A51K-0233 Changes in CO₂ Composition in the Air of the Los Angeles Megacity Coinciding with the Prolonged Drought

California has been in a severe drought for five years affecting weather, vegetation, and policy. Unfortunately, the last year's strong El Nino conditions did not bring the expected extra rainfall relief to southern California, and we are just finishing a year of water rationing, concentrating on limiting irrigation of outdoor landscape. What changes in the atmospheric CO₂ composition in the Los Angeles, CA (LA) megacity have occurred during this period?

We investigate changes reflected in the radiocarbon (Δ^{14} C) and stable carbon isotopic composition (δ^{13} C) of the CO₂ in LA, using the long-term flask sample record at our Pasadena (18 years, 11 with Δ^{14} C; samples collected on alternate afternoons at 14:00 PST) site (Fig. 1) to put the last five years in context. Pasadena is inland and a good receptor site for emissions in the LA basin for much of the year when the prevailing winds are from the ocean passing over LA. Radiocarbon measurements give information on the fossil fuel and biosphere components of the local emissions. δ^{13} C variations give information about the relative proportions of petroleum and natural gas combustion within the fossil fuel component. We have shown that the annual cycles of CO₂ from total fossil fuel (CO₂ff), petroleum (CO₂pet), and natural gas (CO₂ng) combustion are consistent with the annual cycle of wind directions in the LA basin (Newman et al., 2016). How do changes in seasonality between before and during the drought relate to meteorological changes? Are there changes in the seasonal cycles of source attribution signals?

Figure 2. Our radiocarbon time series (a) from flask samples shows a change in seasonality beginning with the beginning of the drought in 2012, according to the Palmer Drought Severity Index (d; vertical line in a-e; http://www.cgd.ucar.edu/cas/ catalog/climind/pdsi.html). The CO₂ mixing ratio time series (b) does not show any obvious change at this time. However, when the high frequency variations are removed, using Ensemble Empirical Mode Decomposition (EEMD; Huang et al., 1998; Wu and Huang, 2009) we can extract the seasonal component of the signal (c). This component shows a change in the seasonality, again at the time of the beginning of the drought (d).

Figure 3. The stable carbon isotopic composition (δ^{13} C) time series (not shown) shows similar short-term variability to the CO₂ mixing ratio record. When the isotopic compositions of the high-CO₂ end member of each month are plotted (a), we see a different kind of change with the onset of the drought. The range of the seasonal cycle of the high-CO₂ end member increases at the time of the shift to the prolonged drought (b). The increase in the value of the δ^{13} C in the last year is consistent with values that might be expected if drought-resistant C4 plants were becoming more abundant relative to C3 plants, whose respiration results in greater fractionation of the stable carbon isotopes and lower values. We had mandatory water rationing during the last year.

Sally Newman¹, Xiaomei Xu², Charles E. Miller³, and Yuk L. Yung¹

¹California Institute of Technology, Pasadena, CA; ²University of California, Irvine, CA; ³Jet Propulsion Laboratory, Pasadena, CA

Introduction

Data

Meteorology

Figure 4. Our Pasadena weather station shows the drought as decreases in both relative humidity (a) and rain fall (b).

Figure 5. The average winter winds at USC, show a change in wind speed at the beginning of the drought. Wind speeds are lower during the drought than before. Wei et al. (2016) concluded that atmospheric circulation in the eastern north Pacific is the most important factor in understanding the precipitation in California. Atmospheric modeling, such as using WRF-VPRM/Chem, must be done to confirm that this is the mechanism causing the changes in seasonality of CO₂ observed in Pasadena.

