms primarily 
on the basis of where they occur. EBVs of this broad type measure collective attri-
butes of the entire ecosystem formed by all of the organisms occurring within a 
defined area (most typically an individual cell within a regular grid)—i.e., struc-
tural attributes of the ecosystem in the case of the Ecosystem Structure Class; func-
tional attributes of the ecosystem in the Ecosystem Function Class; and various 
dimensions of compositional diversity (e.g., taxonomic, genetic/phylogenetic, 
functional) of organisms occurring within the ecosystem in the Community 
Composition Class.

The relationships between these six EBV classes is depicted in Fig. 18.2. A few 
key aspects of this overall typology are worth noting. First, the two broad approaches 
to defining the entity addressed by an EBV, species-focused and ecosystem-
focused, essentially work with the same pool of individual organisms but view 
these organisms from two different perspectives—one grouping organisms accord-
ing to species identity and the other according to location. While the entity 
employed in species-focused EBVs will typically be defined primarily on the basis 
of species identity, this could in some instances be qualified to focus, for example, 
on the population of a species occurring in a particular area. Likewise, ecosystem-
focused EBVs might, in some instances, focus on measuring collective attributes of 
a particular subset of organisms occurring in an ecosystem rather than all organ-
isms, with this subset defined in terms of taxonomy (e.g., all birds) or any other 
trait of interest (e.g., all pollinators). Finally, it is important to caution against 
directly equating the species-focused versus ecosystem-focused typology with 
major sources of in-situ versus RS observation. Many different sources and types 
of data can, and should, contribute to the population of EBVs across this entire 
framework. Any given EBV class can typically be populated using data from mul-
tiple sources of in-situ and remote-sensing observation, and any given source will 
typically contribute data to more than one EBV class. For example, EBVs in the 
Community Composition Class could be populated with data both from RS of 
compositional diversity (e.g., Morsdorf et al., Chap. 4) and from aggregation of 
in-situ species observations and models (e.g., Pinto-Ledezma and Cavender-Bares, 
Chap. 9), with the latter also contributing data simultaneously to the Species 
Populations Class.
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18.3  �Production Workflows for EBVs

The estimation of EBV information products typically involves multiple levels of 
data integration, from the collection of raw observations to the production of a final, 
consistent information set that provides comparable measurements in space and 
time. Data integration procedures need to be customized for almost every EBV, 
since they need to accommodate highly diverse biological quantities that are often 
specific to a particular EBV.  Designing open, consistent, and fully reproducible 
workflows is key to support the full operationalization process, from data collection 
to publication of an EBV product that is ready to use for multiple science and policy 
purposes.

18.3.1  �The Need for Open EBV Workflows

Workflows are defined as precise descriptions of data processing from one analyti-
cal step to another in a formal language. In recent years a multiplication of biodiver-
sity data availability, novel analytical capabilities, and virtual infrastructures have 
laid the foundations for producing better integrated and more detailed information 
for measuring biodiversity change (e.g., Jetz et  al. 2012; Hansen et  al. 2013). 
However, the increasing variety of analytical procedures and project-specific 
designs also means that analytical standards are difficult to establish (Borregaard 
and Hart 2016). Open workflows benefit the preservation of processing steps and 
support data interoperability and the automation of biological and environmental 
data integration (e.g., via virtual biodiversity e-infrastructures; La Salle et al. 2016). 
These workflows require provenance of derived products to be also recorded so oth-
ers can understand the relationships among data, processing, and results (Michener 
and Jones 2012) and thus facilitate product updating as new data and better process-
ing algorithms become available. All these aspects are critical in the EBV frame-
work since the production of EBVs depends on large research collaborations built 
on the basis of knowledge transfer and open access to data and production protocols.

At present, fully operational workflows that facilitate the automated and wide-
spread production of EBVs are missing. However, recent efforts have identified 
critical steps and bottlenecks for the definition of workflows in support of the pro-
duction of specific EBVs.

18.3.2  �From Data Collection to Biodiversity Models

Generic workflows have been outlined so far for the production of a few species-
centered EBVs, including species distributions, population abundances, and species 
traits (Kissling et al. 2018a, b). For example, 11 steps have been identified to build 
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spatially continuous and temporally consistent EBV products for species distribu-
tions, from the integration of multiple data sources, including traditional direct spe-
cies observations collected in many different ways, automated records from sensor 
networks—such as camera traps and sound detection—and emerging uses of satel-
lite remote sensing (RS) for detecting species (Kissling et al. 2018a). These work-
flows pay special attention to the integration among in-situ observations and RS 
data. Other approaches may use in-situ observations only as ground-truth data, 
while the rest of the process is dominated by image processing (e.g., mapping veg-
etation cover; Hansen et al. 2013). However, traceability of the ground-truth sam-
pling and processing remains equally important and therefore also applies to the 
entire process similar principles of annotation, uncertainty reporting, and confor-
mance with data management guidelines (see below).

The key workflow steps can be summarized into three main groups (Fig. 18.3):

	1.	 Standardization of primary biodiversity observations. At the core of the EBV 
concept is the aggregation of primary observations from multiple sources into a 
harmonized product that provides more comprehensive and richer information 
than each individual data set. Before this aggregation can take place, primary 
data must be curated, standardized, and annotated with appropriate metadata that 
record characteristics such as location, time, measurement units, and, ideally, 
sampling designs, collection procedures, and data quality control procedures 
(Rüegg et al. 2014). For example, for Species Populations EBVs, harmonized 
observations would consist of sets of species occurrence and abundance data 
expressed in appropriate units (such as species occupancies and number of indi-
viduals per unit area, respectively) complemented with metadata in appropriate 
standards such as the “Darwin Core Standard” with the “Event Core” extension 
(Wieczorek et al. 2012), which makes it possible to capture monitoring protocols 
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•  Data & metadata published in
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Check duplicate data
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Fig. 18.3  Outline of an EBV production workflow for the integration of in-situ and RS data from 
disparate primary sources of data to final modeled information and publishing. Some authors con-
sider the result of the intermediate data integration level also as an EBV-ready data set from which 
some indicators can be calculated, even from sparse observations in space and time (Kissling 
2018a), while fully continuous coverage in the spatial and temporal dimensions is typically 
obtained only in the last level of integration 
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and sampling efforts together with the data (https://www.gbif.org/darwin-core). 
Full documentation of sampling events using adequate metadata standards not 
only is critical for facilitating reuse of data by secondary users but also provides 
important information for quantifying the associated uncertainty and eventually 
applying correction techniques in subsequent steps. In practice, for a decade or 
so, the critical importance of annotating data with standard metadata has guided 
data management practices (e.g., in the context of long-term ecological research 
networks; Michener et al. 2011). However, poor data practices that ignore the 
annotation of metadata or that fail to adopt interoperable formats are still com-
mon for many biodiversity data sets, including those accessible through public 
data archives of scientific journals (Roche et al. 2015). These deficiencies consti-
tute a major bottleneck for building EBVs (Hugo et al. 2017).

	2.	 Primary data aggregation. A second set of steps leads to the production of con-
solidated data products that typically conform to all or most of the following 
characteristics: They contain consistent biological quantities expressed in the 
same measurement unit; other relevant biological attributes have been checked 
and harmonized (e.g., into a harmonized taxonomy or a consistent typology of 
traits or of ecosystem types); spatial and temporal references are matched; and 
data uncertainties have been quantified. Standardized observations need to be 
checked at this stage using quality control (QC) mechanisms that are documented 
transparently (Rüegg et al. 2014), for example, looking at outliers to ensure data 
quality. Collation of data in support of user requirements will ideally be auto-
mated using virtual infrastructures that are able to map the different (standard-
ized) data sets with metadata into fully interoperable formats (Hugo et al. 2017). 
As detailed in Kissling et al. (2018b), an excellent example of this for the Species 
Traits EBVs is the Global Plant Phenology Data Portal (https://www.plantphe-
nology.org), a platform that integrates phenology observations from three differ-
ent networks using disparate data frameworks (Stucky et al. 2018). Key for this 
integration was the design of a new “Plant Phenology Ontology” that was able to 
provide a semantic framework as a basis to overcome interoperability problems 
produced by network-specific terminologies for data recording. Finally, data 
integration needs to deal with, and report on, uncertainties resulting from errors 
that may propagate throughout the different EBV production steps, including 
uncertain geographic locations of in-situ data, heterogeneous sampling methods 
and efforts (Proença et al. 2017), and measurement errors.

	3.	 Model-based estimation. Final EBV products ideally provide continuous infor-
mation in space and at different time periods so biodiversity change can be mea-
sured throughout the entire spatial domain. This is the case for EBVs that can be 
directly estimated using algorithms applied to satellite RS imagery with com-
plete area coverage. On the contrary, for many EBVs that are primarily estimated 
from in-situ data, an additional level of integration is required to overcome the 
sparsity of data. Biodiversity models provide this level of integration by combin-
ing the strengths of in-situ observations and state-of-the-art RS products based 
on correlative or deductive approaches (Jetz et al. 2012; Ferrier et al. 2017). For 
instance, species distribution models are often based on a correlative relationship 
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between environmental variables and the probability of the occurrence of a spe-
cies. These models are calibrated or trained using species occurrence and some-
times absence data as response variables and environmental variables as 
predictors. The probability of occurrence of a species can be spatially interpo-
lated between the observation points because environmental variables are avail-
able as continuous surfaces (i.e., wall-to-wall), which are themselves generated 
from models using in-situ and EO data. In deductive habitat modeling, expert-
based assessment of the habitat preference and environmental constraints of spe-
cies is used to refine the potential species distribution. When habitat predictors 
are available in high resolution, this makes it possible to go from coarse potential 
species distributions to fine-grain species distributions because species also 
respond more locally to habitat variables than to, for instance, climate (Triviño 
et al. 2011; Martins et al. 2014). Other EBVs can also be projected with models 
that integrate in-situ observations with RS data and other environmental data. 
Community composition variables such as the beta diversity between two sites 
can be projected from climate and other variables using generalized dissimilarity 
models (Ferrier et al. 2007), while alpha and gamma diversity can be projected 
from land-use using the countryside species-area model (Pereira and Borda-de-
Água 2013). Hence, environmental predictors derived from RS constitute the 
backbone of higher-resolution EBV products that are consistent in space and 
time. However, it is important to note that such model-based EBVs provide 
information that is fundamentally different from the aggregated data sets 
described in the preceding steps and that while it improves the spatial and tem-
poral coverage of the data set, it also introduces additional uncertainties that 
need to be documented.

Massive integration of biodiversity data based on the EBV framework and work-
flows requires implementation via interoperable informatics infrastructures (Hugo 
et al. 2017). Projects aligned with the mission and concepts of EBVs, such as Map 
of Life (www.mol.org) or the Biogeographic Infrastructure for Large-scaled 
Biodiversity Indicators (BILBI) (Hoskins et al. 2018), already constitute a proof of 
concept of the potential of virtual infrastructures for developing a biodiversity-
modeling framework that delivers global information from multi-sourced EO data 
integration. While the technological implementation of these infrastructures should 
not constitute a major limitation, redoubled efforts are needed, first, on making the 
large amounts of in-situ data being collected available and interoperable and, sec-
ond, on developing and adapting biodiversity models that are able to ingest massive 
and novel sources of data, both in-situ (e.g., eDNA data) and RS (e.g., imaging 
spectroscopy).
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18.3.3  �Access Principles

The open publication of intermediate and final processed products and the adher-
ence to open data-sharing principles is key to maximize scientific and policy bene-
fits of the EBV framework. The Group on Earth Observations (GEO) has established 
a set of Data Management Principles to support publication of information using 
open standards and to ensure discoverability and accessibility through GEOSS, the 
Global Earth Observation System of Systems (Fig. 18.4). These principles allow 
full traceability, ensuring accessible information on data sources and processing 
history via provenance information. All of these management principles are directly 
applicable to EBVs. For example, traceability is critical for facilitating the updating 
of the information contained in an EBV product with new data (e.g., from new 
monitoring and/or observation systems) and the timely incorporation of new biodi-
versity model developments.

In addition, GEO BON is developing an “Essential Biodiversity Variables Portal” 
that supports this process and enhances accessibility to EBV products. Open distri-
bution of these products is complemented by reporting on their compliance with a 
set of “EBV Minimum Information Standards”. Besides ensuring good data man-
agement practices, these information standards aim to provide a guideline for the 
standardized description of EBV products. The purpose is to ensure consistent 
information about the EBV hypercube (i.e., the attributes of space, time, biological 
entity, and uncertainties) among the different EBV classes so that final users can 
easily access the relevant information (e.g., when searching for suitable EBVs for 
specific indicators).

1. Discoverable data and metadata with access

conditions clearly indicated

2. Accessible online, preferably with services for access

3. Data encoding following community standards

4. Data documented via metadata

5. Data traceable with provenance metadata

6. Data quality control and results indicated in metadata

7. Data preservation planned for future use

8. Data and metadata verified to ensure integrity

9. Data reviewed and updated, including

10.Persistent identifiers are assigned to the datawww.geolabel.info

Fig. 18.4  The ten GEOSS Data Management Principles promote the practical implementation of 
openness in scientific data and best practices ensuring that data are easily discoverable, accessible, 
and (re)usable. Data providers may assess conformance with each of the principles, in which case 
a labeling system helps the user to recognize such conformance. For detailed guidelines on the 
implementation of these principles, see www.geolabel.info. 
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18.4  �Seamless Integration of Past Trends to Future Scenarios 
Using EBVs

Besides providing spatial interpolation of EBVs, biodiversity models can project 
changes in EBVs over time based on the relationship between drivers of biodiver-
sity change and state variables of biodiversity. This means that, when historical data 
on drivers is available, past trends for an EBV can be backcast. In other words, a 
single snapshot of biodiversity and driver data at a given moment in time can be 
used to establish the relationship between driver variables and biodiversity variables 
across points in space (Fig. 18.5). Then, in order to project for other moments in 
time, these spatially inferred relationships are assumed to also hold when drivers 
evolve over time, using space-for-time replacement. When scenarios exist for the 
future trajectories of the drivers, the future trends in the EBV can be forecast as well 
(Fig.18.5; Ferrier et al. 2017). Estimated EBVs allow for seamless comparison of 
historical trends of biodiversity to future scenarios of biodiversity change. Indicators 
aggregating spatial information can be easily calculated from the spatially explicit 
EBV and plotted in time for any spatial unit of interest, such as a country or region 
(GEO BON 2015; Navarro et al. 2017).

Recently, a set of EBVs was historically reconstructed and projected into the 
future in an inter-model comparison study carried out by the Expert Group on 
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Fig. 18.5  Estimation of EBVs using biodiversity models. In-situ observations of an EBV often are 
sparse in space, and only a few time series exist. Drivers are often modeled continuously in space 
for a given moment in time and can be used by biodiversity models to project an EBV continuously 
in space after calibration and validation with the in-situ observations. When driver layers exist for 
other moments in time, either from RS observations or from scenario projections using models, the 
EBV can be estimated over time
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Scenarios and Models of the Intergovernmental Platform on Biodiversity and 
Ecosystem Services (Kim et al. 2018). Species distribution, community composition, 
ecosystem function variables, and ecosystem services variables were reconstructed 
since 1900 and projected to 2050 globally, at a 0.5° resolution, using harmonized 
land-use data sets developed for the shared-socioeconomic pathways and climate 
data sets for the relative concentration pathway scenarios. In this exercise, a space-
for-time substitution was used in the biodiversity models. In other words, no explicit 
time series biodiversity data were used to calibrate the models. Instead, current 
spatial patterns of biodiversity and drivers were used to infer how biodiversity 
changes over time when driver variables change. A future challenge for biodiversity 
modelers is to use biodiversity time series to fully model biodiversity across space 
and time (Ferrier et al. 2017).

18.5  �Concluding Remarks

Since EBVs were first defined, there have been significant advances in the consolida-
tion of the framework, substantial conceptual work on implementation, and increas-
ing enthusiasm about their many potential applications in biodiversity science and 
policy. Now the scientific community needs to face the challenge of delivering EBV 
products and workflows that provide estimates of changes for the main facets of 
biodiversity and support our understanding of the driving mechanisms and the con-
sequences of such changes. There are important opportunities for mobilizing pri-
mary data offered by the open-access movement, which continue to permeate the 
biodiversity community. These include public institutions responsible for promoting 
scientific and technological advancement. Data gaps will be covered by combining 
technological development with appropriate biodiversity models. For example, 
spaceborne sensors such as the Global Ecosystem Dynamics Investigation (GEDI) 
Lidar launched in 2018 are providing unprecedented global coverage in vertical 
measurements of vegetation and topography and will most likely support model-
based integration of information for biodiversity variables in unforeseen ways.

Fulfilling the EBV vision requires renewed efforts, first, in continued scientific 
and technological support for the mobilization of in-situ data and for designing 
more comprehensive and better coordinated monitoring schemes and, second, in the 
implementation of workflows and interoperable infrastructures that support wall-to-
wall integration of biodiversity data. GEO BON as a network defined at multiple 
levels, from scientific to institutional and infrastructure support, is instrumental for 
this endeavor (Hugo et al. 2017; Navarro et al. 2017). Key priorities are the imple-
mentation of mechanisms that enhance data mobilization as exemplified by the 
Darwin Event Core; a common understanding between the biodiversity research 
community and the space agencies of the processes to develop the technology 
required for detecting biodiversity change (Paganini et al. 2016); global informatics 
infrastructure support that meets the requirements for operationalizing EBVs 
(Hardisty et al. 2019); and broad scientific cooperation in implementing and enhanc-
ing biodiversity models that integrate all types of Earth observations.
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Chapter 19
Prospects and Pitfalls for Spectroscopic 
Remote Sensing of Biodiversity 
at the Global Scale

David Schimel, Philip A. Townsend, and Ryan Pavlick

19.1  �Introduction

Understanding how Earth’s ecosystems will respond to drivers of change requires 
quantifying the composition and diversity of functions (e.g., growth, nutrient uptake, 
decomposition) of the taxa present in those ecosystems. Biodiversity is critical to 
maintenance of ecosystem health, which plays a critical role in global biogeochemi-
cal cycling. In turn, human well-being is dependent on ecosystems for services 
ranging from food and fiber to water and air quality.

Biodiversity can change in time and space as environmental conditions change 
(e.g., seasonally or due to natural disturbances, human activities, or climate vari-
ability) and is changing rapidly due to climate change and human activities. Even as 
it does, we have remarkably little information on biodiversity worldwide, with 
major spatial gaps in global coverage and very limited ability to detect changes over 
time (Jetz et al. 2016). Ground-based repeat data are needed to track changes in 
biodiversity and function but are particularly sparse. Our lack of understanding of 
species and functional diversity in both time and space leads to great uncertainty in 
predicting impacts of future changes in terrestrial and aquatic coastal marine eco-
systems, making this an urgent target for improved understanding.

Functional biodiversity in terrestrial and aquatic coastal marine ecosystems is 
controlled by environmental factors, such as soils and climate, as well as by the 
evolutionary history and environmental filtering of the species pool. Changes can 
occur at a range of temporal scales, due to both ephemeral and catastrophic distur-
bances as well as to long-term processes (climate change, tectonics). Even among 

D. Schimel (*) · R. Pavlick 
Jet Propulsion Laboratory, Pasadena, CA, USA
e-mail: David.Schimel@jpl.nasa.gov 

P. A. Townsend 
Department of Forest and Wildlife Ecology, University of Wisconsin, Madison, WI, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33157-3_19&domain=pdf
mailto:David.Schimel@jpl.nasa.gov


504

similar ecosystems (e.g., tropical rainforests in South America vs. Africa vs. SE 
Asia), species and functional diversity can vary widely, and differential responses of 
those ecosystems to change depend on their functional composition and diversity. 
Current ecosystem models do not have access to data representing functional diver-
sity and need better spatially explicit and temporally resolved measurements to 
more accurately characterize responses to change than can be obtained from ground-
based and airborne observations.

Space-based measurements add a unique dimension to biodiversity studies. No 
single measurement can fully characterize biodiversity, and any single measurement 
only captures one or a subset of the dimensions of the diversity of life on Earth. 
Species diversity can be captured by taxonomic identification quantified by richness 
and turnover, while genetic analyses can capture additional levels of variation, 
including within-species variation. Traits are often used to characterize diversity of 
function, which may or may not parallel either species or within-species diversity. 
Remote sensing (RS) has long been used to characterize controls or correlates of 
diversity such as land use, fragmentation, productivity, habitat, and habitat struc-
ture. More recently, RS has been used to measure functional diversity (Schneider 
et al. 2017) and spectral diversity that predicts species diversity (Gholizadeh et al. 
2019) and to characterize species diversity itself (Féret and Asner 2014). RS obser-
vations are indirect in the sense that inference must be made from the interaction of 
electromagnetic radiation with matter, but they provide far more sampling in time 
and space than most in-situ techniques and so are a valuable complement for inher-
ently variable and even ephemeral aspects of the distribution and abundance of 
organisms (Saatchi et al. 2015).

For decades, scientists have proposed spaceborne imaging spectrometers as a 
means of obtaining information about vegetation in more detail than provided by 
multispectral sensors (Ustin et al. 1991), but only limited actual deployments have 
occurred (Pearlman et al. 2003) so ecologists have had access primarily to data col-
lected from aircraft, over relatively limited areas. While global access is valuable 
(i.e., the ability to sample over all or most of the world while only collecting data 
over particular places), global coverage has proved enormously valuable for other 
measurements such as greenness, and global spectroscopy will enable studies of 
global biogeography, biogeochemical cycles, and biodiversity. As of 2020, this 
capability is in planning, and global assessment of plant functional diversity is 
likely to become a reality by the latter part of the 2020s. This paper will serve as an 
introduction to the likely system so ecologists can become aware of the general 
characteristics of the data that are likely to become available.

In 2018, the US National Research Council released the second Decadal Survey 
for the Earth Sciences (National Academies of Sciences, Engineering, and Medicine 
2018). This document, following the first such survey, released in 2007 (National 
Research Council 2007), presented a clear vision for the role of RS in addressing 
some of the many dimensions of biodiversity. That report notes that “[k]ey fluxes 
within ecosystems are mediated by the composition and functional traits of the 
organisms present. Imaging spectroscopy is a tool for determining global terrestrial 
and marine plant functional traits, functional types and in some cases, provides 
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taxonomic composition. Traits, types, and taxonomic composition, as well as their 
variability and how they are changing, are poorly understood globally. Nor is there 
a comprehensive understanding of how they feed back to the climate system via 
altered biogeochemical fluxes.”

The report notes that physiological, chemical and morphological traits influence 
the functioning of ecosystems with respect to matter and energy fluxes and empha-
sizes that environmental change can change the distributions of the functional char-
acteristics of organisms, thereby potentially feeding back to the climate system and 
other drivers of environmental change.

The concept that the unique characteristics of organisms mediate the functioning 
of ecosystems, and that changes to the distribution of functional traits can feed back 
to the environment and even the planetary climate, leads to a key question in 
the report:

•	 What are the structures, functions, and biodiversity of Earth’s ecosystems, and 
how and why are they changing in time and space (National Academies of 
Sciences, Engineering, and Medicine 2018)?

and an objective

•	 Quantify the distribution of the functional traits, functional types, and composi-
tion of terrestrial and shallow aquatic vegetation … spatially and over time 
(National Academies 2018).

The report identifies imaging spectroscopy (IS) as “the only technology that can 
provide the detailed spectral data to allow identification and quantification of major 
biochemical and structural components of plant canopies” and calls for an instru-
ment in orbit optimized for the retrieval of a set of plant functional traits globally 
and able to track their changes over time. The report identifies a set of traits for ter-
restrial vegetation that are priorities and that are known to be observable based on 
the current literature, reflecting extensive field, lab, and airborne research. These 
traits, shown in Table 19.1, include plant traits that are linked to growth rate, photo-
synthetic capacity, longevity, and the decomposition rate of nonliving plant material 
(Serbin and Townsend, Chap. 3).

Table 19.1  Terrestrial plant functional traits identified by the National Academies report as 
currently observable by remote sensing (National Academies of Sciences, Engineering, and 
Medicine 2018). This list includes important remotely observable plant traits, but many other traits 
have been identified as candidates for remote measurement

Plant functional trait Controls

Chlorophyll Photosynthesis
Xanthophyll Stress response of photosynthesis
Lignin Structure rigidity and decomposability of dead plant material
Cellulose Plant cell wall structure
Leaf nitrogen content Photosynthesis, digestibility by herbivores, and decomposability 

of dead plant material
Leaf mass per area (LMA) Foliar morphology: ratio of foliar dry mass to leaf area 

(reciprocal of specific leaf area, SLA)
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The functional traits are used to estimate parameters and state variables in ter-
restrial ecosystem models controlling growth, turnover, and microbial respiration. 
As such they are key to Earth system prediction and simulation of future carbon 
cycling. They also define specific ecosystem characteristics. For example, chloro-
phyll is linked to absorption of sunlight and so affects albedo and the surface energy 
balance (Bonan 2016). Lignin and nitrogen content affect the palatability of forage 
for herbivores (Hobbs et al. 1991), thus influencing higher trophic levels, and xan-
thophyll indices have been proposed as leading to improved models of carbon flux 
(Garbulsky et  al. 2010). Nitrogen additionally scales with the photosynthetic 
enzyme concentration of plants and therefore is a widely used indicator of photo-
synthetic capacity (Chapin 2003). LMA is indicative of relative investment by a 
plant in photosynthesis, leaf structure and/or leaf longevity and is strongly corre-
lated with photosynthetic capacity (Poorter et al. 2009). The local diversity of plant 
functional traits has also been used as a predictor of plant species richness (Féret 
and Asner 2014) as well as for mapping functionally different plant communities 
(Asner et al. 2017).

