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The balance of evidence indicates that individual galaxies and groups or clusters of galaxies are embedded in enormous
distributions of cold, weakly interacting dark matter. These dark matter “halos” provide the scaffolding for all luminous structures
in the universe, and their properties comprise an essential part of the current cosmological model. I review the internal properties
of dark matter halos, focussing on the simple universal trends predicted by numerical simulations of structure formation.
Simulations indicate that halos should all have roughly the same spherically averaged density profile and kinematic structure
and predict simple distributions of shape, formation history, and substructure in density and kinematics, over an enormous range
of halo mass and for all common variants of the concordance cosmology. I describe observational progress towards testing these
predictions by measuring masses, shapes, profiles, and substructure in real halos using baryonic tracers or gravitational lensing.
An important property of simulated halos (possibly the most important property) is their dynamical “age”, or degree of internal
relaxation. I review recent gravitational lensing studies of galaxy clusters which will measure substructure and relaxation in a large
sample of individual cluster halos, producing quantitative measures of age that are well matched to theoretical predictions.

1. Introduction

Everywhere in the universe, on scales comparable to the
size of galaxies or larger, the effects of gravity appear to be
anomalously strong. The earliest of these observations dates
to 1933, in work by Zwicky [1] on the Coma cluster of
galaxies. Using redshifts derived from optical spectroscopy,
Zwicky measured a velocity dispersion of 1600 km/s for
the galaxies in Coma, indicating that the cluster had
an enormous amount of internal kinetic energy. For the
structure to be dynamically stable, the gravitational potential
energy required was 20 times what would have been inferred
from the distribution of visible stars and gas alone. Zwicky
suggested that some sort of “dark matter”, cold enough to
be effectively invisible in his optical observations, might
account for the deficit. The term “dark matter” has been
with us since, although the idea remained dormant for nearly
40 years following Zwicky’s discovery. A generation later,
the idea of dark matter was rediscovered by Rubin and
Ford. Starting with a study of the Andromeda galaxy, M31
[2], they gradually established that rotation speeds in the
outskirts of spiral galaxies were far higher than would be

possible for stable systems bound together by their visible
gas and stars alone. Once again, the mass needed to explain
the observations was enormous, and the concept of a ‘dark
halo’ around every galaxy was eventually introduced. It was
unclear at the time whether this matter was normal, baryonic
matter (that is matter whose mass was comprised of baryons,
protons, and neutrons) in the form of cold gas or compact
objects, or whether it was some novel form of nonbaryonic
matter.

Although individual galaxies like M31 or clusters of
galaxies like the Coma cluster are still powerful probes of
the nature and distribution of dark matter, the evidence for
dark matter (and/or nonbaryonic matter) is now much more
broadly based than it was in the 1930s or the 1970s. The spec-
trum of fluctuations in the cosmic microwave background
(CMB), for instance, strongly constrains the composition of
the universe when it was less than a million years old. At this
time the radiation density is high enough that interactions
with photons have a substantial effect in smoothing out
variations in the density of normal matter (i.e., matter with
an electromagnetic coupling). Weakly interacting matter is
free to go about its business, however, and fluctuations in
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this component can grow once the corresponding particle
has cooled sufficiently to become nonrelativistic. The relative
heights of the second and third acoustic peaks in the CMB
angular power spectrum constrain the ratio of the two
components; together with the first peak they indicate that
the total matter density in the universe, as a fraction of the
critical density, is Ωm = 0.267 ± 0.029, while the fraction
in baryonic matter coupling to photons is only Ωbar =
0.045 ± 0.003 [3]. The difference between the two figures
must come from a component with interactions of the weak
scale or less. In principle this dark component could have
decayed since that time, but measurements of large-scale
structure (see, e.g., [4]) and cosmic expansion (see, e.g.,
[5]) find a consistent value for the total matter density
at low redshift. Meanwhile, abundances of light elements
provide an independent estimate of the baryon density
that is roughly consistent with CMB measurements and
much lower than the density needed to explain large-scale
structure or cosmic expansion [6]. Thus the best evidence
for cold dark matter—or more specifically for a nonbaryonic,
pressureless component that dominates the matter density
and is nonrelativistic at early times—now comes from
the largest scales in the universe. This point is sometimes
missed by alternative theories that focus exclusively on galaxy
rotation curves or similar tests.

