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Foreword

At last, here it is. For some time now, the world has needed a text providing both a
new theoretical foundation and practical guidance on how to approach the challenge
of biodiversity decline in the Anthropocene. This is a global challenge demanding
global approaches to understand its scope and implications. Until recently, we have
simply lacked the tools to do so. We are now entering an era in which we can real-
istically begin to understand and monitor the multidimensional phenomenon of bio-
diversity at a planetary scale. This era builds upon three centuries of scientific
research on biodiversity at site to landscape levels, augmented over the past two
decades by airborne research platforms carrying spectrometers, lidars, and radars
for larger-scale observations. Emerging international networks of fine-grain in-situ
biodiversity observations complemented by space-based sensors offering coarser-
grain imagery—but global coverage—of ecosystem composition, function, and
structure together provide the information necessary to monitor and track change in
biodiversity globally.

This book is a road map on how to observe and interpret terrestrial biodiversity
across scales through plants—primary producers and the foundation of the trophic
pyramid. It honors the fact that biodiversity exists across different dimensions,
including both phylogenetic and functional. Then, it relates these aspects of biodi-
versity to another dimension, the spectral diversity captured by remote sensing
instruments operating at scales from leaf to canopy to biome. The biodiversity com-
munity has needed a Rosetta Stone to translate between the language of satellite
remote sensing and its resulting spectral diversity and the languages of those explor-
ing the phylogenetic diversity and functional trait diversity of life on Earth. By
assembling the vital translation, this volume has globalized our ability to track bio-
diversity state and change. Thus, a global problem meets a key component of the
global solution.

The editors have cleverly built the book in three parts. Part 1 addresses the theory
behind the remote sensing of terrestrial plant biodiversity: why spectral diversity
relates to plant functional traits and phylogenetic diversity. Starting with first prin-
ciples, it connects plant biochemistry, physiology, and macroecology to remotely
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sensed spectra and explores the processes behind the patterns we observe. Examples
from the field demonstrate the rising synthesis of multiple disciplines to create a
new cross-spatial and spectral science of biodiversity.

Part 2 discusses how to implement this evolving science. It focuses on the pleth-
ora of novel in-situ, airborne, and spaceborne Earth observation tools currently and
soon to be available while also incorporating the ways of actually making biodiver-
sity measurements with these tools. It includes instructions for organizing and con-
ducting a field campaign. Throughout, there is a focus on the burgeoning field of
imaging spectroscopy, which is revolutionizing our ability to characterize life
remotely.

Part 3 takes on an overarching issue for any effort to globalize biodiversity obser-
vations, the issue of scale. It addresses scale from two perspectives. The first is that
of combining observations across varying spatial, temporal, and spectral resolutions
for better understanding—that is, what scales and how. This is an area of ongoing
research driven by a confluence of innovations in observation systems and rising
computational capacity. The second is the organizational side of the scaling chal-
lenge. It explores existing frameworks for integrating multi-scale observations
within global networks. The focus here is on what practical steps can be taken to
organize multi-scale data and what is already happening in this regard. These frame-
works include essential biodiversity variables and the Group on Earth Observations
Biodiversity Observation Network (GEO BON).

This book constitutes an end-to-end guide uniting the latest in research and tech-
niques to cover the theory and practice of the remote sensing of plant biodiversity.
In putting it together, the editors and their coauthors, all preeminent in their fields,
have done a great service for those seeking to understand and conserve life on
Earth—just when we need it most. For if the world is ever to construct a coordi-
nated response to the planetwide crisis of biodiversity loss, it must first assemble
adequate—and global—measures of what we are losing.

Woody Turner

Earth Science Division
NASA Headquarters,
Washington, DC, USA
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Chapter 1

The Use of Remote Sensing to Enhance
Biodiversity Monitoring and Detection:
A Critical Challenge for the Twenty-First
Century

Jeannine Cavender-Bares, John A. Gamon, and Philip A. Townsend

1.1 Introduction

Improved detection and monitoring of biodiversity is critical at a time when Earth’s
biodiversity loss due to human activities is accelerating at an unprecedented rate.
We face the largest loss of biodiversity in human history, a loss which has been
called the “sixth mass extinction” (Leakey 1996; Kolbert 2014), given that its mag-
nitude is in proportion to past extinction episodes in Earth history detectable from
the fossil record. International efforts to conserve biodiversity (United Nations
2011) and to develop an assessment process to document changes in the status and
trends of biodiversity globally through the Intergovernmental Science-Policy
Platform on Biodiversity and Ecosystem Services (Diaz et al. 2015) have raised
awareness about the critical need for continuous monitoring of biodiversity at mul-
tiple spatial scales across the globe. Biodiversity itself—the variation in life found
among ecosystems and organisms at any level of biological organization—cannot
practically be observed everywhere. However, if habitats, functional traits, trait
diversity, and the spatial turnover of plant functions can be remotely sensed, the
potential exists to globally inventory the diversity of habitats and traits associated
with terrestrial biodiversity. To face this challenge, there have been recent calls for
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a global biodiversity monitoring system (Jetz et al. 2016; Proenca et al. 2017; The
National Academy of Sciences 2017). A central theme of this volume is that remote
sensing (RS) will play a key role in such a system.

1.2 Why a Focus on Plant Diversity?

Plants and other photosynthetic organisms form the basis of almost all primary pro-
ductivity on Earth, and their diversity and function underpin virtually all other life
on this planet. Plants—collectively called vegetation—regulate the flow of critical
biogeochemical cycles, including those for water, carbon, and nitrogen. They affect
soil chemistry and other properties, which in turn affect the productivity and struc-
ture of ecosystems. Given the importance of plant diversity for providing the eco-
system services on which humans depend—including food production and the
regulating services that maintain clean air and freshwater supply (Millennium
Ecosystem Assessment 2005; IPBES 2018a)—it is critical that we monitor and
understand plant biodiversity from local to global scales, encompassing genetic
variation within and among species to the entire plant tree of life (Cavender-Bares
et al. 2017; Jetz et al. 2016; Turner 2014).

Of the 340,000 known seed plants on Earth and the 60,000 known tree species
(Beech et al. 2017), 1 out of every 5 seed plants and 1 out of every 6 tree species are
threatened (Kew Royal Botanic Gardens 2016). Vulnerability to threats ranging
from climate change to disease varies among species and lineages because of
evolved differences in physiology and spatial proximity to threats. Across all conti-
nents, the largest threat to terrestrial biodiversity is land use change due to farming
and forestry, while climate change, fragmentation, and disease loom as ever-
increasing threats (IPBES 2018a; b; ¢; d). Many plant species are at risk for extinc-
tion due to a combination of global change factors, including drought stress, exotic
species, pathogens, land use change, altered disturbance regimes, application of
chemicals, and overexploitation.

1.3 The Promise of Remote Sensing to Detect Plant Diversity

Different plants have evolved to synthesize different mixes of chemical compounds
arranged in contrasting anatomical forms to support survival and growth. In addi-
tion, the structures of plant canopies correspond to different growth strategies in
response to climate, environment, or disturbance. Differences among individual
plants, populations, and lineages result from contrasting evolutionary histories,
genetic backgrounds, and environmental conditions. Because these differences are
readily expressed in aboveground physiology, biochemistry, and structure, many of
these properties can be detected using spectral reflectance from leaves and plant
canopies (Fig. 1.1). Plant pigments absorb strongly electromagnetic radiation in the
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Fig. 1.1 (a) The chemical, structural, and anatomical attributes of plants influence the way they
interact with electromagnetic energy to generate spectral reflectance profiles that reveal informa-
tion about plant function and are tightly coupled to their evolutionary origins in the tree of life.
(Adapted from Cavender-Bares et al. 2017.) Imaging spectroscopy offers the potential to remotely
detect patterns in diversity and chemical composition and vegetation structure that inform our
understanding of ecological processes and ecosystem functions. Examples are shown from the
Cedar Creek Ecosystem Science Reserve long-term biodiversity experiment. (b) The image cube
(0.5 m x 1 m) at 1 mm spatial resolution (400-1000 nm) detects sparse vegetation early in the
season in which individual plants can be identified. The “Z-dimension” (spectral dimension) illus-
trates different spectral reflectance properties for different scene elements, including different spe-
cies. At this spatial resolution, plant diversity is predicted from remotely sensed spectral diversity
(Wang et al. 2018). (¢) AVIRIS NextGen false color image of the full experiment at 1 m spatial
resolution (400-2500 nm). Each square is a 9 x 9 m plot with a different plant composition and
species richness. Wang et al. (2019) mapped chemical composition and a suite of other functional
traits and their uncertainties in all of the experimental plots. By combining spectral data at different
scales, proximal and remote imagery can be used to examine the scale dependence of the spectral
diversity—biodiversity relationship in detail (e.g., Wang et al. 2018; Gamon et al. Chap. 16)

visible wavelengths (400—700 nm), while other chemical compounds and structural
attributes of plants that tend to be conserved through evolutionary history affect
longer wavelengths. The patterns of light absorbed, transmitted, and reflected at dif-
ferent wavelengths from vegetation reveal leaf and canopy surface properties, tissue
chemistry, and anatomical structures and morphological attributes of leaves, whole
plants, and canopies. Thus, technological advances for assessing optical properties
of plants provide profound opportunities for detecting functional traits of organisms
at different levels of biological organization. These advances are occurring at mul-
tiple spatial scales, with technologies ranging from field spectrometers and airborne
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systems to emerging satellite systems. As a consequence, there is high potential to
detect and monitor plant diversity—and other forms of diversity—across a range of
spatial scales, and to do so iteratively and continuously, particularly if multiple
methods can be properly coordinated.

Calls for a global biodiversity observatory (Fig. 1.2) that can detect and monitor
functional plant diversity from space (Jetz et al. 2016; Proenca et al. 2017; The
National Academy of Sciences 2017; Geller et al., Chap. 20) have been met with
widespread support. Forthcoming satellite missions, including the Surface Biology
and Geology (SBG) mission in planning stages at the US National Aeronautics and
Space Administration (NASA) and related missions in Europe and Japan (Schimel
et al., Chap. 19), will make unprecedented spectroscopic data available to scientists,
management communities, and decision-makers, but at relatively coarse spatial
scales. At the same time, rapid progress is being made with field spectroscopy using
unmanned aerial vehicles (UAVs) and other airborne platforms that are offering
novel ways to use RS to advance our understanding of the linkages between optical
(e.g., spectral or structural) diversity and multiple dimensions of biodiversity (e.g.,
species, functional, and phylogenetic diversity) at finer spatial scales (Fig. 1.1).
These advances present a timely and tremendously important opportunity to detect
changes in the Earth’s biodiversity over large regions of the planet. One can fairly
ask whether user communities are ready to make use of the data. Effective interpre-
tation and application of remotely sensed data to determine the status and trends of
plant biodiversity and plant functions across the tree of life—with linkages to all
other living organisms—requires integration across vastly different knowledge are-
nas. Critically, it requires integration with in-situ direct and indirect measures of
species distributions, their evolutionary relationships, and their functions.
Approaches for integration are the primary focus of this book.

A central requirement to advance monitoring of biodiversity at the global scale
is to decipher the sources of variation that contribute to spectral variation, both from
a biological perspective and from a physical perspective. Distinct fields of biology
have developed a range of methodologies for understanding plant ecological and
evolutionary processes that underlie these sources of variation. Similarly, radiative
transfer models have been developed largely based on the physics of light interact-
ing with vegetation canopy elements and the atmosphere. These models have yet to
capture the full range of plant traits, often preferring to represent “average” vegeta-
tion conditions for a region instead of the variation present, so are not yet ready for
the task. All of these methods have unique approaches to analyzing complex, mul-
tidimensional data sets, and neither the analytical approaches nor the data structures
have been brought together in a systematic or comprehensive manner. A common
language among disciplines (including biology, physiological ecology, landscape
ecology, genetics, phylogenetics, geography, spectroscopy, and radiative transfer)
related to the RS of biodiversity is currently lacking. This book provides a frame-
work for how biodiversity, focusing particularly on plants, can be detected using
proximally and remotely sensed hyperspectral data (with many contiguous spectral
bands) and other tools, such as lidar (with its ability to detect structure). The chap-
ters in this book present a range of perspectives and approaches on how RS can be
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Fig. 1.2 An envisioned global biodiversity observatory in which remotely sensed high spectral
resolution spectroscopic data from satellites is integrated with biodiversity observations through
natural history studies, phylogenetic systematics, functional trait measurements, and species distri-
bution data. The figure is adapted from Jetz et al. 2016 based on the National Center for Ecological
Analysis and Synthesis Working Group “Prospects and priorities for satellite monitoring of global
terrestrial biodiversity”

integrated to detect and monitor the status and trends of plant diversity, as well the
biodiversity of other organisms and life processes that depend on plants above- and
belowground. Biological and computational experts from three disciplines—RS
and leaf optics, plant functional biology, and systematics—present insights to
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advance our understanding of how to link spectral and other kinds of RS data with
functional traits, species distributions, and the tree of life for biodiversity detection.
The authors detail the approaches and conditions under which efforts to detect plant
biodiversity are likely to succeed, being explicit about the advantages and disadvan-
tages of each. A theme running through many chapters is the challenge of moving
across spatial scales from the leaf level to the canopy, ecosystem, and global scale.
We provide a glossary that allows a common language across disciplines to emerge.

Here we explore the prospects for integrating components from each of these
fields to remotely detect biodiversity and articulate the major challenges in our abil-
ity to directly link spectral data of vegetation to species diversity, functional traits,
phylogenetic information, and functional biodiversity at the global scale. RS offers
the potential to fill in data gaps in biodiversity knowledge locally and globally, par-
ticularly in remote and difficult-to-access locations, and can help define the larger
spatial and temporal background needed for more focused and effective local or
regional studies. It also may increase the likelihood of capturing temporal variation,
and it allows monitoring of biodiversity at different spatial scales with different
platforms and approaches. In essence, it provides the context within which changing
global biodiversity patterns can be understood. The concept of “optical surrogacy”
(Magurran 2013)—in which the linkage of spectral measurements to associated pat-
terns and processes is used—may be useful in predicting ecosystem processes and
characteristics that themselves are not directly observable (Gamon 2008; Madritch
et al. 2014; Fig. 1.3). In a broad sense, such relationships between various expres-
sions of biodiversity and optical (spectral) diversity provide a fundamental principle
for “why RS works” as a metric of biodiversity and why so many different methods
at different scales can provide useful information.

1.4 The Contents of the Book

The first section of the book presents the potential and basis for direct and indirect
remote detection of biodiversity.

Cavender-Bares et al. (Chap. 2) present an overview of biodiversity itself, includ-
ing the in-situ methods and metrics for measuring biodiversity, particularly plant
diversity. The chapter provides a layperson’s overview of the elements, methods,
and metrics for detecting and analyzing biodiversity and points to the potential of
spectral data, collected at multiple spatial and biological scales, to enhance the
study of biodiversity. In doing so, it bridges an ecological and evolutionary under-
standing of the diversity of life, considering both its origins and consequences.

Serbin and Townsend (Chap. 3) describe various approaches for measuring plant
and ecosystem function using spectroscopy, providing both the historical develop-
ment of past advances and the potential of these approaches looking forward. The
chapter explains why we are able to retrieve functional traits from spectra, which
traits can be retrieved, and where spectra show features important for different
aspects of plant function. It also raises the challenge of scaling plant function from
leaves to canopies and landscapes.
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Fig. 1.3 Optical methods for detecting the functional, structural, and chemical components of
vegetation, which are tightly coupled to the genetic and phylogenetic backgrounds of plants, are
linked to belowground processes and the structure and function of microbial communities

Morsdorf et al. (Chap. 4) then present the Laegeren forest site in Switzerland as
a virtual laboratory. They demonstrate how spectroscopy can be operationalized for
RS of functional diversity to explain plant biodiversity patterns and ecosystem func-
tions. The Laegeren site is one of the best-studied sites in the world for this purpose
and is used as a case study to explain ground truthing and what can be learned from
landscape-level detection of functional diversity.

Martin (Chap. 5) summarize the experiences with “spectronomics”—a frame-
work aimed at integrating chemical, phylogenetic, and spectral RS data—using air-
borne imagery to detect forest composition and function in wet tropical forests. In
these vast, largely inaccessible landscapes that harbor enormous taxonomic varia-
tion, approaches that rely solely on field-based observations are infeasible, illustrat-
ing an essential role for RS. As pioneers in using spectroscopy to detect plant
chemistry, function, and biodiversity in tropical forests around the world, these
researchers highlight some of the major lessons they have learned.

Pontius et al. (Chap. 6) consider how biodiversity can be protected given current
threats to forest and vegetation conditions and present approaches for detailed and
accurate detection of forest disturbance and decline. They review current techniques
used to assess and monitor forest ecosystem condition and disturbance and outline
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a general approach for earlier, more detailed and accurate decline assessment. They
also discuss the importance of engaging land managers, practitioners, and decision-
makers in these efforts to ensure that the products developed can be utilized by
stakeholders to maximize their impact.

Meireles et al. (Chap. 7) provide a framework to explain how spectral reflectance
data from plants is tightly coupled to the tree of life and demonstrate how spectra
can reveal evolutionary processes in plants. They clarify that many spectral features
in plants are inherited and are thus very similar among close relatives—in other
words, they are highly phylogenetically conserved. Simulations reveal that spectral
information of plants appears to follow widely used evolutionary models, making it
possible to link plant spectra to the tree of life in a predictive manner. As a conse-
quence, methods developed in evolutionary biology to understand the tree of life
can now benefit the RS community. The chapter provides evidence that evolutionary
lineages may be easier than individual species to detect through RS methods, par-
ticularly if they are combined with other approaches for estimating which species
and lineages have the potential to be present in a given location. A caveat is that
spatial resolution of satellite spectral data will limit such inferences, but leaf- and
canopy-level spectra (obtainable from proximal and airborne sensing) can contrib-
ute enormously to our understanding of these fundamental links between spectral
patterns and gene sequences.

Madritch et al. (Chap. 8) link aboveground plant biodiversity and productivity to
belowground processes. They explain the functional mechanisms—which can be
revealed by remotely sensed spectral data—that influence interactions of plant hosts
with insects and soil organisms, in turn influencing ecosystem functions, such as
decomposition and nutrient cycling. The chapter provides an example of using the
concept of surrogacy, in which the biochemical linkage of spectral measurements to
associated patterns and processes aboveground is used to provide estimates of soil
and microbial processes belowground that are not directly observable via RS.

The next three chapters focus on linking satellite-based remotely sensed data to
biodiversity prediction. Pinto-Ledezma and Cavender-Bares (Chap. 9) present an
example of how currently available satellite-based RS products can be used to gener-
ate next-generation species distribution models to predict where species and lineages
are likely occur and the habitats they may have access to and persist in under altered
climates in the future. They compare RS-based methods for generating predictive
models with widely used approaches that use meteorologically derived climate vari-
ables. They demonstrate the advantages of RS-based models in regions where meteo-
rological data is only sparsely available. Such predictive modeling that harnesses
species occurrence data and temporal information about the biotic environment may
make spectral methods of species and evolutionary lineage detection more tractable.

Building on the availability of satellite RS data with near-global coverage to pre-
dict biodiversity, Record et al. (Chap. 10) explore how RS illuminates the relationship
between biodiversity and geodiversity—the variety of abiotic features and processes
that provide the template for the development of biodiversity. They introduce a variety
of globally available geodiversity measures and examine how they can be combined
with biodiversity data to understand how biodiversity responds to geodiversity.
The authors use the analogy of the “stage” that defines the patterns of life to some
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degree, often measured as habitat heterogeneity, a key driver of species diversity. They
illustrate the approach by examining the relationship between biodiversity and geodi-
versity with tree biodiversity data from the US Forest Inventory and Analysis Program
and geodiversity data from remotely sensed elevation from the Shuttle Radar
Topography Mission (SRTM). In doing so, they outline the challenges and opportuni-
ties for using RS to link biodiversity to geodiversity.

Paz et al. (Chap. 11) present an approach for using RS data to predict patterns of
plant diversity and endemism in the tropics within the Brazilian Atlantic rainforest.
They examine how RS environmental data from tropical regions can be used to sup-
port biodiversity prediction at multiple spatial, temporal, and taxonomic scales.

Bolch et al. (Chap. 12) summarize the range of approaches that can be used to
optimize detection of invasive alien species (IAS), which pose severe threats to
biodiversity. These approaches emphasize the ability to detect individual plant spe-
cies that have distinct functional properties. The chapter presents current RS capa-
bilities to detect and track invasive plant species across terrestrial, riparian, aquatic,
and human-modified ecosystems. Each of these systems has a unique set of issues
and species assemblages with its own detection requirements. The authors examine
how RS data collection in the spectral, spatial, and temporal domains can be opti-
mized for a particular invasive species based on the ecosystem type and image anal-
ysis approach. RS approaches are enhancing studies of the invasion processes and
enabling managers to monitor invasions and predict the spread of IAS.

The next three chapters of the book explore how components of diversity can be
detected spectrally and remotely with a focus on optical detection methods and
technical challenges. Lausch et al. (Chap. 13) delve into the complexity of monitor-
ing vegetation diversity and explain how no single monitoring approach is sufficient
on its own. The chapter introduces the range of Earth observation (EO) techniques
available for assessing vegetation diversity, covering close-range EO platforms,
spectral approaches, plant phenomics facilities, ecotrons, wireless sensor networks
(WSNs), towers, air- and spaceborne EO platforms, UAVs, and approaches that
integrate air- and spaceborne EO data. The chapter presents the challenges with
these approaches and concludes with recommendations and future directions for
monitoring vegetation diversity using RS.

Ustin and Jacquemoud (Chap. 14) provide the physical basis for detecting the
optical properties of leaves based on how they modify the absorption and scattering
of energy to reveal variation in function. The chapter provides considerable detail
on how the combination of absorption and scattering properties of leaves together
creates the shape of their reflectance spectrum. It also reviews and summarizes the
most common interactions between leaf properties and light and the physical pro-
cesses that regulate the outcomes of these interactions.

Schweiger (Chap. 15) describes a set of best practices for planning field campaigns
and collecting and processing data, focusing on spectral data of terrestrial plants
collected across various levels of measurements, from leaf to canopy to airborne.
These approaches also generally apply to RS of aquatic systems, soil, and the atmo-
sphere and to active RS systems, such as lidar, thermal, and satellite data collection.
Schweiger discusses how goals for data collection can be broadly classified into
model calibration, model validation, and model interpretation.
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The final chapters of the book move to the issues of temporal and spectral scale
and integration across scales. Gamon et al. (Chap. 16) present a thorough examina-
tion of the challenges in spectral methods for detecting biodiversity posed by issues
of spatial, temporal, and spectral dimensions of scale. They explain why the size of
the organism relative to the pixel size of detection has consequences for spectral
detection of different components of biodiversity and draw on a rich history of lit-
erature on scaling effects, including geostatistical approaches for sampling across
spatial scales. The chapter emphasizes the importance of developing biodiversity
monitoring systems that are “scale-aware” as well as the value of an integrated,
multi-scale sampling approach.

Schrodt et al. (Chap. 17) outline how environmental and socioeconomic data can
be integrated with biodiversity and RS data to expand knowledge of ecosystem
functioning and inform biodiversity conservation decisions. They present the con-
cepts, data, and methods necessary to assess plant species and ecosystem properties
across spatial and temporal scales and provide a critical discussion of the major
challenges.

Fernandez et al. (Chap. 18) provide a framework for understanding Essential
Biodiversity Variables (EBVs) to integrate in-situ biodiversity observations and RS
through modeling. They argue that open and reproducible workflows for data inte-
gration are critical to ensure traceability and reproducibility to allow each EBV to
be updated as new data and observation systems become available. The chapter
makes the case that the development of a globally coordinated system for biodiver-
sity monitoring will require the mobilization of and integration of in-situ biodiver-
sity data not yet publicly available with emerging RS technologies, novel biodiversity
models, and informatics infrastructures.

Schimel et al. (Chap. 19) discuss the prospects and pitfalls for RS of biodiversity
at the global scale, focusing on imaging spectroscopy and NASA’s Surface Biology
and Geology mission concept.