The set of traits called for in the National Academies (2018) report includes plant 
characteristics long known to be useful for ecosystem studies (Schimel et al. 1991a), 
ecosystem modeling (Melillo et  al. 1982), and studies of higher trophic levels 
(Hobbs et al. 1991). More recently, these same functional traits have been used in 
Earth system models (Verheijen et  al. 2015) and studies of global biogeography 
(Butler et al. 2017; Moreno-Martínez et al. 2018). In many cases, particular species 
with distinct spectral characteristics can be mapped (see National Academies 2018 
for a review), and phylogenetic relationships have been mapped based on spectral 
similarity (Cavender-Bares et al. 2016).

As a result of the studies mentioned above and many others, the National Academies 
(2018) report identified an imaging spectrometer with global coverage as a high prior-
ity and designated it for inclusion in NASA’s next decadal program (2017–2027). This 
instrument, provisionally dubbed Surface Biology and Geology (SBG), is the first 
instrument planned for flight in the 2020s as a result of the 2018 decadal survey and 
could fly mid-decade. As well, the European Space Agency is proceeding with plan-
ning for the similar CHIME (Copernicus Hyperspectral Imaging Mission for the 
Environment) global imaging spectrometer (Rast et al. 2019).

19.2  �Characteristics and Objectives for a Global Imaging 
Spectrometer

A number of IS instruments have been used for ecological studies over the years, 
starting with the AIS (the Airborne Imaging Spectrometer, Wessman et al. 1988) 
and including a number of airborne and spaceborne instruments. These instruments 
have all covered some part of the visible and shortwave infrared spectrum between 
350 and 2500 nm, usually with spectral resolutions of 10–40 nm. Over the evolution 
of this technology, the signal-to-noise performance has systematically improved, so 
that ever-subtler spectral features could be resolved. Many other performance char-
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acteristics have also improved with time, leading to instruments that are better and 
better suited for ecological applications (Asner et al. 2012).

A diversity of airborne instruments exist today. In addition, several spaceborne 
imaging spectrometers are likely to fly in the next decade (see below), including 
NASA’s Earth Surface Mineral Dust Source Investigation (EMIT), aimed at study-
ing atmospheric dust; the Hyperspectral Imager Suite (HISUI) from Japan (Ogawa 
et  al. 2017), a general purpose instrument deployed to the International Space 
Station (ISS) in 2019; and EnMAP from Germany. Nevertheless, the SBG instru-
ment is needed to meet rigorous and community-determined objectives to quantify 
plant functional traits globally. SBG will be aimed at studying plant functional 
diversity, along with aspects of geology and hydrology, and will be paired with a 
thermal imager designed to study hydrological and geological processes as well as 
thermal drivers of ecosystem processes, such as evapotranspiration. The following 
discussion covers only those aspects of the instrument that directly address plant 
functional diversity. SBG’s objectives for observing plant functional diversity are 
summarized in Table 19.2, excerpted from the National Academies (2018) document.

The Science and Applications Traceability Matrix (SATM) for the plant func-
tional trait designated observable of SBG (Table 19.2) allows us to see the shape of 
the mission likely to fly in the mid-2020s. An SATM links science of a mission to 
the measurements necessary for the mission’s objectives, as well as providing met-
rics for assessment of instrument performance for those measurements. What will 
the data from this mission look like? The matrix defines a number of key parame-
ters, and those parameters allow us to see the opportunities and challenges this 
instrument will raise, once flown.

The data, radiance measurements of reflected sunlight, should cover the spectral 
region from 400 to 2500  nm, with approximately 10  nm spectral discretization, 
leading to an instrument with >200 spectral channels, meaning the data volume 
from this instrument will be very high. The information content would likewise be 
high, as work by Thompson et al. (2017) and Asner et al. (2012) shows that data like 
these collected over vegetated surfaces have as many as 30 significant principal 
components, meaning that pixels can be described in 30-dimensional space, while 
by contrast LANDSAT has 3 dimensions (Schimel et al. 2013).

The National Academies report calls for SBG’s pixels to be of order 30–45 m, 
meaning each pixel is about 900–2000 m2, collected nominally at least every 16, 
which could be halved if paired with the CHIME mission. The terrestrial Earth sur-
face is about 2/3 covered with clouds at any given time, though that varies geo-
graphically and with time of day and season, so not every acquisition succeeds in 
capturing the land surface. A nominal 16-day revisit means most sites will be 
imaged, on the average, about once a month, but in some very cloudy regions and 
ecosystems—for example, humid tropical ecosystems—a 16-day revisit might 
mean one acquisition every few years. In the National Academies (2018) report, 
more frequent but less spectral resolved measurements are suggested as a comple-
ment to SGB-type measurements, providing less functional information though 
more phenological or time series information.

Signal-to-noise ratio is one of several spectroscopic parameters that determine 
the information content of IS data. Gross features of plant composition emerge with 
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SNRs of 100–200, but modern airborne IS instruments have SNRs of >1000:1, 
depending on the fraction of incoming sunlight reflected. The brighter the surface, 
the more light is reflected and the more light is incident on the instrument’s detector, 
increasing SNR. This is also true spectrally, so even over a particular location, parts 
of the spectrum will have higher or lower SNR, depending on the spectral reflec-
tance of the surface. With modern instruments (Mouroulis et al. 2011), SNR is not 
expected to be limiting for plant functional trait estimates.

Several other objectives for an SBG mission may be inferred from the wording 
of the SATM but require additional discussion to fully quantify. For example, the 
defining question for the plant functional trait designated observable asks why traits 
are changing in time and space. This implies broad coverage, ideally global, to 
observe spatial changes (e.g., along environmental gradients) and a long-enough 
time series to see at least some timescales of change.

While in many ecosystems, an SBG instrument would observe phenological 
change, several years or more on orbit would be required to see other types of change, 
such as successional change or change after disturbance. The report discusses three 
types of disturbance that could cause change, each with a different timescale. Wildfire 
causes extremely rapid change but may require decades or longer for full recovery. 
Pine beetle infestations, such as those have occurred in the Western United States and 
Canada, emerge more slowly, over several years, but may likewise trigger decades of 
recovery. Permafrost thaw is the slowest disturbance to emerge of the three consid-
ered; it does not lead to recovery but rather may initiate a long-term cascade of change 
to a new state. A global imaging spectroscopy mission would see some aspects of these 
disturbance processes as expressed through changing plant functional traits, but likely 
only a sequence of missions could see the slower aspects of recovery and change.

The formal mission study for SBG began in 2018. Some changes from the above 
description could occur between the National Academies (2018) definition of the 
observables and objectives identified for construction, so the above descriptions 
should be considered provisional.

19.3  �EMIT, HISUI, and EnMAP

Several other imaging spectrometers with global access, although more limited cov-
erage, are likely to fly before SBG. All will prove valuable in gathering imaging 
spectroscopy data in previously unsampled or inaccessible regions to serve as base-
lines for change in areas surveyed later by SBG (Schimel et al. 2013). While several 
other imaging spectrometers may fly, the three described below are most likely to 
provide data of interest to ecologists.

EMIT is a NASA Earth Venture Instrument investigation selected competitively 
and planned for flight on the ISS in 2021. It will be an advanced spectrometer, span-
ning 380–2500 nm, with 30 m pixels and a swath of ~40 km, aimed at studying the 
arid, dust source regions of the world to better understand the interaction of dust 
with the climate system. EMIT has a specific disciplinary focus in geology but will 
provide significant information about vegetation, especially in arid lands.
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HISUI is a Japanese spaceborne hyperspectral instrument being developed by 
the Ministry of Economy, Trade and Industry. HISUI was launched in December, 
2019 onboard ISS. HISUI has 185 spectral bands from 0.4 to 2.5  μm with 
20 m × 30 m spatial resolution with swath of 20 km (note the contrast in mission 
characteristics—SBG will have a swath of 150,200 km). This narrow swath is limit-
ing; observations have to be requested for specific targets during the planned HISUI 
mission lifetime of 3 years, with data availability starting in 2021.

EnMAP will orbit in a sun-synchronous orbit 653 km above the Earth. The satel-
lite will be a high-resolution hyperspectral imager capable of resolving 230 spectral 
bands from 420 to 2450 nm with a ground resolution of 30 m × 30 m. The swath 
width will be 30 km at a maximum swath length of up to 5000 km/day due to data 
storage and downlink limits. The off-nadir (+/− 30°) pointing feature enables fast 
target revisits of 4 days and so can be used to study phenology.

Other instruments that may be of interest include DESIS, launched in 2018 to the 
ISS for the German aerospace agency (with 235 bands between 400 and 1000 nm 
and 30 m ground resolution), and SHALOM, planned by Italy and Israel. Together, 
all of these instruments will begin a revolution in observation of vegetation for 
research and applications in agriculture and natural resources.

19.4  �Pitfalls and Opportunities in Remote Sensing of Global 
Plant Diversity

Every methodology for studying biodiversity has advantages and limitations. 
Identifying organisms and their locations provides foundational information but 
only captures biological function inferentially, for example, through correlation of 
ranges with climate. Genomic information is extremely informative, but it can only 
provide inferential insight into ecological function. Functional and/or physiognomic 
type (e.g., graminoid, tree, evergreen, deciduous, needleleaf, broadleaf) provide 
broad insights into ecological niches but obscure variation of other properties within 
groups. Each type of observation contributes some aspect or dimension of biologi-
cal diversity in ancestry, form, function, distribution, and abundance, and remote 
observation is no exception. Spectroscopic measurement has its own unique charac-
teristics, which depend partly on spectral region and resolution but also on the scale 
and frequency of the observation. Below, we discuss three aspects of measurement 
and how they affect the interpretation and use of IS data.

19.5  �Vegetation Structure

The quantitative mapping of biodiversity in ecosystems may differ by physiog-
nomic or functional type due to (i) differences in plant size within the field of view 
(e.g., trees vs. grasses; see below), (ii) phenology (e.g., grasslands in which domi-
nant species and number of species presenting to a sensor may vary across the 
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growing season), and (iii) vegetation physical structure, including overall plant 
form and leaf shape and longevity. At the leaf level, the interaction between a ray of 
light and foliar tissue is generally consistent among taxa, with biochemistry (e.g., 
pigments), water content, and leaf structure as the primary drivers of absorption and 
scattering (Jacquemoud et al. 2009). Scaled up to the canopy—i.e., as viewed by a 
satellite—the interactions change due to both the structure and ecology of vegeta-
tion. Variations in leaf area and layering, leaf orientation distribution and clumping, 
multiple scattering, and canopy heterogeneity add complexity to the signal that var-
ies based on gross vegetation structure (Jacquemoud et al. 2009). However, ecologi-
cal differences among vegetation structural types may be as significant: In some 
cases, the structural variability itself may be important to characterizing ecological 
dimensions of biodiversity (Townsend et al. 2013) or may confound the detection of 
variables driving diversity (Knyazikhin et al. 2013). Most significantly, however, 
the interpretation of variability (diversity) in retrieved traits may differ among eco-
system types.

Because of vegetation structure, the algorithms to map components of biodiver-
sity (e.g., functional traits; see Serbin and Townsend, Chap. 3) differ. For example, 
a key ecological trait to characterize ecosystems is leaf mass per area (LMA), which 
is frequently used as a basis to estimate photosynthetic capacity and is also repre-
sentative of environmental or evolutionary trade-offs between leaf construction 
costs and carbon uptake, i.e., longevity (thick leaves or needles, high LMA) vs. fast 
growth (thin leaves, high leaf area, low LMA) (Díaz et al. 2016; Reich et al. 1992; 
Shipley et al. 2006; Wright et al. 2004).

Differences in algorithms among functional types are illustrated by the retrieval 
algorithms to predict LMA and nitrogen in grasslands vs. forests (Fig. 19.2), which 
exhibit considerable differences due to variations in bidirectional reflectance. 
Standardized partial least squares regression (PLSR) coefficients indicate the rela-
tive contribution of a wavelength to prediction of a trait, and PLSR is one among 
multiple methods for mapping traits from imaging spectroscopy (discussed in more 
detail in Serbin and Townsend, Chap. 3). PLSR coefficients are especially useful for 
diagnostic purposes because they can be interpreted with respect to known foliar 
features. Figure 19.1 illustrates the differences in PLSR retrievals between ecosys-
tem types but also that combined equations are possible. Also, LMA and nitrogen 
are generally negatively correlated among ecosystems worldwide (Wright et  al. 
2004), and as a consequence their PLSR coefficients are inverse of each other at 
some wavelengths (e.g., the grassland and forest model at 1730 nm).

The difference in structure among ecosystem types is driven in large part by 
several components of vegetation variation within a pixel. This has implications for 
both the derivation of biodiversity parameters and their interpretation. Leaf area 
index and canopy layering greatly influence the detection of vegetation characteris-
tics. Elements of the canopy not directly exposed to the sun will be greatly reduced 
in significance for the calculation of any canopy characteristic. In forests, this means 
that a rich understory is often obscured, in contrast to a grassland in which many 
more components of the canopy are in the sunlit portion of the canopy exposed to a 
sensor. In addition to having technical consequences for the detection of functional 
or taxonomic diversity of a whole canopy, this also means that diversity metrics of 

19  Prospects and Pitfalls for Spectroscopic Remote Sensing of Biodiversity…



512

forests may not be fully informative compared to lower stature canopies. This can 
be mitigated in seasonal vegetation by imaging prior to leaf emergence or following 
canopy senescence, but this could be challenging given cloud cover and timing of 
15-day repeat cycles. This forms a critical area for new research.

Canopy height and its variation are related confounding factors, as shadowing 
within canopies creates significant effects. Leaf physiognomy and shadowing add 
further complexity (e.g., consider the contrast between herbaceous vegetation with 
only vertically distributed graminoids and those with mixed grasses and broadleaf 
forbs). Likewise, broadleaf and conifer foliage in forests exhibit contrasting spectral 
characteristics at the leaf and canopy levels due to shading caused by angular distri-
bution of needles. At a basic level, a structurally continuous canopy will exhibit 
lower diversity than a heterogeneous one; while this effect can be leveraged to char-
acterize diversity, it is important to understand that the resulting spectral diversity is 
a consequence of the combination of biological, chemical, and physical characteris-
tics of vegetation.

It is conceivable that an acceptable cross-ecotype model is possible for mapping 
some elements of biodiversity in different physiognomic vegetation types (see green 
lines in Fig. 19.1), but it is equally possible that better, or more precise, models will 

Fig. 19.1  Standardized partial least squares regression (PLSR) coefficients from three separate 
studies for predicting foliar nitrogen concentration and leaf mass per area (LMA). The standard-
ized coefficients can be interpreted as the relative importance of each wavelength to retrieval of the 
trait. Differences in PLSR models between physiognomic types are generally related to canopy 
structure/physiognomic rather than leaf composition characteristics. The importance of different 
wavelengths varies due to both differences in absorption characteristics as a function of leaf struc-
ture and differences in canopy characteristics due to leaf shape, orientation, vertical layering, etc. 
Missing wavelengths are in spectral regions that are not used due to atmospheric absorption. 
(Grassland data from Wang et al. (2019), forest data from Singh et al. (2015), and grassland and 
forest data from Wang et  al. (in revision). Model performance (R2) for validation data: forest 
LMA = 0.88, %N = 0.84; grassland LMA = 0.83, %N = 0.57; together, LMA = 0.78, %N = 0.55)
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be achieved using stratification by a few biome types (grasslands/tundra, savannas, 
shrublands/forests). Indeed, this approach has been adopted for many global RS 
products, such as multiple MODIS variables (e.g., LAI, GPP). Much work is now 
required to develop practical, broadly applicable yet acceptably accurate and well-
characterized retrievals for global application. More specific and computational 
methods, such as radiative transfer model inversion, may be used for local applica-
tions (Morsdorf et al., Chap. 4). The history of imaging spectroscopy has been of 
relatively small data collections from aircraft and from space with Hyperion 
(Pearlman et  al. 2003), and as a result, investigators have not been greatly con-
strained by computation and have used algorithms that require a fair amount of 
manual intervention. The likely volume of data from a global spectrometer is so 
great that algorithms will have to run largely unattended and simple, robust 
approaches will be needed!

19.6  �Pixel Size

Much of the extant literature on IS and ecology has been collected using airborne 
imagers flying at comparatively low altitudes, so that the pixels are quite small; 
1–2 m2 is common (Asner et al. 2012; Kampe et al. 2010), and even data collected 
using NASA’s research aircraft, the ER-2, flying at >20,000 m, are often 15 m2, 
smaller than the expected 30–45 m2 spaceborne pixels. Data on most of the dimen-
sions of biodiversity can be tied to measurements or samples from not only a par-
ticular species but often an individual of that species. Most field sampling involves 
taxonomic identification followed by some sort of measurement or sampling pro-
cess, increasingly tied to a geographic coordinate as well (Fig. 19.2).

By contrast, a 30 m pixel, 900 square meters, is not consistent with delineating a 
single organism or species in most cases. In fact, not only is there a scale mismatch 
between 30 m pixels and plants, but the magnitude of the mismatch depends on the 
ecosystem (see Gamon et al., Chap. 16). However conceptualized, the reality is that 
ecologists will have to cope with this range of mismatch and may only be able to 
inject intermediate scales at specific field sites, efforts which are likely to prove 
essential (Gamon et al., Chap. 16, Barnett et al. 2019). The range in size differences 
between plants and pixels is extraordinary. For example, to take one extreme, there 
is a factor of 1010 difference in size between a single phytoplankter and a 30 m pixel. 
A grassland represents an intermediate case, as a single grass plant (neglecting the 
fact that large swards of genetically identical individuals are known) is about 10−6 of 
a 30 m pixel, a million times smaller, while a large tree may cover a tenth or more 
of a 30 m pixel. There is thus not only a huge scale mismatch between plants and 
pixels, but the degree of mismatch may vary by 109 between ecosystems.

The scale mismatch implies that the plant functional trait measurement from 
space characterizes a collection of organisms, a huge number for phytoplankton, 
and quite a large one for herbaceous plants, but possibly just a few individuals in a 
forest. The interpretation of the functional trait measurements will thus depend 
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somewhat on the ecosystem type or the gradient of ecosystem types. If, for example, 
the diversity of plant functional traits estimated within a region (Asner et al. 2017) 
were to be used to look at some aspect of plant competition, assuming that plants 
with different functional traits are interacting competitively (as in many individual-
based forest models), how would pixel-level diversity be used in such a framework? 
This requires research and validation to determine, since these models are usually 
built around data collected in association with taxonomic identification, or highly 
aggregated into generalized plant functional types. The pixel-level data could be 
intermediate between these current practices.

The scale mismatch also raises challenges with calibration and validation of 
plant functional trait estimates. In situ, these measurements are normally made on 
individual leaves or other tissue, or small composites of leaves, samples typically 
1/107 the size of a pixel. Within a pixel, distributed either horizontally or vertically 
within a canopy, trait values may vary dramatically (Schimel et al. 1991b; Serbin 
et  al. 2014), and careful extrapolation is required to even compare with remote 
observations (Singh et al. 2015). This extrapolation itself has to be done differently, 
for example, in forests where vertically sun and shade leaves differ, compared to 
grasslands, where hundreds of species may partition the environment, varying in 
traits within this pixel and sampling representatively can be very challenging.

Fig. 19.2  The scale gap between organisms and the standard 30 m pixel ranges from 1010 to 101, 
depending on whether phytoplankton or large canopy trees are being imaged. When spectroscopic 
data are applied to address ecological and phylogenetic questions, this scale gap will have to 
explicitly factor into the analysis
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19.7  �Phenology and Temporal Aggregation

Functional traits and biodiversity are normally presented as stable characteristics of 
an ecosystem and are often mapped at broad scales (Butler et al. 2017; Moreno-
Martínez et al. 2018) as a snapshot and implemented within models as static data. 
When functional traits are observed in situ, they are typically based on species-level 
sampling, sometimes repeated over a phenological sequence, though most com-
monly near-peak biomass. By contrast, a satellite comes over at a fixed schedule and 
collects data when cloud and aerosol conditions permit. Data may be selected to 
capture maximum “greenness” or some other criterion (e.g., Kampe et al. 2010), or 
data may be collected multiple times each year.

In many ecosystems, the species visible to a sensor in space vary (Sherry et al. 
2011) over the course of a growing season. What is the best way to characterize that 
system’s functional diversity? The simple sum of traits over a seasonal cycle might 
double-count some species, while a peak greenness assessment might underestimate 
functional diversity and neglect functionally important species specialized to early or 
late season. A global imaging spectrometer with consistent repeat imaging will 
enable us to both (i) address the effects of vegetation phenology on the retrieval of 
foliar traits from imaging spectroscopy data and (ii) assess the phenological drivers 
of variation in functional diversity at unprecedented spatial and temporal scales. 
Existing studies have largely been conducted in periods of peak greenness, and nei-
ther the seasonal variability of vegetation traits nor the effects of seasonal variability 
on retrieval algorithms have been addressed. These will be needed for an instrument 
such as SBG, with a ~15-day return interval. Addressing this problem, like the spatial 
scaling problem, requires considering the measurement in the context of ecological 
theory as well as considering pragmatic reality.

19.8  �Conclusion

The likely flight of a spaceborne imaging spectrometer, with global repeat coverage, 
represents a transformative moment in global ecology. For the first time, a global 
measurement will address not only the function of life on Earth, as do greenness and 
other older measures, but at least one dimension of the diversity of life on Earth. 
SBG, CHIME and precursor missions like HISUI and EnMAP will provide a unique 
view of the range of plant functions and will no doubt produce new insights about 
the range of function, the extent and distribution of functional diversity of plants, 
and new aspects of habitat for other trophic levels. In addition, global spectroscopy 
is likely to become available at a time when many other structural and functional 
dimensions of biodiversity and ecosystem function are also available, reviewed in 
Schimel, Schneider et al. (2019). The parallel emergence of new ecological obser-
vatories will provide a wealth of systematic ground data to aid in developing theory 
and practical algorithms (Barnett et al. 2019). A number of challenges need to be 
confronted in order to consistently integrate IS with ecological theory and with the 
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other dimensions of biodiversity, and the upcoming years will be the critical time 
for ecologists to address these challenges.
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Chapter 20
Epilogue: Toward a Global Biodiversity 
Monitoring System

Gary N. Geller, Jeannine Cavender-Bares, John A. Gamon, Kyle McDonald, 
Erika Podest, Phil A. Townsend, and Susan Ustin

The loss of biological diversity in our era is occurring at a faster rate than at any time 
in the recent past. To effectively manage losses and avoid catastrophic outcomes, it 
is imperative to advance the understanding of how ecosystems are changing, what 
is being lost, and the fundamental causes driving extinction. With this in mind, the 
Group on Earth Observations Biodiversity Observation Network (GEO BON) was 
started in 2008 to begin building a global observation network and support improved 
management of the world’s biodiversity and ecosystem services (Scholes et  al. 
2008). Despite good progress, much work remains to fully realize this vision, and 
RS has an important role to play – its potential to contribute to monitoring biodiver-
sity and ecosystems has long been discussed in the literature, and it has proven to be 
extremely valuable (e.g., Stoms and Estes 1993; Nagendra 2001; Cash et al. 2003; 
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Turner et al. 2003; Jetz et al. 2016; Luque et al. 2018). The chapters in this book 
examine the use of RS to characterize and monitor biodiversity, focused largely on 
plant diversity. The authors have collectively explained the technologies involved 
and the analytical and conceptual approaches available for applying RS to monitor 
changes in the multiple dimensions of biodiversity and for evaluating ecosystem 
condition and function. The techniques discussed reflect recent advances in RS 
technologies, which have enabled massive increases in the amount of data available, 
and data science, which has developed new methods for applying these data to the 
detection and prediction of biodiversity. These advances are occurring in parallel 
with those in computing technology and statistical and analytical methods. 
Integrating all of these advances creates new opportunities to monitor biodiversity 
change and ecosystem condition and function at a global scale. Coincidentally, 
these opportunities arise at a time when the climate is changing rapidly and human 
population continues to grow, both of which further increase pressures on the 
world’s natural systems and its biodiversity, accelerating declines that began decades 
ago. The emergence of international efforts to develop a global biodiversity moni-
toring system that can integrate RS with traditional field methods offers some hope 
that the ability to assess change and enhance management efforts can be improved.

Spaceborne RS has special value for monitoring these biodiversity changes 
because it is global, consistent, periodic, and, for Landsat, has a retrospective record 
going back more than 40 years. A system that combines the techniques, approaches, 
and lessons learned described in this book’s 19 chapters would support monitoring 
Earth’s biodiversity globally and at unprecedented levels of spatial and temporal 
resolution. Such a system would facilitate breakthroughs in scientific knowledge as 
well as provide previously unavailable information to manage biodiversity and nat-
ural resources. But spaceborne RS, by itself, is not enough. Utilizing it requires a 
suite of additional data, including airborne RS and a wide variety of in-situ mea-
surements, so these must also be part of any global monitoring system.

How can these many pieces be brought together? It seems a fitting way to end 
this book by briefly exploring ideas for a system that can do that.