The idea of a weakly interacting particle massive enough
to be “cold” (or nonrelativistic) at the time of the CMB is not
unwelcome in proposed extensions to the Standard Model
of particle physics. To explain the many cases of fine tuning
or the strange discrepancies in scale in the Standard Model,
these extensions introduce new high-energy symmetries and
new families of massive particles, partnered to the familiar
low-energy states. Supersymmetry, with its family of massive
superpartners, is the most commonly cited example, but
the Kaluza-Klein modes from higher-dimensional theories
are similar in many respects, and other well-motivated
models exist [7]. There is great hope that the Large Hadron
Collider will produce one of these candidates in the near
future, that direct detection experiments will detect it in
the lab, or that indirect detection experiments will detect its
annihilation or decay products. Not all candidates are easily
detectable, however; some may elude most or all attempts
to identify them [8]. Furthermore, determining the full
properties of a candidate will probably require astrophysical
input as well as laboratory or accelerator measurements
[8]. Thus astrophysics will remain an important source of
information about dark matter for some time to come. The
cosmic abundance, mass, decay channels, self-couplings, or
couplings to known particles and possibly even excited states
of the dark matter particle(s) may all eventually be derived
from astrophysical measurements [9].

As a central component in the current picture of cos-
mological structure formation, cold dark matter (CDM) has
been extremely successful. The standard cosmological model
of structure formation (which I will refer to loosely as the
“CDM model” although it contains many other ingredients)
posits that the universe contains known particles—baryons,
photons, a small contribution from warm or hot neutrinos—
but also two dominant dark components, weakly interacting

cold dark matter and a cosmological constant or some similar
form of “dark energy”. Given these ingredients and starting
from an inflationary power spectrum at early times, the
CDM model predicts the subsequent growth of fluctuations
in the matter distribution, the 3D power spectrum of
these fluctuations after radiation-matter equality, the angular
power spectrum of temperature fluctuations in the CMB
at the time of last scattering, and the properties of large
scale structure post CMB. The predictions are in such good
agreement with large-scale measurements of these quantities
that it is hard to construct sensible alternatives to the
standard picture.

On somewhat smaller scales, the CDM model does not
specify how galaxies form or evolve, but it does suggest where
they may form. Analytic theory and numerical simulations
of structure formation show how fluctuations grow into
virialized halos and predict the abundance and clustering
of dark matter halos as a function of mass and redshift.
Empirical models can then be used to place galaxies in these
halos in a way that is consistent with the galaxy abundances
and clustering measured in surveys. Finally, measurements of
the average gravitational potential associated with galaxies,
through ravitational lensing, for example, close the loop,
the abundance and clustering pattern of galaxies and their
association with excess gravitational potential are now thor-
oughly established, so much so that any alternative model of
structure formation is constrained to make predictions very
similar to the standard CDM theory at the redshifts we have
observed to date.

In short, CDM has passed all observational tests on
scales of individual halos or larger. In the process, the
observational evidence has narrowed the field of competition
for alternative models considerably. Any working theory
of structure formation, whatever its physical basis, is now
constrained by observations to look a lot like the CDM
model. An unfortunate corollary is that large-scale tests
of structure formation may no longer be enough to make
progress in this field. Future observations of large-scale
structure, for example, from forthcoming experiments to
measure baryon acoustic oscillations [10–12], may teach us
something about the nature of dark energy, but they will
probably not teach us much about the nature of dark matter.
For this, we will need more detailed studies of the individual
halos detected by these spectroscopic surveys and by the next
generation of wide-field imaging surveys [13–16].

Indeed, while models of structure formation are highly
constrained by large-scale observations, the constraints on
small scales are considerably looser. If the standard CDM
model is correct, luminous matter does not trace most dark
matter structure below the scale of bright galaxies (halos of
mass 1011−1012M�), and does not trace any of it below the
scale of the smallest dwarf galaxies (halo masses of 106 −
107M�). In the default model, the dark matter candidate is
massive, cold, weakly interacting, and stable. In this case,
dark matter structure extends down to scales of 0.1 A.U.
or less (halo masses of 10−6M� or less) and is almost scale
invariant all the way down [17]. To test this incredible
prediction of 10 decades or more of invisible structure filling
our universe, we need to study dark matter in the highly
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nonlinear regime, deep in the heart of halos. This is where
the smallest and oldest dark matter structures end up, and
it is also where dark matter reaches its highest density and
where new physics—scattering, annihilation, or decay into
other particles—should be most evident. In fact, since the
Milky Way is embedded in a dark matter halo and we reside
relatively close to its centre (within the central 3% in radius),
any local study of dark matter must come to grips with the
highly nonlinear regime of CDM structure formation. In
that sense, our view of dark matter halos is necessarily an
“insider’s view”.