Finally, Geller et al. (Chap. 20) provide an epilogue to the book and present a
vision for a global biodiversity monitoring system that is flexible and accessible to
arange of user communities. Such a system will require a coordinated effort among
space agencies, the RS community, and biologists to bring information about the
status and trends in biodiversity, ecosystem functions, and ecosystem services
together so that different data streams inform each other and can be integrated. The
chapter explains that the Group on Earth Observations Biodiversity Observation
Network (GEO BON), the International Long Term Ecological Research Site
(ILTER) network, the US National Ecological Observatory Network (NEON), and
a variety of sponsors and other organizations are working to enhance coordination
and to develop guidelines and standards that will serve this vision.

Indeed, a rapidly advancing global movement has emerged with a shared vision
to develop the capacity to monitor the status and trends in the Earth’s biodiversity.
The authors of this book have sought to contribute to that shared vision through
their varied perspectives and experiences. Collectively, the chapters present a range
of approaches and knowledge that can transform the ability of humanity to detect
and interpret the changing functional biodiversity of planet Earth.
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1.5 The Origins of the Book

Before closing, we offer a note of acknowledgment on how this book came into exis-
tence. The editors, who themselves have contrasting backgrounds spanning several
disciplines, were collaboratively funded, starting in 2013, by the US National Science
Foundation (NSF) and the NASA Dimensions of Biodiversity program on the project
Linking remotely sensed optical diversity to genetic, phylogenetic and functional
diversity to predict ecosystem processes (DEB-1342872,1342778). We worked
together in several field sites for 5 years to advance our own understanding approaches
for remote detection of plant biodiversity. The importance and high potential for
rapid advances, as well as the need for the involvement of numerous experts, were
obvious from the start. With support from the National Institute for Mathematical
and Biological Synthesis (NIMBioS) for the working group on Remote Sensing of
Biodiversity, we brought together many of the experts represented within the book,
including a symposium in the fall of 2018 where authors shared their work and pro-
vided feedback to each other. Further interactions were fostered by the National
Center for Ecological Analysis and Synthesis (NCEAS), annual meetings of the
NASA Biological Diversity and Ecological Forecasting Program, the Keck Institute
for Space Studies, the NSF Research Coordination Network on Biodiversity across
scales, and bioDISCOVERY, an international research program fostering collabora-
tive interdisciplinary activities on biodiversity and ecosystem science. bioDISCOV-
ERY, which is part of Future Earth and is hosted and supported by the University
Ziirich’s University Research Priority Program on Global Change and Biodiversity,
provided generous financial support for the editing process. Additional financial sup-
port was provided by the NSF RCN (DEB: 1745562) and the Keck Institute for
Space Studies. Mary Hoff served as technical editor for all of the chapters in the
book. We express gratitude to all of these institutions and our many colleagues who
contributed to the conception of this work along the way.
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Chapter 2 )
Applying Remote Sensing to Biodiversity e
Science

Jeannine Cavender-Bares, Anna K. Schweiger, Jests N. Pinto-Ledezma,
and Jose Eduardo Meireles

A treatment of the topic of biodiversity requires consideration of what biodiversity
is, how it arises, what drives its current patterns at multiple scales, how it can be
measured, and its consequences for ecosystems. Biodiversity science, by virtue of
its nature and its importance for humanity, intersects evolution, ecology, conserva-
tion biology, economics, and sustainability science. These realms then provide a
basis for discussion of how remote detection of biodiversity can advance our under-
standing of the many ways in which biodiversity is studied and impacts humanity.
We start with a discussion of how biodiversity has been defined and the ways it has
been quantified. We briefly discuss the nature and patterns of biodiversity and some
of the metrics for describing biodiversity, including remotely sensed spectral diver-
sity. We discuss how the historical environmental context at the time lineages
evolved has left “evolutionary legacy effects” that link Earth history to the current
functions of plants. We end by considering how remote sensing (RS) can inform our
understanding of the relationships among ecosystem services and the trade-offs that
are often found between biodiversity and provisioning ecosystem services.
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2.1 What Is Biodiversity?

Biodiversity encompasses the totality of variation in life on Earth, including its
ecosystems, the species generated through evolutionary history across the tree of
life, the genetic variation within them, and the vast variety of functions that each
organism, species, and ecosystem possess to access and create resources for life to
persist. Changes in the Earth’s condition, including the actions of humanity, have
consequences for the expression of biodiversity and how it is changing through time.

2.2 The Hierarchical Nature of Biodiversity

Since Darwin (1859), we have understood that biodiversity is generated by a pro-
cess of descent with modification from common ancestors. As a result, biological
diversity is organized in a nested hierarchy that recounts the branching history of
species (Fig. 2.1a). Individual organisms are nested within populations, which are
nested within species and within increasingly deeper clades. This hierarchy ulti-
mately represents the degree to which species are related to each other and often
conveys when in time lineages split (Fig. 2.1a).

Evolution results in the accumulation of changes in traits that causes lineages to
differ. The degree of trait divergence between taxa is expected to be proportional to
the amount of time they have diverged from a common ancestor. As a consequence,
distantly related taxa are expected to be phenotypically more dissimilar (Fig. 2.1b).
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Fig. 2.1 (a) The hierarchical organization of biodiversity. Species (triangles) are nested within
phylogenetic lineages (clades) due to shared ancestry. All species within a lineage have common
ancestor (filled circles). (b) Differences in the phenotypes (or trait values) of species (triangles)
tend to increase with time since divergence from a common ancestor, shown by the orange circle.
The divergence points at which species split are shown in the simulation, and the filled circles
indicate the common ancestor of each lineage
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Since spectral signals are integrated measures of phenotype, spectra should be more
dissimilar among distantly related groups than among close relatives (Cavender-
Bares et al. 2016b; McManus et al. 2016; Schweiger et al. 2018). This expectation
can be seen from models of evolution in which traits change over time following a
random walk (Brownian motion process; Fig. 2.1b) (O’Meara et al. 2006; Meireles
et al., Chap. 7). In cases of convergent evolution—where natural selection causes
distant relatives to evolve similar functions in similar environments—however, phe-
notypes can be more similar than expected under Brownian motion.

This hierarchy of life is relevant to RS of plant diversity because certain depths
of the tree of life may be more accurately detected than others at different spatial
resolutions and geographic regions. For example, it could be easier to detect deeper
levels in the hierarchy (such as genera or families) in hyper-diverse communities
than in shallow levels (such as species) because deep splits tend to have greater trait
divergence. Meireles et al. (Chap. 7) further explain why and how phylogenetic
information can be leveraged to detect plant diversity.

2.3 The Making of a Phenotype: Phylogeny, Genes,
and the Environment

The phenotype of an organism is the totality of its attributes, and it is quantified in
terms of its myriad functions and traits. The phenotype of an organism is a product
of the interaction between the information encoded in its genes—the genotype—
and the environment over the course of development. Understanding the relative
influence of gene combinations, environmental conditions, and ontogenetic stage is
an active area of investigation across different disciplines (Diggle 1994; Sultan
2000; Des Marais et al. 2013; Palacio-Lépez et al. 2015).

Although genotypes often play a critical role in determining phenotypic out-
comes, many processes can result in mismatches between genotype and phenotype.
One of the most well documented of these processes is known as phenotypic plastic-
ity—when organisms with the same genotype display different phenotypes, usually
in response to different environmental conditions (Bradshaw 1965; Scheiner 1993;
Des Marais et al. 2013). Plasticity can also result in distinct genotypes developing
similar phenotypes when growing under the same environmental conditions.

A similar story can be told about the relationship of phenotypic similarity and
phylogenetic relatedness. As we have seen earlier, closely related taxa are expected
to be more similar to each other than distantly related taxa. However, convergent
evolution can lead to plants from different branches of the tree of life to evolve very
similar traits—such as succulents, which are found within both euphorbia and very
distantly related cacti taxa.

The fact that phenotypes can be, but not necessarily are, directly related to
specific genotypes and phylogenetic history should be considered when remotely
sensing biodiversity. Only phenotypes can be remotely sensed directly. Genetic and
phylogenetic information can only be inferred from spectra to the degree that
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absorption features of plant chemical or structural characteristics at specific wave-
lengths relate to phenotypic information. However, the effects plant traits have on
spectra are only partially understood. Identifying the regions of the spectrum that
are influenced by specific traits is complicated by overlapping absorption features
and subtle differences in plant chemical, structural, morphological, and anatomical
characteristics that simultaneously influence the shape of the spectral response
(Ustin and Jacquemoud, Chap. 14).

2.4 Patterns in Plant Diversity

One of the most intensively studied patterns in biodiversity is the latitudinal gradi-
ent, in which low-latitude tropical regions harbor more species, genera, and families
of organisms than high-latitude regions. In particular, wet tropical areas tend to
reveal higher diversity of organisms than colder and drier climates (Fig. 2.2).
Humboldt (1817) documented these patterns quite clearly for plant diversity.
Naturalists since then have sought to explain these patterns.

Tropical biomes have existed longer than more recent biomes, such as deserts,
Mediterranean climates, and tundra, which expanded as the climate began to cool
some 35 million years ago. Tropical biomes also cover more land surface area than
other biomes. Tropical species thus have had more time and area (integrated over
the time since their first appearance) for species to evolve and maintain viable popu-
lations (Fine and Ree 2006). Lineages that originally evolved in the tropics may also
have been less able to disperse out of the tropics and to evolve new attributes adapted
to cold or dry climates—due to phylogenetic conservatism—rtestricting their ability
to diversify (Wiens and Donoghue 2004). However, not all lineages follow this lati-
tudinal gradient. Ectomycorrhizal fungi, for example, show higher diversity at tem-
perate latitudes, where they likely have higher tree host density (Tedersoo and Nara
2010). Moreover, other measures of diversity do not necessarily follow these pat-
terns. Variation in functional attributes of species, for example, follow different pat-
terns depending on the trait (Cavender-Bares et al. 2018; Echeverria-Londofio et al.
2018; Pinto-Ledezma et al. 2018b). Specific leaf area, one of the functional traits
that is highly aligned with the leaf economic spectrum (discussed below), shows
higher variation at high latitudes than low latitudes across the Americas. In contrast,
seed size shows higher variation at low latitudes (Fig. 2.2b).

At regional scales, variation in the environment, as discussed by Record et al.
(Chap. 10), sets the stage for variation in biodiversity because species have evolved
to inhabit and can adapt to different environments, which allows them to partition
resources and occupy different niches created by environmental variation. Thus,
habitat diversity begets biodiversity, and remotely sensed measures of environmen-
tal variation have long been known to predict biodiversity patterns (Kerr et al. 2001).

Land area is another long-observed predictor of species diversity, first described
for species within certain guilds on island archipelagoes (Diamond and Mayr 1976).
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A) Species richness B) Phylogenetic diversity C) Functional diversity
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Fig. 2.2 Map of the Americas showing plant species richness, phylogenetic diversity, and func-
tional diversity. Species richness and phylogenetic and functional diversities were estimated based
on available information from the Botanical Information and Ecology Network (BIEN) database
(Enquist et al. 2016, https://peerj.com/preprints/2615/). Distribution of functional diversity (trait
mean) for three functional traits (d—f) was log-transformed for plotting purposes. (a) Species rich-
ness; (b) phylogenetic diversity; (¢) first principal component of functional trait means; (d) specific
leaf area (mm?/mg); (e) plant height (m); and (f) seed mass (mg). Diversity metrics were calculated
from an estimated presence-absence matrix (PAM) for all vascular plant species at 1 degree spatial
resolution (PAM dimension = 5353 pixels x 98,291 species) using range maps and predicted dis-
tributions. Functional diversity is based on the first principal component of a principal component
analysis (PCA) of species means for the three functional traits

These observations led to the generalization that richness (number of species, §)
increases with available land area (A), giving rise to the well-known species-area
relationships, in which the log of species number increases linearly with the log of
the area available:
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log(8)=zxlog(A)+c, .1)
or simply,
S =cA?, 2.2

where c is the y-intercept of the log-log relationship and z is the slope.

2.5 Functional Traits, Community Assembly,
and Evolutionary Legacy Effects on Ecosystems

2.5.1 Functional Traits and the Leaf Economic Spectrum

There is a long history of using functional traits to understand ecological pro-
cesses, including the nature of species interactions, the assembly of species into
ecological communities, and the resulting functions of ecosystems. Species with
different functions are likely to have different performance in different environ-
ments and to use resources differently, allowing them to partition ecological
niches. They are thus less likely to compete for the same resources, promoting
their long-term coexistence. An increased focus on trait-based methodological
approaches to understanding the relationship between species functional traits
and the habitats or ecological niches was spurred by the formalization of the leaf
economic spectrum (LES) (Wright et al. 2004). The LES shows that relationships
exist among several key traits across a broad range of species and different cli-
mates (Reich et al. 1997; Wright et al. 2004) and that simple predictors, such as
specific leaf area (SLA, or its reciprocal leaf mass per area, LMA) and leaf nitro-
gen content, represent a major axis of life history variation. This axis ranges from
slow-growing (“conservative”) species that tolerate low-resource environments to
fast-growing (“acquisitive”) species that perform well in high-resource environ-
ments (Reich 2014). Variations in relatively easy-to-measure plant traits are
tightly coupled to hard-to-measure functions, such as leaf lifespan and growth
rate, which reveal more about how a plant invests and allocates resources over
time to survive in different kinds of environments. High correlations of functional
traits provide strong evidence for trait coordination across the tree of life. The
variation in plant function across all of its diversity is relatively constrained and
can be explained by a few major axes of trait information (Diaz et al. 2015).
Conveniently, traits such as SLA and N are readily detectable via spectroscopy.
Other traits—such as leaf lifespan or photosynthetic rates—that are harder to
measure but are correlated with these readily detectable traits can thus be inferred,
permitting greater insight into ecological processes.
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2.5.2 Plant Traits, Community Assembly, and Ecosystem
Function

Considerable evidence supports the perspective that plant traits influence how spe-
cies sort along environmental gradients and are linked to abiotic environmental filters
that prevent species without the appropriate traits from persisting in a given location.
Traits thus influence the assembly of species in communities—and consequently, the
composition, structure, and function of ecosystems. Variation in traits among indi-
vidual plants and species within communities indicates differences in resource use
strategies of plants, which have consequences for ecosystem functions, such as pro-
ductivity and resistance to disturbance, disease, and extreme environmental condi-
tions. Moreover, the distribution of plant traits within communities influences
resource availability for other trophic levels, above- and belowground, which affects
community structure and population dynamics in other trophic levels. A major goal
of functional ecology is to develop predictive rules for the assembly of communities
based on an understanding of which traits or trait combinations (e.g., the leaf-height-
seed (LHS) plant ecology strategy, sensu Westoby 1998) are important in a given
environment, how traits are distributed within and among species, and how those
traits relate to mechanisms driving community dynamics and ecosystem function
(Shipley et al. 2017). This predictive framework requires selecting relevant traits;
describing trait variation and incorporating this variation into models; and scaling
trait data to community- and ecosystem-level processes (Funk et al. 2017). Selecting
functional traits for ecological studies is not trivial. Depending on the question, indi-
vidual traits or trait combinations can be selected that contribute to a mechanistic
understanding of the critical processes examined. One can distinguish response
traits, which influence a species response to its environment, and effect traits, which
influence ecosystem function (Lavorel and Garnier 2002). These may or may not be
different traits. Disturbance or global change factors that influence whether a species
can persist within a habitat or community based on its response traits may impact
ecosystem functions in complex ways (Diaz et al. 2013). Plant traits are at the heart
of understanding how the evolutionary past influences ongoing community assembly
processes and ecosystem function (Fig. 2.3). Traits also influence species interac-
tions, which contribute to continuing evolution. Remotely sensed plant traits, if
detected and mapped (Serbin and Townsend, Chap. 3; Morsdorf et al., Chap. 4) at the
appropriate pixel size and spatial extent (Gamon et al., Chap. 16), can provide a great
deal of insight into these different processes (Fig. 2.4).

2.5.3 Phylogenetic, Functional, and Spectral Dispersion
in Communities

The rise of phylogenetics in community ecology was based on the idea that func-
tional similarity due to shared ancestry should be predictive of environmental
sorting and limiting similarity. These processes depend on physiological tolerances
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Fig. 2.3 Plant traits that have evolved over time influence how plants assemble into communities,
which shapes ecosystem structure and function. Traits reflect biogeographic and environmental
legacies and evolve in response to changing environments. They play a central role in ecological
processes influencing the distribution of organisms and community assembly. A range of traits influ-
ence the way plants reflect light, such that many traits can be mapped continuously across large
spatial extents with imaging spectroscopy. The remote detection of plant traits provides incredible
potential to observe and understand patterns that reveal information about community assembly,
changes in ecosystem function, and how legacies from the past shape community structure and
ecosystem processes today. (Reprinted from Cavender-Bares et al. 2019, with permission)

in relation to environmental gradients and intensity of competition as a consequence
of shared resource requirements (Webb 2000a, 2002). The underlying conceptual
framework was formalized in terms of functional traits in individual case studies
(Cavender-Bares et al. 2004; Verdu and Pausas 2007). The tendency to oversimplify
the interpretation of phylogenetic patterns in communities, whereby phylogenetic
overdispersion was equated with the outcome of competitive exclusion and phylo-
genetic clustering was interpreted as evidence for environmental sorting, led to a
series of studies investigating the importance of scale (Cavender-Bares et al. 2006;
Swenson et al. 2006) and the role of Janzen-Connell-type mechanisms, i.e., density-
dependent mortality due to pathogens and predators (Gilbert and Webb 2007; Parker
et al. 2015). Further developments revealed that the relationship between patterns
and ecological processes is context-dependent—in particular, with respect to spatial
scale (Emerson and Gillespie 2008; Cavender-Bares et al. 2009; Gerhold et al.
2015). Later studies revisited assumptions about the nature of competition and
expected evolutionary and ecological outcomes (Mayfield and Levine 2010).
Likewise, interpreting spectral dispersion will depend on the spatial resolution and
pixel (grain) size of remotely sensed imagery relative to plant size (Marconi et al.
2019) as well as on the consideration of specific spectral regions and their func-
tional importance. When traits and spectral regions are highly phylogenetically
conserved (see Meireles et al., Chap. 7), trait, phylogenetic, and spectral data pro-
vide equivalent information. However, when some traits and spectral regions are
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Fig. 2.4 (a) Biological processes change with spatial and temporal scale as do the patterns they
give rise to. (Adapted from Cavender-Bares et al. 2009.) Detection and interpretation of those pat-
terns will shift with spatial resolution (pixel size) and extent (b—e). (a) At high spatial resolutions
(1 cm pixel size)—that allow detection of individual herbaceous plants and their interactions—and
relatively restricted spatial extents in which the abiotic environment is fairly homogeneous, spec-
tral dissimilarity among pixels may indicate complementarity of contrasting functional types. (b)
The grain size sufficient to detect species interactions is likely to shift with plant size. For example,
the interactions of trees in the Minnesota oak savanna and their vulnerability to density-dependent
diseases, such as oak wilt (Bretziella fagacearum), can be studied at a 1 m pixel size. (¢) At some-
what larger spatial resolution (30 m pixel sizes) and extent, environmental sorting—which includes
interactions of species with both the biotic and abiotic environments—may be detected by compar-
ing spectral similarity of neighbors and comparing mapped functional traits to environmental
variation. Images adapted from Singh et al. (2015). The ability to detect change through time may
be especially important in understanding species interactions and ecological sorting processes in
relation to the biotic and abiotic environment. (d) At the global scale, it may be possible to detect
the evolutionary legacy effects. For instance, regions with similar climate and geology can differ
in vegetation composition and ecosystem function as a consequence of differences in which lin-
eages evolved in a given biogeographic region and their historical migration patterns. Shown are
mapped values of %N and NPP based on Moderate Resolution Imaging Spectroradiometer
(MODIS) data. (Adapted from Cavender-Bares et al. 2016a)

conserved, but others related to species interactions or with the abiotic environment
vary considerably among close relatives, there is the potential to tease apart spectral
signals that may relate to species interactions.

Spatial patterns of spectral similarity and dissimilarity also have the potential to
provide meaningful information about ecological processes and the forces that
dominate community assembly at a particular scale. For example, to the extent that
spectral similarity of neighboring plants can be determined, high spectral similar-
ity might indicate that functionally and/or phylogenetically similar individuals are
sorting into the same environment, while spectral dissimilarity might indicate that
quite distinct individuals are able to coexist if they exhibit complementarity by
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Fig. 2.5 Evolutionary legacy effects as a consequence of biogeographic origin. Two lineages are
shown that have contrasting origins, one from the tropics and one from high latitudes. Both diversi-
fied and expanded to colonize intermediate latitudes such that their descendants sometimes co-
occur. Lineages with ancestors from contrasting climatic environments likely differ in functional
traits that reflect their origins and thus may assemble in contrasting microenvironments within the
local communities where they co-occur. (Adapted from Cavender-Bares et al. 2016a)

partitioning resources. Approaches that use spectral detection of patterns that
might be interpreted within this framework will need to pay close attention to the
pixel-to-plant size ratio—or the grain size at which biological diversity varies
(Gamon et al., Chap. 16; Serbin and Townsend, Chap. 3; Schimel et al., Chap. 19)—
as well as to the spatial extent at which density-dependent processes and environ-
mental sorting pressures are strongest. Often these processes are expected to
dominate at different spatial scales, such that competition and Janzen-Connell-type
mechanisms operate at very local scales, while environmental sorting may be more
important at landscape scales. Other factors, such as the geographic locations and
environmental conditions under which lineages diversified, may impact spectral
patterns of phylogenetic, functional trait, and spectral similarity at continental
scales (Fig. 2.5). At the same time, spectral similarity will be driven by similar
ecological forces, since both genetic and phylogenetic compositions, as well as
environmental factors, drive phenotypic variation that can be spectrally detected.

2.6 Evolutionary Legacy Effects on Ecosystems

Ecological communities are formed by resident species (incumbents) and colonizer
species. Incumbents may have originated in the study region (or at least have had
considerable time to adapt to their biotic and abiotic environment), whereas colo-
nizers evolved elsewhere and subsequently dispersed into the region. However, the
processes that determine species distributions and the assembly of ecological com-
munities are complex. Species within communities experience unique combinations
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of evolutionary constraints and innovations due to legacies of their biogeographic
origins and the environmental conditions in which they evolved (Cavender-Bares
et al. 2016a; Pinto-Ledezma et al. 2018a). Historical contingencies play a role in
which lineages can take advantage of opportunities to diversify following climate
change or other disturbances and environmental transitions. The rate of species
range expansion and contraction and the evolution of species functional traits that
allow species to establish and persist in some regions or under particular environ-
mental conditions but not elsewhere are shaped by biogeographic history (Moore
et al. 2018). For example, when species from two distinct lineages—one that
evolved in tropical climates and the other that evolved in temperate climates—colo-
nize a new environment, they are predicted to persist in contrasting microhabitats as
a consequence of niche conservatism (Ackerly 2003; Harrison 2010; Cavender-
Bares et al. 2016a). These evolutionary legacies—collectively referred to as “his-
torical factors” (Ricklefs and Schluter 1993)—operate at different spatial and
temporal scales that leave their imprints on species current functional attributes and
distributions and consequently on ecosystem function itself (Fig. 2.4c, Cavender-
Bares et al. 2016a). RS approaches can help reveal how the deep past has influenced
current biodiversity patterns and ecosystem function by decoupling climate and
geological setting from ecosystem function. Current and forthcoming RS instru-
ments (Lausch et al., Chap. 13; Schimel et al., Chap. 19) enable the monitoring of
plant productivity, dynamics of vegetation growth, seasonal changes in chemical
composition, and other ecosystem properties independently of climate and geology.
These technologies thus provide opportunities to detect how biodiversity is sorted
across the globe and to determine how variable ecosystem functions can be in the
same geological and environmental setting. Both are important for developing
robust predictive models of how lineages respond to current and future environmen-
tal conditions with important consequences for managing ecosystems in the
Anthropocene.

2.7 Quantifying Multiple Dimensions of Biodiversity

Several major dimensions of biodiversity have emerged in the literature that capture
different aspects of the variation of life. Taxonomic diversity focuses on differences
between species or between higher-order clades, such as genera or families.
Estimating the numbers and/or abundances of different taxa across units of area
captures this variation. Phylogenetic diversity captures the evolutionary distances
between species or individuals, represented in terms of millions of years since
divergence from a common ancestor or molecular distances based on accumulated
mutations since divergence. Functional diversity focuses on the variation among
species as a consequence of measured differences in their functional traits, fre-
quently calculated as a multivariate metric but also calculated for individual trait
variation. Spectral diversity captures the variability in spectral reflectance from veg-
etation (or from other surfaces), either measured and calculated among individual
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plants or, more commonly, calculated among pixels or among other meaningful
spatial units.