20.1  �Current Situation

Most RS technology and instrumentation are developed and operated by govern-
ment space agencies such as the National Aeronautics and Space Administration 
(NASA, USA) and the European Space Agency (ESA, Europe); while there are 
others, these organizations currently provide the bulk of the world’s freely accessi-
ble data. Agencies such as these acquire, store, manage, and process data; they dis-
tribute data that support development of the algorithms used to generate these 
products. While some recent projects take a different approach, traditionally, devel-
opment was assigned to specific funded teams to develop algorithms, which were 
then used to generate a mostly static list of standard products over the life of a 
particular satellite program. These products are available for download by individ-
ual users who can then process them further and apply them to problems of interest. 

G. N. Geller et al.



521

This approach was compatible with the computing environment available at the 
time; since then, however, huge advances in computing technology, including 
greatly decreased cost and the availability and flexibility of the cloud (which, in 
turn, enables new levels of co-development), have enabled alternative approaches. 
In fact, these approaches are necessitated by the increase in the amount and diver-
sity of RS data available (e.g., downloading huge volumes of data for local process-
ing is impractical).

20.2  �Remote Sensing for Global Biodiversity Monitoring: 
Building on GEO BON

Taking advantage of these new opportunities requires not only a new level of agility 
in algorithm and product development but also new approaches for data manage-
ment and processing. For example, collaboration both within and across disciplines 
is crucial because advances in science often require multidisciplinary collaboration. 
Effective use of data from different sources or collected at different times and scales 
requires a greater degree of data sharing and collaboration than is currently com-
mon. Not only have advances in understanding ecosystems and the interaction of 
their many components made the science increasingly multidisciplinary, but tech-
nology, particularly its move toward cloud computing, makes collaboration both 
easier and more natural. The workspaces the cloud provides also facilitate experi-
mentation with and exploration of both algorithms and data, and the cloud addresses 
the data volume issue by “bringing the user to the data.”

Recognition of the benefits of multidisciplinary collaboration, shared work-
spaces, and a shift toward cloud computing is not completely new. The NASA Earth 
Exchange, for example, first became available in 2012, and Google Earth Engine 
started around the same time. The ESA Thematic Exploitation Platforms, which 
focus on specific themes, began in 2014, and the European Commission-funded 
Data and Information Access Services started to go online in 2016. Most recently, 
development began on the Multi-mission Algorithm and Analysis Platform (MAAP), 
a cloud-based, joint NASA-ESA activity that will support several new missions. 
Key features of MAAP include support for collaborative algorithm development as 
well as flexibility in terms of which algorithms are developed or products generated. 
However, despite the critical importance to society, no system has yet emerged that 
provides these and the suite of other capabilities and data needed to monitor biodi-
versity or related ecosystem functions.

A concept for such a system is summarized as a high-level architecture in Box 
20.1. It makes extensive use of RS data, particularly satellite RS, because that is the 
only practical way to obtain the periodic coverage needed for regular global moni-
toring. As such, it augments GEO BON’s global monitoring work with a focus on 
RS and cloud-based processing that can take advantage of a variety of new 
technology-enabled opportunities. It also anticipates several new sensors and sensor 
types, particularly imaging spectroscopy, lidar, and radar; these technologies and 
their application to biodiversity monitoring are discussed in many of the book’s 
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chapters. Importantly, the architecture is inherently flexible, providing a suite of 
basic capabilities that can be utilized in a variety of ways; for example, which algo-
rithms are developed and how they are assessed and published depends upon the 
data the system hosts and how the system is governed. Box 20.2 summarizes some 

Box 20.1 System Concept Overview

 

The system concept consists of several basic components that reside in the 
cloud. At the bottom is a large data store that feeds the processing area and 
also acts as a repository for published products. The RS feedstock consists 
largely of analysis-ready data (ARD), which are data that have been prepro-
cessed to simplify further processing. A variety of other data (in-situ, airborne, 
and ancillary data such as DEMs) also reside there or are accessed directly 
from the provider’s site during processing. The “sandbox” serves two pur-
poses. First, it supports the development of algorithms by providing a space 
where code can be developed, shared, and tested; published algorithms can be 
stored in an “algorithm warehouse.” The sandbox also provides a space for 
experimentation by scientists that need, for example, to run an existing algo-
rithm with nonstandard parameters, to run their own models, or to combine 
data and algorithms in new ways in support of their research. A variety of 
tools are available to support both types of sandbox users. The processing area 
is where algorithms are staged and then run to generate products; depending 
on the product, processing may involve a chain of steps that produce interme-
diate products that may or may not be published. On the far right is a toolbox 
with tools to find and access the products in the data store as well as to interact 
with, understand, and utilize the data; these latter tools are of particular impor-
tance for applied users.
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Box 20.2 Some Key Characteristics of a Global Biodiversity Monitoring 
System

•	 Easy collaboration and facilitation of cross-discipline interactions. This 
enhances algorithm development, scientific experimentation, and 
applications.

•	 Agility and flexibility in algorithm development and data processing 
approaches. This facilitates a broad range of algorithms and products, 
makes the system responsive to the needs of users of all types, and can 
increase product quality.

•	 Integration – including fusion among different sensors, such as optical and 
radar, as well as among RS and in-situ data. Integration also involves 
addressing the challenge of data interpretation across spatial and temporal 
scales. The data already available provides opportunities that have not yet 
been fully utilized, in part because different types of data are handled by 
different communities.

•	 Simplified processing. Development of analysis-ready data will save both 
algorithm development time and computer resources. Analysis-ready data 
are standardized data for which some key processing steps, such as atmo-
spheric correction, have already been executed.

•	 Utilization of advancing technologies. These include those related to sen-
sors, such as imaging spectroscopy, thermal, radar, and lidar, but also of 
genomic technology, and those related to processing huge volumes of time 
series data in the cloud.

•	 Derived products and tools to increase usability and understanding. To 
extract the full value from data acquired and the products derived from it, 
many users, particularly decision-makers such as land managers, will need 
more highly derived products as well as tools to help them understand what 
the data mean and the problems they can address. A cloud-based system 
can facilitate development, generation, analysis, and sharing of derived 
products.

•	 Increased access to in-situ, flux tower, and airborne or UAV RS data. These 
data are absolutely essential because they tie the spaceborne data to what 
is happening on the ground. Although a tremendous amount of this type of 
data has been collected, only a fraction of it is accessible for integration 
with satellite RS data. These data will be needed to take full advantage of 
the opportunities discussed, but accessing them is a challenge.

of the key characteristics that such a system should have. Most of these explicitly 
take advantage of advancing science and technology, but there are some that tech-
nology alone cannot enable. Addressing these is important because they limit the 
value that a system can extract from RS data and thus the value of those data to 
society. By addressing the challenges of integrating vastly different data types 
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across a range of spatial and temporal scales – and particularly when combined with 
the new and forthcoming spaceborne sensors – such a system will enable a new era 
for biodiversity monitoring, and it will be global.

A system like that in Box 20.1, of course, is only part of the picture – the other 
part, upon which it completely depends, acquires the data it utilizes. While many of 
these data are collected by the spaceborne instruments operated by several space 
agencies, utilizing them to understand biodiversity on the ground depends critically 
on in-situ data. Integrating the two is a key challenge at hand, as discussed in the 
introduction to the book (Chap. 1), and is what enables inferences to be made from 
space about the biodiversity on the ground. Airborne data is often used as an inter-
mediary – basically, a “scaling tool” for understanding the scale dependence and 
process-level understanding of signals related to biodiversity (Gamon et al., Chap. 
16). Thus, off the bottom edge of the figure in Box 20.1, there exists a huge suite of 
data collection activities that are not shown. While some of those data are made 
widely available – the Global Biodiversity Information Facility (GBIF) is an excel-
lent example – a tremendous amount of in-situ and airborne data remains inacces-
sible or difficult to locate and utilize (see Fernández et al., Chap. 18). The data may 
not be published online, but even if published the variables collected, the methods 
used, and the formats of the data are often specific to each activity because they are 
operated by independent projects or organizations.

Lack of standardization is one of the challenges involved in developing an inte-
grated system for biodiversity monitoring, though this issue is starting to be 
addressed. GEO BON and its parent organization (the Group on Earth Observations, 
GEO), the International Long-Term Ecological Research (ILTER) site network, the 
US National Ecological Observatory Network (NEON), and a variety of sponsors 
and other organizations are working to enhance coordination and to develop guide-
lines and standards. Many of these activities are sponsored by governments, and in 
fact it is government agencies that can best facilitate and develop coordinated, oper-
ational observation systems. Thus, one of GEO BON’s focal areas is development 
of national and regional Biodiversity Observation Networks (BONs), and as dis-
cussed in Fernández et al. (Chap. 18), GEO BON is developing a suite of Essential 
Biodiversity Variables to provide top-level guidance on what data these BONs 
should collect and to facilitate development of standards. For spaceborne RS data, 
the Committee on Earth Observation Satellites (CEOS), which includes most 
national space agencies, facilitates the coordination of missions as well as of data 
standards.

Even a brief overview of a system concept like this should discuss how to ensure 
that the products it generates meet the needs of its target users. The “usability” of 
any product depends on who the user is and their level of expertise. Historically, 
most RS-based datasets and products have been oriented toward scientific users 
who have the resources and expertise to process them further. However, other users 
such as land managers or decision-makers, whose expertise lies elsewhere, require 
more specialized and more highly derived products – as well as user-friendly tools 
that enable them to explore and understand the meaning of those products for effi-
cient application. These tools appear toward the right edge of the figure in Box 20.1.
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As GEO BON has demonstrated, a global biodiversity monitoring system must 
be a coordinated effort among many international and national organizations and 
user communities and be built upon the vast amount of existing knowledge and data 
that has already been acquired. Taking full advantage of RS data and several advanc-
ing technologies will provide new insights into the status and trends in biodiversity, 
ecosystem functions, and ecosystem services and support operational monitoring at 
new scales. This will vastly enhance the understanding of our biological systems, 
how they are changing, and how society should respond.
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Glossary

3-D segmentation or 3-D image segmentation object categorization  A specific 
case of spectral clustering applied to image segmentation.

Abaxial  The surface of a leaf facing away from the stem (particularly during early 
development), usually the lower surface of a leaf or petiole.

Abiotic  Non-biological physical environmental variables, such as net radiation, 
temperature, and precipitation.

Abiotic niche  The characteristic physical attributes, such as weather and climate, 
of a species fundamental niche.

Absorptance  The portion of electromagnetic radiation incident upon a leaf that 
is absorbed, expressed as a percentage or decimal fraction. Absorptance (A) is 
typically derived from integrating sphere measurements of reflectance (R) and 
transmittance (T), where A + R + T = 1 (100%). Note that absorptance differs 
both from absorbance (the log of the ratio of the transmitted to incident light) 
and absorption (the process of absorbing light).

Absorption feature  An absorption pattern associated with particular wavelengths 
that can frequently be attributed to a particular compound that absorbs at those 
wavelengths.

Abundance  refers to the evenness or number of individuals per species in a com-
munity and can be calculated as absolute or relative abundance.

Accuracy  A measure of distance of a measurement from the true value.
Active radar  A remote sensing method that employs an antenna to send and 

receive microwave frequency/wavelength pulses.
Active sensor  One that emits a signal and detects the amount returned.
Adaxial  The surface of a leaf facing toward the stem axis (during early develop-

ment), typically the upper surface of a leaf or petiole.
Airborne platform  A plane, drone (defined as an unmanned aerial system (UAS); 

see below), balloon, blimp, or other flying object that carries a remote sensing 
instrument.

Airborne remote sensing  Remote sensing performed with sensors installed on an 
airborne platform (e.g., drone, copter, or fixed-wing aircraft).

https://doi.org/10.1007/978-3-030-33157-3
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Aichi targets  The 20 global biodiversity targets identified in the Strategic Plan for 
Biodiversity 2011–2020 of the Convention on Biological Diversity.

Albedo  The reflected incident radiation of a surface, typically reported as the 
fraction of reflected incident radiation over the full range of the solar spectrum.

Alpha diversity  Diversity within a site or community, calculated based on any 
dimension of biodiversity.

Amplicon  A fragment of DNA or RNA that is amplified in the laboratory often 
using polymerase chain reactions (PCR) or ligase chain reactions (LCR) or natu-
rally via gene duplication.

Analysis ready data (ARD)  Remote sensing data products that have been con-
sistently processed to a level required for direct use in monitoring and assess-
ing change. Products are held to high scientific standards and typically involve 
derived products such as top of atmosphere reflectance, surface reflectance, and 
pixel quality assessment.

Angular scale  in optical remote sensing, often defined as the incident and sam-
pling angle of reflected radiation (i.e., the sampling geometry). Sometimes called 
directional scale.

Anisotropic reflectance  Scattering of photons off a surface in a directional man-
ner due to the structure and optical properties of the surface.

Anthocyanin  A type of flavonoid pigment (a family of more than 6000 polyphe-
nolic compounds) that is water-soluble. The colors range from red to blue or 
violet, depending on the pH. Anthocyanins can be found in all plant organs. In 
leaves they are non-photosynthetic, vacuolar pigments that provide protection 
from excess light or herbivory or serve as attractants.

Anthropocene  The proposed current geological epoch, categorized by substan-
tial human impact on the world. [Note that as of this writing, the International 
Commission on Stratigraphy has not yet finalized approval of this term, but it is 
widely accepted by the scientific community.]

Aspect  The direction a slope is facing.
Atmosphere  The layer of gases, particles, and aerosols surrounding a planet that 

is maintained by gravity.
Atmospheric correction  The process by which the effects of scattering and 

absorption of photons by the atmosphere are accounted for and removed to gen-
erate the apparent surface reflectance values of imagery acquired by satellite or 
airborne sensors.

Aufeis  Accumulations of large masses of ice in many Arctic rivers.
Azimuth angle  The angle along the horizon between the sun’s position and north.
Backscatter  The electromagnetic signal that is scattered by the target back to the 

detector.
BAM diagram  A graphical representation of the geographical space for under-

standing the distribution of species. The diagram is composed of three deter-
minants of species distributions: the biotic niche (B), the abiotic niche (A), and 
areas accessible through migration or colonization (M).

Band  A defined wavelength interval of electromagnetic radiation, sometimes 
determined by passing radiation through a filter or other device. See also “spec-
tral band,” “FWHM.”

Glossary
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Band center  The central wavelength of a wavelength interval, both of which 
define a spectral band.

Band collinearity  The degree of linear correlation between spectral bands.
Band-depth analysis  characterizing the intensity of reflectance at an absorption 

feature of a particular spectral region, usually in comparison with the reflectance 
at the shoulders of the absorption feature or reflectance in the absence of the 
feature. See also continuum removal.

Basal area  refers to the cross-sectional area of tree stems in a given sampling 
area. Typically, stem diameters are measured at breast height (dbh), approxi-
mately 1.3 m from the ground, and basal area is reported as total stem surface 
area per unit land area.

Bathymetry  The study of or measurements of underwater depth in oceans, lakes, 
or seas.

Bayesian statistical methods  based on Bayes theorem in which parameters of a 
probability distribution or statistical model are estimated using prior information 
about the parameters (priors), observed data, and a model. Posterior probabilities 
of the parameters are determined from the prior probability and a likelihood 
function based on the model, given the observed data.

Belowground processes  processes that occur in the soil, including both biologi-
cal and physical processes. Biological processes include, for example, microbial 
processes and processes conducted or mediated by plant roots and soil inver-
tebrates, such as nutrient uptake, root respiration, root exudation, root growth 
and death, microbial respiration, nutrient mineralization and immobilization, lit-
ter breakdown and decomposition, nitrification, denitrification, water transport, 
solute transport, and cation exchange. Physical processes include, for example, 
mineral weathering and bulk flow of water and dissolved nutrients.

Beta diversity  The spatial differentiation of biodiversity, the variation in diver-
sity, and composition among sampling units (nondirectional beta diversity) or 
along spatial, temporal, or environmental gradients (directional beta diversity).

Bidirectional reflectance  The two-directional path (incidence and reflectance) 
of photons that interact with a surface and are reflected. See also angular scale.

Bidirectional reflectance distribution function  A mathematical description of 
surface reflectance patterns consisting of both azimuthal and zenith angle infor-
mation. In remote sensing of vegetation, this considers both the shape/density of 
a canopy and the sun-sensor-target viewing geometry.[Our variables influence 
the pattern of light reflected from an opaque surface, including incoming and 
outgoing light directions, which are defined in terms of their azimuth and zenith 
angle directions.]

Bignones  Members of the plant family Bignoniaceae.
Biochemical  refers to chemical processes and substances that occur within living 

organisms. Biochemicals of interest in plants are typically those related to a par-
ticular function, such as carbon fixation, defense, metabolism, stress tolerance, 
structural support, or genetic coding.

Bioclimatic variable  A climatic variable that is believed to have biological sig-
nificance and represents temperature or precipitation data derived from inter-
polated monthly values. Such variables are interpolated across the globe from 
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weather station data and provide annual trends, extremes, and seasonality in both 
temperature and precipitation.

BioCondition  A measure of the capacity of the terrestrial ecosystem to maintain 
biodiversity values at a particular scale.

Biodiversity  The variability among living organisms and the ecosystems in which 
they live, including genetic and phenotypic diversity within species, variation 
among species across the tree of life, and variation among ecosystems. The 
Convention on Biodiversity defines it as “the variability among living organisms 
from all sources including, inter alia, terrestrial, marine and other aquatic ecosys-
tems and the ecological complexes of which they are part; this includes diversity 
within species, between species and of ecosystems.”

Biodiversity ecosystem function (BEF) relationships  The nature and mecha-
nisms by which biodiversity influences (or is influenced by) ecosystem functions 
and processes, such as productivity of the ecosystem, decomposition, nutrient 
cycling, resistance to drought, stability of biomass through time, etc.

Biogeographic assembly  The distribution, movement, and grouping of species in 
a given geographical area over evolutionary time scales.

Biological scale  The hierarchical nature of biological organization. For example, 
individual organisms are nested within populations, which are nested within spe-
cies and within increasingly deeper clades.

Biotic homogenization/differentiation  A change in species composition, struc-
ture, and/or function where different ecosystems, ecological communities, and/
or land areas become more similar (homogenized) or less similar (differentiated) 
through time.

Biological species concept  Species defined as a group of individuals that inter-
breed (or can potentially interbreed). Applies to sexually reproducing organisms.

Biome  A large-scale assemblage of species occupying a particular region of the 
planet, typically defined by climate space. Examples include the boreal forest, 
the Arctic tundra, deserts, grasslands, and tropical rainforests.

Bio-optical  Optical properties resulting from the presence of biological matter.
Biophysical  Any interactions between a biological organism and its physical 

environment. In the context of remote sensing of plant biodiversity, it involves 
characterizing how vegetation properties interact with photons.

Biophysiology  The study of physiological processes of whole plants or animals 
and/or their organs, including the study of structure, growth, and morphology.

Bootstrap  to generate new datasets based on a current dataset. This term often 
implies nonparametric bootstrapping: generating samples with replacement 
from an existing dataset. Another approach, less common, is parametric boot-
strapping: simulating new datasets with a model based on your existing dataset. 
Bootstrap approaches are typically used to estimate uncertainty in parameter 
estimates from data.

Broadleaf  (broad-leaf; broadleaved) an angiosperm plant, typically a dicotyle-
donous species. It is usually contrasted with needle-leaf plants, like conifers, or 
narrow leaves of graminoids.

Bromeliads  Informal name for members of the plant family Bromeliaceae, also 
known as the pineapple family.
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Brownian motion model of evolution  A model that depicts the evolution of a trait 
as the accumulation of many random changes over time in a diffusion-like process. 
At any point in time, a trait value is equally like to increase or decrease. The pace 
at which those random changes accumulate is referred to as the rate of evolution.

Calibration  Comparison of an instrument or measurement to a known standard, 
often with known units (e.g., referenced to the US National Institute of Standards 
and Technology).

Calibration data  Data used to train models from imagery, including calibration 
for atmospheric effects, georegistration, spectral resolution, and any retrieval of 
interest.

Canopy  The upper, aerial region of a plant or group of plants (e.g., tree crown or 
crowns), often including other biological organisms (epiphytes, lianas, arboreal 
animals, etc.). In ecology, the canopy often refers to the crown of a single plant, 
whereas in remote sensing, it often refers collectively to the crowns of many 
plants in a stand (e.g., trees in a forest).

Canopy cover  Projection of tree crowns onto the ground divided by ground sur-
face area.

Canopy structure  The architecture of the aerial portion of a plant or plant stand 
that influences the way plants interact with light and the reflectance patterns they 
generate. Typical metrics include leaf area index, plant area index, leaf angle 
distribution, branching structure, crown shape, etc.

Carbon cycling  A critical biogeochemical cycle on Earth that governs how carbon 
moves from living to nonliving chemical forms and involves transfers between 
various “spheres” (biosphere, atmosphere, hydrosphere, lithosphere). The fast 
carbon cycle (involving the biosphere) can be distinguished from the slow car-
bon cycle (involving the deep lithosphere and long-term geological storage).

Carbon flux  Movement of carbon between Earth spheres (e.g., atmosphere, bio-
sphere, and hydrosphere). Typically expressed as unit carbon per cross-sectional 
area per unit time.

Carotenoids  Plant tetraterpenoid pigments (a family of more than 1100 mole-
cules), with hydrocarbon chains of conjugated double bonds ending in benzene 
rings. They form red, yellow, and orange colors in leaves, fruit, and flowers (e.g., 
autumn leaf colors). They are grouped into two types: those without oxygen (the 
carotenes) and those with oxygen (the xanthophylls). In plants, these molecules 
help capture light energy for photosynthesis, or shield against excess energy, and 
also act as antioxidants for photoprotection.

Cation-exchange capacity  A measure of how many cations (atoms or molecules 
with a positive charge) can be held on soil surface particles (typically negatively 
charged) and thus are made available to plants.

Chemical phylogeny  The evolutionary relationship of chemical traits.
Chemometrics  A subdiscipline of chemistry aimed at extracting information from 

chemical measurements in mixed environments using mathematical and statis-
tical procedures that can be applied to spectroscopic data and remotely sensed 
imagery.

Chlorenchyma  A type of parenchyma cell in leaf mesophyll tissue that contains 
chloroplasts and is photosynthetic.
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Chlorophyll  Green pigment used by plants to absorb energy from sunlight to 
generate the energy necessary for plants to fix carbon via photosynthesis.

Ciliate  A single-celled protozoan characterized by hair-like organelles called 
cilia. Ciliates are typically found in water.

Citizen science  The collection and analysis of data by members of the general 
public, frequently led by and generally in collaboration with professional sci-
entists. Crowdsourcing is a form of citizen science in which datasets are built 
continuously through the contribution of groups of citizen scientists.

Clade  A branch of a phylogenetic tree composed of an ancestor and all of its 
descendants. Also known as lineage. Or a group of taxa containing all the 
descendants of a single ancestor.

Classification/image classification  A statistical procedure to identify different 
classes of objects or features in an image. It can be unsupervised (based on the vari-
ance in the data) or supervised (based on the characteristics of the training data).

Classifier (i.e., in species detection)  A set of rules or a mathematical function 
that uses pixel data to assign or predict class membership. Also known as a clas-
sification model.

Close-range remote sensing  Remote sensing using sensors installed on (or inte-
grated into) platforms at a close distance from the target being measured. See 
also “proximal remote sensing” and “near-surface remote sensing.”

Cluster  A predefined set of points for sampling.
Coefficient of variation  The ratio of the standard deviation to the mean, some-

times used as a measure of spectral diversity.
Collinearity  A situation in which variables are highly correlated to each other.
Colonizers  New arrivals that successfully establish in a community.
Community  A set of interacting or potentially interacting species within a spatial 

area defined by the investigator.
Community assembly  The processes by which species from a regional species 

pool arrive in and populate local neighborhoods and form ecological assem-
blages, shaping their composition and diversity. Important processes include 
dispersal, colonization and establishment, sorting based on the biotic and abiotic 
environment, environmental filtering, species interactions—such as competition, 
facilitation, predation, pest and pathogen dynamics, etc.— diversification, gene 
flow, reproduction, and others.

Community ecology  The branch of ecology that focuses on the interaction of 
species and the mechanisms that influence assembly of species into natural 
communities.

Complementarity  in the context of species or organismal interactions within ecolog-
ical communities, refers to the positive effects attributable to mixing of organisms 
or species that differ; the extent to which two or more biological entities fit together 
minimizing overlap in resource use; related to niche or resource partitioning.

Conditional autoregressive (CAR) model  A category of spatial regression mod-
els derived from standard linear regression models yet incorporating additional 
terms that describe the spatial autocorrelation of the data in the form of specified 
error structure.
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Conservation science  Interdisciplinary study of the protection and maintenance 
of biodiversity.

Constellation  in the context of remote sensing, a group of satellites operating in 
concert with coordinated ground coverage under shared control and synchro-
nized to optimize overlap and coverage.

Contingency  An event whose occurrence depends on the existence of other 
events. In evolution, this refers to the different ways evolution could have shaped 
current life based on the random occurrences of mutations and the inheritance of 
those across the history of life.

Continuum removal  Normalization of reflectance spectra by their local maxima, 
allowing comparison of individual absorption features. This is done by fitting a 
straight line segment to connect local spectral maxima (forming a “continuum”) 
and then using those values to assess the individual spectral features (absorp-
tions). The “removal” is performed by subtracting the spectral feature value from 
the line value at each wavelength, thus estimating the area of the enclosed fea-
ture. This procedure highlights a spectral feature of interest against a changing 
spectral background.