In this paper, I review some of what we know and what
we can learn about the internal structure of dark matter
halos. The literature in this field is extensive, so rather than
providing an exhaustive survey I have focussed on a few key
concepts and simple results. Since reviews on this subject
are unfortunately rare, I have tried to include enough basic
explanatory material to make the main results accessible to
a broader audience of nonspecialists. In Section 2, I first
introduce some basic elements from the standard theory
of structure formation, and clarify why halos correspond
to “nonlinear” structure. Section 3 reviews the surprising
universality of halo properties that has emerged from
numerical simulations, explains how halos grow and evolve
through mergers and accretion, and introduces the concept
of halo “age” as a description of the degree of internal
relaxation. Section 4 considers methods for determining
halo ages observationally, using semianalytic models of
halo substructure to evaluate their effectiveness. Finally in
Section 5 I discuss the prospects for these methods in current
and future observations. I do not discuss specific dark matter
candidates or their properties in detail in this paper, since
these have been extensively reviewed elsewhere (see, e.g.,
[9]), but I summarize in Section 5 how measurements of
halo properties can help constrain these candidates and other
aspects of fundamental physics.

2. From Linear to
Nonlinear Structure Formation

It is worth clarifying how dark matter halos and nonlinear
structure relate to the linear physics of fluctuations in the
early universe. Reviews of basic cosmology and the linear
perturbation theory can be found in almost any textbook on
cosmology (see, e.g., [19] for an elementary introduction, or
[20] or [21] for more advanced treatments). A more specific
discussion of large-scale structure can be found in [22]. An
excellent review of Press-Schechter theory is given in [23].

If we perturb the smooth matter distribution in a region
of the early universe by a small amount δ = (ρ−ρ)/ρ around
the average density ρ, then the perturbation will obey

δ̈ + 2Hδ̇ − 3
2
ΩmH

2δ = 0, (1)

where a = 1/(1 + z) is the scale factor, H = ȧ/a is the
Hubble constant, andΩm = ρ/ρc is the matter density relative
to the critical density ρc. Solving this perturbation equation
in a flat, matter-dominated universe with Ωm = 1 and

H = 2/(3t), we find solutions that grow as D(t) ∝ t2/3 and
solutions that decay as D(t) ∝ t−1. Since a∝ t2/3, this means
that the growing mode will increase in amplitude linearly
with scale factor and independent of amplitude. For more
general cosmologies the relative amount of growth is no
longer proportional to a (see [24] for a general discussion),
but it will still be independent of amplitude δ provided that
the amplitude is small. If we decompose a given pattern
of fluctuations into distinct Fourier modes δk of (spatial)
wavevector k, linear growth will preserve the relative phases
and amplitudes of the different modes since it is independent
of δ. Thus the spatial pattern of fluctuations and the shape
of the corresponding power spectrum will be preserved as
long as the amplitude of fluctuations remains small. This
feature of linear growth makes it particularly easy to compare
fluctuations at different epochs and has led to the highly
developed statistical machinery used to study the CMB and
large-scale structure.

At early times, the matter density field resulting from
inflation should consist of Gaussian fluctuations with uncor-
related phases around a nearly critical mean density. Since
the phases and relative amplitudes of fluctuations in this
field are unchanged during subsequent linear growth, we
can describe them independent of redshift by dividing their
amplitude by a linear growth factor D(z) that measures the
amount by which linear growth has amplified fluctuations
by redshift z relative to some reference epoch. (Note that the
linear growth factor is sometimes defined as g = D(a)/a, and
D(a) is referred to as the amplitude of the growing mode,
e.g., in [24].) Normalizing the growth factor to unity at z = 0,
this is equivalent to considering the initial field as it would be
if evolved linearly to the present day. Smoothing this linearly
evolved field on a scale R we obtain a new Gaussian random
field of variance σ2(R), and this variance alone is enough
to characterize the matter distribution statistically on these
scales. The function σ(R) summarizes all information about
the (linear) power spectrum, while all information about
linear growth is contained in D(z).