Biodiversity metrics can have different components, including (1) taxonomic
units; (2) abundance, frequency, or biomass of those units and their degree of even-
ness; and (3) the dispersion or distances between those units in trait, evolutionary,
or spectral space. Myriad metrics quantify the major dimensions and components of
diversity. Here we briefly describe several frequently used metrics; the equation for
each metric and the source citation that provides the full details are given in
Table 2.1.

Table 2.1 A brief summary of metrics that are commonly used to estimate the diversity of different
facets/dimensions of plant diversity

Metric Equation Definition Reference
Whittaker a Number of species found in a Whittaker
alpha sample or particular area, (1960)
generally expressed as species
richness
Whittaker beta | y/a Variation of species composition | Whittaker
between two samples. Can be (1960)

interpreted as the effective
number of distinct compositional
units in the region

Whittaker y Overall diversity (number of Whittaker

gamma species) within a region (1960)

Shannon’s H s Metric that characterizes species | Shannon
_ Zpi In p, diversity in a sample. Assumes (1948)

= that all species are represented in
the sample and that individuals
within species were sampled

randomly
Simpson’s D 1 Metric that characterizes species | Simpson
T diversity in a sample. Contrary to | (1949)
zHPf Shannon’s H, Simpson’s D

captures the variance of the
species abundance distribution

Faith’s PD z De Sum of the lengths of all Faith (1992)
(Phqugenetic ecd(T) phylogeneti.c branches (from the
diversity) root to the tip) spanned by a set
of species

PSV . ntrC-3.C _ Measures the variability in an Helmus
(phylogenetic | ————=1-¢, unmeasured neutral trait or the (2007)

. n (n - 1) .
species relative amount of unshared edge
variability) length
PSR nPSV The deviation from species Helmus
(phylogenetic richness, penalized by close (2007)
species relatives
richness)

(continued)
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Table 2.1 (continued)
Metric Equation Definition Reference
PSE . , , PSV metric modified to account | Helmus
(phylogenetic Mdmg(c;) A/{_ mem for relative species abundance or | (2007)
species m-—mm simply abundance-weighted PSV
evenness)
1PD(T) 1 Hill number (the effective total Chao et al.
(phylogenetic R a e branch length) of the average (2010)
branch 2 Lx (?’] time of a tree’s generalized
diversity) entropy over evolutionary time
intervals
aD(T) “pp (7_") Effective number of species or Chao et al.
(phylogenetic A lineages (2010)
Hill numbers) [ T J
FRic Quickhull algorithm Quantity of functional space Barber et al.
(functional filled by the sample. The number | (1996),
richness) of species within the sample Villeger
must be higher than the number | et al. (2008)
of functional traits
FEve 51 1 1 Quantifies the abundance Villeger
(functional Zmin (PEW,,—j ——— | distribution in functional trait et al. (2008)
evenness) il S-1) §-1 space
b
S-1
FDiv Ad+dG Metric that measures the spread | Villeger
(functional E—— of species abundance across trait | et al. (2008)
divergence) A |d| +dG space
aD(TM) 1+ —1)%xET) xM Metric that quantify the effective | Scheiner
(functional number of functionally distinct et al. (2017)
trait species for a given level of
dispersion) species dispersion
Psor (Sgrensen btc Compares the shared species Sgrensen
pairwise — relative to the mean number of (1948),
dissimilarity) 2atbtc species in a sample. Bray- Baselga
Curtis dissimilarity is a special (2010)
case of Sgrensen dissimilarity
that accounts for species
abundance
Psim (Simpson min ( b c) Similar to Sgrensen Simpson
pairwise _ dissimilarity but independent of | (1943),
dissimilarity) | ¢+ min (be) species richness Lennon et al.
(2001),
Baselga
(2010)
fjac (Jaccard Metric that compares the shared | Jaccard
index) 4 species to the total number of (1900)
a+b+c

species in all samples
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2.7.1 The Spatial Scale of Diversity: Alpha, Beta, and Gamma
Diversity

Diversity metrics are designed to capture biological variation at different spatial
extents. Alpha diversity (a) represents the diversity within local communities, which
are usually spatial subunits within a region or landscape. Whittaker first defined beta
diversity (f) as the variation in biodiversity among local communities and gamma
diversity (y) as the total biodiversity in a region or a region’s species pool
(Whittaker 1960).

_r
B=— 2.3)

where /3 is beta diversity, y gamma diversity, and « alpha diversity.
Other authors have defined beta diversity differently (see Tuomisto 2010),
including using variance partitioning methods (Legendre and De Céceres 2013).

2.7.2 Taxonomic Diversity

Species richness is the number of species for a given area. It does not include abun-
dance of individuals within species. However, the relative abundances, frequency,
and biomass of species within a community matter in terms of capture rarity and
evenness. Abundance-weighted metric, such as Simpson’s diversity index (D),
incorporates both richness and evenness. A set of indices based on Hill numbers—a
unified standardization method for quantifying and comparing species diversity
across samples, originally presented by Mark Hill (1973)—were refined by Chao
et al. (2005, 2010). These are generalizable to all of the dimensions of diversity and
consider the number of species and their relative abundances within a local com-
munity. Hill numbers require the specification of the diversity order (¢), which
determines the sensitivity of the metric to species relative abundance. Different
orders of q result in different diversity measures; for example, ¢ = 0 is simply spe-
cies richness, g = 1 gives the exponential of Shannon’s entropy index, and g = 2
gives the inverse of Simpson’s concentration index.

2.7.3 Phylogenetic Diversity

Phylogenetic diversity (PD) considers the extent of shared ancestry among species
(Felsenstein 1985). For example, a plant community composed of two species that
diverged from a common ancestor more recently is less phylogenetically diverse than
a community of two species that diverged less recently. Faith’s (1992) metric of PD
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sums the branch lengths among species within a community (from the root of the
phylogeny to the tip). One feature of this metric is that it scales with species richness
because as new species are added into the community, new branch lengths are also
added. Other metrics were subsequently developed that calculate the mean evolution-
ary distances among species independently of the number of species [e.g., mean phy-
logenetic distance (MPD, Webb 2000b; Webb et al. 2002) or phylogenetic species
variability (PSV), Helmus 2007]. Helmus (2007) developed two more phylogenetic
diversity metrics that scale either with richness or by incorporating species abun-
dances. Phylogenetic species richness (PSR) increases with the number of species, but
reduces the effect of species richness proportionally to their degree of shared ancestry.
Phylogenetic species evenness (PSE) is similar to PSV but includes abundances by
adding individuals as additional tips descending from a single species node, with
branch lengths of 0. Chao et al. (2010) defined the phylogenetic Hill number, 2D(7),
as the effective number of equally abundant and equally distinct lineages and phylo-
genetic branch diversity, 4PD(T), as the effective total lineage length from the root
node (i.e., the total evolutionary history of an assemblage) (Chao et al. 2014).

Phylogenetic endemism is another aspect of biodiversity that can be estimated
from phylogenetic information and range maps of species (Faith et al. 2004).
Phylogenetic endemism can be simply defined as the quantity of PD restricted to a
given geographic area. This metric thus focuses on geographic areas, rather than on
species, to discern areas of high endemism based on evolutionary history for con-
servation purposes.

2.7.4 Functional Diversity

Widely used metrics of functional diversity consider the area or volume of trait
space occupied by a community of species, the distances of each species to the cen-
ter of gravity of those traits, and the trait distances between species (Mouillot et al.
2013). Functional attribute diversity (FAD) is a simple multivariate metric calcu-
lated as the sum of species pairwise distances of all measured continuous functional
traits (Walker et al. 1999). Villeger et al. (2008) developed a series of functional
diversity metrics that incorporate trait dispersion and distance among species as
well as species abundances, including functional richness (FRic), functional diver-
gence (FDiv), and functional evenness (FEve). Building on the framework of
Villeger et al. (2008), Laliberté and Legendre (2010) developed functional dispersion
(FDis), a functional diversity metric that is independent of species richness and can
include species relative abundances (Table 2.1).

Scheiner’s functional trait dispersion [?D(TM), Scheiner et al. 2017] calculates
the effective number of species (or units) that are as distinct as the most distinct spe-
cies (or unit) in that community. 2D(7M) decomposes diversity estimates into three
components: the number of units (), functional evenness [“E(7T), the extent to which
units are equally dispersed], and mean dispersion [M’, the average distance or the
distinctiveness of these units]. Functional diversity measured as D(TM) is maxi-
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mized when there are more units in a community that are more equitably distributed
(or less clumped) and more dispersed (or positioned further apart) in space. Like
Chao’s approach, ?D(TM) includes Hill numbers (%), which allow weighting of
abundances: small and large q values emphasize rare and common species, respec-
tively. Like many other biodiversity metrics, 2D(TM) can be calculated from pair-
wise distances among species or individuals; thus, the metric can be applied to
estimate different dimensions of biodiversity, including functional, phylogenetic
(Scheiner 2012; Presley et al. 2014) and spectral components (Schweiger et al. 2018).
Briefly, functional trait dispersion [2D(TM)] is calculated as:

‘D(TM)=1+(S-1)x E(T)xM (2.4)

where:

S = species richness

E(T) = trait evenness
M’ = trait dispersion
¢ = Hill number

2.7.5 Spectral Diversity

Like taxonomic, functional, and phylogenetic diversity, spectral diversity can be
calculated in many different ways. Spectral alpha diversity metrics include the
coefficient of variation of spectral indices (Oindo and Skidmore 2002) or spectral
bands among pixels (Hall et al. 2010; Gholizadeh et al. 2018, 2019; Wang et al.
2018, the convex hull volume (Dahlin 2016) and the convex hull area (Gholizadeh
et al. 2018) of pixels in spectral feature space, the mean distance of pixels from the
spectral centroid (Rocchini et al. 2010), the number of spectrally distinct clusters
or “spectral species” in ordination space (Féret and Asner 2014), and spectral vari-
ance (Laliberté et al. 2019). Schweiger et al. (2018) applied ?D(TM) to species
mean spectra and to individual pixels extracted at random from high-resolution
proximal RS data. The second approach is independent of species identity and uses
the same number of pixels per community for analysis. In this manner, the problem
of diversity scaling with the number of species in a community is eliminated, and
greater differences in reflectance spectra among pixels result in increased spectral
diversity. Conceptually, spectral diversity metrics are versatile and can be tailored
to match taxonomic or phylogenetic units, e.g., by using mean spectra for focal
taxa, or to resemble functional diversity by selecting spectral bands that align with
known absorption features for specific chemical traits or spectral indices that cap-
ture plant characteristics of known ecological importance. If measured at the
appropriate scale (see Gamon et al. Chap. 16), spectral diversity can integrate the
variation captured by other metrics of diversity and similarly predicts ecosystem
function (Fig. 2.6).
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Fig. 2.6 (a) Aerial photo of the Cedar Creek long-term biodiversity experiment (BioDIV) (Courtesy
of Cedar Creek Ecosystem Science Reserve). (b) Pairwise phylogenetic and (c) functional distances
for the 17 most abundant prairie-grassland species in BioDIV are well-predicted by their spectral
distances based on leaf-level spectral profiles (400-2500 nm). (d) Phylogenetic, (e) functional, and

(f) leaf-level spectral diversities based on Scheiner’s D(TM) metric all predict ecosystem productiv-
ity in BioDIV. (g) Independent of information about species identities or their abundances, remotely
sensed spectral diversity detected at high spatial resolution (I mm) also predicts productivity. All
graphs are redrawn from Schweiger et al. 2018. Species abbreviations in b and c¢ are as follows:
ACHMI = Achillea millefolium L., AMOCA = Amorpha canescens Pursh, ANDGE = Andropogon
gerardii Vitman, ASCTU = Asclepias tuberosa L., KOEMA = Koeleria macrantha (Ledeb.) Schult.,
LESCA = Lespedeza capitata Michx., LIAAS = Liatris aspera Michx., LUPPE = Lupinus perennis
L., MONFI = Monarda fistulosa L., PANVI = Panicum virgatum L., PASSMI = Pascopyrum smithii
(Rydb.) A. Love, PETCA = Petalostemum candidum (Willd.), PETPU = Petalostemum purpureum
(Vent.) Rydb.,, POAPR = Poa pratensis L., SCHSC = Schizachyrium scoparium Michx.,
SOLRI = Solidago rigida L., SORNU = Sorghastrum nutans (L.) Nash
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2.7.6 Beta Diversity Metrics

Whittaker’s 1960 definition of beta diversity (Eq. 2.3) quantified the degree of differen-
tiation among communities in relation to environmental gradients. Under this defini-
tion, beta diversity is defined as the ratio between regional (gamma) and local (alpha)
diversities (Eq. 2.3) and measures the number of different communities in a region and
the degree of differentiation between them (Whittaker 1960; Jost 2007). Indices such
as Bray-Curtis dissimilarity and Jaccard and Sgrensen indices evaluate similarity of
communities based on the presence or abundance of species within them. Metrics of
similarity used for species have been adapted for phylogenetic and functional trait dis-
tances (Bryant et al. 2008; Graham and Fine 2008; Kembel et al. 2010; Cardoso et al.
2014) and can equally be applied to spectral information (Gamon et al., Chap. 16).

While the ratio between regional and local communities provides a simple means
to estimate beta diversity, there are many different ways to calculate taxonomic,
functional, and phylogenetic beta diversity that can be grouped into pairwise and
multiple-site metrics (reviewed in Baselga 2010). Notably, beta diversity can be
partitioned into components that capture species replacement—the “turnover com-
ponent”—caused by the exchange of species among communities and differences in
the number of species, the “nestedness component,” caused by differences in the
number of species among communities. The turnover component can be interpreted
as the difference between two community assemblages that contain contrasting sub-
sets of species from a regional source pool, while the nestedness component repre-
sents the difference in species composition between two communities due to
attrition of species in one assemblage relative to the other (Baselga 2010; Cardoso
et al. 2014). Examining these different components of beta diversity for multiple
dimensions of plant diversity provides a means to discern the role of historical and
ongoing environmental sorting processes in the distribution of plant diversity at
continental extents (Pinto-Ledezma et al. 2018b). In contrast to traditional diversity
metrics, spectral diversity (alpha and beta) is only beginning to receive attention in
biodiversity studies (Rocchini et al. 2018). Although different approaches have been
proposed (Schmidtlein et al. 2007; Féret and Asner 2014; Rocchini et al. 2018;
Laliberté et al. 2019), the estimation and mapping of dissimilarities in spectral com-
position (i.e., the variation among pixels) is similar to traditional estimations of beta
diversity. For example, Laliberté et al. (2019) adapted the total community
composition variance approach (Legendre and De Céceres 2013) to estimate
spectral diversity as spectral variance, partitioning the spectral diversity of a region
(gamma diversity) into additive alpha and beta diversity components.

2.8 Links Between Plant Diversity, Other Trophic Levels,
and Ecosystem Functions

Plant diversity has consequences for other trophic levels, sometimes reducing her-
bivory on focal species (Castagneyrol et al. 2014), but also increasing the diversity of
insects and their predators in an ecosystem (Dinnage et al. 2012; Lind et al. 2015).
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The distribution of plant traits within communities influences resource availability
for other trophic levels above- and belowground, which affects community assembly
and population dynamics across trophic levels. Diversity of neighbors surrounding
focal trees can both increase and decrease pathogen and herbivore pressure on them
(Grossman et al. 2019). Thus, while we know that plant diversity impacts other tro-
phic levels, consistent rules across the globe that explain how and why these impacts
occur remain elusive. An increasing number of studies reveal that plant diversity
influences belowground microbial diversity and composition (Madritch et al. 2014;
Cline et al. 2018). While these relationships are significant, they may explain limited
variation given the number of other factors that influence microbial diversity and
potentially due to a mismatch in sampling scales. Ultimately, it appears that chemical
composition and productivity of aboveground components of ecosystems that can be
remotely sensed are critical drivers of belowground processes, including microbial
diversity (Madritch et al., Chap. 8).

Biodiversity loss is known to substantially decrease ecosystem functioning and
ecosystem stability (Cardinale et al. 2011; O’Connor et al. 2017). Yet, the nature
and scale of biodiversity-ecosystem function relationships remains a central ques-
tion in biodiversity science. The issue is one that is ready to be tackled across scales
using RS technology. The long-term biodiversity experiment at Cedar Creek
Ecosystem Science Reserve (Tilman 1997) (Fig. 2.6), for example, has revealed the
increasing effects of biodiversity on productivity over time (Reich et al. 2012) and
that phylogenetic and functional diversity are highly predictive of productivity
(Cadotte et al. 2008; Cadotte et al. 2009). Remotely sensed spectral diversity also
predicts productivity (Sect. 2.9). Increased stability has also been linked to both
higher plant richness (Tilman et al. 2006) and phylogenetic diversity (Cadotte et al.
2012) in this experiment. Tree diversity experiments show similar effects of increas-
ing productivity with diversity (Tobner et al. 2016; Grossman et al. 2017) (Fig. 2.7),
and these same trends emerge as the dominant pattern in forest plots globally

Avg. NBE per Tree by Plat (kalyr)

Plot Species Richness.

Fig. 2.7 The Forest and Biodiversity (FAB) experiment at the Cedar Creek Ecosystem Science
Reserve shows overyielding (a)—greater productivity than expected in species-rich communities
compared to monocultures—also called the net biodiversity effect (NBE). Curves show 90% pre-
dictions from multiple linear regression models (yellow 2013-2014; blue 2014-2015). (Redrawn
from Grossman et al. 2018.) Photos (b, ¢) show juvenile trees grown in mixtures with varying
neighborhood composition. The first phase of the experiment, shown here, includes three 600 m?
blocks, each consisting of 49 plots (9.25 m?) planted in a grid with 0.5 m spacing
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(Liang et al. 2016). Hundreds of rigorous biodiversity experiments have been
designed and conducted to tease apart effects of changing numbers of species (rich-
ness) from effects of changing identities of species (composition) (O’Connor et al.
2017; Grossman et al. 2018; Isbell et al. 2018). Complementarity among diverse
plant species that vary in their functional attributes and capture and respond to
resources differently is the primary explanation for increasing productivity with
diversity (Williams et al. 2017). Nevertheless, both the nature of biodiversity-eco-
system function (BEF) relationships and their causal mechanisms remain variable
and scale dependent in natural systems. In the Nutrient Network global grassland
experiments, in which communities have assembled naturally, the relationship
between diversity and productivity is variable (Adler et al. 2011). In tropical forest
plots around the globe, at spatial extents of 0.04 ha or less, the biodiversity-produc-
tivity relationship is strong. However, as scales increase to 0.25 or 1.0 ha, the rela-
tionship is no longer consistently positive and can frequently be negative (Chisholm
et al. 2013). These varied relationships at contrasting spatial scales may result from
nonlinear, hump-shaped relationships between biodiversity and ecosystem function
across resource availability gradients as the nature of species interactions and their
level of complementarity shift (Jaillard et al. 2014). RS methods—including imag-
ing spectroscopy and LiDAR—that can detect both the diversity and the structure
and function of ecosystems (Martin, Chap. 5; Atkins et al. 2018) can discern these
relationships across spatial extents and biomes in natural systems. They thus have
high potential to enhance our understanding of the scale and context dependence of
linkages between biodiversity and ecosystem function (Grossman et al. 2018).

2.9 Incorporating Spectra into Relationships
Between Biodiversity and Ecosystem Function

Detection of spectral diversity, in particular, offers the potential to contribute to the
quantification of BEF relationships at large scales (Schweiger et al. 2018) and is
thus worth discussing in more detail. The variability captured by spectral diversity
in a given ecosystem depends on the way the spectral diversity is calculated, as
well as its spatial and spectral resolution (Sect. 2.7.5; Gamon et al., Chap. 16).
From a functional perspective, spectral profiles measured at the leaf level depend
on the chemical, structural, morphological, and anatomical characteristics of leaves
(Ustin and Jacquemoud, Chap. 14). Variation in spectra and spectral diversity can
be used to test hypotheses about how specific traits influence ecosystem function,
community composition, and other characteristics of ecosystems, when using
spectral bands or spectral indices with known associations with specific plant traits
(Serbin and Townsend, Chap. 3). Moreover, spectral bands and indices can be
weighted based on prior information about the relative contribution of individual
traits to specific ecosystem characteristics. However, while the absorption features
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of some chemical traits are known, the effects of other, particularly nonchemical,
plant traits on spectra are less well understood, in part due to overlapping spectral
features and challenges associated with accurately describing nonchemical traits
(Ustin and Jacquemoud, Chap. 14). Using the full spectral profile of plants in spec-
tral diversity calculations provides a means to integrate chemical, structural, mor-
phological, and anatomical variation and to acknowledge the many ways plants
differ from one another.

It is certainly more complicated to decipher the biological meaning of spectral
diversity calculated from spectral profiles than from measures of biodiversity that
are based on a specific set of plant traits or spectral bands or indices with known
links to specific traits. However, the variance that is explained by models based on
spectral profiles can be partitioned into known and unknown sources of variation.
This provides a means to assess the relative contribution of traits with known spec-
tral characteristics and traits that are less well understood spectrally or that are of
yet-unrecognized importance. At the canopy level, when spectra are measured from
a distance, the question of what spectra and spectral diversity represent is further
complicated by the influences that plant architecture, soil, and other materials have
on the spectral characteristics of image pixels (Wang et al. 2018; Gholizadeh et al.
2018). Again, the degree to which these characteristics matter for a particular eco-
system needs to be evaluated in the particular context of the study. Some ecosystem
components such as shade, soil, rock, or debris, which influence remotely sensed
spectra, are biologically meaningful because they influence light availability and
microclimate and provide resources for other trophic levels.

The association between plant spectra and traits can be illustrated by plotting
spectral distances against functional distances or dissimilarity, as illustrated using
species from the Cedar Creek biodiversity experiment (Fig. 2.6d). Given that func-
tional differences among species are expected to increase with evolutionary
divergence time (Fig. 2.1b), positive relationships are also expected among spectral
and phylogenetic distances. The observed associations among spectral, functional,
and phylogenetic dissimilarity (Fig. 2.6a, b) allow biodiversity metrics based on any
of these dimensions of biodiversity to explain a similar proportion of the total vari-
ability in aboveground productivity (Fig. 2.6c—e), which is known to increase with
the functional diversity of the plant community in this system (Cadotte et al. 2009).
The species in the biodiversity experiment at Cedar Creek are relatively functionally
dissimilar and distantly related, such that spectral, functional, and phylogenetic
diversity also predict species richness (not shown). One advantage of spectral diver-
sity is that the metric can be calculated from remotely sensed image pixels without
depending on information about the distribution and abundance of species in an area,
their functional traits, or phylogenetic relationships (Schweiger et al. 2018). By
extracting a random number of high-resolution image pixels in each plant commu-
nity, Schweiger et al. (2018) found that remotely sensed spectral diversity explained
the biodiversity effect on aboveground productivity about as well as spectral diver-
sity calculated using leaf-level spectra (Fig. 2.6).
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2.10 Links Between Biodiversity and Ecosystem Services

Humans benefit from ecosystem functions and biodiversity. The benefits we derive
from nature, often called ecosystem services, are a product of the biodiversity—
assembled over millions of years—and ecosystem properties of a given region, or
the whole Earth (Daily 1997). Daily (1997) defines ecosystem services as “the con-
ditions and processes through which natural ecosystems, and the species that make
them up, sustain and fulfill human life.” Ecosystem services, referred to by the
Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem
Services (IPBES) as “nature’s contributions to people” (Diaz et al. 2018), are a
socioecological concept that emerged from the Millennium Ecosystem Assessment
(2005) and include provisioning, regulating, supporting, and cultural services. Some
ecosystem service categories include direct benefits of biodiversity—through the
use and spiritual values that humans establish with elements of biodiversity and
ecosystems—and indirect benefits through the contributions of biodiversity to criti-
cal regulating ecosystem functions. The diversities of functional traits of plants
make up the primary productivity of life on Earth and are essential to the ecosystem
services on which all life depends. Assessment of ecosystem services depends on
understanding both the ecosystem functions on which ecosystem services are
derived and how services are valued by humans (Schrodt et al., Chap. 17). Modeling
efforts that incorporate remotely sensed data can be used to describe ecosystem
functions and quantify the services they generate (Sharp et al. 2018). (For modeling
tools that enable mapping and valuing ecosystem services, see https://naturalcapi-
talproject.stanford.edu/invest/.)