Convention on Biodiversity (CBD)  A multilateral international treaty signed by 
150 nations and entered into force on December 29, 1993. The treaty has three 
main objectives: 1) conservation of biological diversity, 2) the sustainable use 
of the components of biodiversity, and 3) the fair and equitable sharing of the 
benefits arising out of the utilization of genetic resources. Or a treaty between 
nations with the objective of developing national strategies for conservation and 
sustainable use of biological diversity, as well as equitable sharing of benefits 
arising from the use of genetic resources.

Convergent evolution  When the same traits evolve independently in different 
clades, typically in response to the same selective pressure. For example, the 
multiple independent evolution of red, tubular flowers across flowering plants 
that are pollinated by hummingbirds is convergent.

Convex hull volume  Volume enclosed by the smallest convex set or envelope 
that contains a group of points, a commonly used metric for functional diversity.

Critical zone  The part of the Earth where biotic and abiotic processes support life 
on Earth’s surface.

Cross-validation  A method for internally validating a model, often used in stud-
ies where data are repeatedly jackknifed (split) to compare differences in model 
output among subsets of data.

Cryosphere  The component of the Earth’s geosphere made up of frozen water. 
The cryosphere is composed of glaciers, snow, floating ice on the sea and on 
lakes and rivers, and frozen ground (permafrost).

CSR strategy  Plant functional type classification according to Philip Grime in 
which plant traits are related to their stressors and to disturbance regimes (C, 
competitor; S, stress tolerator; R, ruderal).

Cuticle  Outer waterproof covering of the plant epidermis synthesized by the epi-
dermal cells and consisting of hydrocarbon polymers and various lipids (includ-
ing wax).
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Dark current  The apparent signal of an instrument (e.g., spectrometer) in the 
absence of any external stimulus (e.g., light). Typically, dark current is a function 
of temperature and must be subtracted from the desired signal to yield the true 
value of the external signal.

Dark subtraction  The subtraction of the dark current values to yield the true 
external signal detected; typically done for spectra or images.

Data augmentation  Image transformations that improve machine learning per-
formance for image classification by using the data available to create addi-
tional data.

Data dimensionality  The number of orthogonal (independent) dimensions (attri-
butes) in a dataset, e.g., defined by principal components analysis, singular value 
decomposition, or discriminant analysis.

Data latency  The time it takes for an end user to retrieve source data from a data 
collection such as a field campaign, flight campaign, or orbital overpass.

Deciduous  Shedding leaves, so that in part of the year the plant lacks leaves. 
Contrast with evergreen. Many high latitude oak trees shed leaves in the autumn 
and are thus deciduous, but in lower latitudes some keep leaves all year and so 
are evergreen.

Decomposition  An important process in nutrient cycling by which plant and 
animal litter, detritus, and other organic substances are broken down into more 
simple organic or mineral forms.

Decomposition analysis  in the context of processing radar data, the separation of 
polarimetric radar backscatter into components representing different scattering 
mechanisms, such as volume scattering, surface scattering, and double bounce 
reflection.

Dehiscence  Splitting along a built-in line of weakness in plant structure in order 
to release its contents, such as in the rupture of seed capsules for the release and 
dispersal of seeds.

Demography  The study of births, deaths, incidence of disease, etc., to understand 
the changing structure, distribution, and size of populations.

Diameter at breast height (DBH)  Tree stem diameter at breast height, approxi-
mately 1.3 m above the ground; a common measurement in forest inventories.

Diatoms  Single-celled algae (or phytoplankton) in the class Bacillariophyceae 
with cell walls composed of silica. They are found in oceans, freshwater bodies, 
and soils and considered to be one of the most diverse and ecologically important 
groups of phytoplankton. Globally, there are an estimated 20,000 to 2 million 
species of diatoms.

Dicot  Short for dicotyledon. These are the type of flowering plants (angiosperms) 
that have two cotyledons (seed leaves) at germination.

Diffuse light  Radiation scattered from a surface in all directions. A surface that 
scatters perfectly in all directions is termed a Lambertian (isotropic) surface. 
Contrast to anisotropic.

Digital surface model (DSM)  A gridded dataset containing the absolute eleva-
tions including natural and built features of the Earth’s surface.
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Digital terrain model (DTM)  A gridded dataset containing the absolute eleva-
tions of the terrain with built objects and vegetation removed or data describing 
the bare terrain surface (without buildings, vegetation, etc.).

Dimensions of biodiversity  A term referring to the different aspects of biodiver-
sity—including taxonomic diversity, phylogenetic diversity, functional diversity, 
and spectral diversity—that can be applied at different scales (including alpha, 
beta, and gamma diversity).

Direct/indirect species detection  directly observing species presence or 
composition/inferring species presence or composition based on correlated 
measurements.

Directional scale  See angular scale.
Discrete return system  in the context of LiDAR measurements, instrumentation 

that records individual points (representing peaks in the leading edge) in the 
returning signal from a transmitted laser pulse from (c.f. full waveform).

Dispersal ability  The capacity of organisms to move themselves or their propa-
gules and offspring from one location to another.

(Dis)similarity coefficient  A measure or index of the similarity (or difference)—
using any number of distance-based or other methods—between two objects, 
variables, or samples, for example, ecological communities. Dissimilarity and 
similarity coefficients are often used in multivariate analyses, including ordi-
nation methods, cluster analysis, multidimensional scaling, principal compo-
nents analysis, etc. Common dissimilarity metrics include Euclidean distance, 
Manhattan distance, covariance, correlation, and Bray-Curtis.

Distance decay  Describes—often mathematically—the effect of distance on 
interactions of the components in a study system, such that the decline in the 
interaction of components between two locations is a function of the distance 
between them.

Diversity  Variation in characteristic or feature of interest. See also phylogenetic 
diversity, structural diversity, taxonomic diversity, functional diversity, geodiver-
sity, optical diversity, spectral diversity, phylogenetic diversity, structural diver-
sity, taxonomic diversity, alpha diversity, beta diversity, and gamma diversity.

Diversity metrics  A broad array of mathematical formulae for calculating bio-
diversity within a given spatial extent based on biological entities (individuals, 
species, functions, groups) that variously consider numbers, abundance, and dis-
tribution. Many are related to metrics of information content or entropy.

Dominant species  The most abundant in terms of biomass, cover, or stem density 
in a community, ecosystem, or landscape. Developed most clearly by E. Lucy 
Braun for use in characterizing forest types in North America.

Double bounce  Reflection of a radar signal from one surface and then imme-
diately from a second perpendicular surface such that most or all of the signal 
returns to the antenna.

Downscaling  A general procedure for taking information at broad spatial scales 
to make predictions, or to infer states and processes, at finer scales (c.f. upscal-
ing), e.g., interpolating from coarse to fine pixel or grain sizes.

Drone  See unmanned aerial vehicle (UAV).
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Earth observation (EO) platforms  Surfaces on which remote sensors are 
mounted, including aircraft or satellites; also known as remote sensing (RS) 
platforms.

Earth system model  A coupled climate model that simulates the atmosphere, 
hydrosphere, cryosphere, lithosphere, and biosphere by including physical, 
chemical, and biological processes.

Ecological community  A group of species that co-occur and interact with one 
another.

Ecological heterogeneity  The variability in ecological entities—such as local 
neighborhoods, communities, ecosystems, or landscapes—in space and time, 
often measured at multiple scales.

Ecological niche modeling (ENM)  Modeling of species niches (an approxima-
tion to observed or realized niches) or estimation of abiotically suitable areas 
based primarily on environmental conditions or scenopoetic variables such as 
climate or topography.

Ecosystem  The biotic and abiotic components of an ecological community and 
their interactions. The boundaries of an ecosystem are variously defined in prac-
tice and sometimes circumscribed by those of a watershed. The Convention on 
Biodiversity defines an ecosystem as “a dynamic complex of plant, animal and 
micro-organism communities and their nonliving environment interacting as a 
functional unit.”

Ecosystem engineers  Species that directly or indirectly alter their physiochemi-
cal environment to become more favorable for their continued success often 
changing the availability of resources to other species.

Ecosystem function  Processes and emergent properties of a whole ecosystem, 
including its annual productivity and growth, decomposition rates, nutrient 
cycling, stability, resistance to invasion, etc.

Ecosystem services  The benefits to human well-being provided by ecosystems. 
These include regulating services, such as filtering of water, prevention of ero-
sion, carbon sequestration, air pollution removal, etc.; provisioning services, 
such as food and fiber; and aesthetic and cultural services. Equivalent to Nature’s 
Contributions to People defined by IPBES as the many and varied benefits that 
humans freely gain from the natural environment and from properly functioning 
ecosystems.

Ecotron  A controlled environmental facility for the investigation of plant and ani-
mal populations and ecosystem processes under near-natural conditions using 
noninvasive methods.

Ecotype  A distinct form or genetic race of a plant or animal species occupying a 
particular habitat.

Eddy covariance  A micrometeorological method of estimating turbulent verti-
cal fluxes of matter and energy within the atmospheric boundary layer, espe-
cially carbon dioxide and water. Also known as eddy correlation and eddy flux, 
eddy covariance is widely used to estimate net ecosystem exchange of CO2, from 
which gross primary production (GPP) can be modeled.

Elementary surface unit  The smallest unit of a surface that is homogeneous.
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Elevational range  The absolute difference (maximum minus minimum) between 
elevation at two sites or sample units.

Ellenberg indicator values  A classification procedure for Central European 
plants according to their ecological “behavior” and botanical properties, first 
described in detail by Heinz Ellenberg in the mid-1970s.

Emissivity  A measure of the degree to which an object’s surface emits thermal 
energy (expressed relative to a blackbody of the same temperature).

Empirical line correction  A method for correcting atmospheric influences on 
remotely sensed data to estimate surface reflectance using calibrated or stable 
ground targets (a form of vicarious calibration).

Empirical model  A mathematical model derived directly from observable data, 
often using statistical methods (as opposed to first principles or conceptual 
mechanisms) to derive a generalized representation of a process (c.f. mechanistic 
model or process model).

Empirical-statistical model  a model derived from applying statistics to data (c.f. 
mechanistic model).

Endmembers  Spectral signature “types” selected to represent different catego-
ries of surface features, such as different vegetation classes or scene compo-
nents (e.g., forest, grassland, soil, standing water), phylogenetic groups (e.g., 
plant families, species), or vegetation states (e.g., alive, dead). Can also represent 
spectral types determined mathematically, e.g., from imaging spectrometry.

Endemism  Degree of spatial restriction of a species. A species is endemic to a 
place if it only exists in that location (e.g., an island, mountain, country, region).

Ensemble classification  A classification method using multiple learning algo-
rithms to obtain better performance than use of a single learning algorithm.

Environmental filtering  The process by which organisms cannot persist in a 
local environment because they lack the necessary physiological tolerances to 
survive or reproduce there. In the strict sense, environmental filtering refers only 
to abiotic factors that prevent persistence rather than biotic factors, such as com-
petition or pest or pathogen pressure. In contrast, environmental sorting encom-
passes both abiotic and biotic factors.

Environmental heterogeneity  The variability of environmental entities—such as 
topography, hydrology, soils, and climate—in space and time.

Environmental sorting  The process by which species assemble into particular 
ecological niches, defined by biotic and abiotic variables, based on their func-
tional characteristics and environmental tolerances. Environmental sorting is a 
consequence of both abiotic factors (such as light, nutrient and water availability, 
or temperature) and biotic factors (such as herbivory, pathogens, competition, 
pollination, etc.).

Environmental space  The suite of environmental conditions at a given space 
and/or time.

Epidermis  The outermost layer of cells on plant organs that have not undergone 
secondary growth, e.g., the “skin” of the surfaces of the leaves or other primary 
plant organs.

Epigenetic  Heritable changes in gene expression patterns that do not involve 
alterations in the DNA sequence. An example is the addition of methyl groups 
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to the DNA, which changes its three-dimensional structure, influencing which 
regions of the genome are expressed (active).

Epiphyte  An organism (typically a plant, fungus, or bacterium) that grows on the 
surface of a plant, or sometimes multiple plants, often obtaining its moisture and 
nutrients from the air or from debris that accumulates in structural features of 
the supporting plant(s). Epiphytes are physically supported by their host and can 
affect its function. The term is frequently used specifically to refer to plants that 
grow on other plants, such as Spanish moss or many orchids.

Erectophilic  A vegetation canopy structural orientation that is primarily vertical.
Essential biodiversity variable (EBV)  A minimum set of measurements, com-

plementary to one another, required for the study, reporting, and management of 
changes in biodiversity (e.g., allelic diversity, population abundance and distri-
bution, etc.) based on the framework established by Pereira et al. (2013).

ETOPO1  Global relief model used to calculate the proportion of Earth’s surface 
at different elevations—or hypsographic curve; used for Volumes of the World’s 
Oceans and to derive the Hypsographic Curve of Earth’s Surface.

Evapotranspiration  The combined movement of water from the Earth’s surface 
(e.g., soil) to the atmosphere through evaporation and plant transpiration. Plant 
transpiration involves the movement of liquid water from locations of higher 
water potential—typically the rhizosphere—to areas of lower (more negative) 
water potential, such as the leaves, through the vascular system. Evaporation 
refers to the phase change (liquid to gas) which can occur from any surface (liv-
ing or nonliving) and includes the transition of transpired liquid water to water 
vapor through intercellular spaces and stomatal pores on leaf surfaces.

Evolutionary legacy effects  Functional trait and ecosystem consequences of evo-
lutionary history due to shared ancestry and adaptation to past environments and/
or biogeographic and historical processes that influenced the course of evolution 
and thus current ecological processes. The concept does not indicate that future 
evolution is constrained by past evolution, but rather that current organismal or 
ecosystem structure and function reflect past evolutionary processes.

Evolutionary tree  see phylogeny.
Evenness  The similarity in abundance among species in an area; how equal 

species within a community are numerically, i.e., a measure of heterogeneity. 
Mathematically defined as a diversity index.

Extent  Attribute of scale that defines the area covered in time or space.
Extinction coefficient (attenuation coefficient; molar absorption coeffi-

cient)  an index or measure of how much energy a chemical element or com-
pound absorbs at a particular wavelength of the electromagnetic spectrum.

Extracellular enzymes  Enzymes operating outside of the cell; microorganisms 
often produce and secrete extracellular enzymes, which function outside of their 
own cells, to degrade substances such as proteins, lipids, starches, and other 
organic molecules.

Faith’s phylogenetic diversity index  An index of phylogenetic diversity that 
sums the distances of all the branches of a phylogeny that includes the species 
present in the observed community.
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Field campaign  A coordinated data collection effort usually in a particular out-
door location.

Field spectrometry  The outdoor, in situ, measurement of spectral properties 
using a spectrometer.

Flavonoids  Widely distributed polyphenolic plant compounds (anthocyanin pig-
ments and flavones) in flowers, fruits, and leaves. Typically these range from 
near colorless to a range of reds and blues. They have diverse functions as anti-
oxidants, pollinator attractants, seed and fruit colors for dispersal, and more. The 
red colors of leaves are often due to a type of flavonoid.

Flight time  Time or duration of an aircraft campaign or the time it takes a signal, 
such as a light or sound wave, to go from an emitter, bounce off something, and 
go to a receiver.

Flux  in optics, the rate of electromagnetic radiation contacting a surface of given 
area. In general, it is used to describe the rate of flow through a surface of given 
area, such as light transmission through a leaf or carbon, water, or oxygen flow 
into or out of the leaf.

Flux tower or eddy flux tower  A structure, often a metal scaffold, supporting the 
instruments used to measure eddy covariance.

Focal taxa  The set of organisms, species, or lineages that are the subject of study 
and/or analysis.

Foreoptics  The component attached to an optical sensor that transfers and modi-
fies the signal between the target and detector by attenuating the light or chang-
ing the field of view. Can consist of lenses, filters, fiber optics, cosine heads, or 
field-of-view restrictors (e.g., tubes).

Foundation species  in an ecological community, a species that plays a critical 
role in structuring the community and maintaining the integrity of the food web, 
thereby influencing and stabilizing ecosystem properties and processes.

Fragmented landscapes  Landscapes characterized by a dispersion of smaller 
patches, e.g., by terrain features or more frequently by disturbance, including 
roads, paths, or clearings.

Full waveform  in the context of LiDAR, full laser echo intensity recorded and 
digitized over time (c.f. discrete return systems).

Functional diversity  The variability of life as measured by functional traits. 
Includes ecosystem functional diversity and species functional diversity.

Functional trait  A morpho-physio-phenological or phenotypic attribute expressed 
by organisms in their environment that represents or is linked to organismal per-
formance. Examples for plants include photosynthetic pigments, leaf chemical 
composition, water content, dry leaf mass, leaf mass per area, leaf economic 
spectrum traits, canopy structure, plant height, flower color, wood density, seed 
size and production, etc.

Functional type  See plant functional type.
Fusion  The process of integrating multiple data sources, such as different satellite 

products or environmental data layers, with the goal of producing more useful 
information than individual data sources provide alone.

Gamma diversity  Total diversity within a region. It can be defined in various 
ways that incorporate the alpha diversity of individual communities or habitats 
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within a region and the beta diversity across communities or habitats, or variation 
among these.

Generalized additive model (GAM)  an extension of the generalized linear 
model in which the linear predictor is replaced by a sum of unspecified smooth 
functions.

Genetic algorithm  A computational method for solving optimization problems 
that is based on natural selection.

Genotype  The genetic makeup of an individual or group of individuals; also 
refers to individuals of a particular genetic background, such as a recombinant 
inbred line, a seed family, or known genetic variants. Contrasts with phenotype.

Geodiversity  The variety of abiotic features and processes of nature (e.g., land-
forms, soils, and hydrological patterns) that influences the development and 
maintenance of biodiversity.

Geographical space  The extent of a particular region or study area.
Geometric changes  in the context of remote sensing, typically refers to changes 

in the geometric resolution (ground sampling distance or pixel resolution) of 
satellite data. It can also refer changes in sampling geometry.

Geometric correction  Resampling of spectral data from the pixels in an image 
(which are originally not square and vary in size) to a common pixel grid, often 
using nearest neighbor interpolation, to reduce image distortion.

Geomorphological  Pertaining to the study of the physical features of the Earth’s 
surface, including the origin and evolution of topographic and underwater fea-
tures that result from physical, chemical, or biological processes.

Geosphere  The Earth’s abiotic environment. The geosphere is made up of four 
subcomponents: the atmosphere, lithosphere, hydrosphere, and cryosphere.

Geostatistical  considering the spatial positioning or scale of study objects.
Georeferenced data  Data accompanied by locality information in the form of 

geographically explicit coordinates that can be mapped.
Glabrous  A condition that defines a smooth leaf surface without hairs, bristles, or 

rough cuticle surface, often shiny in appearance.
Global biodiversity monitoring system  An emerging concept that integrates 

tools and approaches to sampling, monitoring, and understanding temporal and 
spatial patterns in biodiversity in multiple dimensions and at multiple scales. 
Often involves satellite, aircraft, and in situ sampling and ranges from the molec-
ular to the global scale.

Global mapping of biodiversity  Depicting spatial patterns of biodiversity at a 
global scale, often using satellite data, and typically at a relatively coarse spatial 
resolution. Can also entail mapping of “essential biodiversity variables” to infer 
changing patterns of biodiversity.

Global navigation satellite system  A constellation of satellites that provide geo-
spatial positioning and timing information to networks of ground control stations 
for calculation of ground positions used in computer networks, air traffic control, 
power grids, etc.

Global spectroscopy data  High spectral resolution data collected by an instru-
ment measuring the entire globe, presumably from satellite(s).
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GLOPNET  The Global Plant Trait Network – a group of scientists who contrib-
uted trait data across the plant tree of life that was used to establish the leaf eco-
nomic spectrum. The GLOPNET database was a precursor to the TRY database.

Gradient  A continuous change in a property (such as temperature, rainfall, eleva-
tion) in space or time.

Grain size  The dimensions of a sample unit. In remote sensing, analogous to 
pixel size.

Graminoid  A herbaceous plant with a grass-like morphology, such as a grass 
or sedge.

Ground control point  A coordinate that is measured on the ground or that can be 
easily identified from preexisting imagery, such as road intersections, building 
corners, and trees, and used to apply geometric correction to aircraft or satellite 
image data.

Habitat  The ecological or environmental area or conditions in which a particular 
species or population lives, comprised of the biological and physical properties 
and including the suite of resources, on which it depends.

Habitat heterogeneity  The variability of habitat structure or composition in 
space and time.

Hardwood  The wood of dicotyledonous angiosperm trees.
Hemeroby  refers to the degree of human influence on the environment in contrast 

to the degree of naturalness of the environment in the absence of human influ-
ence. It can be measured in terms of the magnitude of the deviation from the 
potential natural vegetation caused by human activities.

Heterogeneity  Variability in space and/or time.
Hill numbers  A unified standardization method for quantifying and comparing 

species diversity across samples, originally presented by Mark Hill. These are 
generalizable to all of the dimensions of diversity and consider the number of 
species and their relative abundances within a local community.

Hydraulic traits  Traits in plants related to water transport through vascular tis-
sues (e.g., xylem), such as leaf water potential.

Hydrosphere  A collective term for all water below, on, and above the Earth’s 
surface.

Hyperspectral data  Measurements in a large number of concurrent, narrow spec-
tral bands (>20 to hundreds) across a wavelength region in a single spectrum or 
within a pixel in a spectroscopic image (image cube).

Hyperspectral imaging  See imaging spectroscopy.
Hyperspectral remote sensing  Collection and processing of a wide range of 

data in contiguous wavelengths with fine spectral resolution. Commonly used 
as a synonym for imaging spectroscopy but can also include non-imaging 
measurements.

Hyperspectral sensor or spectrometer  An instrument for measuring many spec-
tral bands. It is often used interchangeably with imaging spectrometer but can 
also indicate a non-imaging spectrometer.

Hyperspatial data  Spectral data or imagery having very small pixel sizes, gener-
ally less than 1 m ground sampling resolution. There are several satellites with 
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panchromatic bands of this size. Airplane and UAS-collected imagery at subme-
ter scale are considered hyperspatial.

Image band  refers to the range of wavelengths measured by a single sensor chan-
nel, often named according to the color or region of the EMR spectrum (e.g., red 
or near IR) or by the wavelength(s) of the energy being recorded. Multispectral 
data, including color digital photos, are made up of multiple image bands (also 
called channels or layers).

Image campaign  A remote sensing campaign for the acquisition of image data.
Imaging spectrometer  A spectrometer that captures an image where each pixel 

is a full spectrum covering many narrow adjacent spectral bands. “Pushbroom” 
spectrometers consist of a two-dimensional array in which the x-dimension has 
spatial pixels and the y-dimensions are co-registered wavelengths. A spatial 
image is constructed through the forward movement of the spectrometer.

Imaging spectroscopy  The acquisition and analysis of data from an imag-
ing spectrometer, involving simultaneous acquisition of spatially co-registered 
images in many spectrally contiguous bands, defined by their wavelength cen-
troid and full width half maximum describing the spectral response centered on 
that wavelength. Also known as hyperspectral remote sensing.

Immobilization  The process by which microorganisms consume inorganic com-
pounds, converting them to organic compounds, making them unavailable to 
plants. Immobilization is the reverse of mineralization, but the two processes 
occur contemporaneously.

Incumbents  in the context of biodiversity, the resident organisms or species in a 
system prior to colonization or invasion by new organisms or species.

Independent validation  See model validation.
Index of refraction  a value calculated by the speed of light in a vacuum relative 

to the speed in a denser medium. The difference causes the light ray to bend 
toward the denser medium. It is the real part of the complex refractive index, an 
intrinsic property of the medium. The imaginary part describes the attenuation, 
often called the extinction coefficient (absorption coefficient).

Individual tree crown (ITC)  Delineation of individual tree crown polygons from 
remote sensing data, typically provided by airborne laser scanning or high-reso-
lution multispectral sensors.

Informatics  The scientific discipline that involves studying and designing the 
means of storage, transformation, and representation of large volumes of infor-
mation of diverse types and provenance in computational systems.

Infrared (IR)  Electromagnetic radiation with wavelengths longer than those of 
visible light, i.e., from about 700 up to about 1050 nanometers (in the case of 
near infrared), 700 to 2500 nanometers (in the case of shortwave infrared), and 
from 3 microns to 1 mm (in the case of thermal infrared).

In situ  of or relating to an actual location or habitat, for example, an intact leaf on 
a plant or plants in their natural environment.

Intactness (of habitat)  (i) The degree to which the condition of vegetation that 
forms habitat has not changed beyond what is expected from natural processes 
such as phenology and other dynamics, or (ii) the spatial pattern of a given habi-
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tat, often described in terms of the degree of connectivity or fragmentation, and 
edge extent.

Interferometric SAR  Radar remote sensing that employs two signals from dif-
ferent antennas or from the same antenna in a repeated pass, where the signals 
are emitted at different angles. The phase difference of the two backscattered 
signals from the same location on the terrain surface is related to the relative 
elevation of the surface or changes in that elevation.

Interferometry  A group of methods for extracting information based on the 
interference of two sets of superimposed electromagnetic waves. In remote sens-
ing, generally used with synthetic aperture radar to characterize surface change.

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem 
Services (IPBES)  The intergovernmental body, established by the United 
Nations member states in 2012, which assesses the state of scientific knowledge 
regarding Earth’s biodiversity and the ecosystem services that nature contributes 
to people.

Internal validation  See model validation.
Interpolated climate surfaces  Interpolation of climatic data from weather sta-

tions into climate surfaces, generally using spline smoothing surface fitting 
techniques.