As fluctuations grow to amplitudes δ ∼ 1, it is clear
their growth must accelerate beyond the linear rate. Since
the early universe is very close to the critical density, positive
density fluctuations exceed this limit and represent regions
with net positive curvature. These regions will eventually
stop their expansion, turn around, and recollapse, at which
point their density diverges formally. In 1972, Gunn and Gott
considered the behavior of a spherical region of uniform
(over-)density and showed that it would recollapse at a well-
defined time [25]. The collapse time can be expressed in
terms of the initial conditions at some early time when the
amplitude of the fluctuation is small; it corresponds to the
time by which the initial fluctuation, had it grown at the
linear rate, would have reached a critical threshold δc. This
critical threshold has the value δc = 3/5(3π/2)2/3 ∼ 1.69 for
a wide range of cosmologies (see, e.g., [22, 26]).

This simple result leads to a very clever analytic estimate
of the abundance of collapsed halos, derived by Press and
Schechter [27]. Consider a region which has a spherically
averaged density contrast 0 < δ(z) < δc at redshift z (or scale
factor a = 1/(1+z)). The region will recollapse by the present
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day if its linearly evolved density contrast exceeds δc at z = 0.
We can write this condition:

δ(0) = δ(z)
D(z)

> δc, (2)

where D(z) is the linear growth factor normalized to unity at
the present day and δ(0) is the amplitude of the fluctuation
evolved linearly to the present day. The fraction of the
linearly evolved matter density field F contained in collapsed
objects at redshift z = 0 is thus simply the fraction of regions
with density contrast δ(0) > δc; that is,

F(0,R) = 1√
π

∫∞
δc

exp

(
−δ2

2σ2(R)

)
= 1

2
erfc

(
ν(0)√

2

)
, (3)

while the fraction contained in collapsed objects at a higher
redshift z is

F(z,R) = 1√
π

∫∞
δc/D(z)

exp

(
−δ2

2σ2(R)

)
= 1

2
erfc

(
ν√
2

)
, (4)

where ν(0) = δ(0)/σ(R) and ν = δ(z)/σ(R) = δc/(D(z)σ(R))
are the normal variates of the smoothed Gaussian random
field, and erfc is the complementary error function. The two
integrals differ only in their lower limit; since less growth has
occurred by redshift z a smaller faction of the field will have
collapsed, so the threshold for collapse must be higher.

The insight of Press and Schechter was that if a fraction
F(R) of the matter distribution met the collapse criterion
when smoothed on a scale R(M) = (3M/4πρ)1/3, and the
fraction was reduced to F′ < F when the smoothing scale
increased to R′ = R(M + dM), then the difference could be
assumed to have collapsed to form objects in the mass range
[M,M + dM]. Thus differentiating the previous equation
with respect to filtering scale (or equivalently enclosed mass)
leads to the Press-Schechter expression for the halo mass
function:

dn

dM
dM = 2

ρ

M

dF

dM
(z,R(M))dM

= ρ

M

√
2
π

exp

(
−δ2

2σ2(R)

)
dν

dM
dM,

(5)

where the factor ρ/M converts from mass density to number
density. An extra factor of two has crept in here to correct for
the under-counting of underdense regions—a subtle point in
Press-Schechter theory (see [28] for a rigorous deviation).

The beauty of the Press-Schechter approach is that it
relates the abundance of nonlinear halos to fundamental
quantities from linear physics—the growth factor D(z)
and the spectrum of fluctuations, represented by σ(M).
The model can also be extended to calculate conditional
probabilities, for example, the probability that a point will
be contained in a collapsed region of mass M1 at redshift z1

and then in a region of mass M2 at redshift z2. I will discuss
extended Press-Schechter (EPS) theory and these conditional
statistics further in Section 4. In its simplest form, however,
Press-Schechter theory has many inconsistencies and only
approximately describes the behavior seen in simulations

(see, e.g., [29]). I will discuss more recent numerical work
on halo evolution in the next section.

What do analytic arguments tell us about the internal
structure of dark matter halos? The collapse of a completely
cold spherical shell, for example, in the model of Gunn &
Gott discussed previously, would produce a spike of infinite
density at the centre of the perturbation. Real perturbations
will only reach finite density, however, because even cold
dark matter has some residual random motion relative to
the Hubble expansion, and because the region surrounding
a perturbation will not be perfectly spherically symmetric.
Both these effects add angular momentum to the orbits of
infalling particles, keeping them away from the point at r =
0. In general, any deviation from symmetry will be amplified
by the collapse, leading to a mixing of orbits and the rapid
“virialization” of the system, through which its central region
reaches the virial equilibrium:

W = −2K (6)

between potential energyW and kinetic energyK . One of the
main results of the spherical collapse model of Gunn & Gott
is an estimate of the final density a virialized region achieves.
This can be derived from energy conservation, which shows
that the final size of a spherical region after collapse will be
half its size at “turn-around” (the moment at which its radial
velocity is instantaneously zero). Meanwhile the surrounding
universe will continue to expand, increasing the contrast
between the collapsed region and the mean density of the
universe. A numerical calculation (see, e.g., [21]) shows that
the density contrast relative to the background density ρ will
be Δc ≡ ρvir/ρ = 18π2 ∼ 178 in an Einstein-deSitter universe,
or a slightly larger value in LCDM cosmologies.

Having reached this equilibrium, the virialized region no
longer feels the universal expansion around it, and in the
absence of subsequent accretion, its physical size will remain
constant with time. This idealized situation is never achieved
for any real halo, however. Since a halo represents a region
with δ > 0, one can always find a larger region around
it with smaller density contrast δ′ such that δ > δ′ > 0.
Since this larger region also has net positive curvature, it will
recollapse in turn, adding new material to the virialized halo
within it. Thus halos never remain isolated, but continue to
accrete material from the universe around them. While their
central regions are in approximate equilibrium, some new
material is being mixed into these regions at all times, and
their outer regions are constantly growing to include more
and more mass. In a system like the Milky Way, for instance,
the virial radius (i.e., the radius within which W ∼ −2K)
is estimated to be around 300 kpc (see, e.g., [30, 31] and
references therein), but matter is accreting onto the halo
from a much larger region extending out to ∼1 Mpc. Since
virialization produces a constant density contrast relative to
the background, all halos at a given redshift are predicted to
have the same mean density interior to their virial radius,
and this virial density decreases with time as the background
density decreases.

Averaging over large scales, the density field of the
universe can be decomposed into several distinct compo-
nents (see, e.g., [32]): (1) the linear regime of large-scale,
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low-amplitude fluctuations with fixed comoving size and
a linearly growing amplitude; (2) the collapsed, virialized
regions corresponding to individual halos, whose sizes and
densities evolve slowly through mergers and accretion; (3)
a quasilinear regime which interpolates between these two.
The division into different regimes is made formal in “halo
models”, which decompose the clustering of galaxies into
clustering within a single halo on small scales (the “one-
halo term”) and clustering of multiple halos due to linear or
quasilinear fluctuations in the large-scale matter distribution
(the “two-halo” term) [33]. In the present day universe, the
division between the two regimes occurs on scales of roughly
1 Mpc. In what follows I will consider the matter distribution
within halos, which determines the nonlinear, or “one-halo”,
contribution to the matter distribution.

3. The Universality of Halo Properties

3.1. A Universal Density Profile. Neither the spherical col-
lapse model nor Press-Schechter theory alone specifies what
the internal structure of dark matter halos should be.
One analytic approach to estimate this is to generalize the
spherical collapse model, considering the one-dimensional
collapse of concentric shells of different radii and densities.
A sensible choice for the initial run of density with radius
in such a model is the matter (auto-)correlation function,
which describes clustering statistically in terms of the average
excess density of matter around a point, and can be derived
from the power spectrum. Several early analytic models of
this kind, notably [25, 34, 35], predicted that matter would
cluster around a point to produce a radial density profile that
was a steep power law with a constant slope.

Despite these analytic insights, real progress on the
matter distribution inside halos did not occur until numer-
ical simulations of structure formation started to resolve
individual halos. Building on initial work which made it clear
that halo density profiles were not simple power laws [36–
39], Navarro et al. [40, 41] determined that the halo density
profile was well fit by a single functional form:

ρ(r) = ρsr3
s

r(rs + r)2 . (7)

Not only was this form not a simple power law, with suitable
choices of rs and ρs it seemed to fit all the simulation results,
independent of halo mass, power spectrum, and cosmology.
The profile, since named the Navarro-Frenk-White (NFW)
profile or universal density profile (UDP), was the first
of many indications of the surprising simplicity of halo
properties.