2.11 Trade-Offs Between Biodiversity and Ecosystem
Services

Biodiversity—as well as many regulating services to which biodiversity contributes
and upon which it depends—frequently shows a negative trade-off with provision-
ing ecosystem services, such as agricultural production (Haines-Young and Potschin
2009). The nature of these trade-offs depends on the biophysical context, including
the climate, soils, hydrology, and geology, and will differ among regions. A trade-
off curve represents the limits set by these biophysical constraints and can be
thought of in economic terms as an “efficiency frontier” that sets the boundaries on
possible combinations of biodiversity (or regulating services) and provisioning
services (Polasky et al. 2008). Combinations above the curve are not possible; out-
comes beneath the curve provide fewer total benefits than what is actually possible
from the environment. Quantifying the biodiversity and ecosystem service potential
from land and how they trade off are critical to efficient management of ecosys-
tems. Current RS tools and forthcoming technologies are well-poised to decrease
uncertainty in estimates of biodiversity—ecosystem service trade-offs—and can
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Biodiversity

Agricultural production

Fig. 2.8 RS technologies that enable detection of biodiversity and ecosystem functions aid in
modeling their trade-offs. (a) The “efficiency frontier,” or biophysical constraints that limit biodi-
versity and crop production, depends on the specific climatic, historical, and resource context of
the land area and on the growth or replenishment rate of the natural system. These constraints can
vary among ecosystems (red vs black curves). (b) Where along the efficiency frontier we want to
manage for depends on human values. The superimposed curves show isolines of equal utility
(Ua14 or Ug; ) for two different stakeholders (A and B) who have sharply different willingness to
give up natural habitat for crop production and vice versa. Utility—or benefits to each stake-
holder—increases moving from yellow to dark red. The two points at which the highest utility
curve for each stakeholder intersects with the efficiency frontier represent the greatest feasible
benefit to the stakeholder (points A and B). Often ecosystems are managed well below the effi-
ciency frontier (green circle). RS may enable detection of components of biodiversity and ecosys-
tem services at relevant spatial scales that can inform stakeholders about improved outcomes and
aid negotiation among stakeholders. (¢) Some trade-offs can have thresholds and tipping points
that, once traversed, may result in a degraded alternative state. RS approaches that can aid in pre-
dicting uncertainties and temporal variability in trade-offs, indicated by thin blue lines, can help
maximize ecosystem service benefits without overshooting thresholds that risk pushing the system
into a degraded state. (Adapted from Cavender-Bares et al. 2015b)

contribute meaningfully to decision-making and resource management (Chaplin-
Kramer et al. 2015; de Araujo Barbosa et al. 2015; Schrodt et al., Chap. 17).

Where along the efficiency frontier we wish to target our management efforts
depends on human preferences. These can differ strongly among different stake-
holders that have contrasting priorities (Cavender-Bares et al. 2015a, b).
Distinguishing the biophysical limits of ecosystems from contrasting stakeholder
preferences for what they want from ecosystems is a critical contribution to partici-
patory processes that enable dialogue and progress toward sustainability (Cavender-
Bares et al. 2015b; King et al. 2015). RS technologies that can enhance detection of
biodiversity as well as both regulating and provisioning ecosystem services—and
changes in these at multiple scales—can thus increase clarity in decision-making
processes in the face of rapid global change (Fig. 2.8).
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Chapter 3
Scaling Functional Traits from Leaves
to Canopies

Shawn P. Serbin and Philip A. Townsend

3.1 Introduction

Fossil energy use and land use change are the dominant drivers of the accelerating
increase in atmospheric CO, concentration and the principal causes of global cli-
mate change (IPCC 2018; IPBES 2018). Many of the observed and projected
impacts of rising CO, concentration and increased anthropogenic pressures on natu-
ral resources portend increasing risks to global terrestrial biomes, including direct
impacts on biodiversity, yet the uncertainty surrounding the forecasting of biodiver-
sity change, future climate, and the fate of terrestrial ecosystems by biodiversity and
Earth system models (ESMs) is unacceptably high, hindering informed policy deci-
sions at national and international levels (Jetz et al. 2007; Friedlingstein et al. 2014;
Rice et al. 2018). As such, the impact of our changing climate and altered distur-
bance regimes on terrestrial ecosystems is a major focus of a number of disciplines,
including the biodiversity, remote sensing (RS), and global change research
communities.

Here we provide an overview of approaches to scale and map plant functional
traits and diversity across landscapes with a focus on current approaches, leveraging
on best practices provided by Schweiger (Chap. 15), benefits and issues with gen-
eral techniques for linking and scaling traits and spectra, and other key consider-
ations that need to be addressed when utilizing RS observations to infer plant
functional traits across diverse landscapes.
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3.1.1 Plant Traits and Functional Diversity

The importance of characterizing leaf and plant functional traits across scales is tied
to the crucial role these traits play in mediating ecosystem structure, functioning,
and resilience or response to perturbations (Lavorel and Garnier 2002; Reich et al.
2003; Wright et al. 2004; Reich 2014; Funk et al. 2017). The structural, biochemi-
cal, physiological, and phenological properties of plants regulate the growth and
performance or fitness of plants and their ability to propagate or survive in diverse
environments. As such, these traits are used to characterize the axes of variation that
define broad plant functional types (PFTs), which in turn describe global vegetation
patterns and properties (Ustin and Gamon 2010; Diaz et al. 2015), particularly in
ESMs (Bonan et al. 2002; Wullschleger et al. 2014). Our focus here will be on leaf
traits related to nutrition and defense that broadly fit within the concept of the leaf
economics spectrum (LES, Wright et al. 2004), because these are most amendable
to measurements using spectral methods. Other traits relating to reproductive strate-
gies, hydraulics, physiology (though see Serbin et al. 2015), wood characteristics,
etc. may be inferred from the traits described here, especially when combined with
climate, soils, topography, or other data that generally are not directly detectable
using RS.

Leaf nutritional properties and morphology are strong predictors of the photo-
synthetic capacity, plant growth, and biogeochemical cycling of terrestrial ecosys-
tems (Aber and Melillo 1982; Green et al. 2003; Wright et al. 2004; Diaz et al.
2015). With respect to litter turnover and nutrient cycling, leaf traits that correspond
to the distribution and magnitude of structural carbon and chemical compounds
such as lignin and cellulose are used to infer the recalcitrant characteristics of can-
opy foliage (Madritch et al., Chap. 8). Capturing the spatial variation in these traits
can therefore provide critical information on the nutrient cycling potential of eco-
systems (Ollinger et al. 2002). On the other hand, leaf mass per area (LMA)—the
ratio of a leaf’s dry mass to its surface area—and its reciprocal, specific leaf area
(SLA), correspond to a fundamental trade-off of leaf construction costs versus light-
harvesting potential (Niinemets 2007; Poorter et al. 2009). The amount of foliar
nitrogen within a leaf, on a mass (N, %) or area (N, g/m?) basis, strongly regu-
lates the photosynthetic capacity of leaves given its fundamental role in the light-
harvesting pigments of leaves (chlorophyll a and b) and photosynthetic machinery,
namely, the enzyme RuBisCo (Field and Mooney 1986; Evans and Clarke 2018).
Other traits, such as the concentration or content of water and accessory pigments,
are important indicators of plant health and stress (Ustin et al. 2009). Moreover, the
covariation of traits is also a primary focus of ecological and biodiversity research
given strong trade-offs defining different leaf form and function (Diaz et al. 2015).
For example, across the spectrum of plant functional diversity (Wright et al. 2004),
foliar nitrogen and LMA form a key axis of variation that describes end-members
between “cheap” thinner, low-LMA leaves with high leaf nitrogen, higher photo-
synthetic rates and faster turnover versus thick, expensive leaves with high LMA,
low nitrogen, slower turnover, and longer leaf life spans. Other traits with strong
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evidence for detection in the literature relate to plant allocation strategies (e.g.,
starch and sugar content) or defense compounds, such as phenolics (e.g., Asner
et al. 2015; Kokaly and Skidmore 2015; Couture et al. 2016; Ely et al. 2019).

Despite the importance of characterizing leaf and plant functional traits across
global biomes, the plasticity and high functional diversity of these traits makes this
apparently simple goal extremely challenging (Reich et al. 1997; Wu et al. 2017;
Osnas et al. 2018), and as such global coverage has been historically limited to spe-
cific biomes (Schimel et al. 2015). Leaf traits can vary strongly within and across
species (Serbin et al. 2014; Osnas et al. 2018) and are strongly mediated by an array
of biotic and abiotic factors (Dfaz et al. 2015; Neyret et al. 2016; Butler et al. 2017).
Within a canopy, for example, functional traits typically show high variation with
average light condition and quality (Niinemets 2007; Neyret et al. 2016) where
lower canopy leaves tend to be thinner and have lower photosynthetic rates and
altered pigment pools to account for the lower light quality. Plant traits can also
change across local resource gradients, including with variations in water, nutrient
availability, and disturbance legacy (Singh et al. 2015; Butler et al. 2017; Enquist
et al. 2017). Importantly, this pattern can be confounded by species composition,
which is generally the strongest driver of trait variation.

RS has provided new avenues to explore trait variation at larger scales and con-
tinuously across landscapes (Fig. 3.1). For example, Dahlin et al. (2013) observed
that leaf functional traits were more strongly mediated by plant community compo-
sition than environment across a water-limited Mediterranean ecosystem, explain-
ing 46—61% of the variation on the landscape. Likewise, McNeil et al. (2008) found
that 93% of variation in nutrient cycling in northern hardwood forests of the US
Adirondacks could be explained by species identity. Yet the presence or absence of
specific plant species is, in part, a consequence of habitat sorting processes and the
adaptive mechanisms of plants that influence the environments in which they can
persist, including their modification of traits in response to local conditions (Reich
et al. 2003). Mapping species or communities to infer traits is impractical at any-
thing other than the local scale due to the presence of more than 200,000 plant spe-
cies on Earth. Dispersal and other stochastic processes also play a role. Across
broad environmental gradients, traits display much larger variation, where climate,
topography, and edaphic conditions drive changes in plant community composition
and structure, which, in turn, drive the patterns of potential and realized plant traits
in any one location (Diaz et al. 2015; Butler et al. 2017). Finally, factors such as
convergent evolution may make some species spectrally similar, while phenology
and phenotypic variation may make the same species look different across locations.

Temporal regulation of traits is a key factor driving changes in functional proper-
ties and the resulting functioning of the ecosystem. Seasonal changes in traits can
be significant (e.g., Yang et al. 2016) and can strongly regulate vegetation function-
ing (e.g., Wong and Gamon 2015). Moreover, during the lifetime of a leaf, traits can
change significantly (e.g., Wilson et al. 2001; Niinemets 2016), and in evergreen
species, leaf age has been shown to be a strong covariate with functional trait values
(e.g., Chavana-Bryant et al. 2017; Wu et al. 2017). Age-dependent and phenological
changes in leaf traits can, in turn, have significant impacts on ecosystem functioning
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Fig. 3.1 There is a strong coupling between vegetation composition, structure and function, and
the signatures observed by remote sensing instrumentation. Passive optical, thermal, and active
sensing systems can be used to identify and map a range of phenomena, including minor to major
variation in vegetation properties, health, and status across a landscape. Specifically, high spectral
resolution imaging spectroscopy data can be used to infer functional traits of the vegetation through
the measurement of canopy-scale optical properties which are driven by variation in leaf biochem-
istry and morphology, as well as overall canopy structure

(Wu et al. 2016). Given the role plant traits play in community assembly, character-
izing the distribution, spatial patterns, and seasonality of traits is crucial for improved
prediction of biodiversity change and ecosystem responses to global change.

Numerous plant trait databases have been developed to store information on the
variation in functional traits across space and time (e.g., Wright et al. 2004; Kattge
etal. 2011; LeBauer et al. 2018) needed to inform biodiversity and ecological mod-
eling research. However, repeated direct measurement of plant traits is logistically
challenging, which limits the geographic and temporal coverage of trait variation in
these databases. Moreover, capturing plant trait variation through time is critical,
but currently lacking from most observations (but with notable exceptions, e.g.,
Stylinski et al. 2002; Yang et al. 2016) given a host of additional technical and mon-
etary challenges. In particular, efforts to collect direct, repeat samples of functional
traits in remote areas, such as high-latitude ecosystems and the remote tropics, can
be severely hindered by access and other logistical considerations.

On the other hand, RS can provide the critical unifying observations to link
in-situ measurements of plant traits to the larger spatial and temporal scales needed
to improve our understanding of global functional and plant biodiversity (Fig. 3.1,
Table 3.1). As such, a strong interest in the use of RS to characterize foliar
functional traits and their diversity has emerged from three key areas: research in
RS of leaf optical properties (Jacquemoud et al. 2009), the concept of the leaf
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Table 3.1 List of key foliar functional traits that can be estimated from imaging spectroscopy

Functional Example of functional
characterization® | Trait role Example Citations
Primary Foliar N (% dry | Critical to primary Johnson et al. (1994),
mass or area metabolism (e.g., Gastellu-Etchegorry et al. (1995),
based) Rubisco). Mirik et al. (2005), Martin et al.
(2008), Gil-Pérez et al. (2010),
Gokkaya et al. (2015), Kalacska
et al. (2015), Singh et al. (2015)
Foliar P (% dry DNA, ATP synthesis Mirik et al. (2015), Mutanga
mass) and Kumar (2007), Gil-
Pérez et al. (2010), Asner et al.
(2015)
Sugar (% dry Carbon soiree Asner and Martin (2015)
mass)
Starch (% dry Storage compound, Matson et al. (1994)
mass) carbon reserve
Chlorophyll-total | Light-harvesting Johnson et al. (1994), Zarco-
(ng g™ capability Tejada et al., (2000a); Moorthy
et al., (2008); Gil-Pérez et al.
(2010), Zhang et al. (2008)
Carotenoids (ng | Light harvesting, Datt (1998), Zarco-Tejada et al.
gh antioxidants (2000a)
Other pigments Photoprotection. NPQ | van den Berg and Perkins
(e.g., (2005)
anthocyanins; ng
g
‘Water content (% | Plant water status Gao and Goetz (1995),
fresh mass) Gao (1996), Serrano et al.,
(2000), Asner et al. (2015)
Physical Leaf mass per Measure of plant Asner et al. (2015),
area (g m?2) resource allocation Singh et al. (2015)
strategies
Fiber (% dry Structure, Mirik et al. (2005),
mass) decomposition Singh et al. (2015)
Cellulose (% dry | Structure, Gastellu-Etchegorry et al.
mass) decomposition (1995), Thulin et al. (2014),
Singh et al. (2015)
Lignin (% dry Structure, Singh et al. (2015)
mass) decomposition
Metabolism Vemax (pmol m™ | Rubisco-limited Serbin et al. (2015)

s

photosynthetic capacity

Photochemical
Reflectance Index
(PRI)

Indicator of non-
photochemical
quenching (NPQ) and
photosynthetic
efficiency, xanthophyll
cycle

Gamon et al. (1992), Asner et al.
(2004)

Fv/Fm

Photosynthetic capacity

Zarco-Tejada et al. (2000c)

(continued)
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Table 3.1 (continued)

Functional Example of functional
characterization® | Trait role Example Citations
Secondary Bulk phenolics Stress responses Asner et al. (2015)
(% dry mass)
Tannins (% dry Defenses, nutrient Asner et al. (2015)
mass) cycling, stress
responses

Categories of functional characterization are for organizational purposes only: Primary refers to
compounds that are critical to photosynthetic metabolism; Physical refers to non-metabolic attri-
butes that are also important indicators of photosynthetic activity and plant resource allocation;
Metabolism refers to measurements used to describe rate limits on photosynthesis; and Secondary
refers compounds that are not directly related to plant growth, but indirectly related to plant func-
tion through associations with nutrient cycling, decomposition, community dynamics, and stress
responses

economics spectrum (Wright et al. 2004), and the development of global-scale
foliar trait databases (Kattge et al. 2011). Within the signals observed by passive
optical, thermal, and active sensing systems, such as light detection and ranging
(lidar) platforms, is a whole host of underlying leaf chemical, physiological, and
plant structure information that drives the spatial and temporal variation in RS
observations (Ollinger 2011; Figs. 3.1, 3.2, and 3.3). As a result, RS provides the
only truly practical approach to observing spatial and temporal variation in plant
traits, canopy structure, ecosystem functioning, and biodiversity in absence of being
able to map all species or communities everywhere (Schimel et al. 2015; Jetz et al.
2016). RS observations can provide the synoptic view of terrestrial ecosystems and
capture changes on the landscape from disturbances and necessary temporal cov-
erage via multiple repeat passes or targeted collection at specific phenological
stages, yielding information needed to fill critical gaps in trait observations across
global biomes (Cavender-Bares et al. 2017; Schimel et al., Chap. 19).

3.1.2 Historical Advances in Remote Sensing of Vegetation

Over the last four-plus decades, passive optical RS has been used as a key tool for
characterizing and monitoring the composition, structure, and functioning of ter-
restrial ecosystems across space and time. For example, spectral vegetation indices
(SVIs), such as the normalized difference vegetation index (NDVI), have been used
to capture broad-scale plant seasonality or phenology and changes in composition,
monitor plant pigmentation and stress, and track changes in productivity through
time and in response to environmental change (e.g., Goward and Huemmrich 1992;
Kasischke et al. 1993; Myneni and Williams 1994; Gamon et al. 1995; Ahl et al.
2006; Mand et al. 2010). Platforms, such as the Advanced Very High Resolution
Radiometer (AVHRR), originally designed for atmospheric research, have been
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Fig. 3.2 The internal structure and biochemistry of leaves within a canopy control the optical
signatures observed by remote sensing instrumentation. The amount of incident radiation that is
reflected by, transmitted through, or absorbed by leaves within a canopy is regulated by these
structural and biochemical properties of leaves. For example, leaf properties such as a thick cuticle
layer, high wax, and/or a large amount of leaf hairs can significantly influence the amount of first-
surface reflectance (that is the reflected light directly off the outer leaf layer that does not interact
with the leaf interior), causing less solar radiation to penetrate into the leaf. The thickness of the
mesophyll layer associated with other properties, such as thicker leaves, can cause higher degree
of internal leaf scattering, less transmittance through the leaf, and higher absorption in some wave-
lengths. Importantly, the diffuse reflectance out of the leaf is that modified by internal leaf proper-
ties and contains useful for mapping functional traits

leveraged to capture changes in plant “greenness” based on the ratio of red absorp-
tion in leaves (signal of pigmentation levels and change) to near-infrared reflectance
(tied to internal cellular structure and water content) to monitor changes in plant
vigor and change (e.g., Tucker et al. 2001; Zhou et al. 2001; Goetz et al. 2005;
Goetz et al. 2006). With the advent of focused Earth-observing (EO) sensors, such
as the Landsat constellation, the science and use of optical RS observations for
monitoring plant properties and functioning increased substantially (e.g., Chen and
Cihlar 1996; Turner et al. 1999; Townsend 2002; Jones et al. 2007; Sonnentag et al.
2007; Drolet et al. 2008; Foster et al. 2008; Peckham et al. 2008; Yilmaz et al. 2008).
Since the earliest uses, optical RS observations from the leaf to suborbital to satel-
lite EO platforms have been heavily leveraged in the plant sciences, RS, and biodi-
versity communities (e.g., Jacquemoud et al. 1995; Roberts et al. 2004; Ustin et al.
2004; Gitelson et al. 2006; Hilker et al. 2008; Pettorelli et al. 2016; Cavender-Bares
et al. 2017).
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Fig. 3.3 High spectral resolution measurements of leaves and plant canopies enable the indirect,
non-contact measurement of key structural and chemical absorption features that are associated
with the physiological and biochemical properties of plants

3.1.3 Remote Sensing as a Tool for Scaling and Mapping
Plant Traits

The use of leaf-level spectroscopy to understand plant functioning via biochemistry
dates to the early twentieth century with papers describing light absorption and
reflectance (Shull 1929; McNicholas 1931; Rabideau et al. 1946; Clark 1946;
Krinov 1953). Billings and Morris (1951) made a direct linkage to differing ecological
strategies of plants, in particular demonstrating that visible and near-infrared reflec-
tance of species growing in different environments is directly linked to strategies
associated with thermoregulation. Similarly, Gates et al. (1965) connected the inter-
action of light with leaves to internal leaf pigments and leaf structure (Fig. 3.2.) and
how this relates to larger ecological processes.

By the 1970s, work with spectrophotometers at the US Department of Agriculture
(USDA) led to the use of spectral methods for constituent characterization—near-
infrared spectroscopy (NIRS) to predict moisture, protein, fat, and carbohydrate
content of feed (Norris and Hart 1965; Norris et al. 1976; Shenk et al. 1981; Davies
1998; Workman and Weyer 2012), generally using linear regression on dry samples.
In the 1980s and 1990s, field and laboratory studies used these earlier spectrometer
systems to develop relationships and approaches to link leaf optical properties
and underlying biochemical and structural properties, including variations in leaf
moisture condition (Hunt and Rock 1989). For example, Elvidge (1990) utilized
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spectroscopy to describe optical properties of dried plant materials in the 0.4-2.5
micron range that enable detection of plant biochemistry from spectroscopy.
Similarly, Curran (1989) summarized spectral features across this same spectral
range that could be used in RS of plants, identifying not just the specific absorption
features associated with pigments but also features related to harmonics and over-
tones related to molecular bonds of hydrogen (H) with carbon (C), nitrogen (N), and
oxygen (O) in organic compounds (e.g., Fig. 3.3). In addition, by the late 1980s,
researchers began to utilize novel, experimental airborne imaging spectrometer sys-
tems to map vegetation canopy chemistry in diverse landscapes. Using an early-
generation NASA imaging spectrometer, the airborne imaging spectrometer (AIS,
Vane and Goetz 1988), these studies illustrated the capacity to map landscape varia-
tion in foliar biochemical properties, including nitrogen and lignin (Peterson et al.
1988; Wessman et al. 1988; Wessman et al. 1989). AIS was the precursor to the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS, Vane 1987). Following
on this work, several others explored the impacts of leaf functional traits on reflec-
tance properties of plant canopies and the ability to retrieve canopy chemistry,
leveraging several important airborne campaigns including the Oregon Transect
Ecosystem Research (OTTER) project and the Accelerated Canopy Chemistry
Program (ACCP) (e.g., Card et al. 1988; Peterson et al. 1988; Matson et al. 1994;
Bolster et al. 1996; Martin and Aber 1997).

These early studies became the basis for studies using imaging spectrometry to
infer nutrient use and cycling in natural ecosystems (e.g., Martin and Aber 1997;
Ollinger et al. 2002; Ollinger and Smith 2005). By the 1990s, the promise of
spectroscopy for ecological characterization led to the increased use of handheld
portable spectrometers in the field (e.g., instruments from Analytical Spectral
Devices, GER, Spectra Vista Corporation, Spectral Evolution, Ocean Optics, LiCor,
and PP Systems), as well as research that led to the use of narrowband SVIs for
characterizing rapid changes in leaf function in response to the environment and
leaf physiology (e.g., photochemical reflectance index, PRI, Gamon et al. 1992;
Penuelas et al. 1995; Gamon et al. 1997). The review by Cotrozzi et al. (2018)
provides a more detailed summary of the history of spectroscopy for plant studies,
while Table 3.1 provides a summary of the key functional traits observable with
spectroscopic RS approaches. As a consequence of studies at the leaf level and
using early imaging spectrometers, a host of airborne sensor systems emerged, such
as AVIRIS (Green et al. 1998), HyMap (Cocks et al. 1998), Airborne Prism
Experiment (APEX, Schaepman et al. 2015), the Carnegie Airborne Observatory
(CAO, Asner et al. 2012), AVIRIS-Next Generation (Miller et al. 2018; Thompson
et al. 2018), and the US National Ecological Observatory Network (NEON) imag-
ing spectrometer (Kampe et al. 2010) in the twenty-first century. The NASA proto-
type satellite EO-1 (Middleton et al. 2013) included the Hyperion sensor as an early
test of the capacity to make hyperspectral measurements from space, leading to the
development of a number of spaceborne missions planned for the early 2020s
(Schimel et al., Chap. 19).
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3.1.4 Key Considerations for the Use of Imaging Spectroscopy
Data for Scaling and Mapping Plant Functional Traits

One of the chief challenges to effectively using imaging spectroscopy has been the
acquisition of data of sufficient resolution, quality, and consistency for broad
application in vegetation studies (Table 3.2). This necessitates measurements in the
shortwave infrared (SWIR, 1100-2500 nm) in addition to the visible and near
infrared (VNIR, 400-1100 nm). While VNIR wavelengths are most sensitive to
pigments and overall canopy health, longer wavelengths are required to retrieve
many biochemicals and LMA (Serbin et al. 2014; Kokaly and Skidmore 2015;
Serbin et al. 2015; Singh et al. 2015). Spectral resolution is critical as well, with
10 nm band spacing and 10 nm full-width half maximum (FWHM) generally con-
sidered essential to identify traits detected based on narrow absorption features.
Even finer resolution is required to detect spectral features that rely on narrow (<0.5
nm) atmospheric windows, such as solar-induced fluorescence (SIF, Yang et al.
2018). Other key considerations include sufficient signal-to-noise ratio (SNR) to
identify important spectral features, accounting for both coherent and random noise
related to detector sensitivity, dark current, and stray light. Additional sensor char-
acteristics important to using imaging spectroscopy include spectral distortion.
Most sensors are push-broom sensors, in which an image is constructed via the
forward movement of the platform. Spatial samples are measured in the X-dimension
(pixels) of the detector array and spectral wavelengths in the Y-dimension.
Nonuniformity may arise due to differences in detectors in both dimensions, mean-
ing that different detectors in the X-dimension see different central wavelengths
(smile) and offsets in the Y-dimension lead to band-to-band misregistration (key-
stone). All of these effects can influence the ability to detect traits reliably within
one scene or across multiple scenes using common algorithms. Full understanding
of detector (and thus image) uniformity as well as the measurement point-spread
function in 3-D (spatial X [detector X], spatial Y [platform movement], and spectral
[detector Y]) is critical to accurate retrievals.