Interspecific  Comparison of observations between different species.
Intraspecific  Comparison of observations within individuals of the same species.
Invasive alien species (IAS)  An exotic species prone to rapid dispersal, often 

displacing native species, altering ecosystems, and reducing biological diver-
sity. The Convention on Biodiversity defines an IAS as “a species that is estab-
lished outside of its natural past or present distribution, whose introduction and/
or spread threaten biological diversity.”

Inverse model  A model that uses outputs to infer or derive inputs, often by mathe-
matical inversion. For example, in radiative transfer (RT) modeling, the ingesting 
of vegetation reflectance and transmittance data to predict biophysical and bio-
chemical characteristics (traits). The forward model would predict a spectrum, 
given the traits as inputs.

Isotropy  Directional equality in reflection of electromagnetic radiation. An iso-
tropic surface reflects radiation equally in all directions. See also “Lambertian.” 
Contrast to anisotropy.

Janzen-Connell type mechanisms  The processes by which host-specific herbi-
vores, pathogens, or other natural enemies make the areas near a parent inhospi-
table for the survival of offspring. They were proposed as an explanation for the 
maintenance of high species diversity in different ecological systems, including 
tropical forests.

Kappa coefficient  A measure that indicates the overall accuracy of a classification 
analysis compared to the expected accuracy, controlling for chance agreement.

Kernel dependent  Relying on data not just from an individual point but from 
surrounding points as well.

Keystone species  An ecologically important species that has a disproportionate 
impact on an ecological community and the ecosystem in which it is embedded, 

Glossary



544

such that if it were removed the community structure and ecosystem function 
would change drastically.

Kriging  A class of methods for spatial interpolation that use statistical approaches 
to estimate a continuous surface from known points with measured values.

Lambertian  Reflecting light equally in all directions, independent of viewing 
angle. See also isotropy.

Land cover stratification  A process that segments and groups land based on land 
cover types, land use types, and/or percent cover; usually a combination of two 
or all three. Stratification is often used to identify land classes (e.g., managed/
non-managed forest areas or cultivated/uncultivated crop areas) for subsequent 
analyses such as biomass or biodiversity inventories.

Landscape  A geographically defined land area that can be viewed at one time 
from one place that may encompass multiple ecosystems interacting through 
the movement of species, energy, and matter. A landscape is generally described 
by physical and biological features such as topography and patterns of vegeta-
tion cover.

Laser echo  A reflection of light as recorded by a LiDAR instrument, the ranging 
part of a laser scanning system. It has the attribute range (i.e., distance of object 
from LiDAR instrument) and can have additional attributes such as energy and 
echo width, which are derived from the recorded full-waveform information.

Laser light sheet  A laser beam focused in a single direction.
Laser pulse  The pulse emitted by a LiDAR instrument. It has the properties of 

length (i.e., duration), shape, and energy.
Laser scanning, airborne  LiDAR mounted on an airborne platform with a scan-

ner deflecting the beam across the swath, while differential GPS and inertial nav-
igation systems provide location and orientation of the measurement platform. 
It is capable of providing several hundred thousand 3-D locations of reflecting 
objects per second with decimetric accuracy.

Laser scanning, terrestrial  LiDAR on a nonmoving terrestrial platform. 
Scanning is performed by deflecting the laser pulse through rotation of the 
instrument along two axes (azimuth and elevation), covering a (hemi)sphere.

Latent heat flux  Flux of energy due to phase changes, i.e., evapotranspiration and 
condensation (contrast to sensible heat flux).

Leaf anatomy  The microscopic structure of a leaf, including the arrangement and 
size of cells, air spaces, and the intra- and extracellular components of the leaf.

Leaf area index (LAI)  The one-sided area of leaves divided by the subtending 
area on the ground surface.

Leaf economic spectrum (LES)  The concept formalized in Wright et al. (2004) 
that leaf traits of plants are coordinated and correlated—given biophysical and 
ecological trade-offs in how resources can be used and deployed for plant func-
tion—such that they constrain the variation in leaves among species to a single 
axis of variation that ranges from “fast” acquisitive traits to “slow” stress toler-
ance traits associated with leaf construction costs. Leaf mass per area (LMA) is 
an easy-to-measure proxy for the entire spectrum that represents the variation in 
leaf life span, the original theoretical basis for trade-offs in carbon and nutrient 
allocation across the spectrum.
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Leaf mass per area (LMA)  Dry weight per one-sided leaf area (typically g/m2). 
Inverse of specific leaf area (SLA) (based on unit conventions, LMA = 1000/SLA).

Leaf morphology  The shape and structural characteristics of leaves.
Leaf traits  Characteristics that describe physiochemical attributes of leaves, such 

as pigment concentration, water content, dry matter, and structure, all of which 
have a functional role in plant growth and resource allocation.

Liana  A woody plant that is rooted in the soil and grows by climbing up trees or 
other substrates by various means (tendrils, adventitious roots, twining stems, 
etc.) in order to reach the top of the canopy.

LiDAR  Acronym for light detection and ranging. In LiDAR measurements, time 
of transmission of a laser pulse between the instrument and a reflecting object 
is measured and converted to a distance measurement. LiDAR can also provide 
detailed 3-D information of the landscape, trees in a forest, and other objects.

Light  An imprecise term that when used in relation to spectroscopy, remote sens-
ing, or plant photosynthesis requires precise definition in terms of the portion 
of the sun’s electromagnetic spectrum that is being referred to. Visible light 
is considered to be the range of wavelengths perceivable to the human eye—
approximately 380–740 nm, which is similar to the range active in photosynthe-
sis (400–700 nm).

Lignin  A large polymorphous molecule with repeating complex polyphenol 
units that is a common component in secondary plant cell walls that provides 
structural strength, enables water transport, and resists decomposition in soil 
organic matter.

Lineage  Typically means the same as clade (see definition); more rarely, the set of 
ancestors leading to a specified taxon.

Lithology  The study of rocks or the character of a rock formation.
Lithosphere  The solid Earth, from its surface to its core. The lithosphere is one 

subcomponent of the geosphere.
Lysimeter  An apparatus for the measurement of water within a soil profile that 

when combined with rain gauge data enables inference of soil drainage rates, 
plant water use, and evapotranspiration. They are also used to estimate soil water 
nutrient dynamics to understand nutrient availability and leaching.

Macrophyte  A large aquatic plant—as opposed to phytoplankton (algae)—that 
grows in or near water.

Maximum likelihood estimation  A supervised classification method for estimat-
ing parameter values of statistical model in which observed data are most prob-
able given the process described by the assumed statistical model. Parameter 
values are estimated by a likelihood function that maximizes the probability that 
the observations are true given the parameters.

Mean normalization  Standardizing a vector to the mean of the components, 
which changes the magnitude but not the direction of the vector; a useful trans-
formation for spectral reflectance data from plants when the magnitude of reflec-
tance varies among samples (see also vector normalization).

Mean phylogenetic distance (MPD)  The average evolutionary distance between 
each pair of species in a given community, where evolutionary distance is mea-
sured as the sum of the branch lengths between two species in the phylogeny.
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Mechanistic model  A model that describes—often mathematically—a process in 
terms of its component physical, chemical, and biological processes, akin to a 
process model (c.f. empirical, statistical, phenomenological model).

Melastomes  Members of the plant family Melastomataceae, also known as the 
princess flower family.

Mesophyll  The tissue within a leaf, comprised of photosynthetic parenchyma cells.
Metabarcoding  A taxonomic method that uses a designated portion of a specific 

gene or genes (proposed to be analogous to a barcode) to identify an organism to 
species. These “barcodes” are sometimes used in an effort to identify unknown 
species, parts of an organism, or simply to catalog as many extant taxa as pos-
sible. Also known as DNA barcoding.

Microendemic  Species whose geographical distribution is restricted to a very 
small location (e.g., a single locality or a single mountain top).

Microhabitat  The local environmental space in which an organism or species 
lives—and is restricted to—as a consequence of its evolved tolerances to the 
biotic and abiotic environment and ability to persist long-term.

Mineral nitrogen  Soil nitrogen that is directly available to plants as nitrate or 
ammonium.

Mineralization  The process by which organic compounds, such as nitrogen, are 
converted to plant-available inorganic forms. For nitrogen, these include nitrate 
and ammonium. Mineralization is the inverse process to immobilization, but the 
two work in conjunction within the soil-plant system.

Minimum noise fraction  A linear transformation consisting of two principal 
component rotations used to decrease noise in spectral data by redistribut-
ing it across all channels (whitening the bands) and transforming the original 
bands into orthogonal bands that combine information from different channels. 
Transformed bands are ordered from the band containing most of the information 
to those with least information. Also used to determine the data dimensionality.

Mission  in the context of remote sensing, the full process of instrument deploy-
ment including planned design, implementation, and launch of a spaceborne 
instrument on the part of a space agency. Alternatively, it can refer to the deploy-
ment of an airborne instrument.

Model  A simplified description, usually a visual, conceptual, or mathematical 
depiction, of some aspect of the world and often how it works; a set of rules or 
mathematical function(s).

Model of trait evolution  A mathematical description of how a trait—such as leaf 
size or chlorophyll content—changes over time due to evolutionary processes.

Model calibration  The process of adjusting model parameter values to match the 
model output to observed data.

Model selection  Choosing the best model using some criterion, e.g., the Akaike 
Information Criterion.

Model validation  The process of comparing model outputs with observed data. 
Internal validation refers to testing a model’s ability to explain the data used 
to populate the model. Independent validation refers to testing the accuracy of 
model outputs with new or withheld observed data.
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Monte Carlo ray-tracing  A statistical, sampling-based way of producing a phys-
ically accurate representation of the light field in a given environment.

Morphological  related to the form of organisms and their structural features, 
including shape, structure, pattern, size, etc. See also physiognomic.

Morphological species concept  Characterization of a species based on its body 
shape or other structural features.

Morphometric  Quantitative measurement(s) of a shape or form (e.g., size).
Multispectral  refers to an instrument or data having a few (more than one) reflec-

tance bands but generally less than 20. Multispectral bands typically have gaps 
between them, and therefore do not measure all contiguous bands in a spectral 
interval. For comparison: panchromatic (1 band), multispectral (2–20 bands), 
hyperspectral (>20 several hundred), ultraspectral (several thousand).

Multispectral satellite data  Satellite imagery capturing specific, typically broad, 
noncontiguous wave bands, across the electromagnetic spectrum.

Multiband  See multispectral.
Nadir  Direction aligned with the direction of the force of gravity at a location 

often used to describe the direction of looking straight down at a 90° angle per-
pendicular to a flat, level surface.

National Ecological Observatory Network (NEON)  A major US National 
Science Foundation-funded program involving a group of sites—distributed 
across 20 domains of the United States, including Alaska, Hawaii, and Puerto 
Rico—representing the ecoclimatic variability of the United States. NEON is 
connected through cyberinfrastructure that delivers standardized ecological data-
sets based on ground sampling, remote sensing, and flux towers.

Non-imaging sensor technology  A remote sensing technology in which no image 
data are generated, e.g., leaf-level spectroscopy or canopy temperature.

Normalized Difference Vegetation Index (NDVI)  A normalized expression 
of red and NIR spectral bands created by subtracting the difference in value 
between the two bands and dividing this by the sum of the values in the two 
bands. It generally indicates greenness and often closely relates to several mea-
sures of green canopy material such as green leaf area index, green biomass, and 
the amount of radiation absorbed by green canopy material.

Net biodiversity effect  See overyielding.
Neural network  in the context of computing systems, a machine learning tech-

nique inspired by the neural network in the brain that can adapt to changing 
input without redesign. It can be described as a framework for coordinating 
many different machine learning algorithms that process complex data inputs for 
a defined purpose in accordance with a set of output criteria.

Niche  The range of biotic and abiotic conditions a species requires for persistence 
or, alternatively, a species’ ecological role in an ecosystem. Evelyn Hutchinson 
defined it as the multidimensional hypervolume circumscribed by an indefinite 
number of biotic and abiotic axes which describe the variation in resources or 
environmental conditions affecting the performance of an organism or species. 
Hutchinson distinguished between the fundamental niche (pre-interactive), the 
hypervolume in which a species can live and reproduce absent competition from 
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others, and the realized niche (post-interactive), the hypervolume in which it 
actually lives.

Niche conservatism  The tendency of a species to remain in the same ecological 
niche as its ancestors and hence to share similar ecological niches with its close 
relatives.

Niche model  A predictive model of species potential distribution along multiple 
environmental dimensions (or niche axes) based on current occurrence infor-
mation of a species in relation to its current environment. See environmental 
niche model.

Near-infrared shoulder  The sharp rise in a vegetation reflectance spectrum 
beyond 700  nm. Also called the red edge. Spectral position (e.g., inflection 
point) of the red edge can indicate the relative health or phenological status of 
vegetation, with red edges farther into the near infrared indicating more vigor-
ous growth.

Near-surface remote sensing  See close-range remote sensing and proximal 
remote sensing.

Nitrogen  An element whose molecular form (N2) makes up most of the tropo-
sphere. In this book, it most commonly refers to nitrogen concentration (measured 
by unit mass) or content (measured by unit area) of soil or plant tissues, which 
reflects nitrogen incorporated in proteins (including enzymes like RuBisCO), 
chlorophyll, and nucleic acids in DNA and RNA. Nitrogen comprises 0.5–4% of 
the dry biomass of a leaf.

Noise (in spectra)  Random variation of a signal, e.g., often an inherent product of 
an electronic instrument and source of error.

Normalization of band centers  See spectral correction.
Nutrient cycling  The movement and exchange of organic and inorganic mat-

ter back into the production of matter. Microorganisms degrade organic matter, 
which allows the release of nutrients, which can in turn be incorporated into the 
bodies of living organisms.

Ontogenetic  related to the development of an organism or its organs. For example, 
in vascular plants it refers to developmental shifts from the embryo to the seed-
ling stage to the mature adult form. For plant leaves it refers to the developmental 
shifts that can occur seasonally from various stages of bud growth and budbreak 
to the early, heterotrophic leaf stage, to a fully autotrophic leaf, and finally to a 
senescing leaf. Ontogeny in a community of plants refers the processes affecting 
the origin, structure, and composition of plants interacting in an ecosystem.

Open source  Software for which the original source code is made freely avail-
able and may be redistributed and modified. Contrast with proprietary or closed 
source code.

OpenStreetMap  A voluntary, collaborative effort to generate an editable 
world map.

Optical detection  Detection of phenomena (such as chemical properties, physi-
ological functions, structural characteristics, or taxonomic identities of plants) 
based on spectral patterns, spectral indices, or other optical metrics. In remote 
sensing, “optical” refers to wavelengths from the near-UV to the SWIR region 
(including the visible).
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Optical diversity  The variation in optical properties, typically measured using 
reflectance spectra but can also be measured via spectral indices or other optical 
metrics (e.g., NDVI, albedo, or chlorophyll fluorescence). See spectral diversity.

Optical imaging system  A passive sensor, including any remote sensing system, 
for recording electromagnetic radiation in the wavelength range between 0.3 and 
3 μm (300–3000 nm). Also known as optical sensor.

Optical properties  Spectral or other properties of a surface or biological entity; 
typically related to the entity’s absorbing or scattering properties (e.g., leaf 
chemical constituents and surface structure) and derived from the pattern of 
absorption and scattering of different wavelengths of light but can also include 
fluoresced or emitted radiation.

Optical remote sensing  Remote sensing technology using optical sensors in the 
wavelength range between 0.3 and 3 μm (300–3000 nm).

Optical signals  See optical properties.
Optical spectrum  The spectrum in the wavelength region between 0.3 and 3 μm 

(300–3000 nm). See spectrum.
Optical type  A class of organisms (or objects) distinguishable from optical prop-

erties, particularly via remote sensing. See also spectral type.
Organic nitrogen  A nitrogen compound that has its origin in living material, for 

example, as a component of amino acids, which are the building blocks of all 
proteins.

Ornstein-Uhlenbeck model of evolution  A model of evolution that extends 
the Brownian motion model by describing the evolution of a trait being pulled 
toward some optimum value.

Ornstein-Uhlenbeck process  A process that has stochastic components as well 
as an attraction to an optimum.

Orthorectification  The correction of image distortions caused by factors such as 
sensor tilt, flight altitude, and changes in surface terrain, creating an image that 
is geographically registered to surface coordinates irrespective of topographic 
variation.

Overall classification accuracy  The probability (often expressed as a percent-
age) that a classification model will correctly classify an unknown sample.

Overyielding  Producing more than expected. Refers to the synergistic effects on 
plant growth, where mixtures of species yield more biomass than the same set 
of species are predicted to yield based on their growth in separate monocultures.

Palisade parenchyma  A specialized chloroplast-containing cell or tissue in the 
mesophyll of dicotyledonous angiosperms. These cells are typically tightly 
packed and elongated perpendicular to the epidermis and located on the adaxial 
side of the leaf.

Panchromatic  refers to a single band extending across all or most of the visible 
bands and, often, part of the near infrared. By collecting light across a wide band, 
the energy collected per unit of time is much greater than narrow wavelength 
bands can acquire in the same time interval. This allows data to be collected in 
smaller pixels with high signal-to-noise characteristics than is possible with nar-
rower bands.
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Parameter  A value (generally held constant in a given model or equation) describ-
ing a phenomenon of interest. Contrast to variable.

Parameterization  The process of defining or selecting parameters for equations 
or sets of equations (models) to explain or describe phenomena of interest.

Parenchyma  Living thin-walled, relatively unspecialized (undifferentiated) cells 
or tissues. In leaves, parenchyma cells comprise the mesophyll and can be modi-
fied to perform more specific functions. Parenchyma tissue may be compact, 
as in the palisade parenchyma, or have large spaces between the cells, as in the 
spongy mesophyll.

Partial least squares regression (PLSR)  A predictive statistical regression 
method that is used to find the fundamental relations between a predictor variable 
matrix (X) and dependent variable matrix (Y) based on identifying an optimal 
set of latent vectors descriptive of the variable of interest. PLSR is widely used 
in chemometrics and is especially useful when the number of predictor variables 
(e.g., spectral measurements) is large compared to the number of observations.

Passive optical remote sensing  The measurement of optical signatures or reflec-
tance from an object or phenomenon by a sensor that is not in physical contact 
with the object. Passive remote sensing systems depend on solar illumination or 
thermal emission (i.e., they do not generate their own energy for measurement).

Passive sensor  A sensor that does not require active or pulsed light emission 
but uses solar irradiance or thermal emission to detect the feature or objects of 
interest.

Petiole  The specialized stalk that attaches the plant leaf blade to the stem, contain-
ing vascular tissues and providing structural support.

PhenoCam  A webcam for monitoring vegetation phenology. Also, the name for a 
vegetation phenology network based on webcams.

Phenogram  Depiction of a phylogenetic tree where one axis represents trait val-
ues and the other axis represents time.

Phenol  Organic compound containing the basic structural unit C6H5OH.
Phenology  The study of periodic, seasonal processes such as budbreak, flower-

ing, seed maturation, leaf senescence, and leaf fall in plants. Although most typi-
cally used for visible events or processes, the term is also increasingly applied 
to less visible, seasonally changing processes, as in “photosynthetic phenology.”

Phenological types  Species groupings based on regularity, date of onset, and 
duration of phenological cycles.

Phenome  A phenologically similar terrestrial zones or the set of phenotypes 
(physical and biochemical traits) that can be produced by a given organism over 
the course of development and in response to genetic mutation and environmen-
tal influences.

Phenomics  The study or measurement of phenotypes that often uses proximal 
remote sensing (typically cameras, imaging spectrometers, or other devices) to 
sample and distinguish plant features.

Phenotype  The observable aspects of an organism, population, or biological 
entity. Contrast with genotype. While phenotype depends on genotype, the inter-
action of the genotype with the environment determines the phenotype.
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Phenotypic plasticity  When organisms with the same genotype display different 
phenotypes in response to different environmental conditions.

Phenotyping  The process of determining or measuring an organism’s phenotype, 
often involving automated sensors or imaging systems (proximal remote sens-
ing) and computing power (e.g., high-throughput phenotyping).

Phloem  The vascular tissue that conducts sugars and metabolites between organs 
in the plant. The tissue is composed of several types of specialized cells for con-
ducting, support, or regulation and other control functions.

Photochemical reflectance index (PRI)  A narrowband normalized difference 
index, typically using a band at or near 531 nm (that responds to changes in 
the relative amounts of xanthophyll cycle pigments), referenced to a band at 
or near 570 nm that does not respond to these changes. Under some conditions 
over short time periods (e.g., diurnally varying illumination), PRI can provide 
an indicator of xanthophyll cycle activity and changing photosynthetic light-use 
efficiency. Under longer (seasonal) periods or across individual plants within a 
landscape, it is often correlated with the relative concentrations of chlorophylls 
and carotenoids or the amount of green canopy material (e.g., leaf area index), 
both of which can be indicative of relative photosynthetic activity.

Photogrammetry  The discipline of making maps, Earth surface measurements, 
or 3-D models from photographs.

Photon  An elementary particle describing a quantum of electromagnetic radiation 
(e.g., light) that is described by both particle and wave properties.

Photosynthetic capacity  The maximum photosynthetic rate for a specific spe-
cies under a set of environmental conditions, often defined as full sunlight, 
optimal temperature, and ambient carbon dioxide concentration. Is often stan-
dardized to a specific temperature such as 25 °C for comparison among taxa. 
For describing enzyme kinetic processes, is often broken down into the carbox-
ylation (RuBisCO)-limited rate Vcmax and maximum electron transport rate J  . 
Correlates strongly with leaf nitrogen, phosphorus, and specific leaf area (SLA).

Phycocyanins  Accessory blue photosynthetic pigments found in cyanobacteria, 
including those comprising potentially harmful algal blooms.

Phylogenetic diversity  The evolutionary distances between species or individuals, 
represented in terms of millions of years since divergence from a common ances-
tor or molecular distances based on accumulated mutations since divergence.

Phylogenetic clustering  The tendency of close relatives to occur together in an 
area (or within a community) more often than expected by chance.

Phylogenetic conservatism  The tendency of close relatives to be more similar to 
each other in traits or niches than expected by chance as a consequence of shared 
ancestry.

Phylogenetic diversity (PD)  The amount of evolutionary history represented by a 
set of taxa: typically the total length of branches on a phylogenetic tree connect-
ing them, though the number of speciation events is also sometimes used. See 
also Faith’s phylogenetic diversity index.

Phylogenetic endemism  The amount of evolutionary history (represented by the 
amount of branch length, measured in a genealogy containing all species present 
in an area) that is uniquely represented in that specific geographical location.
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Phylogenetic overdispersion  The tendency of distant relatives to occur together 
in an area (or within a community) more often than expected by chance.

Phylogenetic signal  The degree to which closely related organisms tend to 
resemble each other. A high phylogenetic signal suggests that there is a strong 
relationship between species’ traits values and their shared evolutionary history.

Phylogenetic species concept  The concept of a species as a group of individuals 
descended from a common ancestor that share a set of derived traits that define 
the group.

Phylogenetic tree  See phylogeny.
Phylogenetics  Discipline that investigates the evolutionary relationships between 

species, and the methods to uncover such relationships.
Phylogeny  A history of shared ancestry between species, often depicted as a 

branched tree. Each tip is typically a species and internal branching points rep-
resent speciation events. Also known as evolutionary tree, cladogram, or chrono-
gram. Or (phylogenetic tree, evolutionary tree) a reconstruction of the estimated 
evolutionary relationship between species.

Physiognomic  related to external attributes (of plants) visible to a human 
observer; related to the external appearance (phenotype) of plants or vegetation. 
See also morphological.

Phytoplankton  Microscopic, photosynthesizing organisms that inhabit almost all 
water bodies on Earth. Phytoplankton consist largely of single-celled bacteria or 
protists, although some are multi-celled.

Phytosociological  refers the composition of plant communities and the system of 
analyzing and classifying them according to their interactions.

Pixel  The smallest element in a detector array, or the smallest spatially resolved 
unit in a digital image. Sometimes used to refer to the ground sampling unit 
(grain size) detected or represented in an image.

Pixel binning  The process of combining the signal from multiple adjacent pixels 
into a single signal. This is often done to improve the signal-to-noise ratio of a 
sensor. Sometimes also called co-adding. Binning can be spatial (spatially adja-
cent pixels) or spectral (binning adjacent spectral bands).

Pixel shift  Spatial displacement of image pixels; occurs when the location of a 
pixel is spatially misregistered.

Planimetric  related to geographic elements, maps, or images that are indepen-
dent of elevation and that can be used to determine distances, areas, and angles 
within a two-dimensional plane.

Plant area index  similar to leaf area index but including both leafy and woody 
(e.g., stem) components to express their combined area projected to a given 
ground area.

Plant biodiversity  The variation among plants, detected at any of a number of 
levels (e.g., within plant species, between plant species, or between vegeta-
tion types).

Plant functional type  A group of plant species that share critical functional traits 
or trait values related to performance; they are expected to respond similarly to 
environmental conditions and/or have similar effects on ecosystem processes. 
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Plant functional types are often used in Earth system models or dynamic global 
vegetation models to simplify the surface representation of vegetation into func-
tional classes. Plant functional types defined for models are usually physiognomic 
vegetation types, defined by their structure, shape, stature, and leaf shape/habit, 
e.g., graminoids, forbs, shrubs, broadleaf/conifer, and evergreen/deciduous.

