

LA Megacity: A Land-Atmosphere System for Urban CO₂ Emissions Sha Feng^{1,2,3}, T. Lauvaux^{1,3}, S. Newman⁴, P. Rao³, R. Patarasuk⁵, D. O'Keeffe⁵, J. Huang⁵, Y. Song⁵, K. Gurney⁵, A. Deng¹, R. Ahmadov⁶, L.I. Diaz-Isaac¹, S. Jeong⁷, M. Fischer⁷, C.E. Miller³, R.M. Duren³

¹Pennsylvania State University; ²UCLA Joint Institute for Regional Earth System Science and Engineering (JIFRESSE); ³Jet Propulsion Laboratory; ⁴California Institute of Technology; ⁵Arizona State University; ⁶National Oceanic and Atmospheric Administration; ⁷Lawrence Berkeley National Laboratory

WRF-GHG configuration		Experiment	
Option	Description	Option	Descri
Domains	12 km (D01), 4 km (D02), 1.3 km (D03)	Urban Surface	UCM, BEP,
Vertical Setup	50 layers (29 layers below 2 km AGL)	PBL Scheme	None MYJ,
Longwave Radiations	RRTMG	Model Res.	MYNN BouLa 4 km (1.3 km
shortwave Radiations	RRTMG		
Land Surface	Noah LSM		
Microphysics	WSM5	FFCO ₂	Vulcar
Cumulus (d01 & d02)	Grell 3D		Hestia

Corresponding Author: Sha Feng, sfeng@psu.edu

A high-resolution emission product such as Hestia (km resolution) coupled to WRF is required in order to disaggregate CO₂ sources over LA and identify optialm locations for a high density network of towers

exchange over L.A.. The optimal model physics and resolution was defined based on a combined

No clear difference were shown between 4- and 1.3-km resolution simulation performances in terms of meteorology; however, large difference were shown in terms of the simulated CO₂ fields No uniform "urban dome" in atmospheric CO₂ due to orography, coastal circulation, and fine spatial

RESULTS

structures

runs. The correlation map was simultaneous correlation of the site CO₂ to the CO₂ over rest of at the significance level of 0.01 *Reference: WRF-Hestia 1.3 km

of correlation maps for

LA covered by up to six sites in WRF-Hestia runs but over 12 sites in WRF-Vulcan runs Using low resolution Vulcan overestimates the data density with artificially wide CO_2