All RS data require some level of post-processing. Imaging spectroscopy is no
different; prior to implementing algorithms for trait retrieval (Sect. 3.2.2), addi-
tional efforts must be undertaken to ensure consistent measurements in consistent
units such that retrievals from imagery from multiple sources, dates, locations, etc.
can be compared. Minimally, pixel measurements should be converted to radiances
(w m?2 sr! nm™) based on laboratory calibrations and regular vicarious measure-
ments of stable targets. With proper instrument characterization, keystone, smile,
and other radiometric artifacts can be reduced. Subsequently, atmospheric correc-
tions to convert radiance to reflectance (percent) are essential for cross-site studies.
The approaches to atmospheric correction are numerous and tailored to particular
environments, e.g., terrestrial vs. aquatic systems. Even within terrestrial applica-
tions, approaches differ among airborne data products (e.g., NASA’s AVIRIS-
Classic and AVIRIS-NG sensors vs. NEON AOP) and do not necessarily yield
consistent reflectance imagery. Finally, new approaches that take advantage of
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advances in computing capacities and newer optimal estimation (OE) approaches
for radiative transfer retrieval of atmospheric parameters are poised to transform
atmospheric correction in the 2020s (Thompson et al. 2018).

Following atmospheric correction, scene-dependent corrections are often
required, including corrections for different illumination and reflectance due to sun-
target-sensor geometry, i.e., the bidirectional reflectance distribution function
(BRDF). Current methods to correct for across-track (and along-track) illumination
variation account for differences in vegetation structure and density, either through
continuous functions (Schlidpfer et al. 2015; Weyermann et al. 2015) or using
land-cover stratification (Jensen et al. 2018). However, BRDF corrections are also
rapidly changing and likely will be improved by new OE methods. As well, methods
requiring land cover stratification are generally limited to local studies, whereas
broad-scale implementation across biomes and through time will be most stable as
long as scene-specific stratification is not required.

In addition to BRDF, corrections for topographic illumination are required
(Singh et al. 2015). However, such corrections can result in poor performance for
highly shaded slopes; they enhance noise on shaded slopes while suppressing signal
on illuminated slopes. In addition, differential illumination may still remain in
images due to multiple sensor artifacts as well as effects of vegetation structure
(Knyazikhin et al. 2013). These effects can be effectively addressed using vector
normalization (Feilhauer et al. 2010; Serbin et al. 2015) or continuum removal (e.g.,
Dahlin et al. 2013). Such approaches largely address structure-induced reflectance
effects of broadleaf and graminoid canopies, with minor variances remaining in
conifers. The residual effect of canopy structure on trait mapping largely relates to
an inability to fully account for within-canopy scattering of diffuse radiation,
especially in conifer forests.

Finally, when integrating data from multiple sources to map canopy traits, users
must address wavelength calibrations. Different sensors may have different band
centers, and these may change (on airborne devices) as they are recalibrated from
time to time. This requires image resampling, which is data and processing inten-
sive and—to be done precisely—requires good knowledge of spectral response
functions or model recalibration to new wavelengths.

3.2 Linking Plant Functional Traits to Remote Sensing
Signatures

All materials interact with light energy in different and characteristic ways. With
respect to terrestrial ecosystems, spectroscopic RS leverages spectroradiometers,
which measure the intensity of light energy reflected from or transmitted through
leaves, plant canopies, or other materials (e.g., wood, soil, Fig. 3.3). The absorbing
and scattering properties of the individual elements (e.g., leaves, twigs, stems)
within the canopy or surface (soil) are defined by their physical and 3-D structure as
well as chemical constituents or bonds (Figs. 3.2 and 3.3), which drives the vari-
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Fig. 3.4. Similar to those of a leaf, the properties of vegetation canopies strongly control the opti-
cal signatures observed by passive remote sensing instrumentation (Ollinger 2011). Specifically,
the height and three-dimensional shape of the individual plants comprising the canopy as well as
their leaf area index (LAI), leaf optical properties and stem and soil optical properties regulate the
amount of incident radiation that reflects back from and transmits through a canopy. In addition,
canopy properties and sun-sensor geometry can modify the shape and strength of the reflectance
signature of vegetation canopies, which requires careful consideration when developing methods
to map leaf functional traits

ability observed in reflectance spectra (Figs. 3.1 and 3.4). Thus, the underlying
variation in plant canopy structure, function, and leaf traits in turn drives the optical
properties and spectral signatures detected by RS platforms (Ollinger 2011). As
such, the capacity to infer plant health, status, stress, and leaf and plant functional
traits with optical RS observations is tied to the physical principle that plant physi-
ological properties, structure, and distribution of foliage within plant canopies are
reflected in the RS signatures of leaves within a canopy (Curran 1989; Kokaly et al.
2009; Ollinger 2011).

3.2.1 Spectroscopy and Plant Functional Traits

With the advent of laboratory and field spectrometer instrumentation, the leaf to
landscape-scale RS of vegetation traits and functional properties began in earnest in
the early 1980s (Sect. 3.1.3). As stated in Sect. 3.1.4, there are a host of important
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considerations with the use of leaf and imaging spectroscopy for scaling plant func-
tional traits. In addition, the underlying drivers of vegetation optical properties are
complex and numerous (Ustin et al. 2004; Ollinger 2011). For example, in the vis-
ible range (~0.4-0.75 microns) of the electromagnetic (EM) spectrum, the strong
absorption of solar energy by photosynthetic pigments in healthy, green foliage
dominates the optical properties of leaves (Ustin et al. 2009; Figs. 3.2. and 3.3).
Importantly, knowledge of leaf pigment pools and fluxes provides key insight into
plant photosynthesis, environmental stress, and overall vigor. As such a significant
amount of research has focused on the retrieval of foliar primary and accessory pig-
ments using spectroscopic and other RS measurements (e.g., Jacquemoud et al.
1996; Richardson et al. 2002; Sims and Gamon 2002; Ustin et al. 2009; Féret et al.
2017). Blackburn (2007) and Ustin et al. (2009) provide more detailed reviews on
the use of spectroscopy to remotely sense pigments in higher plants.

Within the near-infrared (NIR, ~0.8—1.2 microns) portion of the EM spectrum,
optical signals are generally dominated by scattering from internal leaf structures,
structural properties, water, and leaf epidermal layer (Figs. 3.2 and 3.3). In addition,
strong leaf water absorption features in the NIR, centered on ~0.97 and 1.1 microns,
are often used to remotely sense vegetation water content (e.g., Hunt and Rock
1989; Gao and Goetz 1995; Sims and Gamon 2003; Stimson et al. 2005; Colombo
et al. 2008). Much of the early research into the use of spectroscopic RS focused on
leaf and canopy water content retrieval given its importance in plant function and as
an important indicator of moisture (Fig. 3.5.) and other stress. In attached, fresh leaf
material, water also dominates the spectral absorption features of the SWIR (1.3-2.5
micron) portion of the EM (Hunt and Rock 1989; Sims and Gamon 2003); as a
result, spectral optical properties are strongly regulated by leaf and canopy water
content in this region (Fig. 3.5). Along with water absorption, a number of other
biochemical and structural trait absorption features exist in the SWIR wavelength
region (Fig. 3.3), including cellulose, lignin, structural carbon, and nutrients and
proteins (Curran 1989; Elvidge 1990; Kokaly et al. 2009; Ollinger 2011; Ely et al.,
2019). Removal of water from leaf materials can sometimes enhance the detection
of these absorption features (e.g., see Serbin et al. 2014 and references within;
Fig. 3.5). However, at the canopy scale, a number of studies have demonstrated the
capacity to retrieve these foliar biochemical properties in the SWIR region (e.g.,
Wessman et al. 1988; Martin and Aber 1997; Townsend et al. 2003; Kokaly et al.
2009; Asner et al. 2015; Singh et al. 2015), perhaps because of the increased signal
due to multiple scattering within canopies (Baret et al. 1994).

In addition to the underlying leaf biochemical and structural characteristics, leaf
orientation, display, and distribution in a canopy are also strong drivers of plant
optical properties (Ollinger, 2011; Fig. 3.4). Decreasing the leaf area of a canopy
generally results in a higher reflectance signal from elements deeper within the
canopy, including twigs, branches, stems, and soil/litter layer (Asner 1998; Asner
et al. 2000; Ollinger 2011). Canopies with flat, horizontal leaves tend to have higher
NIR reflectance than those with more erect, vertical leaves, depending on the sun-
sensor geometry. Leaf anatomy and average leaf angle vary widely across species
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Fig. 3.5. Together, leaf optical properties and canopy architecture regulate the remote sensing
signatures observed in remote sensing data. In addition, changes in leaf internal biochemistry or
structure (i.e., functional traits) as a result of biotic or abiotic factors can change these signatures
over space and time. For example, a prolonged drought can cause changes in leaf internal water
content and potentially a redistribution of internal pigmentation. We can simulate the potential
changes in optical signatures associated with a drought using a leaf and canopy-scale radiative
transfer models (RTM), in this case PROSPECT-5b (Féret JB et al. 2008) and SAIL (Verhoef and
Bach 2007), to illustrate the changes in leaf an canopy spectra over the course of a low, moderate,
and high drought event. Here we modified pigment and water content from low to high for a range
of canopies, as represented by different LAIs, and for canopy-scale reflectance, we incorporated
the sensor characteristics of AVIRIS-classic (Green et al. 1998) to illustrate what the canopy reflec-
tance might look like from that sensor. (For illustration purposes only)
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(Falster and Westoby 2003), with consequences for interpreting optical RS sig-
natures (Ollinger 2011). Thus, when considering the use of RS approaches for map-
ping leaf traits, careful consideration of vegetation structure, collection
characteristics, and sensor design is important.

Phenology, leaf seasonality, and leaf age are also important drivers of optical
properties for a number of reasons. First, leaf traits can change significantly over the
lifetime of a leaf (e.g., Wilson et al. 2001; Niinemets 2016; Chavana-Bryant et al.
2017; Wu et al. 2017), and the corresponding leaf optical properties will change in
concert (Yang et al. 2016). Average leaf angle distribution can also change with leaf
age or seasonally from younger, recently expanded leaves to fully expanded (Raabe
et al. 2015), which can have significant impacts on canopy reflectance (Huemmrich
2013). Finally, atmospheric, insect, or other stressors typically change the chemical
makeup of leaves and so their optical properties (e.g., Couture et al. 2013; Ainsworth
et al. 2014; Cotrozzi et al. 2018).

3.2.2 Approaches for Linking Traits and Spectral Signatures

Despite the promise and utility of spectroscopy for the retrieval and mapping of
plant traits across space and time, there has not been consensus or standardization
of approaches and algorithm development in the RS and biodiversity communities.
This is not entirely unexpected given the complexity of connecting traits and RS
observations across the various scales of interest, from leaves to individual trees,
communities, and landscapes (Schweiger, Chap. 15). In addition, early approaches
(e.g., Peterson et al. 1988) were often later deemed inappropriate and often replaced
by other techniques (e.g., Grossman et al. 1996). Access to more powerful, improved,
and cheaper computing resources has also allowed for the exploration of more com-
plex statistical and machine-learning approaches (see Schweiger, Chap. 15).

Two primary approaches have been utilized to link RS observations to functional
traits—empirical, statistically based techniques and radiative transfer modeling
(RTM; see also Meireles et al., Chap. 7; Ustin, Chap. 14).

3.2.2.1 Empirical Scaling Approaches

With respect to empirical techniques, the use of SVIs was one of the earliest methods
to explore the capacity to link a range of plant functional traits to vegetation spectra.
Typically, with this approach a single SVI is linked with a trait of interest, such as
leaf pigments or water content, to develop a simple statistical relationship between the
trait of interest and corresponding variation in optical properties (e.g., Sims and
Gamon 2003; Gitelson 2004; Colombo et al. 2008; Feret et al. 2011). The derived
model is then used to estimate trait values for new leaves using only spectral mea-
surements. This approach typically assumes the researcher has an a priori under-
standing of the links between the trait and resulting variation in the electromagnetic
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spectrum and thus selects specific wavelengths, and therefore SVI, for their analysis.
An alternative approach is to explore the spectra and trait space to identify new or
previously unknown SVIs that maximize the correspondence between optical prop-
erties and traits of interest (e.g., Inoue et al. 2008), akin to a data mining exercise.
A challenge of this approach can be interpretation of the selected SVIs, where the
resulting vegetation indices may not contain wavelengths with known absorption
features relating to the trait of interest. The same general approach can also leverage
multiple SVIs, provided the research avoids highly correlated portions of the spec-
trum (Grossman et al., 1996), to attempt to capture how variation in the trait of
interest is reflected in various portions of the EM spectrum to other sites and plant
species. However, a limitation to the use of SVIs has been the ability to generalize
across broad canopy architectures, species, and environments due to the often site-
specific modeling results or potential signal saturation issues with some SVIs
(Shabanov et al. 2005; Glenn et al. 2008).

Continuous spectral wavelet transforms have been used to reduce the dimension-
ality of spectral data prior to developing simple statistical models (e.g., Blackburn
and Ferwerda 2008). Wavelets are functions that are used to decompose a full, com-
plex signal into simpler component sub-signals. When used with spectral data, the
full reflectance signature can be decomposed in a way that allows the resulting
wavelet coefficients assigned to each sub-signal to be related to concentrations of
chemical constituents or other traits of interest, through standard statistical model-
ing approaches (e.g., linear regression). Previous studies have explored the use of
wavelet methods to retrieve a host of functional traits, including pigments, water,
and nitrogen content (e.g., Blackburn and Ferwerda 2008; Cheng et al. 2011; Li
et al. 2018; Wang et al. 2018). Continuum removal together with band-depth analy-
sis (Kokaly and Clark 1999) has also been utilized as a means to retrieve the chemi-
cal composition of leaves. In this approach, continuum removal lines are fit through
the absorption features of interest based on those regions not in the areas of interest,
then the original spectra are divided by corresponding values of the continuum
removal line. The band centers can then be found by finding the minimum of the
continuum-removed spectra. Normalization of the band centers is often used to
standardize the values across samples. These data are then used to develop models
to predict functional traits at the leaf and canopy scales, including foliar nitrogen
and recalcitrant properties, such as the amount of lignin and cellulose (Kokaly
et al. 2009).

In addition to the empirical SVI approach, as discussed in Schweiger (Chap. 15),
partial least-squares regression (PLSR) modeling has been used extensively in the
development of spectra-trait models for measuring, scaling, and mapping plant
functional traits (e.g., Ollinger et al. 2002; Townsend et al. 2003; Asner and Martin
2008; Martin et al. 2008; Dahlin et al. 2013; Singh et al. 2015; Ely et al. 2019). A
key attribute of PLSR is the capacity to utilize the entire measured portion of the
EM spectrum as predictors (i.e., X matrix) without requiring a priori selection of
wavelengths or SVIs (Wold et al. 1984; Geladi and Kowalski 1986; Wold et al.
2001). PLSR avoids collinearity (i.e., spectral autocorrelation across wavelengths)
in the predictor variables (i.e., reflectance wavelengths), even if predictors exceed
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the number of observations (Geladi and Kowalski 1986; Wold et al. 2001; Carrascal
et al. 2009). This is done through singular value decomposition (SVD), which
reduces the X matrix down to relatively few non-correlated latent components.
While PLSR was originally used in chemometrics, the features and benefits of
PLSR also fit well within the goals of connecting spectral signatures to leaf func-
tional traits. PLSR leverages the fact that different portions of the EM spectrum
change in concert with various nutritional, structural, and morphological properties
of leaves and canopies—in other words, leveraging the known covariance between
variations in leaf optical properties and leaf traits (Ollinger 2011). Importantly,
PLSR also allows for univariate or multivariate modeling where multiple predic-
tands (i.e., Y matrix) can be modeled simultaneously with the same spectral matrix
to account for the covariance between X and Y but also among the various Y
(response) variables (Wold et al. 1984; Geladi and Kowalski 1986; Wold et al.
2001). Wolter et al. (2008) review of the use of PLSR in RS research, and Carrascal
et al. (2009) summarize its use in ecology, as well as key features of PLSR.
Several approaches and implementations of PLSR have been used within the
overarching “plant trait mapping” paradigm, including various spectral transforma-
tions and the use of prescreening of wavelengths or down-selection of suitable of
pixels (e.g., Townsend et al. 2003; Feilhauer et al. 2010; Schweiger, Chap. 15; Asner
et al. 2015). In a typical PLSR implementation (e.g., Fig. 3.6), foliar samples are
first collected from vegetation canopies and processed to obtain the functional traits
of interest. For leaf-scale algorithms, the optical properties of the leaves are
typically measured in situ or within a small window (2—4 hours) prior to further
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Fig. 3.6. A simple example illustrating how leaf functional traits and optical properties (e.g.
reflectance) are combined in an empirical partial least-squares regression (PLSR) modeling
approach to develop spectra-trait algorithms. The input traits and reflectance spectra are combined
and used to train and test a PLSR model, using either cross-validation and/or independent valida-
tion (e.g., Serbin et al. 2014), and the resulting model can then be applied to other spectral mea-
surements to estimate the traits of interest
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processing. Leaf and/or image spectra for the pixel containing the plots or sample
locations are then linked with these functional trait measurements to develop the
PLSR algorithm. Typically, for models utilizing imaging spectroscopy data, plot-
scale estimates of traits are derived using measurements of basal area, leaf area by
species, or other means to produce a weighted average of each trait by dominant
species within given ground area (e.g., McNeil et al. 2008; Singh et al. 2015). The
algorithm is evaluated using internal validation during model development (e.g.,
cross-validation) and/or using a set of training and validation data to build and test
the model predictive capacity across a range of similar samples and optical proper-
ties. Some approaches utilize additional steps to characterize the uncertainties asso-
ciated with the sample collection, measurements, and other issues (e.g., instrument
noise) in the PLSR modeling step. For example, Serbin et al. (2014) and Singh et al.
(2015) introduced a novel PLSR approach that can account for uncertainty in the
prediction of trait values, which has later been used by other groups (Asner et al.
2015). Image-scale algorithms are often used to derive functional trait maps (e.g.,
Fig. 3.7) to explore the spatial and/or temporal patterns of traits across the land-
scapes of interest (e.g., Ollinger et al. 2002; McNeil et al. 2008).
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Fig. 3.7. Much like developing a leaf-scale PLSR model for estimating leaf functional traits, such
as leaf nitrogen concentration (Fig. 3.6), we can also utilize high spectral resolution imaging spec-
troscopy data, such as that from NASA AVIRIS to build models applicable at the canopy to land-
scape scales (e.g., Dahlin et al. 2013; Singh et al. 2015). Here we show a simple illustration of the
linkage between functional traits scaled to the canopy, for example based on a weighted average of
the dominant species in the plot, connected with the reflectance signature of these canopies. Once
linked, we can develop PLSR algorithms conceptually similar to that of leaves resulting in canopy-
scale spectra-trait models capable of mapping functional traits across the broader landscape
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While the PLSR approach produces algorithms that “weight” wavelengths by
their importance in the prediction (Wold et al. 2001) of the functional traits of inter-
est (e.g., Serbin et al. 2014), some researchers have also explored modifications to
the standard PLSR approach that provide additional reductions in data dimensional-
ity. For example, Li et al. (2008) coupled PLSR with a genetic algorithm (GA)
approach to select a smaller subset of wavelengths to use in the final PLSR model
for predicting leaf water content, measured as equivalent water thickness (EWT).
DuBois et al. (2018) combined the SVI and PLSR approach by using all two-band
AVIRIS wavelength combinations to model the relationship between spectral reflec-
tance and ecosystem carbon fluxes across a water-limited environment. To date, the
spectra-trait PLSR modeling approach has shown the capacity to characterize the
widest array of leaf functional traits using the optical properties of plants across a
broad range of species and ecosystems (e.g., Dahlin et al. 2013; Asner et al. 2014;
Asner et al. 2015; Serbin et al. 2015; Singh et al. 2015; Couture et al. 2016).

Similar to the PLSR approach, researchers have leveraged various machine-
learning approaches to connect RS observations to functional traits (e.g., Féret et al.
2018). Schweiger (Chap. 15) describes two commonly used machine-learning
approaches in RS; several other approaches have also been used to model trait varia-
tion as a function of spectral measurements. More recently, Gaussian processes
regression (GPR) has been recommended as superior to other machine-learning
approaches for trait mapping from imaging spectroscopy data (Verrelst et al. 2012;
Verrelst et al. 2016). GPR is a nonlinear nonparametric probabilistic approach simi-
lar to kernel ridge regression that directly generates uncertainty (or confidence) lev-
els for the prediction (Wang et al. 2019). This is in contrast to PLSR uncertainties,
generally assessed through permutation (Singh et al. 2015; Serbin et al. 2015). PLSR
and GPR yield very similar results, both in terms of absolute trait predictions and
relative scaling of uncertainties (Wang et al. 2019). PLSR is much more computa-
tionally efficient, and results are readily interpretable in terms of wavelength quanti-
tative contribution to prediction (see Fig. 3.1 in Schimel et al., Chap. 19), whereas
GPR only identifies relatively important wavelengths.

The challenge with most machine-learning approaches is that some level of data
reduction is required for optimal performance. Standard approaches, such as principle
component analysis (PCA) or minimum noise fraction (MNF) transformations, may
reduce data dimensionality. However, features important to trait estimation may be
buried in lower principle components, as high contrast variation (albedo, greenness,
water content) dominate scene properties. In contrast, PLSR rotates the data into
latent vectors optimized to the empirical dependent variables, which generally yields
strong models for calibration data but can lead to poor model performance when con-
fronted with new data that differ considerably from the model-building data sets.

3.2.2.2 Radiative Transfer Models and Scaling Functional Traits

An alternative to statistical, field-based, and empirical approaches for connecting
leaf and canopy optical properties with plant functional traits, RTMs can be used
either at the leaf and canopy scales to directly retrieve leaf traits (e.g., Colombo
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et al. 2008; Darvishzadeh et al. 2008; Feret et al. 2011; Banskota et al. 2015;
Shiklomanov et al. 2016) or in hybrid approaches where statistical algorithms are
developed based on RTM simulations (e.g., Asner et al. 2011). RTMs encapsulate
our best mechanistic understanding of the coordination among leaf properties,
canopy structure, and resulting spectral signatures at the leaf and canopy scales,
but abstracted to operate with different degrees of complexity and assumptions
(Bacour et al. 2002; Nilson et al. 2003; Kobayashi and Iwabuchi 2008; See also
Morsdorf et al., Chap. 4; Ustin and Jacquemoud, Chap. 14).