Plant litter  Dead plant material—leaves, stems, bark, etc.—on the ground that 
can form the surface layer of the soil, sometimes called the “duff” layer.

Platform  in remote sensing, a structure or system for mounting or supporting 
a measuring instrument. Examples include unmanned aerial vehicle (UAV) or 
system (UAS) (also called a drone), airplane, satellite, or tower.

Point cloud  A set (cloud) of points representing the three-dimensional structure 
of an object or set of objects (e.g., tree or forest canopy), typically derived from 
LiDAR or structure from motion.

Polarization parameters  used in radar remote sensing to represent polarizations 
(e.g., horizontal, vertical, or other configurations) of the microwave energy emit-
ted from the antenna and the signal backscattered from the target.

Polarimetric  in radar remote sensing, horizontal and vertical phase information 
from both transmit and receive data is recorded, usually reported as HH, HV, 
VH, and VV.

Pollination  The process that brings pollen, which produces the male gametes 
(sperm), into contact with the female organs of a plant. This process often results 
in the fertilization of an ovule by the sperm and the development of a seed.

Polyphenolics  A large category of secondary metabolites found in plant tissues 
and soil that contain many phenol (C6H5OH) groups.

Polytomy  When more than two branches descend directly from the same ances-
tral node. It could mean that one species instantly became three or more (this is 
sometimes called a hard polytomy) – more commonly, it represents uncertainty 
in not knowing the relative order of branching of the descendants (called a soft 
polytomy).

Post-processing  in remote sensing, further modification of data beyond initial 
processing steps to a standard output, often with a particular objective in mind, 
e.g., filtering or smoothing.

Precision  Refinement in a measurement, calculation, or specification, represented 
by the number of significant digits used. Also, a measure of the measurement 
repeatability, related to the variability in values or predictions resulting from 
applying models or measurements multiple times, with low variability corre-
sponding to high precision, or high reproducibility; not to be confused with accu-
racy, which is a measure of measurement error or measurement, or model bias, 
with low bias corresponding to a high degree of correspondence between predic-
tions and observations/measurements.

Principal components analysis  A linear transformation method that maximizes 
the variance of the data through transformation (rotation) of the data axes using 
the covariance matrix. When applied to spectra, it produces a series of orthog-
onal components that correspond to linear combinations of the original bands 
aligned to represent the main axes of variation within the original data.
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Process model  A conceptual or mathematical representation of a process that 
attempts to represent component steps or mechanisms (c.f. empirical or statisti-
cal model).

Producer’s accuracy  The fraction of correctly classified pixels in the reference 
dataset used to train a model. Contrast to user’s accuracy.

Propagule  Plant material that can become detached and develop into a new organ-
ism (e.g., seeds, spores, corms, tubers, stems or rhizomes, etc.).

Provisioning ecosystem services  The material or energy outputs from ecosys-
tems that benefit—and are generally consumed by—humans, including fuel, 
fiber, food, clean water, and other resources. Also called Nature’s Contributions 
to People (NCPs) within the IPBES framework.

Proximal remote sensing  Observations from a close distance, usually in the 
range of centimeters to meters. Also known as close-range remote sensing or 
near-surface remote sensing. Typically uses trams, platforms, tractors, and UASs 
for deployment or is even handheld.

Proximal sensors  Sensors mounted on platforms on or near the ground that col-
lect information in close proximity to the target of interest.

Quadrat  Square frame used to define a small study area for ecological studies.
Radar  Acronym for radio detection and ranging. It involves methods, systems, 

techniques, and equipment for using the timing of transmitted, reflected, and 
detected electromagnetic radiation to detect, locate, and track objects or to mea-
sure abiotic and biotic surface and subsurface traits. In remote sensing, usually 
encompasses imaging synthetic aperture radar (SAR) wavelengths 3–70 cm (fre-
quencies 435 MHz to 8 GHz).

Radiance  Radiant flux density emanating from a surface per unit solid angle. 
Units are often given in watts per steradian per square meter, W·sr−1·m−2. Spectral 
radiance units would also include wavelength (e.g., nm−1).

Radiative transfer  The transfer and propagation of electromagnetic energy 
through a medium (e.g., the atmosphere, a forest canopy, the water column), 
involving absorption, scattering, and emission of radiation as described by the 
fundamental radiative transfer equation. These processes are modeled to describe 
the relationship between the characteristics of the medium and reflectance.

Radiative transfer modeling  in remote sensing, radiative transfer modeling 
(RTM) pertains to the use of computer programs of varying complexity to simu-
late the reflectance, transmittance, and absorption of solar radiation within dif-
ferent media such as the atmosphere (air, clouds, aerosols), snow, water, and 
vegetation (leaves and canopies). In each of these domains, physical laws govern 
the scattering and absorbing behavior of the radiation. RTMs are used to predict 
the shape of the spectral response from the characteristics of a specific material 
(forward mode), or to predict material characteristics from spectra (backward 
mode). Specific RTMs are developed using a wide range of assumptions, dif-
ferent model representations, and a range of approaches to simplify the solution 
to the full radiative transfer equation, resulting in a range of model complexi-
ties with trade-offs between computational demand, accuracy, and scalability. 
All RTMs require inputs in the form of external conditions (e.g., incident solar 
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radiation for canopy modeling) and parameters (e.g., leaf angle distribution, leaf 
area index) used to solve the radiative transfer equation in the shortwave, optical, 
or longwave (i.e., thermal) domains.

Radiometric quality  refers to the degree or accuracy of radiometric characteriza-
tion, including resolution (see Radiometric resolution), typically determined by 
radiometric calibration, providing an instrument response in absolute radiomet-
ric units (e.g., W m−2 sr−1nm−1).

Radiometric resolution  The smallest increment in spectral radiance that can be 
detected by a sensor. This is determined by the dynamic range (the bit quantiza-
tion level) and signal-to-noise ratio of the sensor.

Random forests  A supervised machine learning algorithm that constructs many 
decision trees and utilizes their outputs to get an accurate value of a variable or 
class prediction based upon training data.

Random noise  Noise component of a signal that does not contain information 
about the property being measured. In remote sensing, random noise is often a 
function of instrument electronics and temperature and is typically removed by 
“dark correction” (subtracting the signal obtained when no external energy is 
being measured, e.g., shutter is closed).

Random-walk process  A stochastic process that describes a sequence of random 
steps. The Brownian motion process used in models of evolution is an example 
of a random walk. Note that a random walk of a species trait through time does 
not necessarily mean that there is no selection: if the optimum value moves due 
to many random factors (including randomly shifting forces of selection), and 
the trait follows this closely, it is still approximated by a random walk.

Rate of evolution  How fast trait changes accumulate over evolutionary time. In 
the context of the evolution of quantitative traits, it typically refers to the pace of 
evolution in a Brownian motion model.

Red edge  The region of rapid change in a vegetation electromagnetic reflectance 
spectrum that occurs at the transition from visible red to near infrared (between 
650 and 800 nm) and indicates the boundary between chlorophyll absorption (in 
the visible red) and vegetation scattering (in the near infrared).

Reflectance  The ratio or percent of the radiance scattered backward from the 
surface relative to the irradiance incident on the surface. Reflectance is a pri-
mary product of remote sensing optical data because it largely normalizes for 
illumination, avoids the need for detailed radiometric calibration (e.g., calibra-
tion in energy units), and provides unique spectral shapes for different materials. 
Contrast to absorptance and transmittance.

Reflectance signature  the characteristic shape or pattern of reflectance across 
wavelengths observed for a specific object (e.g., plant species) or condition. 
Sometimes referred to as a spectral fingerprint.

Refractive index  See index of refraction.
Regeneration  Formation or regrowth of tissue, organ, organism or assemblage of 

organisms (e.g., community or ecosystem).
Regional pool  The set of species, populations, or organisms found within a 

defined region that have the potential to disperse over time.
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Regulating ecosystem services  Benefits from ecosystem processes that help 
maintain the Earth’s life support systems; examples include maintenance of the 
quality of air and soil, flood and disease control, and crop pollination; also called 
Nature’s Contributions to People (NCPs) within the IPBES framework.

Remote sensing  Measurement of an object from a distance without physical 
contact. Usually involves detectors that measure energy in the visible to short-
wave infrared or the thermal infrared region. Both passive instruments and 
active instruments (like LiDAR and radar sensors) are considered remote sens-
ing instruments, as are various “sounders” that probe the atmosphere measuring 
in the optical or thermal bands, or certain acoustic instruments that detect and 
measure sound.

Remote sensing products  Data or information obtained from remote sens-
ing, often in the form of spectral information or maps of quantities of interest 
expressed a raster grid.

Reproducible research  Research where the data and methods are available and 
sufficiently explained so that others can, without help from the original research-
ers, perform the same analysis and get the same results. Research where datasets 
are only available upon request from authors (who may lose them, leave the field, 
etc.) or where methods are opaque or not available (outliers removed by hand, 
unavailable scripts used to process data) are not reproducible.

Resilience  The ability to return to an original functional state, e.g., the capacity of 
an ecosystem to regain its function after disturbance.

Resistance  The ability of an ecosystem (or any system) to maintain function and 
not be adversely affected by a perturbation or stress (such as drought).

Resolution  The smallest interval an instrument can measure (e.g., spectral, radio-
metric, spatial, or temporal resolution) based on detector characteristics or prin-
ciples of measurement.

Retrieval  Obtaining information or values of interest. In remote sensing, retrieval 
implies that values of interest are derived from measurements and models, i.e., 
the process of finding the inverse of a forward function which describes the rela-
tion between the measurements and the values of the quantities of interest (e.g., 
vegetation properties, atmospheric concentrations, water column values).

Retrieval algorithm  The computer calculation used to make a remote sensing 
estimation of a property (see retrieval).

Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO)  A nitrogen-
containing enzyme that catalyzes the reaction that fixes carbon dioxide to ribu-
lose-1,5-bisphosphate (RuBP)to form three-carbon sugars in the “dark reactions” 
of photosynthesis. RuBisCO also catalyzes the reaction that binds RuBP with 
oxygen and releases carbon dioxide in photorespiration. It is the most abundant 
enzyme on Earth.

Root exudates  Secretions from plant roots that alter local soil conditions and soil 
chemistry, which influences microbial processes.

Root mean square error (RMSE)  A measure of the differences between values 
(sample or population values) predicted by a model or an estimator and the val-
ues observed. Also known as root-mean-square deviation (RMSD) or root-mean-
squared error.
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Ruderal  A “weedy” plant species that tends to colonize disturbed lands.
Scale (noun)  Level of observation, including spatial, temporal, spectral, and bio-

logical. Can also refer to the extent and grain of observation units.
Scale (verb)  to change the resolution of a dataset. Upscaling involves extrapola-

tion to larger areas (increasing extent), for example, through data aggregation or 
forward modeling; downscaling interpolates values or inverts a model to create 
a higher-resolution dataset or to infer component contributions at finer scales 
(increasing grain size). From a biological perspective, upscaling might involve 
considering emergent properties, whereas downscaling might involve looking at 
underlying mechanisms or properties.

Scale dimensions  The different types of scale (e.g., spatial, temporal, spectral, 
biological).

Scaling  The act of examining a phenomenon at multiple levels, usually referring 
to transcending spatial scales, as in “upscaling” (increasing extent by extrapola-
tion from fine-scale data to a coarser, usually spatially broader scale) or “down-
scaling” (interpreting the variation in underlying patterns or mechanisms from 
coarse-scale data to finer resolution patterns or grain size).

Scattering (scatter, scattered)  in remote sensing, reflecting and transmitting 
radiation. Radiation that is not absorbed is scattered either backward (reflected) 
or forward (transmitted).

Scattering phase height center  The approximate height above the ground within 
a vegetation canopy where most of a radar signal interacts with scattering ele-
ments (leaves, branches) and is backscattered to the sensor.

Sclerophyllous  having a hard, leathery texture, as in “sclerophyllous” leaf char-
acteristic of Mediterranean or desert climates to maximize water retention.

Secondary metabolites  Plant metabolites not directly associated with primary 
metabolism (e.g., photosynthesis or respiration) tied to plant growth, develop-
ment, or reproduction, often associated with plant defense or signaling.

Semantic web  An effort to make the World Wide Web machine readable by 
encoding semantics with data (e.g., through provision of metadata).

Semivariogram  A plot of semivariance in some property vs. lag (distance between 
sampling points), used in geostatistics to compare similarity between sampling 
points and evaluate the scale dependence of features in a landscape.

Senescence  The process of tissue or plant death.
Shortwave infrared (SWIR)  The range of the electromagnetic spectrum between 

1100 and 3000 nm.
Signal-to-noise ratio  A ratio comparing the desired signal to the background 

noise of the sensor; sometimes calculated as the mean signal value divided by 
the standard deviation of the noise.

Simpson Index  One of multiple metrics of alpha diversity that combines species 
richness and evenness (relative abundance).

Singular value decomposition (SVD)  Matrix factorization; decomposes a matrix 
into an orthonormal basis transformation multiplied by a diagonal matrix fol-
lowed by another orthonormal change of bases. Contrast with principal compo-
nents analysis (PCA), which finds a new representation for a dataset in terms of a 
(typically lower rank) orthogonal basis that preserves the variance of the original 
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projection. The two methods are related as SVD is regularly used to find the 
eigenvalues of a dataset’s covariance matrix needed by PCA.

Solar spectrum  The light emitted by the sun—or solar radiation measured as 
irradiance upon a surface—expressed as a function of wavelength. These wave-
lengths extend from the UV to mid-infrared or from 200 nm to 3.0 μm. Optical 
remote sensing is primarily interested in the wavelengths of solar light that pen-
etrate the atmosphere and reach the ground surface, which range from about 
370 nm to 2.5 μm.

Spaceborne  Measurement sensors mounted on satellites or space stations and 
deployed in orbit (as in “spaceborne remote sensing”).

Spatial domain  The realm of measurements or properties existing in space.
Spatial grain  The spatial resolution (pixel size) of a remote sensing dataset. See 

spatial resolution.
Spatial resolution  Generally, the size of the smallest measurement unit (pixel) 

in an image.
Spatial scale  The grain size and spatial extent at which data about a phenomenon 

are sampled or expressed.
Spatially explicit  Exhibiting spatial properties such as geographic position and/

or extent.
Species  A group of organisms of a type, distinct from other such groups. Defining 

what constitutes a species remains a contentious discussion in taxonomy, and 
several common definitions exist: the biological species concept involves a 
group of interbreeding (or potentially interbreeding) organisms; the morphologi-
cal species concept is based on morphology; the phylogenetic species concept is 
based on evolutionary history.

Species distribution model  An empirical statistical approach that predicts the 
spatial and temporal distribution of species, usually as a function of climatic 
and other environmental (soils, topography) variables. See species distribution 
modeling.

Species distribution modeling (SDM)  A modeling procedure with the purpose 
of predicting the occurrence of taxa in geographical space and time as a function 
of gridded geographic variables related to climate and environment. See environ-
mental niche model and niche model.

Species diversity  Taxonomic diversity at the species level, as distinct from func-
tional diversity, phylogenetic diversity, etc.

Species evenness  The relative abundance of species relative to other species in a 
given area.

Species richness  The number of species found in a given area.
Species turnover  Changes in species composition from one community to 

another, over space (geographic distance), or time. Often characterized as a rate, 
one aspect of beta diversity.

Specific leaf area (SLA)  Leaf area per unit dry mass, usually expressed in 
m2 kg−1; it is the reciprocal of leaf mass per area (based on unit conventions, 
SLA = 1000/LMA).

Spectral band  A defined region of the electromagnetic spectrum measured by a 
detector. See band.
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Spectral correction  Resampling to a true wavelength array; spectral calibration.
Spectral centroid  The center point of a spectrum or many spectra, sometimes as 

viewed in multidimensional space.
Spectral characteristics  Characteristic properties or features related to spectra 

collected from a target of interest (e.g., vegetation).
Spectral database (or spectral library)  An Internet-based (generally) repository 

of spectra tied to metadata including measurement techniques and—for plants—
species identity and/or concurrent trait measurements. For plant spectral data-
bases, entries include leaf- and canopy-level spectra or image-derived spectra 
and have specific metadata standards (e.g., EcoSIS.org).

Spectral diversity  Variation in spectra, typically measured as reflectance spectra 
in the optical range (VIS-SWIR), among a group of plant species, functionally 
distinct vegetation types (e.g., grassland vs. forest), or among pixels in a spectro-
scopic image. See also optical diversity.

Spectral diversity hypothesis  The hypothesis that the diversity of spectral pro-
files predicts some aspect or dimension of biodiversity (e.g., species richness, or 
functional diversity). See also optical diversity.

Spectral distance  The distance in multidimensional spectral space between spec-
tra. Also a measure of dissimilarity for two or more species or functional types 
based on spectral reflectance.

Spectral distortion  Systematic inaccuracies in spectra, possibly arising from sev-
eral sources (e.g., atmosphere or stray light in an instrument).

Spectral domain  referring to spectral properties across specific portions of the 
electromagnetic spectrum, involving information such as wavelength or spectral 
bandwidth.

Spectral feature  Pattern in a spectrum due to absorption or scattering characteris-
tics of a material, often involving only a few adjacent wavelengths.

Spectral fingerprint  See spectral signature.
Spectral heterogeneity  The heterogeneity in spectral characteristics; expected to 

be positively related to environmental heterogeneity and also to certain metrics 
of biodiversity, but also often a consequence of canopy or landscape variability.

Spectral imaging  See imaging spectroscopy.
Spectral index (plural: spectral indices)  A mathematical expression, often a 

ratio or normalized difference, of measured reflectance or radiance from two or 
more spectral bands, with or without a constant or scaling factor, that highlights 
a particular feature in the spectral signal.

Spectral laboratory  A laboratory using spectrometers, indoors or outdoors, 
mobile or stationary.

Spectral mixture analysis  A mathematical procedure for estimating the fraction 
of subpixel elements in mixed pixels, based on distinct spectral signatures, also 
called “endmembers.” The analysis treats pixels as mixtures of these endmem-
bers, which are resolved by calculating the best fitting fractional composition 
of all endmembers. Mathematically the fraction of each endmember is multi-
plied by the endmember’s spectrum, and all fractions are added linearly until 
the mixed spectrum is approximated sufficiently, or this process is inverted to 
identify relative contributions of each endmember to the mixture. Can be used to 
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estimate the distribution of types of targets (e.g., dominant plant cover types, or 
most commonly soil, green vegetation, and non-photosynthetic vegetation frac-
tion) in a landscape.

Spectral reflectance  Reflectance expressed as a function of wavelength (i.e., as 
a spectrum).

Spectral reflectance profile  See spectral reflectance.
Spectral resolution  related to a sensor’s ability to resolve the features of an elec-

tromagnetic spectrum. The resolution depends on the number and width of spec-
tral bands measured by an instrument and is often defined as the bandwidth at 
half the maximum amplitude of the spectral response per band (“full width half 
maximum”).

Spectral response function  The mathematical and/or graphical description of a 
spectral pattern, typically associated with a spectral band. In remote sensing, 
generally is used to describe the response across wavelengths measured in a 
specific band (e.g., in imaging spectroscopy, the reflectance at different wave-
lengths surrounding the center wavelength, or “full width half maximum,” of the 
wave band).

Spectral scale  Spectral resolution and wavelength range.
Spectral signals  features in a spectrum determined by specific absorbing and 

scattering patterns.
Spectral signature  The specific (in theory, unique) shape of the spectrum of a 

specific vegetation type, plant species, or any particular material or combination 
of materials. Also known as spectral fingerprint.

Spectral space  A multidimensional space with axes consisting of wavelength 
bands, or combinations of wavelengths bands (e.g., principal component axes, 
spectral indices).

Spectral species  Types (categories or groupings) of spectra, typically determined 
using unsupervised classification that may or may not match to actual biological 
(taxonomically defined) species. They can be used to estimate alpha diversity, 
beta diversity, and gamma diversity.

Spectral traits (ST)  features in the reflectance or absorption spectra of plant 
compounds, leaves, canopies, ecosystems, or landscapes that can be meaning-
fully interpreted and directly or indirectly associated with underlying sources of 
variation in plants—at the relevant scale of detection—such as their anatomical, 
chemical, morphological, biophysical, physiological, structural, phenological, or 
functional characteristics that are influenced by phylogenetic, taxonomic, popu-
lation, community, environmental, ecosystem, and/or landscape-level properties.

Spectral trait variation (STV)  changes to spectral traits that can be directly or 
indirectly recorded by spectroscopic techniques in space, over time, among sam-
ples or within a sample.

Spectral type  A group of organisms or species that share similar spectral profiles 
(see also “spectral species,” “endmember,” and “optical type”); can also refer to 
a characteristic spectral pattern associated with a particular group of organisms 
or species.

Spectral variability  See spectral diversity.
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Spectral variation hypothesis (SVH)  A hypothesis that states that the spatial 
variability in the remotely sensed signal, i.e., the spectral heterogeneity, is 
expected to be positively related to environmental heterogeneity, or to variation 
in plant traits, and could therefore be used as a proxy of biodiversity.

Spectral vegetation index  A mathematical combination of reflectance from 
wavelength regions that together are relevant to vegetation properties or pro-
cesses (see spectral index).

Spectranomics  Term introduced by Asner and Martin (2008) to describe an 
approach to link plants, canopies, and community as well as their functional 
traits to their spectral properties with the objective of providing time-varying, 
scalable methods for remote sensing of ecosystems and biodiversity.

Spectrophotometer  An instrument for measuring the spectral transmittance of 
light to infer the spectral absorbance. Spectrometers are typically used for deter-
mining absorbance in a solution to quantify the concentration of particular com-
pounds. See also spectrometer.

Spectrometer  A device that is designed to measure electromagnetic radiation as 
a function of wavelength; not necessarily radiometrically calibrated (c.f. spectro-
radiometer). See also spectrophotometer and spectroradiometer.

Spectrometry  Measurement with a spectrometer.
Spectroradiometer  A device that is designed to measure electromagnetic radia-

tion across a range of wavelengths; a radiometrically calibrated spectrometer 
(c.f. spectrometer).

Spectroscopy  An area of study focused on the interactions between electromag-
netic radiation and matter. For imaging spectroscopy of plant biodiversity, the 
term is used to describe the measurement of electromagnetic radiation in a pixel 
of an image to study the properties of leaves, canopies, ecosystems, and land-
scapes and their variation in time and space.

Spectrum  A depiction of the intensity or distribution of electromagnetic radia-
tion, typically the emittance, radiance, reflectance, absorptance, or transmittance 
over the wavelength interval measured and expressed in digital numbers, radi-
ance (watts per steradian per square meter, W·sr−1·m−2), or as a fraction or per-
centage of outgoing to incoming radiance (reflectance) or emissivity. Can also 
be used to express absorbance, fluorescence, or emittance as a function of wave-
length. Plural: spectra.

Specular  A type of electromagnetic reflection that is scattered away from a very 
smooth, mirror-like surface. When light is specularly reflected from a surface, it 
is reflected at the same angle as the incident ray but on the opposite side of the 
plane normal to the surface (c.f. Lambertian or isotropic).

Spongy mesophyll  Photosynthetic parenchyma tissue in plant leaves where the 
cells are loosely arranged. Typically located on the abaxial side (normally the 
lower surface) of the leaf and specialized to facilitate the transport and exchange 
of CO2, H2O, and O2.

Stationarity  Equality or constancy of parameter values or statistical descriptors 
(e.g., mean, variance) of equidistant points in space or time.

Stomata  The turgor-controlled valves, comprised of specialized epidermal cells 
(guard cells), typically located on the abaxial (lower) side of the leaf, that open 
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and close, regulating gas exchange, i.e., movement of water, carbon, and oxygen 
into and out of the leaf. Also called stomates. Singular: stoma or stomate.

Stress  Conditions such as drought, temperature extremes, nutrient limitation, 
pest/pathogen exposure, and fire that produce sub-optimal growth, reproduction, 
or survival conditions for living organisms.

Structural diversity  Variability or heterogeneity in the arrangement and distribu-
tion of physical features on the landscape (e.g., topography, vertical and horizon-
tal canopy structure, or vertical and horizontal stand structure).

Structural complexity  in the context of biodiversity, the display of organization 
in the components of biological systems, particularly in their horizontal and ver-
tical structure, distribution, morphology, and/or anatomy; it is also a science of 
applied mathematics that describes the morphological, structural, and/or ana-
tomical intricacies of a complex system.

Structure from motion techniques (SfM)  A technique for estimating 3-D struc-
ture from a series of 2-D images that can be integrated using motion that pro-
vides multiple viewpoints via parallax. These techniques can be used to produce 
3-D models based on point clouds similar to LiDAR.

Successional change  Change in a community over time; for example, after a fire, 
grasses may grow first and then gradually be replaced by shrubs and trees spe-
cies that are increasingly shade-tolerant. Ecologists distinguish primary succes-
sion—initial establishment of an ecological community on bare substrate after 
an extreme disturbance, e.g., glaciation or volcanic eruption—and secondary 
succession, community change over time as a consequence of less extreme dis-
turbance, such as fire or treefall.

Supervised classification methods  Models or classifiers in which reference sam-
ples, or training data, are used to define classes.

Support vector machine (SVM)  A supervised learning algorithm for classifica-
tion and regression problems. Given labeled training data, the algorithm outputs 
an optimal hyperplane that separates classes in multidimensional space.

Surrogacy  in relation to biodiversity, the idea that diversity at one trophic level 
(plant diversity) may be related to diversity at other trophic levels, or the idea that 
one aspect of biodiversity can serve as a proxy of another.