At the leaf scale, RTMs were generally spawned from earlier work that identified
the relationships between fresh and dried leaf reflectance and a range of foliar traits,
including pigments, water content, nitrogen, dry matter, cellulose, and lignin. The
realization that leaf optical properties were fundamentally tied to the concentration
and distribution of leaf traits led to the development of models that could closely
mimic the spectral patterns across the shortwave spectral region (0.4—2.5 microns)
based on select leaf properties, such as chlorophyll and water content, as well as
structural variables. By far the most widely and commonly used leaf-level RTM is
the PROSPECT model (Jacquemoud and Baret 1990; Feret et al. 2008), which sim-
ulates leaf directional-hemispherical reflectance (R) and transmittance (T), allowing
for the calculation of leaf absorption (1-R+T) based on leaf biochemical and mor-
phological properties, primary and accessory pigments, water content, LMA, or dry
matter content, brown material, and an approximation of the thickness of the inter-
nal leaf mesophyll layer (Féret et al. 2008; Féret et al. 2017). PROSPECT then
simulates leaf optical properties based on a generalized plate model describing
leaves as a stack of N homogenous absorbing layers that are calculated based on the
values of input leaf traits and their corresponding spectral absorption coefficient.
Other prominent leaf models include the Leaf Incorporating Biochemistry
Exhibiting Reflectance and Transmittance Yields (LIBERTY) model (Dawson et al.
1998) and LEAFMOD (Ganapol et al. 1998). In particular, LIBERTY is notable
given its original application focusing on improving the modeling of needle-leaf
evergreen conifer species and their leaf optical properties based on several leaf
traits, similar to PROSPECT, but also including foliar lignin and nitrogen content.

Moving to the canopy scale, RTMs are far more numerous with a wide variety of
complexities, assumptions, and requirements (Verhoef and Bach 2007; Widlowski
et al. 2015; Kuusk 2018). Most canopy RTMs leverage leaf-scale models, such as
PROSPECT, to provide the leaf optical properties (i.e., leaf single-scattering albedo)
needed to simulate canopy directional-hemispherical reflectance across select
wavelengths, simulated spectral bands, or specific SVIs. Generally, the soil bound-
ary layer is either prescribed or simulated using a simple model of soil BRDF (e.g.,
Hapke model, Verhoef and Bach 2007), and stem or woody material reflectance and
transmittance (when used) is prescribed. Canopy RTMs can be separated into two
main classes, homogenous and heterogenous models. Homogenous models assume
the canopy to be horizontally unlimited and treated as a turbid medium of suffi-
ciently large number of phytoelements (leaves, stems, other materials). For exam-
ple, the Ross—Nilson model of plate medium (Ross 1981) assumes these elements
to be composed of small bi-Lambertian “plates” described by their reflectance and
transmittance properties with a specific leaf angle distribution (LAD). Leaves are
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small compared to the full canopy medium, with no self-shading, and transmittance
is a function of optical properties and leaf area index (LAI). Additional canopy
parameters were added, including the hot-spot and canopy clumping to describe
sun-sensor illumination effects and the inhomogeneity of the canopy elements
(Kuusk 2018). Early SAIL models also fall into this classification (e.g., Verhoef
1984). On the other hand, heterogenous canopy RTM models, including 3-D mod-
els, address the fact that vegetation canopies are heterogenous (e.g., gaps between
crowns, spatial structure, differing canopy architectures) but range widely in their
complexity and implementations. These models provide enhanced detail in the
modeling of vegetation canopies but are necessarily more complex. Often these
models require additional information to model vegetation “scenes,” which can
include information on tree crown shape, stem location, and other properties (e.g.,
hot spot, clumping) in addition to leaf optical properties, sun-sensor geometry, and
LAI These models range from 3-D Monte Carlo ray-tracing models, such as
FLIGHT (North 1996) and FLiES (Kobayashi and Iwabuchi 2008), to analytical
and hybrid approaches using a variety of canopy structure schemes including geo-
metric optical (GO) representation of individual plants where tree placement fol-
lows a statistical distribution and leaf and stem scattering elements are homogenously
distributed (e.g., Kuusk and Nilson 2000; Nilson et al. 2003). For example, multiple
stream, including four-stream, two-layer models often utilize simplifying assump-
tions, to model canopies as homogenous and continuous (i.e., “slab canopies”), but
which are composed of a large number of small scattering elements (leaves, some-
times leaves and stems) with arbitrary inclination angles (e.g., 4SAIL2, Verhoef and
Bach 2007). The scattering elements and the soil can be prescribed with specific
optical properties using observed data or based on a leaf RTM, such as PROSPECT
(Jacquemoud et al. 2009). In addition, some models can divide complex scenes into
smaller cells to perform the radiative transfer calculations (e.g., DART,
Gastellu-Etchegorry et al. 2015) where the level of simulation detail is based on the
size of the cells and the degree of detail built into the model scene components. See
the review by Kuusk (2018) for more details regarding canopy RTMs and their
design, diversity, assumptions, and approaches.

The use of RTMs allows for the estimation of leaf and canopy traits using simu-
lated canopy reflectance, without some of the limitations or challenges of empirical
approaches (3.3.1), such as the requirement of field sampling, scaling leaf traits to
the canopy, and other issues such as the timing of field and imagery collections.
Furthermore, RTMs can provide a more mechanistic connection between traits and
reflectance allowing for potentially broader application than empirical approaches
in areas were ground sampling may be sparse (e.g., remote regions such as the
Arctic or the tropics). In addition, RTMs provide the opportunity to prototype
inversion approaches across a range of remote sensing platforms and evaluate the
trade-offs between different sensor designs, spectral resolutions, and temporal
coverage (Shiklomanov et al. 2016), enabling the development of cross-platform
retrieval algorithms.

Depending on the application, and RTM complexity, inversion can be conducted
at the pixel or larger patch scales (i.e., collections of relatively homogenous areas of
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vegetation) to characterize spatial and temporal patterns in plant functional (e.g.,
pigments) and structural (e.g., LAI) properties. In RTM inversion, the leaf-scale
model is often the focus, where the goal is to invert the canopy and leaf models
jointly to extract estimated foliar traits based on observed canopy reflectance (e.g.,
Colombo et al. 2008). Many other studies have focused on retrieving canopy-scale
parameters, such as LAI (e.g., Darvishzadeh et al. 2008; Banskota et al. 2015).
Early approaches leveraged RTM inversions that focused on numerical optimization
techniques to minimize the difference between modeled and observed reflectance
across similar wavelengths (e.g., Jacquemoud et al. 1995). Other methods have uti-
lized look-up table (LUT) inversion (e.g., Weiss et al. 2000) where a range of simu-
lated canopy reflectance patterns are generated in advanced by varying leaf and
canopy inputs across predetermined values. These simulated spectra are then com-
pared to observations where either a single or select number of closely matching
modeled spectra, and their associated inputs, are selected as the solution to the
inversion. Bayesian RTM inversion methods have also been utilized (e.g.,
Shiklomanov et al. 2016) as a means to retrieve leaf and canopy properties as joint
posterior probability distributions through iterative sampling of the input parameter
space. The use of RTMs ranges from retrieval of vegetation functional and structural
traits to the characterization of landscape functional diversity (Kattenborn et al.
2017; Kattenborn et al. 2019).

3.3 Important Considerations, Caveats, and Future
Opportunities

3.3.1 Field Sampling and Scaling Considerations

There are several important considerations and best practices when developing
algorithms for the remote estimation of plant traits (see Schweiger, Chap. 15). We
will only briefly touch on these here. A key first step is to consider the scope of the
research and area of interest, focusing specifically on considerations such as local
climate conditions, terrain, vegetation, and canopy access. Specifically, the spatial
locations, site, and canopy access (e.g., is it possible to reach canopy foliage?);
vegetation composition and canopy architecture; timing of collection; and methods
for sample retrieval are key to identify prior to field campaigns in order to maximize
the utility of the field samples for conversion of RS signatures to accurate trait maps.
Furthermore, it may be important to consider what approach may be best to charac-
terize the vegetation canopy architecture and/or composition to facilitate scaling of
each trait to the pixel or plot scale (e.g., using basal area, LAI). This may strongly
depend on the dominant vegetation types, where more open canopies may require a
different approach to a closed canopy, or on the spatial resolution of the imagery.
Observational data range is a primary consideration (see Schweiger, Chap. 15), and
sample locations should be chosen to cover the range of canopy types and vegeta-
tion communities that will fall within the RS observations. The timing of the field
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sampling should be as close to the RS collection date as possible, as an optimal
approach, but at least be selected to match the phenological stage of the vegetation
during the imagery collection, if leveraging sample campaigns in following year(s).
A number of different methods have been used to collect plant functional traits
to link with RS imagery (e.g., Wang et al. 2019). Common approaches for the col-
lection of canopy leaf samples include the use of slingshot, pruning pole, and shot-
gun (Lausch et al., Chap. 13), but also include line-launcher and air cannon (e.g.,
Serbin et al. 2014); simpler tools and hand shears are often used for accessible,
shorter canopies. Regardless of the sample collection approach, harvested leaves
should be reasonably intact and minimally damaged in order to avoid any issues
with changes in leaf chemistry from physical damage or stress. In addition, leaves
should be immediately measured for leaf optical properties and fresh mass, if these
are of interest, then stored in humidified and sealed bags and placed in a cool, dark
place prior to transport for further processing. Processing should then be completed
within 2—4 hours of sampling—though a much shorter time between sample and
measurement or different sample storage and handling (e.g., flash freezing in liquid
nitrogen) may be needed for specific biochemical traits. Typically top-of-canopy,
sunlit samples have been the main focus; however, more recent work has also begun
to focus on collection of canopy and subcanopy samples (e.g., Serbin et al. 2014;
Singh et al. 2015). This provides the ability to evaluate the depth in the canopy
needed to link traits with image, which may vary by vegetation type or LAIL

3.3.2 Evaluating Functional Trait Maps and the Need
to Quantify Uncertainties

Maps of plant functional traits are useful for a wide variety of applications. From an
ecological perspective, maps of plant traits across broad biotic and abiotic gradients
can be used to explore the drivers of plant trait variation in relation to climate, soils,
and vegetation types (e.g., McNeil et al. 2008). Modeling activities can leverage
these trait maps as either inputs for model parameterization across space and time
(Ollinger and Smith 2005) or to evaluate prognostic plant trait predictions. However,
to maximize the utility of functional trait maps a detailed understanding of the their
uncertainties across space and time is required.

In the earliest functional trait mapping work, predictive model uncertainties were
limited to the “goodness of fit” and overall model root mean square error (RMSE)
statistics provided by the modeling approach (e.g., Wessman et al. 1988; Martin and
Aber 1997; Townsend et al. 2003). While this information is helpful to understand
the accuracy of the model fit, that level of accuracy assessment is insufficient for
characterizing the uncertainty of the trait maps themselves. Mapping efforts should
instead provide an accounting of the trait measurement, scaling, and algorithm
uncertainties and provide this information in the resulting trait map data products.
However, detailed error propagation is not trivial, particularly with respect to empir-
ical modeling approaches, and is an ongoing and active area of research in the RS
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sciences and not discussed in detail here. On the other hand, efforts to provide prod-
uct uncertainties do exist. Serbin et al. (2014) and Singh et al. (2015) illustrate how
to incorporate data and modeling uncertainties at the leaf and canopy scales in the
mapping of plant functional traits. This approach captures the uncertainties stem-
ming from the leaf-level estimation of traits (Serbin et al. 2014) and the modeling of
plot-level spectra and trait values (Singh et al. 2015) using a similar PLSR and
uncertainty analysis approach. The result is an ensemble of PLSR models to apply
to new RS data providing mean and error metrics for every pixel in the image.
However, even approaches such as these fail to incorporate and propagate the uncer-
tainties stemming from the atmospheric correction workflow given the challenge of
extract the information needed to enable this on a pixel-by-pixel or even a scene-by-
scene basis. Future work will be required to focus on capturing this information and
providing it to the end-user who conducts the trait mapping efforts.

Uncertainty in RTM approaches have generally been derived based on inver-
sion approaches applied to imagery. For example, as described in Sect. 3.2.2.2, a
commonly used approach to the inversion of RTM simulations for the RS of func-
tional traits is the use of LUTs. Some LUT approaches provide results based on
the “best fit” of the model inversion results to the RS observations. However, this
only provides an assessment of error where field measurements can be used to
evaluate the retrieved values. Given the challenge of equifinality in RTM
approaches, later efforts have used an ensemble of best fit results to provide a
mean and distribution of values that provide a good fit of modeled reflectance to
observed (e.g., Weiss et al. 2000; Banskota et al. 2015). Using this approach
allows for the description of pixel-level uncertainty based on the best fit ensem-
bles; however, these need to be combined with an accuracy assessment to get a
true uncertainty of the functional trait retrievals. More recent approaches have
leveraged Bayesian inversion approaches that provide output that is not a point
estimate for each parameter but rather the joint probability distribution that
includes estimates of parameter uncertainties and covariance structure
(Shiklomanov et al. 2016). Regardless of the approach, the key is that the derived
products provide a reasonable assessment of trait uncertainty across the spatial
and temporal domain (where appropriate).

3.3.3 Current and Future Opportunities in the Use of Remote
Sensing to Characterize Functional Traits
and Biodiversity

The ability to map foliar functional traits from imaging spectroscopy greatly
expands the potential for understanding patterns of vegetation function and func-
tional diversity both locally and broadly across biomes, especially in comparison to
the challenges of fully characterizing spatial and temporal (across seasons and
between years) variation using field data (e.g., the TRY database). With forthcoming
spaceborne sensors (see Schimel et al., Chap. 19) and continental-scale experiments
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like the US National Ecological Observatory Network (NEON), we are able to test
relationships among traits and characterize functional diversity at unprecedented
scales. For example, NEON is collecting imaging spectroscopy data at 1 m resolu-
tion and waveform lidar data almost annually for 30 years at 81 10 km x 10 km sites
covering 20 biomes defined for the USA. With the addition of lidar, which enables
measuring traits such as plant area index, canopy height, canopy volume, and
aboveground biomass (of forests), a broad suite of traits can be leveraged to test
relationships that have been published in the literature (e.g., the leaf economics
spectrum) and are generally tested now at global scales using extensive—but still
not comprehensive—databases such as TRY. With spaceborne imaging, phenologi-
cal variation in traits (e.g., Yang et al. 2016) can be further explored. For example,
preliminary mapping of key functional traits across all NEON biomes in the USA
shows the leaf economics spectrum relationship between LMA and nitrogen for for-
est and grassland ecosystems east of the US Rocky Mountains (Fig. 3.8.) in com-
parison to the data set used for the original LES studies, GLOPNET (Global Plant
Trait Network, Wright et al. 2004; Reich et al. 2007). Importantly, the use of data
from RS platforms, such as NEON, AVIRIS, and upcoming spaceborne sensors (see
Schimel et al., Chap. 19), enables the filling of critical research gaps and global
coverage in remote regions, as suggested by Jetz et al. (2016) and Schimel et al.
(2015). The relationship does not differ significantly from published relationships
but does suggest a breadth of the relationship as well as outliers for a number of
observations many orders of magnitude higher than is possible from field databases.
Field databases are still required for basic science studies, as well as inventory, cali-
bration, and validation, but RS offers new possibilities for baseline characterization
of Earth’s functional diversity and thus testing new hypotheses about the drivers of
such variation, using the range of traits detectable from RS (Tables 3.1 and 3.2).
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Fig. 3.8. LMA versus nitrogen for NEON for GLOPNET observations (black dots, truncated to
observations with LMA <600) vs. pixel predictions derived for NEON sites east of the US Rocky
Mountains (color gradient). Color gradient is density of pixel observations based on 333,500 pixel
values randomly extracted from 447 flight NEON flight lines in 18 sites across 6 biomes
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Furthermore, coupling of spectral and functional trait databases (e.g., ecosis.org) will
facilitate more rapid development and testing of new functional algorithms or the
expansion of the scope of inference of existing models. In addition, the inclusion of
high spectral resolution sensors on unmanned aerial systems (UASs, Shiklomanov
et al. 2019) provides the opportunity to leverage similar scaling approaches as pre-
sented in this chapter with UAS observations to provide unprecedented temporal cov-
erage and targeted spatial sampling that can be used to understand ecosystem in new
detail or aid in the scaling from the plant to grid cell. In all, functional trait maps from
imaging spectroscopy will supplement data and approaches presented by Butler et al.
(2017) or Moreno-Martinez et al. (2018) for broad-scale trait characterization.
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Chapter 4
The Laegeren Site: An Augmented Forest
Laboratory

Combining 3-D Reconstruction and Radiative
Transfer Models for Trait-Based Assessment of
Functional Diversity

Felix Morsdorf, Fabian D. Schneider, Carla Gullien, Daniel Kiikenbrink,
Reik Leiterer, and Michael E. Schaepman

4.1 Introduction

Global change is altering biodiversity in an unprecedented manner (Parmesan and
Yohe 2003), and its impact on humankind may be large (Chapin III et al. 2000;
Isbell et al. 2017). Forests are of special relevance because they hold most of the
terrestrial biomass (Bar-On et al. 2018), are a hot spot of biodiversity (Wilson et al.
2012), and are subject to climate- and human-induced changes (Gardner 2010;
Hansen et al. 2013). To monitor and potentially mitigate changes in biodiversity,
Pereira et al. (2013) defined a set of essential biodiversity variables (EBVs), which
should be comprehensive, concise, and standardized. Originally, most of these
EBVs were to be measured in situ within ecosystems, but because forest plots are
particularly scarce in the regions where change is happening the fastest (Chave et al.
2014), remote sensing (RS) has been acknowledged as a vital component to contrib-
ute to the aims of EBVs in the form of RS-enabled EBVs (RS-EBVs; Pettorelli et al.
2016; O’Connor et al. 2015). More specifically, RS technologies such as imaging
spectroscopy and laser scanning have been attributed with the potential to play an
important role in providing the necessary information for RS-EB Vs, be it at regional,
national, or global scale (Skidmore et al. 2015; Jetz et al. 2016).

Still in its early stage is the design and use of the EBV framework to include and
combine RS-EBVs with in-situ measurements. In-situ measurements are often
based on point measurements of individual species, whereas RS-EBVs are area-
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based, with spatial characteristics depending on sensor resolution and coverage,
similar to the concept of grain and extent in ecology (Turner 1989).

For large-scale assessments (i.e., regional, continental, global), cost and effort of
fieldwork is a limiting factor with respect to in-situ observations. Data from the
newest generation of optical satellites (e.g., Landsat 8 and Sentinel-2) have high
potential for a global biodiversity assessment due to their high spatial resolution
(10-30 m), multispectral information, and temporal coverage, with repeat passes
within 5-6 days, depending on the area of interest. Nevertheless, due to their recent
launch, these sensors do not provide a long time series, and the complementarity of
lower resolution satellite data or airborne or terrestrial RS data in combination with
in-situ observation is beneficial to map changes at decadal or longer timescales.

All optical RS approaches use reflected light of the vegetation canopy to infer
information about its state (Schaepman et al. 2009; Homolova et al. 2013). Leaf-
level biochemistry (e.g., traits such as chlorophyll and water content) has strong
links with leaf reflectance and transmittance (Jacquemoud and Baret 1990).
However, when light interacts with the canopy, a multitude of scattering and absorp-
tion processes have to be considered (North 1996), taking place at different levels
(e.g., leaf, tree, canopy; Niinemets et al. 1998) of the canopy. Thus, passive optical
observational approaches of forested ecosystems are susceptible to the effects of
forest structure because directional effects associated with illumination and obser-
vation geometry may interact with signals related to leaf-level biochemistry (Hilker
et al. 2008; Knyazikhin et al. 2013). Consequently, the reflectance signal at the
canopy level is influenced by both vegetation structure and leaf-level physiology,
and disentangling those based on passive optical data alone remains a difficult prob-
lem (Kotz et al. 2004). The effect of vegetation structure on RS indices and products
(e.g., RS-EBVs) is difficult to assess, and its impact on current observations and
predictions may be large. The validation of advanced wall-to-wall RS products
becomes increasingly difficult because of spatiotemporal mismatches of in-situ
observations with RS data. Hence, we need a framework to be able to upscale and
validate leaf-level physiological traits to the level of RS data to test potential observ-
ables for RS-informed EBVs.

Radiative transfer (RT) modeling has been used for several decades to simulate
and understand the signals in passive optical data (Myneni et al. 1995, 1997; Meroni
et al. 2004; Lewis and Disney 2007; Gastellu-Etchegorry et al. 1996). In addition,
RT models (RTMs) have been used with existing medium- to low-resolution space-
borne missions for the retrieval of products such as leaf area index (LAI) or fraction
of absorbed photosynthetic radiation (fAPAR) through inversion (Myneni et al.
1997; Running et al. 2004). One particular issue with RTMs of vegetation is their
parameterization. While modeling approaches simulating low-resolution data [such
as Moderate Resolution Imaging Spectroradiometer (MODIS) or MEdium
Resolution Imaging Spectrometer (MERIS)] mainly used one-dimensional param-
eterizations of the vegetation (Jacquemoud 1993; Huemmrich 2001; Verhoef and
Bach 2007), higher-resolution sensors will need 3-D parameterization to account
for effects like shadowing and multiple scattering (Asner and Warner 2003; Disney
etal. 2006; Widlowski et al. 2015). The first RTMs incorporating 3-D forest structure
were called geometric-optical radiative transfer (GORT)-type models (Ni et al. 1999).
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While they were better at modeling directional effects than 1-D models, they still
lacked multiple scattering and did not have full energy balance closure of incoming
and outgoing radiation across all spectral domains. More advanced models use
Monte Carlo ray tracing (MCRT) to add multiple scattering and provide a sound
physical representation of the photon’s interaction with vegetation canopies (Disney
et al. 2006). While the inclusion of more physical processes (e.g., multiple scatter-
ing) certainly improves MCRT-type models over simpler approaches, their param-
eterization and benchmarking remains an issue. A large effort in testing RT models
was undertaken in the course of the radiation transfer modeling intercomparison
(RAMI) exercise, where different models were tested using a set of artificial scenes
of different complexity, including 3-D scenes, to see if the models produced compa-
rable results (Widlowski et al. 2008, 2015). However, this benchmarking remained
relative (i.e., representing actual forest patches that could be validated with real-
world Earth observation (EO) data acquired over the same area was not an aim of
the RAMI exercise). One reason, among others, for this was the lack of suitable
technologies and methods to capture and represent the 3-D vegetation structure at
small scales (e.g., branches, leaves, and/or shoots).

Today, laser scanning is an established tool for retrieving quantitative measures
of canopy structure (Nelson 1997; Lefsky et al. 1999; Nasset 2002; Morsdorf et al.
2004; Popescu et al. 2002; Morsdorf et al. 2006, 2010; Nelson 2013; Wulder et al.
2012). Airborne (ALS)-, terrestrial (TLS)-, and unmanned aerial vehicle (UAV)-
based laser scanning (Morsdorf et al. 2017) provide a direct means to assess vegeta-
tion structure by combining the known position and orientation of the sensor with
the time of flight of a laser pulse to produce a point cloud of exact 3-D coordinates.
Measurements can be made across scales (e.g., stand, tree, branch, and leaf level)
with finer scales often captured by close-range laser scanning (Morsdorf et al.
2018). The amount of structural detail contained in the point cloud can be over-
whelming, and the extraction of meaningful information remains a challenge
(Wulder et al. 2013; Morsdorf et al. 2018). Due to large data sets, automated meth-
ods for the extraction of either semantic information, such as single-tree detection
based on ALS (Hyyppa et al. 2001; Morsdorf et al. 2004; Kaartinen et al. 2012;
Wang et al. 2016) or tree geometry reconstruction from TLS (Cote et al. 2009;
Raumonen et al. 2013) or the derivation of biophysical variables such as LAI
(Morsdorf et al. 2006), are preferable over manual and/or empirical approaches.

Figure 4.1 shows an example of a single-tree-based 3-D reconstruction using
ALS- and TLS-derived information. Using the 3-D information derived by ALS and
TLS, one can reconstruct a virtual representation of the forest that will be used by
the RT model to simulate the radiative regime of the canopy. Such an approach can
be utilized to upscale measurements of leaf biochemistry to the canopy scale and to
validate imaging spectroscopy-derived RS-EB Vs across larger regions. In addition,
this approach uses a set of three physiological and tree morphological functional
traits, derived from imaging spectroscopy and laser scanning, respectively, to show-
case the potential of these technologies to map the functional diversity of forests
and to provide relevant information for RS-enabled EBVs.

Here we describe how we (i) designed and implemented an observational scheme
to gather in-situ and structural data across several scales to simulate the 3-D radiative
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Fig. 4.1 Workflow of the 3-D reconstruction using ALS and TLS measurements

regime of the forest, (ii) tested the simulation by comparing simulated and actual RS
data in their spectral and spatial information dimension, and (iii) use the approach to
demonstrate how remotely sensed functional traits can be used to compute regional-
scale functional richness, showcasing the information content of RS-EBVs.