Surface energy balance  The formal relationship between incoming and outgoing 
energy that describes the energy striking a surface (e.g., leaf or Earth surface) 
and the energy leaving that surface. The energy is typically split into several 
components such as shortwave (incoming solar), longwave (outgoing thermal), 
sensible (temperature), and latent (e.g., phase change) energy. To maintain a con-
stant temperature over time, these components must be in equilibrium or the 
object would heat or cool.

Sustainable Development Goals  A collection of 17 global goals set by the United 
Nations General Assembly in 2015 for the year 2030. They cover social, eco-
nomic, environmental, and development issues including poverty, hunger, health, 
education, gender equality, clean water, sanitation, affordable energy, decent 
work, urbanization, global warming, environment, social justice, and peace.
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Synonymy  Multiple scientific names are applied to the same taxon; this can hap-
pen when multiple taxonomists describe the same taxon or when phylogenetic 
relationships are newly resolved. When a scientific name is updated, the prior 
names are called synonyms.

Surface emissivity  The effectiveness of the surface of a body in emitting energy 
as electromagnetic radiation. Ranges from 0 to 1 (blackbody that emits perfectly).

Swath  The width of Earth surface that an airborne or satellite sensor samples as 
it moves.

Tachymeter, geodetic  Terrestrial surveying instrument providing locations with 
millimeter precision.

Taxon (plural taxa)  A general term for a named set of organisms. The term typi-
cally applies to a species (e.g., Quercus alba) or a higher group, such as a genus 
(e.g., Quercus), family (e.g., Fagaceae), or major lineage (e.g., angiosperms).

Taxonomic diversity  Measurements that incorporate the number of distinct spe-
cies or higher-level taxa and/or abundances of those taxa. The variability in spe-
cies or taxonomic groups present. See also species richness.

Taxonomic group  A named clade: a set of organisms all descended from one 
ancestor.

Taxonomy  A system of naming; typically in this volume, the way organisms are 
named. Much of biology uses a taxonomy derived from the system developed 
by Linnaeus that groups organisms hierarchically according to species, genera, 
families, and higher-order classifications.

Temporal domain  related to time or timing of a process or measurement. See 
also temporal scale.

Temporal scale  refers to data or measurement in the time domain and character-
ized by properties such as the timespan, duration, period, or repeat frequency of 
a measurement.

Terra/aqua  NASA’s Earth-observing satellites launched in 1999 and 2002 that 
carry a variety of instruments and having different equatorial crossing times 
(morning and afternoon, respectively). For example, the MODIS instrument on 
each satellite platform images the entire Earth every 1–2 days and is the basis 
for long-term records of vegetation process at broad scales (250–1000 m pixels).

Texture  Smoothness or roughness of the surface of an object.
Thematic classification  The process of assigning discrete categories, types, or 

classes to each pixel in a continuous raster image.
Thermal remote sensing  Remote sensing of temperature effects carried out by 

sensing radiation emitted from materials in the thermal infrared region of the 
spectrum. Most thermal sensing of solids and liquids occurs in two atmospheric 
windows where absorption is a minimum. The windows normally used are in 
the 3–5 μm (middle infrared, important for detection of fire) and 8–14 μm wave-
length regions.

TIMESAT  A software package for analyzing time series of satellite data.
Tomography  Imaging by sections or sectioning through an object or scene by the 

use of any kind of penetrating wave.
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Topographic illumination  Differential shading and brightness of reflectance 
caused by land surface relief, i.e., relative slope exposure to direct sunlight.

Topology  in phylogenetics, the structure of a phylogeny (dendrogram of evolu-
tionary relationships among taxa).

Tracheid  Specialized support and water transport cell in the xylem tissue of 
plants. Tracheids have thick and rigid cell walls and are nonliving at maturity. 
Conifers use tracheids for both water transport and mechanical support, whereas 
angiosperms primarily use vessels for water transport and tracheids for mechani-
cal support.

Trait  A biochemical, physiological, morphological, structural, phenological, or 
functional characteristic of a plant, population of plants, or community. Traits 
exist on all levels of biological organization. See also functional trait.

Trait diversity  Variation of traits on all levels of biological organization, gener-
ally calculated as a metric of the volume or breadth of the multidimensional 
scatter of those traits. Trait diversity can be linked to phylogenetic, structural, 
taxonomic, and functional diversity.

Transect  A linear sampling approach used for quantifying number, size, species 
composition, and other attributes of vegetation based on intersection with line of 
fixed length.

Transmittance  The fraction of light entering a leaf that is scattered out through 
the opposite surface.

Transpiration  The process by which liquid water is transported through plants 
from roots to mesophyll tissue in leaves, where it evaporates and is released 
through stomata (small pores on the underside of leaves) and to the atmosphere.

Tree of life  The phylogeny—or inferred evolutionary relationships—of all spe-
cies on Earth.

Trophic levels  Positions of organisms on a food chain: organisms at higher tro-
phic levels consume organisms at lower trophic levels.

TRY database  Online repository for plant functional traits (https://www.try-
db.org).

Uncertainty  The probability (or value) of error regarding the data, algorithms, or 
model outputs; also known as associated error.

Understory  The vegetation below the canopy.
Unmanned aerial vehicle (UAV) or system (UAS) or device (UAD)  An airborne 

vehicle (drone) that can be flown without a human on board, including multi-
copters and fixed-wing aircraft.

Unsupervised classification  The classification of remote sensing data with-
out previously classified training or reference samples; mapped categories are 
labeled or merged post hoc.

Upscaling  Extrapolation from comparatively fine scales to larger areas, for exam-
ple, through data aggregation or forward modeling. Contrast to downscaling.

User’s accuracy  The fraction of correctly classified pixels with regard to the 
classes present on the ground. Contrast to producer’s accuracy.

Vacuole  A membrane-bound organelle within the plant cell that stores water, 
enzymes, and other organic molecules, sometimes including toxins or waste 
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materials. As the largest organelle in the cell, the vacuole maintains turgor pres-
sure within the plant cell and provides structure and support for the growing cell.

Validation (internal and external validation)  Quantitative assessment of the 
accuracy and precision of a measurement, model output, or model assessment. 
Internal validation: based on withholding test samples repeatedly from the cali-
bration process (e.g., through permutation, n-fold cross-validation, leave-one-
out cross-validation) to predict the data withheld (validation is not independent). 
External or independent validation: model assessment based on samples that 
were never part of the modeling process (e.g., samples split from the population 
or samples collected independently).

Validation pixels  Pixels not used during the training phase of a supervised classi-
fier or prediction model that are later used to assess the accuracy of the classifier 
or prediction.

Variogram  Function or plot describing the degree of spatial dependence or pat-
terns of variation with distance. See also semivariogram.

Vector normalization  Standardizing a vector to unit length, which changes the 
magnitude but not the direction; a useful transformation for spectral reflectance 
data from plants when the magnitude of reflectance varies among samples (see 
also mean normalization).

Vegetation  Plants; plants aggregated in space without reference to individual 
species.

Vegetation structure  Constitutes the three-dimensional vertical and horizontal 
components of vegetation.

Voxel  Unit of space formed by using grids to subdivide a 3-D space. While a 
pixel includes x- and y-coordinates in two-dimensional space, a voxel also has a 
z-coordinate. Most commonly for vegetation studies, a voxel provides character-
ization of the vertical distribution of plant components within a pixel, e.g., leaf 
area index by height. In the context of imaging spectroscopy, a voxel is an image 
pixel in coordinate space with spectral bands as the z-dimension.

Water content  The amount of water in a tissue, organ, or organism, typically 
expressed as the mass of unbound liquid water per unit area (content) or unit 
fresh or dry weight (usually termed concentration). In remote sensing, water con-
tent is often expressed as equivalent water thickness (thickness of water, assum-
ing all water is present as a single layer).

Wave band  See band.
Wavelength range  The spectral interval sampled by an instrument or covered by 

a spectrum.
Wavelet transform  A linear transformation of a continuous function of one vari-

able into a continuous function of two variables, translation and scale, which are 
often used to remove noise in digital image processing, for image compression, 
or to identify the resolution important to variation in a signal.

Waveform decomposition  Methods used to derive statistical parameters of full 
waveform light detection and ranging (LiDAR) signals for characterizing vegeta-
tion three-dimensional structure and complexity.
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Whole plant economic spectrum  The concept of a single “fast-slow” axis of 
plant ecological strategies put forth by Peter Reich that integrates across traits of 
leaves, stems, and roots and explains resource use, growth potential, stress, and 
pest/pathogen tolerance and competitive advantage of plants in different environ-
ments. Using an “economic” framework following the “leaf economic spectrum” 
(LES), the concept is based on coordinated function and trade-offs among traits 
and is relevant to explaining community assembly and ecosystem function.

Wireless sensor networks (WSN)  A group of sensors for monitoring and record-
ing physical or environmental conditions—such as temperature, sound, electro-
magnetic radiation, pollutants, pressure, humidity, and wind speed. The network 
may contain hundreds of thousands of sensor nodes that are spatially dispersed. 
The data are collected via wireless communication at a central location that 
serves as an interface between users and the network.

Wood density  The wood dry mass in a unit volume of wood.
Workflow  Sequence of tasks (often substantially automated but not necessarily) 

that process input data to a desired output; precise description of data processing 
from one analytical step to another in a formal language.

WorldClim variables  19 gridded bioclimatic variables that reflect spatial and 
temporal (annual, seasonal) differences in precipitation and temperature in the 
WorldClim climatic database, generally intended for species distribution model-
ing (www.worldclim.org).

Xylem  The vascular tissue that transports water and nutrients from the roots to all 
parts of the plant. It includes vessels (angiosperms only), tracheids, parenchyma, 
and fiber cells.

Z-dimension  Typically the third dimension in a three-dimensional space or data-
set, such as the vertical element (e.g., elevation above or below sea level), or the 
spectral dimension in an image cube.
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(ACCP), 51
ACCP, see Accelerated Canopy Chemistry 
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assessing, 68–69, 139, 211
“fuzzy”, 140
metrics, 274
phylogenetic, 156

Accuracy metrics, 274–275
Acid deposition, 122, 125
Active microwave sensors, 237
Advanced Microwave Scanning Radiometer 

for EOS (AMSR-E), 237
Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER), 
230–233, 323

Advanced Very High Resolution Radiometer 
(AVHRR), 143, 230, 234, 323, 454, 
458, 469

Aerial photography
for mapping aquatic invasive alien species, 

271, 275, 283
Aerial sketch mapping, 126–127
Agriculture

remote sensing in, 274, 290
Agroecosystems

remote sensing of invasive alien 
species in, 290

Air-and spaceborne RS platforms and 
sensors, 317–333

Airborne dust, 235
Airborne imaging spectrometer (AIS), 51

Airborne imaging spectroscopy, 109, 415
measuring plant phenolics with, 179

Airborne Observatory, 115
Airborne platforms

to detect invasive alien species, 273, 294
Airborne Prism Experiment (APEX), 51, 90
Airborne Visible and Shortwave-infrared 

Imaging Spectrometer (AVIRIS), 
51, 115, 135, 183, 185, 
234, 285–286

classic, 52
next generation (NG), 51, 52, 234

Air condition sensor, 315
AIS, see Airborne imaging spectrometer (AIS)
AISA Eagle/Hawk, 312, 439
Algal blooms, 288
Alien invasive species, see Invasive 

alien species
Alpha diversity, 26, 180, 239–241, 

320–321, 433
mapping, 113

Amazon Forest Inventory Network 
(RAINFOR), 238

Analytical spectral devices (ASD) 
FieldSpec-3, 88

Animal detection
using unmanned aerial vehicles, 458

APEX, see Airborne Prism 
Experiment (APEX)

Apparent optical properties (AOPs), 286
Application for Extracting and Exploring 

Analysis Ready Samples 
(AppEEARS), 243–245

Aqua, see MODIS
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Aquatic ecosystems
remote sensing of invasive alien species 

in, 282–290
Aquatic macrophyte

emergent, 285
floating, 285
submerged, 283, 286–287, 289

Aquatic vegetation
functional types, 282, 505, 508

ArcGIS 10.3, 231
Artificial neural network, 278
Assimilation, 473–475
Atmospheric correction, 52, 56, 69, 416, 417
Automating sampling design methods, 407
Auxiliary data, 462

anthropogenic, 468–469
in-situ abiotic data, 468
in-situ biodiversity, 463–467
integrating with remotely sensed data, 

464, 469–475
land cover, 469–470
types and sources (table), 464–466

AVHRR, see Advanced Very High-Resolution 
Radiometer (AVHRR)

AVIRIS, see Airborne Visible/Infrared 
Imaging Spectrometer (AVIRIS)

B
Backscatter, 329–332
Bacteria

in belowground decomposition, 175
diversity of, 184

BAM framework, 201
Bark beetle, 125, 135
BEF, see Biodiversity-ecosystem 

function (BEF)
Belowground processes, 173

influence of aboveground vegetation 
on, 174–181

influence of vegetation chemical 
composition, 177

Beta diversity, 26, 180, 241, 321–323, 440, 
442, 458

mapping, 113, 240
metrics, 30

Bidirectional reflectance distribution function 
(BRDF), 56, 431

Bignones, 257–263
Bioclimatic variables

predicting biodiversity from, 255–263
BioCondition, 459
BioDISCOVERY, 11
BioDIV, 29, 185

Biodiverse software, 259
Biodiversity, 238, 463–467, 475

and belowground processes, 181
biological species, 310
definition of, 14
and ecosystem services, 34
and environmental variation, 16
four dimensions of, 461
hierarchical nature of, 14
and latitude, 16
loss, 31, 225
monitoring, 1, 440–442, 456–458, 519–525
morphological species, 310
phylogenetic species, 310
remote sensing as a tool to monitor and 

manage, 2–6, 199, 269
sampling, 400, 427
two monitoring approaches to, 310
types of, 23, 238
use of remote sensing to measure and 

model, 203, 216, 491–494
Biodiversity and ecosystem function (BEF), 

19, 32, 174, 180
using spectra to quantify 

relationships, 32–33
Biodiversity and ecosystem services

trade-offs, 35
Biodiversity-geodiversity interplay, 225, 242
Biogeographic Infrastructure for Large-scaled 

Biodiversity Indicators 
(BILBI), 494

Biodiversity Observation Network (BON), 524
Biological diversity

and spectral patterns, 429 (see also 
Biodiversity)

Biological species concept (BSC), 310, 334
Biomass Software, 330, 333

See also Earth Explorer 7
Biomass, 176

estimating, 455, 471–472
Biophysical modeling

use of radar for, 330
using radar, 329

Biophysical parameters
determining with LiDAR, 326–327

Biophysical variables
remote sensing of, 216, 332, 469

Blomberg’s K, 160–161
Botanical Information and Ecology Network 

(BIEN), 17, 238
Bray-Curtis dissimilarity, 25, 30
Brazilian Atlantic Forest, 255–263
BRDF, see Bidirectional reflectance 

distribution function (BRDF)
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Bromeliads, 257–263
Brownian motion model of evolution, 158–159
Brown pigment, 370, 392

C
Calibration, 139–142

targets, 417–418
tarps, 417–418

California Institute of Technology, 115
Canadian Airborne Biodiversity Observatory 

(CABO), 115, 387
Canopy architecture

use in detecting invasive alien species, 281
Canopy characteristics

assessing with vegetation indices and 
broadband sensors, 136

Canopy height
as a confounding factor for remote 

sensing, 512
use of InSAR to estimate, 331

Canopy radiative transfer models, 64–65
Canopy spectra, 109, 114
Canopy temperature

remote sensing of, 234
CAO, see Carnegie Airborne 

Observatory (CAO)
CAR models, 259
CarboEurope-IP, 86
Carbon, 178

allocation, 111
cycle, 44, 113, 326, 470, 504
storage, 47, 275, 279, 315, 455
spectral features, 51, 58, 64, 106, 352
quality, 178–179

Carnegie Airborne Observatory 
(CAO), 51, 115

Carnegie Spectranomics Project, 387
Carotene pigments, 47, 54, 94, 106–107, 123, 

353–354, 367–368
Cedar Creek Ecosystem Science Reserve, 29, 

31, 33, 185, 433, 438
Cellulose, 44, 47, 61, 65, 107, 175, 363, 371, 

374, 376, 505
optical properties of, 58, 351–354

Cessna, 127, 312
CHELSA, 256, 464
Chemical phylogeny, 107
Chlorophyll

a, 107, 170, 236, 288, 363–367, 392
b, 107, 363–367, 392
content, 164–165
functional traits associated with, 44, 47, 

135, 364, 505, 506

fluorescence, 135, 145, 314
and phenology, 453
spectral properties, 65, 135–136, 353, 

355–358, 392, 458
and vegetation indices, 129–134

Chronic stress agents, 122, 125, 148
Citizen science, 238, 454, 485, 487
Classification, 87, 110, 142, 164, 

166–167, 473
accuracy, 166, 274–276, 

278–279, 292–293
methods/techniques, 164, 167, 271–275, 

281, 283, 324, 334, 405, 470, 472
supervised, 272–274, 276, 283, 292, 403
unsupervised, 272, 273, 283
use of radar for, 329–333

Classifier, see Classification
Climate

predicting biodiversity from, 255–263
remote sensing of, 234

Climate change, 43, 122, 143, 148, 225, 267, 
313, 451–453, 456, 461

acid deposition, 122
Climate Hazards group infrared precipitation 
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use for modeling biodiversity, 206
Climatic impacts
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Close-range EO, 313–317
Close-range imaging spectroscopy, 317
Close-range laboratory spectroscopy, 313
Cloud-Aerosol Lidar and Infrared Pathfinder 

Satellite Observation 
(CALIPSO), 235

Cloud cover
mapping, 234

Clouds
effect on airborne imaging, 362, 415

Coarse woody debris, 326
Coded light projection system, 316
Committee on Earth Observation Satellites 

(CEOS), 524
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importance of, 387, 389, 398
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Compact airborne spectrographic imager 

(CASI), 285
Conservation, 111, 227, 238, 245, 449, 450, 
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and management, 105, 115, 216, 217, 

226–227, 238, 456
Conservation International, 105

Index



570

Continuum removal, 56, 61, 274
Convention on Biological Diversity (CBD), 

269, 486
Copernicus program, 234
Countryside species–area model, 494
Critical transitions, 459
Critical Zone, 227
Cross-validation, 390
Crowdsourced data, 473
Cryosphere

remote sensing of, 236–237
CSR-strategy types, 322

D
DART, see Discrete anisotropic radiative 

transfer (DART)
Data

assimilation, 473
availability and issues, 462–470
collection, 409–418, 524

planning, 398–409
in-situ biodiversity related, 463–467
fusion, 472–473
life cycle, 388
management principles, 495
organization, 393–395
structure, 489
validation, 474

Database, 465–467
Data management plan (DMP)

common components, 387–388
Decision making

essential variables, 488
use of remote sensing for, 35–36, 115, 140, 

147, 401, 409
Decomposition

bacteria vs. fungi, 174–175
Defoliation, 125–127, 138
Deforestation, 127, 332, 460–461
DESIS, 510
Detour effect, 369
Digital elevation model (DEM), 228, 231, 330
Digital surface models (DSMs), 92, 326
Digital terrain models (DTMs), 89, 326
Dimensions of Biodiversity program, 11
Discrete anisotropic radiative transfer 
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Downscaling, 243, 430
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E
Early decline detection
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Environmental Mapping and Analysis 
Program (EnMAP), 135, 451, 452, 
507, 510

Environmental niche models
vs. species distribution models, 204

Environment for Visualizing Images (ENVI), 
231, 274, 471

Envisat, 453
ENVISAT MERIS, 91
EO-1, 51, 135, 234
ER-2, 513
EROS Moderate Resolution Imaging 

Spectroradiometer (eMODIS), 280
Error, see Accuracy
ERTS, see Earth Resources Technology 

Satellite (ERTS)
ESA, see European Space Agency (ESA)
Essential Biodiversity Variables (EBVs), 10, 

83, 226, 238, 270, 462, 491–495
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history of, 486
remote sensing–enabled, 83

Essential Biodiversity Variables Portal, 495
Essential Climate Variables, 486, 488–489
Essential Variables (EVs), 486, 488
Essential Variables for Invasion 

Monitoring, 270
EU Horizon 2020, 454
European Environmental Agency (EEA), 270
European Space Agency (ESA), 4, 134, 145, 

146, 230, 233, 234, 236, 453, 
474, 520

Evapotranspiration, 242, 323, 464
Evolution, 155–162

effect on ecosystems, 14–15, 22–23
macroevolutionary models, 158–160
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Evolutionary history
and geology, 233

Evolutionary trees, 156–158
Exotic invasive insects, 121
External validation, 390–391
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Extinction risk

assessment of, 460
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validation of, 454

F
FAD, see Functional attribute diversity (FAD)
Faith’s phylogenetic diversity, 24, 26, 258
FDiv, see Functional divergence (FDiv)
FDM, see Forest disturbance monitor (FDM)

FHM, see Forest health monitoring (FHM)
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convenience, 405
design-based, 404, 405
measurements, 319, 409–415
model-based, 404
optimal size, 400
purposive, 405
sampling, 66–67, 279, 404–408, 432
spectroscopy, 290, 291, 410–415

Field data
linking to remote sensing, 92–93, 

138, 440–442
use in calibrating remote sensing 

imagery, 139
Field spectrometer, 57, 312, 386–387

protocols/use, 410–415
Field spectroscopy facility, 387
Fire, 143, 182, 279, 332

management, 143, 329
FLEX, see Earth Explorer 8
FLiES, 66
FLIGHT, 66
Flight planning, see Planning
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Fluorescence Explorer (FLEX), 145, 314
FLUXNet, 86, 316
Flux towers, 86, 312, 316, 319
Foliar nitrogen, see Nitrogen
Forest disturbance monitor (FDM), 144
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Forest Inventory and Analysis (FIA), 238–240
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decline, 125–142
disturbance, 7, 126, 144, 182
fires, 316
health, 127, 134, 135, 141, 143, 145, 146
invasive alien species in, 275–279
management, 143, 146–147
tropical, 105–116
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Foundation species, 121, 242
FRic, see Functional richness (FRic)
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Full-waveform systems, 325–326
Functional attribute diversity (FAD), 27
Functional divergence (FDiv), 25, 27
Functional diversity, 17, 23, 27–28
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Functional richness (FRic), 25, 27
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Functional traits, 43–70
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GEO, see Group on Earth Observations (GEO)
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GlobDiversity, 99
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Google Earth, 142
Google Earth Engine, 146, 521
GORT, see Geometric-optical radiative 

transfer (GORT)
G-POD, see Grid Processing on 

Demand (G-POD)
Gradient models (GM), 470
Grassland ecology experiments, 316
Grassland ecosystems

UAS and, 317
Grasslands

remote sensing of invasive alien 
species in, 279

Gravity Recovery and Climate Experiment’s 
(GRACE), 230, 232, 236

Greenhouse gas regulation, 451
Grid Processing on Demand (G-POD), 146
Ground-based remote sensing, 87, 89, 234, 

328, 385–386, 441
Ground data

need for, 385–386, 462
Ground-penetrating radar (GPR), see Radar
Ground reference data

collection, 416–418
Ground validation, 126
Groundwater

remote sensing of, 233, 236
Group on Earth Observations (GEO), 489, 

495, 519
Group on Earth Observations Biodiversity 

Observation Network (GEO BON), 
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Habitat, 228, 242, 271, 272, 331–332, 

426, 456
deterioration, 225
diversity, 16
heterogeneity, 9, 320
intactness, 459–462
modeling, 167, 209, 294, 494
suitability, 167, 209

Heat stress, 324
Helmholtz-Zentrum für Umweltforschung 

(UFZ), 312
Hemicellulose, 107, 175, 374–375

and biodiversity remote sensing, 374
Hierarchical Modelling of Species 
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Hindcasting, 389
Hohe Holz, 312
Human, 465
Hydroacoustics, 287
Hydrosphere

remote sensing of, 235–236
HyMap, 51, 285–287
Hyperion, 51, 135, 234, 276, 513
Hyperspectral

data, 166, 285–286, 289, 291
imaging spectroscopy (see Imaging 

spectroscopy)
imagery, 134–135, 186, 234, 263, 274, 296
and invasive alien species, 271, 273, 292
using with LiDAR, 134–135
sensors, 134–135, 313, 315, 452, 457

Hyperspectral Imager Suite (HISUI), 507, 510
HyspIRI, 451

I
IAS spread

remote sensing of, 287
Ice, Cloud and land Elevation Satellite 

(ICESat), 230, 237
Geoscience Laser Altimeter System 

(GLAS), 326
IDSs, see Insect and disease surveys (IDSs)
IKONOS, 276, 293
Imaging spectrometers, 365, 506–510
Imaging spectroscopy (IS), vi, 3, 10, 20, 32, 

46, 146, 233, 276, 505
challenges and considerations, 52
data use, 52, 90, 146, 179, 183, 218, 270, 

276, 278, 281, 287, 351, 366, 372, 
413, 457–458
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using to estimate functional traits, 47, 
58, 63–64

opportunities, 69–71
mapping, 106, 110, 113–114, 116, 

233–234, 276, 278, 281
satellite, 431–432, 441–442, 506–509
instruments, 506

Inertial Navigation System (INS), 325
Information theory and spectral 

variability, 429
Inherent optical properties (IOPs), 286
Insect and disease surveys (IDSs), 144–145
Institut for Geoinformation and 