4.2 The Laegeren Site: Description and History

The Laegeren site is located at N 47° 28’,49” and E 8° 21’, 05” at 680 m a.s.l. on the
southern slope of the Laegeren mountain, approximately 15 km northwest of Ziirich,
Switzerland (Fig. 4.2). The southern slope of the Laegeren marks the boundary of the
Swiss Plateau, which is bordered by the Jura and the Alps. Since 1986, a 45-m-tall
flux tower has provided micrometeorological data at high temporal resolution. Since
April 2004, CO, and H,0O flux measurements are a routinely contribution to the
FLUXNET/CarboEurope-IP network (Eugster et al. 2007). The mean annual tem-
perature is 8°C. The mean annual precipitation is 1200 mm, and the growing season
lasts 170-190 days. The natural vegetation cover around the tower is a mixed
beech forest. The western part is dominated by broad-leaved trees, mainly beech
(Fagus sylvatica L.) and ash (Fraxinus excelsior L.). In the eastern part, beech and
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Fig. 4.2 Location of the Laegeren site within Switzerland

Norway spruce (Picea abies (L.) Karst.) are dominant. The forest stand has a rela-
tively high diversity of species, ages, and diameters (Eugster et al. 2007). The ground
cover mainly consists of bare soil, boulders, and litter, while the sparse understory
vegetation is dominated by herbs and shrubs. Average canopy height (CH) is 24.9 m,
with a maximum of 49 m, and the stem density is 270 stems per ha.

4.3 Data

4.3.1 In-Situ Data

Ground data with varying spatial, spectral, and temporal resolution allow for the
3-D reconstruction of the Laegeren, its attribution with leaf optical properties
(LOPs), and generation of a reference database for parameterization and validation
purposes. We used multitemporal TLS on a 60 m x 60 m plot (Sect. 4.3.2.2) and an
extensive forest inventory for an area of 300 m x 300 m, which is extended to
300 m x 900 m for the simulation of EO data. In the inventory data, the type and
accurate position of the trees, as well as their crown dimension and offset due to
leaning stems, social position, and vertical stratification of the crown, were recorded
(Sect. 4.3.1.2). In addition, the occurrence and characterization of the understory
was mapped in the field and interpolated to a 2 m x 2 m grid using an ALS-based
classification (Leiterer et al. 2013).
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4.3.1.1 Measurements of Leaf Optical Properties

To obtain the optical properties of tree foliage, we used an integrating sphere cou-
pled with an Analytical Spectral Devices (ASD) FieldSpec-3. Measurements of
hemispherical and directional reflectance and transmittance, both from the abaxial
and adaxial side of the leaves, were taken. To take into account the vertical variabil-
ity of LOPs, we sampled in three different crown parts (top, middle, bottom), repre-
senting different lighting conditions in the canopy (e.g., sunlit, transitional, shaded).
Deciduous leaves were collected from ten individual trees of five species (Acer
pseudoplatanus spp., Fagus excelsior, F. sylvatica, Ulmus glabra, and Tilia platy-
phyllos). Measurements of aerosol optical depth (AOD) and precipitable amount of
water (PAW) were provided by the aerosol robotic network (AERONET) as level
2.0 quality-assured data. For details of the sampling and measurement scheme, see
Schneider et al. (2014).

4.3.1.2 Forest Inventory

An exhaustive forest inventory was carried out, individually addressing all single
trees with a diameter at breast height (DBH) above 20 cm on the 300 m x 300 m site.
Variables recorded for each tree included DBH, species, social status, and crown
shift (i.e., an estimation of the magnitude and horizontal direction of the crown
center in respect to the foot of the stem). The latter is of particular relevance on the
Laegeren site because many trees have leaning stems due to topography and shallow
soils. A geodetic tachymeter was used for the surveying, enabling fast and accurate
electronic tree location measurements. Using all measured points, a polygonal tra-
verse was calculated resulting in the x, y, z coordinates for each measurement posi-
tion with an error range of millimeters for the TLS measurements and a maximum
of 10 cm in x, y, and z for all other field measurements. The relative locations were
transformed to absolute Swiss national coordinates using three differentially cor-
rected global positioning system (GPS) base points, which were placed in canopy
gaps. See Fig. 4.3 for a visualization of the tree inventory.

4.3.2 RS Data
4.3.2.1 Airborne Laser Scanning

To provide 3-D structure information across the whole study area, we relied on two
airborne laser scanning campaigns, using a RIEGL LMS-Q680i scanner under leaf-
on conditions and a RIEGL LMS-Q560 scanner under leaf-off conditions. Flight
strips have an overlap of approximately 50%. Full-waveform features, namely, echo
width and intensity, were extracted from the data using the software RIANALYZE
and were assigned to the individual returns in the multiple-echo point cloud.
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Fig. 4.3 Subset of single-tree ground inventory (a) and UAV-based RGB imagery acquired in fall
(b). The black box in (b) denotes the subset presented in (a). The gray structure southwest of the
bounding box is the flux tower, and the small inset shows the total extent of the single-tree ground
inventory

The point cloud was filtered to classify ground and vegetation points, and the ground
points were subsequently interpolated to a raster of 1 m resolution. For a detailed
description of the digital terrain model (DTM) generation, see Leiterer et al. (2013).
DTM accuracy was assessed using more than 500 TLS-measured road surface and
bare soil points (see Sect. 4.3.2.2), which were related to the national land survey
and resulted in a mean height uncertainty of about +0.25 m. For each point of the
full point cloud, the height above ground was calculated by subtracting the interpo-
lated DTM value from the corresponding echo height above sea level, providing the
vertical distance of the vegetation echoes to the terrain underneath.

4.3.2.2 Terrestrial Laser Scanning

On a subset of about 60 m x 60 m, a ground-based TLS survey was carried out using
a Riegl VZ1000 instrument. A total of 40 scans on 20 scan locations were taken
because each location had to be covered by two scans due to the VZ1000’s camera
scanning pattern (Morsdorf et al. 2018). About 50 reflective targets were placed
within the scene and later used for co-registration of the scans. For co-registering
RiSCAN Pro was used, and we used the ALS data to subsequently globally adjust
(rotate and translate) the unified TLS point cloud. Due to the high and dense canopy,
TLS needs to be complemented by laser data from above the canopy, providing
more information in the upper part, either by ALS or UAV-based laser scanners. For
biomass retrievals, the occlusion of upper canopy material in TLS data might be less
of a problem because stems generally taper off toward the top. However, if simula-
tion of the radiative regime and subsequent comparison with EO data gathered with
a top-of-canopy perspective is the aim, TLS in denser forests needs to be comple-
mented with laser scanning data from above the canopy (Morsdorf et al. 2017,
2018) (Fig. 4.4).
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Fig. 4.4 Terrestrial laser scan of a beech-dominated part of the study area. Transect measures
about 30 m (width) x 4 m (depth). One can observe a general thinning of the point cloud toward
the top due to occlusion

4.3.3 Multispectral and Imaging Spectroscopy Data

Imaging spectroscopy data were acquired under clear sky conditions using the
APEX imaging spectrometer (Schaepman et al. 2015). The average flight altitude
was 4500 m a.s.l. resulting in an average ground pixel size of 2 m. APEX measured
at-sensor radiances in 316 spectral bands ranging from 372 nm to 2540 nm. APEX
data were processed to hemispherical-conical reflectance factors in the APEX pro-
cessing and archiving facility (Hueni et al. 2009). Level 1 (L1) calibrated radiances
were obtained by inverting the instrument model, applying coefficients established
during calibration, and characterization at the APEX Calibration Home Base
(CHB) in Oberpfaffenhofen, Germany. The position and orientation of each pixel
in 3-D space was based on automatic geocoding in PARGE v3.269, using the swis-
sALTI3D DTM. L1 data were then converted to hemispherical conical reflectance
factors (HCRFs, Schaepman-Strub et al. 2006) by employing ATCOR4 v7.0 in the
smile aware mode. The APEX data were complemented with other passive optical
data of varying spatial and spectral resolution to build up an EO data set (Fig. 4.5).
This EO data set enables cross-comparisons between the 3-D RT modeled and the
actual, measured top-of-atmosphere (TOA) reflectance values at different spectral
and spatial resolutions and thus an absolute evaluation of the 3-D reconstructed
forest scenes and the RTM parameterization. The EO data acquired during the
2010-2014 growing seasons covers a variety of spectral and spatial resolutions:
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Fig. 4.5 The spatial and spectral scales covered by Earth observation (EO) data gathered for
validation and up- and downscaling purposes

imaging spectrometer data from APEX (2 m x 2 m, see above for details) as well
as multispectral data from RapidEye (5 m x 5 m, 4 scenes), SPOT HRG
(10 m x 10 m, 5 scenes), PROBA CHRIS (17 m x 17 m, 1 scene), Landsat TM/
ETM+/OLI (30 m x 30 m, 37 scenes), ENVISAT MERIS (300 m x 300 m, 8
scenes), and Aqua/Terra MODIS (250 m x 250 m, monthly). We use APEX data for
the spectral validation and a RapidEye scene for the spatial validation of our 3-D
RTM approach.

4.4 Methods

4.4.1 In-Situ Data Processing

4.4.1.1 Optical Properties

LOPs were calculated separately for deciduous and coniferous trees. A linear

spectral forward mixing was applied to calculate the reflectance and transmittance
spectra of sunlit, transitional, and shaded leaves and needles. Because the spectra
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were found to match well with those in literature, the data were used directly instead
of a forward simulation of a LOP model (Feret et al. 2008). This was done to reduce
the number of parameters and associated uncertainties. The broadleaf species com-
position used for spectral mixing was derived from the forest inventory information
and is dominated by beech (about 50%), with lesser contributions from maple, elm,
linden, and ash.

One particular issue of the Laegeren site is its large variation in the spectral
background. Because we had multitemporal full-waveform lidar data available for
the Laegeren site, we used this information to classify the ground into distinct
classes (gravel, litter, soil) and assigned matching spectra from our field measure-
ments to these classes (Leiterer et al. 2013). As Schneider et al. (2014) showed,
using several understory classes instead of a homogenous (black) background
makes simulated top-of-canopy (TOC) and top-of-atmosphere (TOA) reflectance
values more realistic.

4.4.1.2 3-D Reconstruction

Two different approaches for 3-D reconstruction of the vegetation structure were
implemented and tested. The first approach relied on a single-tree identification and
the second one on a direct computation of plant area index (PAI) values inside a
voxel cell. Voxels are basically 3-D pixels, dividing the 3-D space into equal-sized
cubes. The single-tree detection (individual tree crown, ITC) method used was
based on Morsdorf et al. (2004), which derives tree location, height, and crown
diameter to reconstruct the forest in 3-D based on simple geometric primitives like
rotational paraboloids. However, as with most local maxima detection-based ITC
methods, its performance within the mixed forest stands of the Laegeren site was
suboptimal, with tree detection rates of only 50-70%. This is much lower than what
can be expected for conifer forests, where rates of up to 90% can be achieved
(Kaartinen et al. 2012; Wang et al. 2016). Conifers generally have conical crowns
with one distinct peak (treetop), greatly facilitating their detection as local maxima
in a digital surface model (DSM). The main difference between the voxel-grid and
ITC approaches is the added level of semantics (Morsdorf et al. 2018) in the single-
tree case, which might be relevant for some species- and individual-focused experi-
ments (i.e., when trying to link EO-based traits with genetic information of the
individual tree). If the aim of the 3-D reconstruction is an accurate simulation of the
radiative regime, single-tree identification adds a layer of unnecessary complexity,
so the voxel-grid approach led to better results (Schneider et al. 2014) and was sub-
sequently used for upscaling of the trait information (Schneider et al. 2017).

4.4.1.3 Linking Field and RS Data

The perspective of forest inventory is from within or beneath the canopy and the
main sampling unit is the tree, quantified as diameter at breast height (DBH). RS,
on the other hand, has a top-down perspective on the canopy, and the sampling unit
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Fig. 4.6 Map of crown polygons determined from a combination of ALS and maximum leaf
senescence (Fall) UAV data, linked with species information derived from the stem-referenced
field inventory. Only the combination of these crown outlines and the stem map (see Fig. 4.3)
allowed for individual specific computation of physiological and morphological traits

is normally a pixel. Linking these different perspectives can be difficult under any
circumstances; the Laegeren site is situated on a steep slope, and trees have irregular
crown shapes and different growing directions, which further complicates informa-
tion matching. The first necessary step is to convert the pixel-based EO data to tree-
based data by using 2-D polygons of crown boundaries. Considering the low success
rates of ALS-based ITC, we manually delineated tree crowns based on UAV imag-
ery acquired in the fall (Fig. 4.3) and matched each crown with the forest inventory
data. The field inventory provided valuable additional information, such as magni-
tude and direction of the crown shift for trees with leaning stems, which hinders a
direct stem and crown location matching based on location (Fig. 4.6).

4.4.2 Radiative Transfer Modeling

The RTM used to upscale and validate leaf-level traits such as chlorophyll and leaf
water content is Discrete Anisotropic Radiative Transfer (DART; Gastellu-Etchegorry
et al. 2015). Generally, a DART scene is built out of voxels with a predefined size.
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To simulate vegetation such as grass or tree crowns, voxels can be filled by turbid
media parameterized with PAI and leaf optical properties (LOPs). Further details of
the DART model and examples of DART simulations can be found in Gastellu-
Etchegorry et al. (2015). We use flux tracking in reflectance mode with the sun and the
atmosphere as the only radiation sources and used DART version 5.6.0 (v739). Optical
properties described in Sect. 4.4.1.1 and the forest reconstruction described in Sect.
4.4.1.2 are used to parameterize the forest canopy, background, and terrain in
DART. For details of model parameterization, see Schneider et al. (2014); for details
on the model-based upscaling of leaf-level traits, see Schneider et al. (2017). For the
modeling results shown in Sect. 4.5.1.1, we used sun and observation angles as in the
actual APEX and RapidEye acquisitions, respectively. We evaluate the performance
of the combined 3-D reconstruction and RT simulation approach in two ways: spec-
trally, by comparing averaged simulated spectra on the core (i.e., covered by TLS
measurements) site with those obtained by the APEX instrument, and, spatially, by
comparing simulated bands of RapidEye over an area of 900 m x 300 m with DART-
simulated reflectance at those particular wavelength regions.

4.4.3 Validation of Trait Predictions Using the RTM Approach

Three functional traits were derived from ALS data, canopy height (CH), PAI, and
foliage height diversity (FHD), forming a set of morphological traits. These three
were chosen because they are ecologically relevant and can be easily derived from
airborne laser scanning data. Three additional functional traits—chlorophylls
(CHL), carotenoids (CAR), and equivalent water thickness (EWT)—were chosen
and computed using specific band ratios from the IS data (Schneider et al. 2017),
forming a set of physiological traits. Both CH and CHL have been identified as
primary observables for RS-EBVs, so their validation and scaling is particularly
relevant. The traits were computed at a spatial aggregation unit of 6 m; for the ALS
data, all echo values within a 6 m x 6 m grid cell were used for the computation,
while for the IS data only sunlit pixels within the grid cell were retained for subse-
quent index computation. The shadow mask used for extracting sunlit pixels was
derived from a DSM based on the ALS data and the solar illumination angle at the
time of the IS overflight. For more details on the selected traits and their computa-
tion, please refer to Schneider et al. (2017).

The physiological traits used in this study are by definition leaf-level parameters,
which need to be upscaled or averaged to be representative for the tree or canopy
level. On the other hand, the morphological traits can be directly estimated from
ALS data for any spatial unit. However, the chosen spatial scale and context might
change how the data are interpreted (e.g., tree height needs to be estimated using
single-tree information, whereas vegetation height can be derived at all different
scales at the stand or plot level. See Fig. 4.7 for a map of the computed physiological
and morphological traits.
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Fig. 4.7 Physiological (a) and morphological (b) traits derived from IS and ALS. For the ALS-
based morphological traits, density is plant area index (PAI) and layering foliage height diversity
(FHD)

4.4.4 Computation of Functional Richness

To showcase how the RTM-validated EO traits can be used for spatially explicit
diversity assessments, we compute the functional richness within the 3-D trait space
using a spatial subset of pixels (e.g., in a 60 m x 60 m box containing 100 pixels). In
the case of the morphological traits, the 3-D trait space is spanned by the axes CH,
PAI, and FHD, whereas for the physiological traits the trait space is spanned by the
axes CHL, CAR, and EWT. The richness within the trait space is based on volume
of a 3-D convex hull of all pixels’ trait values (i.e., the larger the variation of the
respective traits, the larger the volume of the convex hull). As an example, if all trait
values were the same, the richness would be zero because no volume would be
spanned in the 3-D trait space. Computing the richness using a pixel-based approach
has the advantage of resolving both inter- and intraspecific variation of the traits,
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with the latter being potentially as large as the former (e.g., as observed in our leaf
spectra). For details on the definition and computation of richness and other diversity-
related metrics in the scope of this work, please refer to Schneider et al. (2017).

4.5 Results and Discussion

4.5.1 Forward Simulation of Passive Optical Imagery
and Comparison With EO Data

4.5.1.1 Spectral Validation

Figure 4.8 compares the spectral response of a 20 m x 20 m subplot within the
Laegeren site simulated by the DART RTM with the average APEX spectrum of the
same area. In contrast to Schneider et al. (2014), the improved version of the DART
model used in this study shows good agreement (within the standard deviation for
the 10 x 10 pixel areas) for all wavelengths, including the visible domain. The ver-
sion of DART used in this study (5.6.0, v739) has a more sophisticated parameter-
ization of the atmosphere than the older version, improving the spectral response in
the visible domain (Grau and Gastellu-Etchegorry 2013; Yin et al. 2013; Gastellu-
Etchegorry et al. 2015). The very good agreement of simulated and measured spec-
tra across all bands shows that our approach of combining a 3-D reconstruction of
the forest and LOPs of leaves and needles was successful in capturing the dominant
scattering components of this natural system. In the near-infrared domain of the
spectra, this is likely due to ALS and TLS providing accurate physical representa-
tions of 3-D canopy structure, whereas in the visible domain the quality of the LOPs
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Fig. 4.8 Simulated spectral response by DART for subplot S1 in comparison with APEX data
acquired over the same area. The standard deviation is computed from the single pixels in the
20 m x 20 m plot
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and the representation of the atmosphere are contributing more to this excellent
result. Thus, we have shown that the measured physiological trait variation at leaf
level can be upscaled to canopy level (as observed by IS instruments). We used this
to forward validate IS-derived physiological traits that are the basis of the functional
richness computation in Sect. 4.5.2. This RTM-based link is a key component of our
validation framework because typically field-measured spectra and the traits based
on spectral indices cannot be assumed to be representative for the respective signals
measured at the imaging sensor above the canopy.

4.5.1.2 Spatial Validation

Figure 4.9 shows a comparison of the spatial patterns in both simulated and actual
RapidEye imagery obtained over the Laegeren site in leaf-on conditions. When sub-
sampled to the 5 m resolution of RapidEye, our approach produces very similar
spatial patterns, properly resolving shadows and highlights due to forest structure
and underlying topography effectively contained in the ALS data and transferred to
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Fig. 4.9 RGB false-color composite using the RapidEye bands 5 (R), 3 (G), and (2), both for the
simulated image using DART (center panel) and actual RapidEye data acquired over the site (left
panel). The right panel shows a smoothed version of the DART simulation to accommodate for the
lower resolution (5 m) of the RapidEye imaging sensor
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the RT model by the PAI voxel grid. If LOPs can be assumed to be uniform across
a site or region, the presented approach can be used for larger areas, only relying on
ALS data to parameterize the RT model and using the LOPs measured at a subset of
the site or taken from spectral libraries. ALS data are generally available at regional
and national scales, effectively bridging the gap between point-based field invento-
ries and global scale satellite imagery. Using such larger-scale simulated EO data,
retrieval methods for RS-EBV primary observables such as CHL and vegetation
height can be tested and validated. The 3-D simulation environment we established
explicitly or implicitly contains all these variables in an easily retrievable format.

4.5.2 Functional Diversity of Laegeren Site

Figure 4.10 shows the spatial distribution of the richness as computed from the three
morphological and physiological traits. The most prominent pattern is the strong
topographic effect of the Laegeren mountain ridge, which is equally present in both

high

Fig. 4.10 Physiological (a) and morphological (b) richness determined within the trait space
spanned by three traits
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richness maps. The ridge and the associated steep slopes affect many environmental
variables, which could act as filter for niche space and thus diversity. Higher altitude
is linked with decreased temperature, whereas the slope is contributing to lesser soil
depths and water availability and increased incoming radiation, at least for the part
south of the ridge. Thus, the environmental conditions are harsher close to the ridge,
which might explain the decrease of functional richness we observe in this context.
In the lower regions, morphological and physiological richness exhibit differing
spatial patterns. We assume that changes of the morphological richness in lower
parts parallel to ridge are caused by the different stand management regimes and
associated stand ages and structures. For the physiological richness, differences in
species composition seem to be a dominant effect, with the conifer-dominated
stands having a lower functional richness and the old-growth mixed stands being
functionally richer.

4.6 Conclusion and Outlook

Modern RS technologies increasingly face a validation paradox—i.e., it is very dif-
ficult to provide ground-based validation data that match the spatial (resolution and
extent), temporal, and thematic characteristics of modern EO data sets. As an exam-
ple, ALS-derived tree height is assumed to be more accurate than field measure-
ments, but it cannot be proved using field data alone. By using laser scanning-derived
3-D structure together with LOPs in an RT model approach, we have shown a way
to overcome such mismatches and provide a framework that could be established
across a range of sites around the globe to prototype and validate EO-based data and
products in the future. Such a forward validation will as well pave the way for prod-
ucts that are not measurable in the field, but still might be relevant in the context of
ecosystem function and diversity. The RTM approach provides a physical and
mechanistic way to learn about the information content of EO data, and a combina-
tion of this approach with recent developments in the machine learning domain
could provide interesting perspectives.

With the trait-based functional richness assessment, we demonstrated how a spa-
tially extended monitoring using the complementary technologies imaging spec-
troscopy and lidar would work and what kind of insights into ecosystem functioning
it could generate. In addition, the trait maps and the derived functional richness
could be used for spatiotemporal gap filling of in-situ observational networks such
as the global forest biodiversity initiative, complementing the diversity information
that these provide.

In the future, these data streams in conjunction with the EBV concept (Ferndndez
et al., Chap. 18) will give policy-makers around the world useful tools to assess and
report on the biodiversity. To speed up this process, the European Space Agency
funded the GlobDiversity project starting in 2017 in the tradition of similar projects
for some of the essential climate variables. The project’s goal is to demonstrate the
capability and utility of producing a set of selected RS-EBV data sets in different
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regions and biomes around the globe and with high spatial resolution (10-30 m)
using the newest-generation satellite data, such as Sentinel-2 and Landsat 8. In addi-
tion, the project shall suggest in a reference document how to describe RS-EBV's
and how they could be engineered and validated. We believe that the 3-D recon-
struction and RT modeling approach highlighted in this chapter could be applied
across a global range of sites to fulfill this task.
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Chapter 5
Lessons Learned from Spectranomics:
Wet Tropical Forests

Roberta E. Martin

5.1 Introduction

One of the major challenges for biodiversity science is how to measure biodiversity
at spatial scales relevant for conservation and management (Turner 2014). Supported
by technological, computational, and modeling advances, along with increased data
availability, remote sensing (RS) has become an essential tool for ecologists and
land managers because it provides data on the optical properties of the Earth’s sur-
face at landscape to global scales (Jetz et al. 2016). At the same time, increasing
awareness of how little we know about the species inhabiting our planet has led to a
surge in ground-based activities to catalog what’s out there and establish baselines
such as Conservation International’s Rapid Assessment Program and/or community
aggregated information needed for biodiversity assessment (Myers et al. 2000). In
addition, advances in genetic analysis, physiological experiments, and trait-based
studies have advanced our understanding of functional biodiversity (Cavender-
Bares et al. 2006; Kress et al. 2009; Baraloto et al. 2012). Despite these knowledge
gains, linking the information from these disparate sources in a useful manner pre-
sented a new hurdle. In 2007 the Spectranomics approach was launched to address
this challenge using canopy functional traits and their resultant spectral properties.
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Plants play a foundational role in establishing and maintaining ecosystem function,
biogeochemical cycling, hydrological cycling, and biodiversity (Mooney et al. 1996;
Schimel et al. 2013). More specifically, canopy plants (those that occupy the sun-
facing portion of a landscape) serve as dominant primary producers through the cap-
ture and utilization of light. Their structures also provide habitat for vast numbers of
species living in the shadows. To maintain this premier position in a forest ecosystem,
plants have evolved a vast array of strategies for growth, defense, and longevity,
largely manifested as chemical and/or structural adjustments in their leaves (Reich
et al. 2003; Wright et al. 2004; Diaz et al. 2016). The molecular arrangement of these
foliar properties generates an optical reflectance spectrum that can be measured at a
variety of scales with spectroscopy (Curran 1989; Jacquemoud and Ustin 2001; Ustin
etal. 2009; Ustin and Jacquemoud, Chap. 14). The ultimate result is a massive number
of tree species coalescing into forest communities of varying complexity, with unique
taxonomic compositions and functional roles that can potentially be mapped across a
forested landscape (Reichstein et al. 2014 and others).