Surveying, 312
Integrated Carbon Observation System 

(ICOS), 454
Interferometric SAR (InSAR), 330, 331
Intergovernmental Oceanographic 
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Intergovernmental Panel on Biodiversity and 

Ecosystem Services, 34
Intergovernmental Panel on Climate 

Change, 489
Intergovernmental Platform on Biodiversity 

and Ecosystem Services, 497
Intergovernmental Science-Policy Platform on 

Biodiversity and Ecosystem 
Services (IPBES), 269

Internal validation, 390
International Geosphere and Biosphere 

Program (IGBP), 323
International Long Term Ecological Research 

Site (ILTER), 524
International Plant Phenotyping Network 

(IPPN), 314
International Space Station (ISS), 233, 507, 

509, 510
International Union for Conservation of 

Nature (IUCN), 227, 238, 269
Invasive alien species (IAS), 9

detecting with remote sensing, 267, 275
impacts on biodiversity, 268
steps for detecting and mapping 

using RS, 271
using RS, 271
using indirect methods to detect, 273
using remote sensing to predict future 

invasions, 285
Invasive Plant Atlas of New England 

(IPANE), 238
Invasive species detection, 277, 452
Invasive Species Specialist Group (ISSG), 269
ITC Satellite and Sensor Database, 134
IUCN Red List, 227
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J
Jet Propulsion Laboratory (JPL), 115
Joint Research Centre, 461
JPL, see Jet Propulsion Laboratory (JPL)

K
Kappa coefficient, 209, 274
Keck Institute for Space Studies, 11
Keystone, 52, 121

L
Land cover

change, 332, 460
remote sensing of, 470
use of radar and, 329

Land Process Distributed Active Archive 
Center (LP DAAC), 245

Landsat, 49, 127–128, 140, 242, 271, 280, 
320, 321, 323, 324, 331, 453, 457, 
458, 469, 471, 475, 507, 520

assessing roads, 469
to assess land cover change, 460
to detect invasive alien species, 292
Landsat 5, 276, 323–324
Landsat 8, 84, 324, 454
Landsat 9, 145
Landsat ETM+, 276–278, 284–285
Landsat TM, 134, 277, 280, 285
Landsat TM/ETM+/OLI, 91
to monitor protected areas, 460
and stress detection, 140

LandSense, 454, 465
Land surface temperature (LST), 323

derivation from TIR data, 324
mapping, 234

Laser light sheet triangulation system, 316
Laser scanning, 85, 88–89, 455
Leaf

absorptance patterns, 354–355
biochemistry and energy 

absorption, 364–368
cell wall constituents, 376
chemistry and physiology, 124
epidermis, 357–362
mesophyll, 361–377

index of refraction, 362–363
optical properties, 356–358
quantity and longevity, 124
reflectance patterns, 352–353
size, 123
water content, 64, 124, 371, 372

detecting, 58, 64, 93, 124, 135

Leaf area index (LAI), 176, 233, 473
deriving from LiDAR, 328
as representative of ecosystem 

function, 216
Leaf economic spectrum (LES), 16, 18, 44, 

125, 174
Leaf incorporating biochemistry exhibiting 

reflectance and transmittance yields 
(LIBERTY), 65

Leaf mass per area (LMA), 18, 376, 511
and nitrogen, 511

LEAFMOD, 65
LES, see Leaf economic spectrum (LES)
LIBERTY, see Leaf incorporating 

biochemistry exhibiting reflectance 
and transmittance yields 
(LIBERTY)

Light Detection and Ranging (LiDAR), 
228, 325–329

and belowground processes, 182
data fusion, 135, 146, 294, 365–366, 457
to detect invasive alien species, 270, 

276–278, 293
full-waveform, 70, 92
for measuring biophysical parameters, 32, 

326, 469–472
multispectral, 146
to sense dust, 235
system types, 325
unmanned aerial systems, 317

Lignins, 178, 374
ecosystem characteristics associated 

with, 506
estimating biodiversity from, 374
interaction with nitrogen, 178

Lithosphere
remote sensing of, 233

Livelihoods
inclusion in conservation, 462

LMA, see Leaf mass per area (LMA)
Location data

collecting, 409, 417
Long-term ecological research (LTER), 334

networks, 493

M
Machine learning, 99, 207, 276

to connect remote sensing to functional 
traits, 64

for detecting aquatic invasive alien 
species, 283

for forest management, 143
Macroalgae, 283, 286
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Macrophyte, see Aquatic macrophyte
Manual measuring, 312
Map of Life, 494
Marine Biodiversity Observation Network, 489
Marking plots, 409
Mass absorption coefficient, see Extinction 

coefficient
Maximum likelihood estimation (MLE), 274
MCRT, see Monte Carlo ray tracing (MCRT)
Mean phylogenetic distance (MPD), 27
Melastomes, 257, 262
MERIS Global Vegetation Index (MGVI), 453
Metadata

sampling, 388
Microlight, 312
Millenium Ecosystem Assessment, 34
Minimum noise fraction (MNF), 273, 276
Mobile crane, 312
Model boundaries, 389, 399
Model calibration, 327, 390
Model validation, 9, 390, 393, 402
Moderate Resolution Imaging 

Spectroradiometer (MODIS), 91, 
230, 232–235, 237, 243, 259, 320, 
322–324, 451, 453, 455, 458, 464, 
469, 470, 472, 513

use for modeling biodiversity, 206
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Research and Applications 
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MODIS, see Moderate Resolution Imaging 
Spectroradiometer (MODIS)

MODTRAN, 417
Molecular absorption processes, 363–364, 377
Monte Carlo ray tracing (MCRT), 85
Morphological species concept (MSC), 334
Mountain pine beetle, 122
Movebank, 458
MPD, see Mean phylogenetic distance (MPD)
Multiband imagery, 365–366
Multimission Algorithm and Analysis Platform 

(MAAP), 521
Multisource data

for indirect assessment of grassland 
invasive alien species, 280

Multisource vegetation diversity and health 
monitoring network (MUSO-
VDH-MN), 333, 334

Multispectral data
for mapping aquatic invasive alien 

species, 283
Multispectral satellite data, 271

use in mapping invasive alien species, 276
Multispectral sensors, 127–134, 315

N
NASADEM, 231
NASA Earth Exchange, 521
NASA Land Product Validation Subgroup, 474
NASA Terra and Aqua satellite, 323
National Aeronautics and Space 

Administration (NASA), 11, 135, 
146, 230–232, 235–237, 245, 
474, 520

Biological Diversity and Ecological 
Forecasting Program, 11

SBG mission, 10
National Ecological Observatory Network 

(NEON), 51, 70, 115, 228, 387, 
442, 454, 524

need for, 521
spaceborne remote sensing, 524
standardization, 524

National Environmental Satellite, Data and 
Information Service (NESDIS), 143

National Institute for Mathematical Biology 
and Synthesis (NIMBioS), 11

National Land Cover Database (NLCD), 280
National Oceanic and Atmospheric 

Administration (NOAA), 143, 453, 
454, 458

National Science Foundation (NSF) Research 
Coordination Network on 
Biodiversity, 11

Natural Environment Research Council 
(NERC), 387

The Nature Conservancy, 227
Near-infrared (NIR), 50, 58, 183, 273, 276, 

350–356, 412, 459
optical signal sources in, 58

Near-infrared plateau, 127
Near-infrared spectroscopy (NIRS), 182

measuring plant polyphenolics with, 179
NEON, see National Ecological Observatory 

Network (NEON)
NEON AOP, 52
NESDIS, see National Environmental 

Satellite, Data, and Information 
Service (NESDIS)

Niche difference model, 320
NISAR, 329
Nitrogen, 177

ecosystem characteristics associated 
with, 506

to estimate functional properties and 
biological diversity, 363

foliar/leaf, 44, 47, 53, 61, 63, 107, 110, 
114, 177, 363, 505–506, 512

interaction with lignin, 178

Index



576

NOAA, see National Oceanic and 
Atmospheric 
Administration (NOAA)

NOAA/NESDIS Global Area Coverage (GAC) 
data set, 143

Normalized difference nitrogen index 
(NDNI), 273

Normalized difference vegetation index 
(NDVI), 273, 321, 453, 454, 458, 
460, 471

Normalized difference water index 
(NDWI), 273

NovaSAR, 329
Nutrient Network, 32

O
Object-based classification, 292
OpenStreetMap, 465, 469
Operational Remote Sensing (ORS), 144–145
Optical detection, 9
Optical diversity, 11, 433, 437, 439

definition, 427, 430
metrics of, 427, 430, 438
sampling, 431

Optical reflectance spectrum, 106
Optical RS, 48, 84, 236, 320–322
Optical spectrum, 350–351
Optical surrogacy, 6, 8, 182, 184, 427

hypothesis, 182, 184
Oregon Transect Ecosystem Research Project 

(OTTER), 51
Ornstein–Uhlenbeck model of 

evolution, 159–160
ORS, see Operational Remote Sensing (ORS)
OTTER, see Oregon transect ecosystem 

research project (OTTER)

P
Pagel’s lambda, 160
Pan European Phenology (PEP), 454
Pando, 432
Partial least-squares regression (PLSR)

foliar N and, 363
modeling, 61–65, 392, 511
phylogeny and, 164

Passive microwave, 235–237
Passive microwave radiometers, 237
Passive microwave sensors, 237
Patch matrix models, 470
Pathogens, 121, 122, 125, 135
PD, see Phylogenetic diversity (PD)
PEP725, 454

Pests, 121, 122, 125
PhenoCam, 454
Phenological differences

for sensing invasive alien species, 280
Phenological types, 436
Phenology, 45, 277, 436, 452–454, 458, 459

implications for remote sensing, 515
and species-level mapping, 271
use in detecting invasive alien species, 276

Phenomics, 313–314
Phenotype

origins of, 15–16
Phenotypic variability

characterizing with remote sensing, 366
Photochemical reflectance index (PRI), 47, 55, 

132, 273, 313, 369
Photosynthesis, 124, 323, 356–357
Photosynthetic performance, 314, 353
Phylogenetic branch diversity, qPD(T), 25, 27
Phylogenetic conservation, 8, 16
Phylogenetic diversity (PD), 17, 23, 

26–27, 258
predicting from bioclimatic variables, 260

Phylogenetic endemism, 27, 255–263
predicting from bioclimatic variables, 261

Phylogenetic Hill number, qD(T), 27
Phylogenetic signal, 160–161, 168
Phylogenetic species concept (PSC), 334
Phylogenetic species evenness (PSE), 27
Phylogenetic species richness (PSR), 27
Phylogenetic species variability (PSV), 27
Phylogenetic uncertainty, 158
Phylogenies, 156

generating a, 157
importance of accuracy, 156–158
reading, 156

Phytoplankton invasive alien species
using remote sensing to detect, 288

Pigmentation
use in detecting invasive alien species, 281

Pigments, 47, 54, 288, 366–371
accessory, 368–369
brown, 370–371
concentration, 369–370
non-photosynthetic, 369–370
photosynthetic, 366
xanthophyll, 369–370

Pine blister rust, 122
Piper Saratoga, 439
Pixel shifts, 400
Pixel size, 21, 236, 415–416, 431–432, 441

field of view (FOV), 413
detector trade-offs, 273
implications for remote sensing, 513–514
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Planning
field campaign, 387–418
flight, 415–416

Plant diversity
detecting with remote sensing, 2–6
influence on belowground 

processes, 180–181
monitoring with LiDAR, 325
monitoring and assessing, 418

Plant economic spectrum, 174, 177
leaf economic spectrum (LES), 16, 18, 44, 

125, 174
Plant functional morphology, 365
Plant functional traits, 68, 429, 463, 505–506
Plant functional types (PFTs), 44, 279, 322, 

391, 435
Plant health, 57, 319

indicators of, 44
Plant morphological traits

use in detecting invasive alien species, 281
Plant phenomics facilities, 312–314, 318
Plant phenotyping

with 3-D imaging, 326
Plant spectra, 8, 218, 385

assessing bioversity from, 164
and belowground systems/processes, 174, 

182, 185, 187
evolution and, 161–162
and plant traits, 33

Plant stress
flight planning to detect, 415
using hyperspectral sensors to assess, 134
indicators of, 324
on photosynthetic performance, 314
and spectral indices, 391

Plant traits, 31–33
detecting, 32–33, 50–71, 365, 435
radiative transfer, 4
and community assembly, 19–20
mapping, 50–51

Platforms and sensors
airborne, 273, 281, 294, 415
lidar, 325–329
optical, 320–322
radar, 329–332
satellite, 273, 294, 311–312, 317, 333, 335
thermal, 323–325
trade-offs among different types, 271
unmanned aircraft, 317–320

PLSR, see Partial least-squares 
regression (PLSR)

Point clouds, 3-D, 85, 88–90, 316–320, 326–328
Polar Orbiting Environmental Satellites 

(POES), 323

Pollination, 452–453
Polyphenols, 109, 178–179
Post-processing, 52–56

LiDAR, 243
Precipitation

predicing biodiversity from, 255–263
Principal component analysis (PCA), 17, 64, 

161, 272–274, 324, 392, 430
PROBA CHRIS, 91
PROSPECT, 65, 367–368, 370–372
Protected area monitoring, 460–461
Proximal remote sensing, 402

using canopy level spectroscopy, 412
PSE, see Phylogenetic species evenness (PSE)
PSR, see Phylogenetic species richness (PSR)
PSV, see Phylogenetic species variability (PSV)
Python, 274

Q
QPhenoMetrics, 454
QuickBird, 284
Quick Scatterometer (QuickSCAT), 230

R
R, 274, 463
Radar, 329–333, 472

ground penetrating, 230, 234
main contributions, 332
vs. optical data, 331

Radar signal polarizations, 330
RADARSAT-1 & 2, 237
Radiative transfer models (RTMs), 64–67, 84, 

93–94, 290, 392, 393
modeling intercomparison (RAMI), 85
validation of trait predictions, 94–95
model inversion, 513

Radiometric correction, 416
Radiometric resolution, 145, 271, 289, 334
Rainfall

and airborne remote sensing, 361
ecosystem states and, 459–460
estimating with remote sensing, 235

RAMI, see Radiation transfer modeling 
intercomparison (RAMI)

Random forest, 274, 293
Rangelands

remote sensing of invasive alien 
species in, 279

Rao’s Q, 322
Rapid Assessment Program, 105
Rapid Ecosystem Function Assessment 

(REFA), 462
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RapidEye, 91, 94, 97
Rapid Scatterometer (RapidScat), 230, 235
Red edge, 134, 135, 349
Reducing emissions from deforestation and 

forest degradation (REDD+), 
455, 461

Refractive index, 361–363, 371
Resilience, 121, 268, 294, 310–311
Resolution, 464–466

radiometric (see Radiometric)
spectral (see Spectral)
spatial (see Spatial)

Response traits
vs. effect traits, 19

RIEGL
LMS-Q560, 88
LMS-Q680i scanner, 88
VZ1000, 89

Riparian, 283–284, 289
Ross–Nilson model, 65
RS-spectral trait/spectral trait variation 

concept (RS-ST/STV-C), 334
RT, see Radiative transfer (RT)
RuBisCo, 44, 47, 177, 363, 364

S
SAIL, 66, 392
Sample size, 391, 399, 406–408
SAR tomography, 330
Satellite platforms, see Platforms and sensors; 

Spaceborne RS platforms
Satellite Pour l’Observation de la Terre 

(SPOT), 271, 280, 289
SPOT HRG, 91

Savanna, 279, 281–282
Scale, 425–442

approach, 141
angular, 437–438
broad, 40, 56, 71, 243–244, 515
canopy, 46, 58, 59, 61, 64–65, 67, 69, 

432, 435–436
continental, 22, 30, 69, 140–141, 216, 324, 

454, 463
definition, in biology, 430–431
definition, in remote sensing, 431–438
global, 4, 6, 10, 21, 48, 70, 105, 256, 

294–295, 503
importance of, 427–431
landscape, 22, 63, 113, 123, 450, 462, 469
leaf, 59, 62–63, 65, 67, 436
multi, 10, 432, 438, 441
phylogenetic, 165, 180
regional, 16, 454, 456

sampling, 31, 84, 426, 427, 
431–433, 440–441

spatial (see Spatial)
spectral (see Spectral)
temporal (see Temporal)

ScaleX, 323
Scaling, 6, 408, 430–431, 433, 438–439, 470, 

475, 524
Scaling effects, 10
Scheiner’s functional trait dispersion, 27
Sea and Land Surface Temperature 

Radiometer (SLSTR), 323
Sea ice, 236–237
Sea-viewing Data Analysis System 

(SeaDAS), 236
Semivariogram, 440, 442
Sen2cor, 454
Sentinel, 100, 236, 280, 320, 323, 453, 454, 

458, 469, 471
Sentinel 2, 84, 134, 141, 230, 233, 

289, 454
Sentinel-3, 230, 234

Shadows, 97, 106, 402
SHALOM, 510
Shannon’s D, 24
Shannon’s entropy index, 26
Shannon’s H, 24
Shuttle Radar Topography Mission (SRTM), 9, 

205, 228, 230–233, 239, 240, 280, 464
for mapping cryosphere, 237

Sieve effect, 369
Signal-to-noise performance, 289, 506
Signal-to-noise ration, 52, 289, 412, 441, 507
Simpson’s concentration index, 26
Simpson’s diversity index (D), 26
Singular value decomposition (SVD), 62
SLA, see Specific leaf area (SLA)
Small-footprint systems, 326
Smile, 52
Snell-Descartes’ law, 361
Soil

beta diversity, 180
chemistry, 2, 468
geodiversity, 230
maps, 233–234
optical properties, 57, 65
moisture, 129, 273, 315, 323, 374, 399

detecting with microwave 
radiometers, 236

nutrients, 234
respiration, 176, 179, 185–186
sensor-networks, 315–316
texture, 324
thermal RS, 323
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Soil Adjusted Atmospheric Resistant 
Vegetation Index (SAARVI), 277

Soil Adjusted Vegetation Index (SAVI), 129, 
136, 391

SoilGrids1km, 233
Soil Moisture Active Passive observatory 

(SMAP), 230, 232, 236
Soil Moisture and Ocean Salinity (SMOS), 

230, 236
Solar radiation

incident calculation, 232
deriving from LiDAR, 328

Spatial, 464–466
domain, 271, 273, 320, 493
resolution, 3, 8, 15, 20, 123, 141, 200, 215, 

293, 317, 334, 473
scale, 431–434

Spatially Explicit Species Assemblage 
Modelling, 216

Species distribution, 22, 199–204, 209, 
214–217, 320, 323, 334, 453, 
456–458, 463, 466–468, 488, 
491–492, 494, 497

Species distribution models (SDMs), 8, 199, 
202–203, 216, 227, 292, 457, 493

vs. environmental niche models, 204
Species diversity-spectral heterogeneity 

relationship, 321
Species-environment relationships, 199–204, 

214–215, 218
Specific leaf area (SLA), 16–18, 44, 452, 467
Species richness (SR), 26, 27, 113, 164, 197, 

429, 506
alpha diversity, 113, 320–321, 437
definition of, 26
field sampling, 3, 432, 433
using landsat, 458
macroecology, 208–209, 212, 214, 

216, 262
metrics of, 24–25
map of Americas, 17
predicting from bioclimatic variables, 260

Spectral
domain, 85, 271–273
scale, 435–437
resolution, 46, 52, 123, 128, 140–141, 317, 

334, 350, 435, 441, 458, 473
Spectral angle mapping (SAM), 130, 276, 430
Spectral centroid, 28, 321
Spectral-chemical diversity

of humid tropical forests, 111–112
Spectral distortion, 52
Spectral diversity, 3, 6, 23, 28–30, 185, 

426–429, 457–458, 504, 512

hypothesis, 457, 458
See also Optical diversity

Spectral heterogeneity measurement, 322
Spectral indices, 28, 32, 97, 164, 273, 

391–393, 435
table of, 129–133 (see also Vegetation 

indices)
Spectral laboratory, 313, 318, 334
Spectral library

ECOSTRESS, 138
USGS, 138

Spectral model, 112, 162, 389–391, 408
Spectral properties, 109, 112, 187, 374, 

388, 402
grasslands, 294

Spectral signature, 57, 60, 62, 65, 113, 
123–124, 134–135, 137, 162, 276, 
278, 427, 457

distinguishing plant taxa by, 362
Spectral species, 28, 113, 427
Spectral species concept, 322
Spectral traits, 310, 317, 319, 334
Spectral variability, 139, 320, 429, 436, 

438, 441
Spectral variation hypothesis (SVH), 320
Spectral vegetation index, 51
Spectranomics, 105–116, 387

mapping biodiversity with, 113–115
Spectrometers, 369

field, 386, 431
handheld, 51, 409, 412–446
imaging, 116, 351, 365, 412–413, 426, 

441–442, 505–506
leaf-level, 410–412, 414

Spectroscopy
field (see Field spectroscopy)
imaging (see Imaging spectroscopy (IS))

Stakeholder engagement, 141, 147
STAR Vegetation Health Index, 143
Stress

detection, 48, 57, 123, 127–134, 137–148, 
310, 313, 318, 334, 391, 412, 
415, 459

environmental, 121–126, 148, 236, 309, 
316, 324

plant response to, 44, 48, 324, 365, 374, 
459, 505

spectral response to, 48, 58, 60, 123, 128, 
134–136, 312–314, 324, 393

See also Decline
Stress detection, 137, 143, 145–146

nested approach to, 140–141
vegetation indices for, 129–133

Stress symptoms, 138
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Structural cells, 401
Structure from motion (SfM) techniques, 

316, 438
Study area

selecting, 136, 142, 392, 398, 399
Supervised classification, 274, 276, 292, 403
Supporting services, 451, 462
Surface Biology and Geology (SBG), 295, 506

characteristics, 507–509
mission, 4, 10
imaging spectrometer, 451

Surrogacy, see Optical surrogacy
SVD, see Singular value decomposition  

(SVD)
Synthetic aperture radar (SAR), 237

interferometry, 233

T
Tannins, 48, 55, 107, 175, 179–180
Taxonomic diversity, 23, 26, 241, 311, 

334, 391
Temperature

predicting biodiversity from, 255–263
Temporal, 464–466

domain, 69, 272
scale, 434–435
resolution, 87, 237, 280, 288, 323

Temporal aggregation
implications for remote sensing, 515

Temporal domain, 9, 69, 271, 272, 282
TERENO pre-alpine grassland site, 323
Terra, see Moderate Resolution Imaging 

Spectroradiometer (MODIS)
Terrain Ruggedness Index (TRI), 231–232
Terrestrial Chlorophyll Index (MTCI), 453
Terrestrial Ecosystem Research Network 

(TERN), 387
Terrestrial Laser Scanning (TLS), 85–89, 455
Thematic classification, 330–331
Thematic Exploitation Platforms, 521
Thermal infrared (TIR), 323, 324, 365
Thermal RS, 322–323
3-D Reconstruction, 83, 85–87, 92, 

94, 96, 100
Time of Flight (TOF) 3-D camera, 316
TIMESAT, 454
Tomography, 330, 332
Topographic Position Index (TPI), 231
Topography, 44–45, 97, 136, 227, 228, 230, 

233, 235, 239, 241, 497
remote sensing of, 231, 464, 497

Trait-based ecology, 174
Tree density

estimating, 455

Tree height, 329, 332
ALS derived, 99
determining with LiDAR, 327

Tropical Rainfall Measurement Mission 
(TRMM), 230, 235, 464

TRY database, 69–70, 364, 392, 463, 466–467
Turnaround time, 146

U
UAS imagery, 290
UASs, see Unmanned aerial systems (UASs)
UN Environment Programme (UNEP), 269
United Nations Framework Convention on 

Climate Change, 488
University Zürich, 11
Unmanned aerial systems (UAS), 71, 312, 

317–320, 386
advantages, 317
to characterize vegetation structure, 319

Unmanned aerial vehicles (UAV), see 
Unmanned aircraft systems (UAS)

Unmanned aircraft systems (UAS), 4, 273, 
285, 290–292, 295, 296, 312, 
317–320, 403, 436, 441, 458, 472

for sensing invasive alien species, 273
UN Sustainable Development Goal, 270
Urban ecosystems, 292–293, 469
US Endangered Species Act, 227
US Forest Inventory and Analysis Program, 9
US Forest Service, 143–145, 239
US National Aeronautics and Space 

Administration (NASA), 4
US National Ecological Observatory Network 

(NEON), 10, 70, 115, 387, 454, 524
US National Invasive Species Council, 270
US National Research Council second 

Decadal Survey, see Decadal survey
US National Science Foundation (NSF), 11
US Space Shuttle Endeavour, 231

V
Validation, 96–97, 99

of remote sensing products, 473–475
of trait predictions, 94
See also Accuracy assessment

Vegetation classification, see Classification
Vegetation condition

assessing, 123, 127, 134, 136, 143, 148, 
458–459 (see also Decline, stress)

Vegetation indices, 48, 61, 127, 129, 135–137, 
139, 141, 143, 278, 281, 321, 331, 
391, 430, 454, 462, 473

See also Spectral indices; NDVI

Index



581

Vegetation stress, 123, 129–133, 135, 137, 
143, 312–313

Vegetation structure, 56, 60, 84–85, 92, 202, 
217, 317, 319–320, 325, 
328–329, 331

implications for remote sensing, 510–513
indicators, 326
monitoring with LiDAR, 325

Vertical vegetation structure
representing with LiDAR, 326, 328

Very high spatial resolution imagery, 317
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