Despite understanding the important role different canopy species and communi-
ties of species play in creating and maintaining biodiversity, the measurement, map-
ping, and monitoring of forest canopy composition and functional diversity has
remained a challenge. Current Earth-observing satellite technology is limited to
detecting changes in vegetation cover as well as major differences in vegetation
type and photosynthesis (Running et al. 1994; Tucker and Townshend 2000) and
does not easily reveal compositional differences or changes over time (Turner et al.
2003). Tropical forest canopy diversity is especially underexplored because spatial
and temporal variation often exceeds our ability to adequately utilize field-based
approaches (Marvin et al. 2014). Airborne imaging spectroscopy can provide an
intermediate solution; however, a fundamental prerequisite for determining whether
species diversity or a particular species might be successfully mapped is an assess-
ment of chemical uniqueness and diversity among plant taxa. This is important
because the spectroscopy of canopies is driven primarily by the chemical composi-
tion of the foliage (Curran 1989; Asner et al. 2015).

5.2 Spectranomics Approach

The Spectranomics approach was developed to link plant canopy functional traits to
their spectral properties with the objective of providing time-varying, scalable
methods for remote sensing (RS) of forest biodiversity (Asner and Martin 2009). In
the pool of potentially important plant functional traits, foliar chemicals stand out as
core physiologically based predictors of plant adaptation to environmental condi-
tions (Diaz et al. 1998; Wright et al. 2010). We selected a suite of 23 canopy chemi-
cal traits based on their strong ecological and evolutionary relevance, spatial
variation in species and communities, and measurable spectral properties. These
traits consist of those that (i) mediate or are indicative of photosynthesis and carbon
uptake (chlorophyll a and b, carotenoids, nitrogen, §'*C, and 8'°N; non-soluble car-
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bohydrates); (ii) are related to structure (leaf mass per area and water content, lig-
nin, cellulose, and hemicellulose) and chemical defense (phenols and tannins); and
(iii) are defining general metabolic processes (macro- and micronutrients; here cal-
cium, magnesium, phosphorus, potassium and boron, iron, manganese, zinc)
(Table 5.1). The distribution and variation of these traits in plant canopy leaves
evolve as a function of stoichiometric relationships among constituents in response
to biotic and abiotic pressures and are often formulated differently at the species
level (Diaz et al. 1998). This evolved chemical makeup of plant canopies and its
similarity and uniqueness among species, which we call chemical phylogeny, is an
essential component of Spectranomics (Fig. 5.1a).

Table 5.1 Summary statistics for 22 foliar chemical traits and leaf mass per area (LMA) from
top-of-canopy leaves collected from 12,012 individual trees at sites across the wet tropics as part
of the Spectranomics Program

Standard

Mean | deviation | Minimum | Maximum | Median | Skew Kurtosis
Light capture and growth
Chlorophyll a 4.67 1.96 0.01 26.71 440 | 247 1.76
(mgg™)
Chlorophyll b 1.73 0.78 0.01 11.32 1.62 | 0.86 0.58
(mgg™)
Carotenoids (mg g™") 1.38 0.53 0.01 7.87 1.31 | 0.80 0.59
Nitrogen (%) 2.01 0.70 0.35 6.15 191 | 1.21 0.91
NSC (%) 46.20 | 11.56 12.73 86.33 45.72 1 31.40 25.61
83C (%o) -30.59 1.89 -36.40 —19.90 | -30.70 | =32.90 |-34.00
8"N (%0) 1.38 2.70 —10.30 10.50 1.40 | -2.00 —4.00
Structure and defense
LMA (g m™) 113.63 | 44.44 15.65 622.36 | 105.33 1 66.92 51.68
Water (%) 58.40 8.28 9.17 90.79 57.57 | 48.92 44.87
Carbon (%) 49.30 3.31 31.60 65.00 49.70 145.00 41.80
Lignin (%) 24.15 9.94 0.25 81.08 23.47 | 11.67 7.65
Cellulose (%) 17.82 5.75 1.08 56.60 17.30 | 10.89 8.41
Hemicellulose (%) 11.63 5.03 0.00 49.31 11.25 | 5.72 2.84
Phenols (mg g7") 101.11 | 53.63 0.00 358.19 |101.71 1 27.02 10.54
Tannins (mg g~') 46.45 | 26.82 —0.64 238.79 43.14 | 15.27 5.66
Macronutrients
Calcium (%) 0.96 0.81 0.00 8.36 0.74 | 0.18 0.08
Magnesium (%) 0.26 0.15 0.02 2.71 0.23 | 0.11 0.08
Phosphorus (%) 0.12 0.07 0.02 0.86 0.10 | 0.05 0.04
Potassium (%) 0.76 0.45 0.13 5.64 0.65 | 0.35 0.25
Micronutrients
Boron (pg g7') 27.19 | 23.48 1.16 321.89 20.03 | 8.35 5.31
Tron (ug g7") 80.58 |206.63 7.13 9470.68 47.78 126.55 19.47
Manganese (pg g7') | 304.32 |512.14 3.03 7331.67 | 103.80 | 19.75 11.55
Zinc (pg g™ 17.08 | 44.47 1.65 2535.98 11.77 | 6.49 4.62

NSC nonstructural carbohydrates
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Fig. 5.1 The essential interactive elements of the Spectranomics Database include phylogenetic,
chemical, and spectral information on canopy species. (a) Assays of 23 foliar chemical traits com-
bined are collected, organized, and analyzed phylogenetically, producing a new tree of life based
on the relatedness of functional trait signatures. This generic phylogeny shows the chemical relat-
edness of thousands of species in the Spectranomics Database. (b) An example of a remotely
sensed canopy reflectance spectrum of one species is shown along with indicators of key chemical
contributions to the spectrum (Curran 1989; Ustin et al. 2009; Kokaly et al. 2009). (¢) Chemometric
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Another component of Spectranomics is the spectral properties of plant canopies
(Fig. 5.1b). Canopy spectra are derived from the way plant foliage interacts with
solar radiation, and this interaction is strongly determined by foliar chemicals.
Across the full solar spectrum, from the ultraviolet to the visible to the near-infrared
and the shortwave-infrared regions of the electromagnetic spectrum (350-3500 nm),
plants have many common and yet also unique patterns of interaction with solar
energy. Chemometric studies determine how these chemicals relate to reflectance
spectra, and the methods today range from traditional spectroscopic assays and
newer machine learning approaches (Wold et al. 2001; Serbin et al. 2014; Feilhauer
et al. 2015). Spectral properties also provide a tantalizing pathway forward to scale
up from leaves to landscapes (Ustin et al. 2004) to the planetary level (Jetz et al.
2016), but only if we can accurately and repeatedly measure and interpret the spec-
tra of plants over increasingly larger portions of Earth (Fig. 5.1c—e).

The realization of Spectranomics rests in a number of choices made early on to
attempt to reduce unwanted sources of variation combined with extensive sampling.
We focused on humid tropical forests for their high diversity and relative freedom
from extreme phenological changes brought about by seasonal cycles such as those
experienced in temperate regions but may not completely eliminate smaller pheno-
logical variation that might arise in reaction to drought or solar variations. We tar-
geted only mature, fully sunlit, top-of-canopy leaves (trees and lianas) to limit
variation attributable to intra-canopy shade and ontogeny and to best relate leaf
properties to airborne and satellite-based spectral measurements. Prior to
Spectranomics, our work and that of many others did not follow a strategically con-
sistent, integrated method for global spectral-functional trait database building
needed to reveal canopy plant functional spectral-chemical patterns at the bio-
spheric scale.

We have collected, cataloged, and stored more than 13,000 canopy tree and liana
specimens, in over 3 million tissue samples, representing about 10,000 species
biased to humid tropical ecosystems (Fig. 5.2a). For perspective, this number
approaches the total number of tree species in the Amazon basin (roughly 11,000;
Hubbell et al. 2008), a value that would put the global tropical tree inventory at
30,000 species if we liberally extrapolate to the entire Neotropics plus the African
and Asian-Oceanic tropics. The Spectranomics database focuses only on species
found in the canopy, meaning they are in full sunlight and are observable from
above. Since roughly 30-60% of tree species in a tropical forest plot makes it to the
canopy (e.g., Bohlman 2015), the current Spectranomics database contains at least

Fig. 5.1 (continued) equations are derived to quantitatively relate canopy functional traits
(chemicals) to spectral data. Example relationships are shown for foliar lignin, nitrogen (N), and
polyphenols. The x-axis indicates spectral wavelengths of 400-2500 nm; the y-axes indicate rela-
tive importance of the spectrum to each example chemical constituent shown. (d) An example of
spectra from individual crowns clustered based on their spectral variation. (e) A 3-D view of a
portion of lowland Amazonian forest canopy. Different colors indicate different species detected
based on 15 chemical traits using airborne imaging spectroscopy
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Fig. 5.2 An illustration of functional biodiversity mapping from foliar traits. (a) The 2018 global
distribution of 128 forest landscapes contributing to the Spectranomics database. (b) Example
maps of four foliar traits generated for the Andes-to-Amazon region of Peru using airborne imag-
ing spectroscopy and modeling (Asner et al. 2017). (¢) Map of 36 forest functional communities
derived from a classification based on seven forest canopy traits derived from airborne imaging
spectroscopy
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half of the known tropical forest canopy species worldwide with measured foliar
traits (Table 5.1). From investigations of these data and the fundamental patterns
they uncover, Spectranomics has evolved into a new pathway to biological and eco-
logical discovery, as well as a new tool for conservation-relevant mapping, particu-
larly in high-diversity tropical forests.

5.3 Lessons Learned from Spectranomics

As the Spectranomics database has grown through the years, new relationships
among plant phylogeny, canopy chemical traits, and spectral properties have
emerged that reveal patterns at nested biogeographic scales. The extent of sampling
across continents, along regional environmental gradients, and within local tree
communities, coupled with consistent methods and analysis, has provided for quan-
titative testing of these relationships at multiple scales such that they can now be
used to forecast the functional traits and biodiversity components that can be
remotely mapped and monitored with spectral RS instrumentation.

5.3.1 Nested Geography of Canopy Chemical Traits in Humid
Tropical Forest

Humid tropical forests cover over 20 million km of land area, span an enormous
range of environmental conditions from hot lowland forests to cool montane rain-
forests along equatorial tree line at almost 3500 m on a variety of geological sub-
strates, and support thousands of tree species. The high degree of complexity of this
region provided an ideal setting to develop and use Spectranomics to test how envi-
ronment and phylogeny interact to sort the spectral-chemical diversity of forest
canopies. Based on results from multiple field studies throughout this region (Martin
et al. 2007; Asner and Martin 2011; Asner et al. 2014b; McManus Chauvin et al.
2018) as well as their collective analysis (Asner and Martin 2016), we discovered
that canopy chemical trait diversity of humid tropical forests occurs in a nested pat-
tern driven by long-term adjustment of tree communities to large-scale environmen-
tal factors, particularly geologic substrate and climate. More specifically, geographic
variation at the soil order level, expressing broad changes in fertility, underpins
major shifts in foliar phosphorus (P) and calcium (Ca) (Fig. 5.2). Additionally,
elevation-dependent shifts in average community leaf dry mass per area (LMA),
chlorophyll, and carbon allocation (including nonstructural carbohydrates) are most
strongly correlated with changes in foliar Ca. We also found that chemical diversity
within communities is driven by differences between species rather than by plastic-
ity within species. Finally, elevation- and soil-dependent changes in nitrogen (N),
LMA, and leaf carbon allocation are mediated by canopy compositional turnover,
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whereas foliar P and Ca are driven more by changes in site conditions than by phy-
logeny. In short, Spectranomics led us to understand that canopy functional traits
can be nested regionally by environmental setting but expressed locally within any
given environment by their evolutionary origin.

5.3.2 Spectral Properties of Humid Tropical Forest Canopies

In concert with chemical trait collections, we measured the spectral properties of
canopy foliage from thousands of humid tropical tree canopies and determined that
all 23 chemical traits can be remotely sensed to varying degrees (Asner et al. 2011;
Chadwick and Asner 2016; Martin et al. 2018). Utilizing leaf-level spectral-chemical
relationships, we discovered that the spectral properties of canopy foliage closely
tracked canopy functional trait responses to macro-environmental changes such as
broad differences in soil fertility (Asner and Martin 2011; Asner et al. 2012b).
Similar to the functional trait findings, we discovered that the spectral properties of
foliage within communities along elevation gradients were largely determined by
phylogenetic identity (Asner et al. 2014a). Consequently, canopy functional traits
and spectral properties tracked one another at nested ecological scales, a result that
suggests what we might find if we collected map-based spectral data over a much
larger geographic area using RS instrumentation.

When coupled with DNA analyses, Spectranomics data indicate that forest cano-
pies show strong phylogenetic organization of their foliar spectral properties, par-
ticularly in the shortwave-infrared (1500-2500 nm) wavelength region (McManus
et al. 2016). This finding suggests that mapping of forest canopies with airborne
imaging spectroscopy may provide spatial insight to the genetic distribution and
genealogy of forest canopy taxa. Growth-form-specific studies using the
Spectranomics approach revealed that lianas (woody vines) maintain functional
traits and spectral properties unique from their host tree canopies (Asner and Martin
2012). Lianas are important drivers and limiters of biodiversity and carbon cycling
in tropical forests (Schnitzer and Bongers 2011), and these measured differences
predicted and underpinned the subsequent mapping of lianas in tropical forests
using airborne imaging spectroscopy (Marvin et al. 2016).

Spectranomics data have been collected and archived under stringent field and
analytical standards, which has facilitated the development new quantitative link-
ages between canopy foliar spectroscopy and canopy functional traits (Feilhauer
et al. 2010, 2015; Féret et al. 2011, 2017). Spectral modeling studies showed that
full-spectrum (350-3500 nm) data provided retrieval capability for three times the
number of chemicals as 350-1300 nm data from less expensive, more common vis-
ible to near-infrared spectrometers. These studies also pointed to the need for sam-
pling fully sunlit foliage in higher-density portions of tree crowns to minimize the
effect of canopy structure on chemical trait retrievals. These findings were key guid-
ing components in the development of laser-guided imaging spectroscopy that links
Spectranomics field surveys to remotely sensed spectra to generate consistent can-
opy chemical trait retrieval at multiple geographic scales.
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5.3.3 Spectranomics for Biodiversity Mapping

The Spectranomics fieldwork pointed toward two particular forecasts. First,
Spectranomics suggested that spectral mapping from current aircraft and future sat-
ellites will reveal where whole forest communities are functionally similar and
where they are unique. Second, Spectranomics suggested that spectral RS will
reveal the presence and patterning of specific canopy species, within communities
and across environmental gradients, based on their functional trait “signatures.”

Both forecasts were subsequently proven correct during mapping studies.
Numerous landscape-scale studies now show that location of particular forest can-
opy species and their evolved canopy functional traits mirror soil nutrient resources
mediated by topography, parent material, and climate (Higgins et al. 2014; Chadwick
and Asner 2016; Balzotti et al. 2016). These findings demonstrate that Spectranomics
directly connects plants to ecosystem processes such as biogeochemical cycles,
which form an essential link to the rest of the Earth system. At a larger scale, a 2016
report on Andean and Amazonian forests mapped with airborne imaging spectros-
copy confirmed the forecasted ecological shifts in forest canopy functional compo-
sition, sorted geographically by large-scale environmental factors including
elevation, geology, soils, and climate (Fig. 5.2b, c; Asner et al. 2017). While the
Spectranomics database provided a field-based preview of how communities of spe-
cies would differ from one another, the mapping step provided a first synoptic view
of the geographic distribution. Importantly, the mapping phase also revealed numer-
ous new combinations of functional traits that had not been detected in the field
program. The new canopy functional trait maps are a key stepping-stone to biogeo-
graphic assembly, not only of the functional diversity of the Andes-to-Amazon but
also of the biological diversity of the region. The approach from Peru is currently
being applied in Ecuador as well as Malaysian Borneo.

The second forecast from Spectranomics—which coexisting species within
communities can maintain relatively unique canopy functional traits and spectral
properties—has been explored and confirmed in a series of studies using airborne
and space-based imaging spectroscopy. From Hawaii to Panama, and from Africa to
the Amazon, hundreds of target species have been mapped based on their spectral
signatures, underpinned by a knowledge of their functional traits (Fig. 5.3; Carlson
et al. 2007; Papes et al. 2010; Colgan et al. 2012; Baldeck and Asner 2014; Baldeck
et al. 2015; Graves et al. 2016). Further, the new concept of “spectral species” was
developed to map species richness (alpha diversity) and compositional turnover
(beta diversity) in forest landscapes without the need to detect individual species
(Féret and Asner 2014).The separability of the spectral species is determined by
their canopy functional traits.

More broadly, Spectranomics has enabled a different kind of interaction between
field or laboratory studies of plants and RS of functional and biological diversity of
ecosystems. The forecasting capability made possible with the Spectranomics
database has been central to planning whether and how to undertake spectral map-
ping activities in different regions and under what environmental conditions the RS
technology will yield new insight. In turn, this has transformed the interaction
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Fig. 5.3 Three scale-dependent views of the Peruvian Andes-Amazon region derived from air-
borne imaging spectroscopy using data and information from Spectranomics. (a) Peru-wide map
shows the distribution of functionally distinct forests. Different colors indicate varying combina-
tions of remotely sensed canopy foliar nitrogen (N), phosphorus (P), and leaf mass per area
(LMA) (Asner et al. 2016). (b) Zoom image from the Peru-wide map indicates major changes in
canopy N, P, and LMA with a lowland Amazonian forest (Asner et al. 2015a). Red indicates
higher N + P and lower LMA relative to yellow and blue. (¢) Individual species detections within
the zoom box of panel b, derived using species-specific canopy spectra (Féret and Asner 2013;
Baldeck et al. 2015)
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between field and RS work from the traditional approach of mapping and ground
truthing to one based on botanical, ecological, and biophysical knowledge in the
interpretation of remotely sensed data.

This interaction between Spectranomics and RS also provided the scientific
guidance, and initial funding, for a new class of mapping instruments, starting with
a next-generation, high-fidelity visible-to-shortwave infrared (VSWIR) imaging
spectrometer, built by the California Institute of Technology’s Jet Propulsion
Laboratory (JPL) for the Global Airborne Observatory, formerly the Carnegie
Airborne Observatory (Asner et al. 2012a). JPL then built an identical instrument
for NASA’s Airborne Visible/Infrared Imaging Spectrometer (AVIRIS; http://aviris.
jpl.nasa.gov) program, as well as several copies for the US National Ecological
Observatory Network (NEON, https://www.neonscience.org; Kampe et al. 2011).

5.3.4 Scientific and Conservation Opportunities

An important outgrowth of Spectranomics is an emerging opportunity to partner
discovery-based science with applied environmental conservation at large geo-
graphic scales. Conservation and management actions are usually limited in scope
and effectiveness by numerous interacting financial, logistical, cultural, and politi-
cal factors. An increasing ability to map canopy diversity may provide an avenue to
identify the location and essential components of high-value conservation targets.
Moreover, near-real-time scientific discovery from spectral RS can lead to more
tactical conservation decision-making. Our specific experience is that, as land use
pressures expand, intensify, and change over time, a mapping capability built upon
the details of forest canopy function and composition, rather than just forest cover,
supports improved conservation discussions and planning. This type of approach is
needed to identify current and potential threats to, as well as current protections
and opportunities for new protection of, species, communities, and ecosystems.
The evolving biodiversity mapping capabilities made possible through
Spectranomics are providing a tool set to support the current portfolio of Global
Airborne Observatory activities (e.g., http://www.theborneopost.com/2016/04/06/3d-
mapping-to-decide-on-land-use/).

The Spectranomics approach is starting to catch on in the scientific community,
as highlighted in chapters throughout this book as well as new programs such as
NEON and Canada’s recently announced Spectranomics program for boreal forests
(the Canadian Airborne Biodiversity Observatory; http://www.caboscience.org/),
but there is much more to do to bring our approach to the global level. First, more
scientists could get involved through building plant canopy trait laboratories and
databases, paired with a specific style of leaf-level spectral measurements in the
field. Currently, many functional trait and spectral measurement protocols are
incompatible with the Spectranomics approach. For example, many foliar trait
studies have involved the collection of samples in understory or shaded settings,
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in part because this foliage is easier to reach, yet spectral RS is most sensitive to
canopy-level foliar chemical and structural traits (Jacquemoud et al. 2009).
Additionally, most field-based trait studies do not include the use of a high-fidelity
field spectrometer, which must be applied on fresh foliage to ensure connectivity to
biotic and environmental conditions. Moreover, high-fidelity imaging spectrome-
ters needed for mapping, such as the Global Airborne Observatory or AVIRIS,
demand stringent and consistent field and laboratory trait measurement practices.
Most of these issues can be remedied by incorporating one or more of the protocols
provided on the Spectranomics website (https://gdcs.asu.edu/labs/martinlab/spec-
tranomics). More could be done to boost capacity throughout the science commu-
nity to generate data suitable for Spectranomics-type applications. Community-wide
efforts to develop a global biodiversity monitoring system (Geller, Chap. 20) will
greatly enhance humanity’s ability to monitor and manage biodiversity for sustain-
ability in the Anthropocene.
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Chapter 6

Remote Sensing for Early, Detailed,
and Accurate Detection of Forest
Disturbance and Decline for Protection
of Biodiversity

Jennifer Pontius, Paul Schaberg, and Ryan Hanavan

6.1 Introduction

In many ways, biodiversity is a foundational component of healthy, productive forests
and maintenance of the many ecosystem services that they provide (e.g., carbon
sequestration, nutrient cycling, water filtration and provisioning, wildlife habitat).
Forested landscapes are often characterized by a mosaic of species, age classes, and
structural characteristics that results from natural patterns of disturbance. This diver-
sity within stands and across forested landscapes increases resilience of larger for-
ested ecosystems, enabling them to recover and maintain ecological function
following disturbance (Thompson et al. 2009). But many pests and pathogens, par-
ticularly exotic invasive insects, as well as various abiotic stresses (e.g., pollution
impacts or increases in climate extremes), have the potential to alter native popula-
tions, reduce biodiversity, and impact ecosystem function and service provisioning.
This is particularly true for ecosystems dominated by keystone or foundational spe-
cies, which exert a relatively large impact on community stability and ecosystem
function (Ellison et al. 2010).

There are many examples of the impacts of pests and pathogens on biodiversity
and ecological function in forested ecosystems. Dutch elm disease was introduced
in the United States in the 1930s and the United Kingdom in the 1970s, with
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Fig. 6.1 Ancient
whitebark pines killed by
the recent mountain pine
beetle outbreak stand on a
windy ridge in Yellowstone
National Park. (Credit:
Adam Markham/CleanAir-
CoolPlanet.org, https://
www.fws.gov/cno/
newsroom/highlights/2017/
whitebark_pine/)

profound impacts on the biodiversity of rural landscapes (Harwood et al. 2011). The
mountain pine beetle has impacted large swaths of coniferous and mixed forests in
British Columbia, with severe impacts to avian biodiversity (Martin et al. 2006).
In the western United States, pine blister rust has impacted biodiversity and ecologi-
cal processes, particularly at high elevation sites where whitebark pine is a keystone
species (Tomback and Achuff 2010, Fig. 6.1). Recent cases, such as the introduction
of the Asian long-horned beetle and emerald ash borer to the United States, demon-
strate the ongoing biosecurity challenges that currently face forested ecosys