The radial profiles of halos have a number of interesting
features. First, rather than being scale invariant they contain
a characteristic length rs, the NFW scale radius, at which
the logarithmic slope of the profile is d ln ρ/d ln r = −2.
This scale is often defined with respect to the virial radius
rvir via the concentration parameter c ≡ rvir/rs. As discussed
below, the scale radius seems to mark the division between
two phases in the assembly of the halo, a rapid phase where
the central part of the profile builds up with ρ(r) ∝ r−1, and

a slower phase where an outer envelope forms around the
halo with a steeper profile going as ρ(r) ∝ r−3. The velocity
distribution inside halos is roughly isotropic, that is, σv,r ∼
σv,θ ∼ σv,φ, although the outer regions have a slight radial
bias, probably reflecting the continued infall of material
on radial orbits [42]. Perhaps the greatest surprise is the
“pseudo-phase space density” ρ(r)/σ3(r) one can construct
from the density and velocity dispersion profiles. In the
relaxed part of the halo this quantity is a featureless power
law, suggesting the possibility of a fundamental connection
between the inner and outer parts of the density profile [43].

3.2. Universal Patterns in Halo Growth. As suggested above,
the features of the UDP seem to be connected to the
evolutionary history of halos. The growth of an individual
halo can be described by specifying its total mass (say the
mass within the virial radius, defined as the region with mean
density Δc times the critical density) as a function of redshift
or scale factor. In what follows I will refer to this function
M(z) as the “mass accretion history” (MAH) of a halo and
often consider it normalized by the value M(z = 0). Studies
of halo growth in N-body simulations show that MAHs have
a characteristic shape, consisting of rapid growth at early
times and slower growth at late times, with the break point
between the two varying from halo to halo. They have be
fitted to the functional form M(z)/M(0) = (1 + z)β [44] as
well as to the form M(z)/M(0) = exp(−αz) [45], but more
recent work [18, 46] makes it clear both terms are required
to fit the full range of MAHs seen in simulations. In [18],
McBride et al. fit a general 2-parameter form for the MAH:

M(z)
M(0)

= (1 + z)β exp
(−γz), (8)

but find that the fitted values of β and γ they derive are
strongly correlated in their ensemble of MAHs, suggesting
an even better parameterization may exist.

These analytic approximations to the typical MAH are
particularly interesting because of the strong connection
between the MAH of a halo and its density profile. Crudely
speaking, when halos grow rapidly their density profiles stay
relatively shallow. From the work of [47], the scale radius rs
appears to increase in sync with the virial radius during these
growth spurts, such that the concentration parameter stays
at a roughly constant value c 	 4. During slower phases of
evolution, while the virial radius continues to grow roughly
as the scale factor of the universe (since the virial density
contrast is approximately constant), the scale radius stays
constant. Thus concentration increases as scale factor during
these quiescent periods. Based on these patterns, Wechsler
et al. [45] and Zhao et al. [47] provide similar algorithms
for predicting a halo’s concentration at any time, given its
MAH. (See also Lu et al. [48], which ties the precise shape
of the density profile to the MAH.) In the particularly simple
model of Wechsler et al., c = c0(a/ac), where c0 ∼ 4 is the
concentration of a halo undergoing rapid accretion and the
term a/ac is the ratio of the present scale factor a to the scale
factor ac at the time the halo last stopped accreting rapidly.
Present day galaxy halos have typical concentrations of ∼12,



6 Advances in Astronomy

indicating that they stopped growing rapidly at ac = 1/3
or z = 2, while galaxy clusters have concentrations of 4−6,
indicating that they have just formed recently (ac = 1 − 2/3,
or z = 0− 0.5).

3.3. Halo Shape and Spin. Just as simulated halos have a
well-defined distribution of MAHs, correlated with their
concentration parameter, so too they show a regular and
universal distribution of shapes. Halos are generally triaxial,
with axis ratios of b/a ∼ c/b ∼ 0.6− 0.8 (see, e.g., [49–
51]) (although their potentials may have slightly different
shapes—cf. [52]). Typical examples are more often prolate
(cigar-shaped) than oblate (disk shaped). Shape is correlated
with age or merger history (see, e.g., [51]), although this
correlation has been established only in an average sense. A
physical mechanism which may account for the correlation
was outlined in [53]. A system of two halos merging on a
radial orbit can be described in terms of a tensorial version
of the virial theorem, in which the contributions of kinetic
and potential energy must eventually reach an equilibrium
component by component. Dissipationless mergers between
dark matter halos should roughly conserve the individual
tensor components, such that the final merger remnant will
remember the original orientation of the infalling pair and
will remain more extended along that axis. From this point
of view, a halo’s shape may provide an interesting clue to the
orientation of the merger that formed it. Tests of this idea
are possible using gravitational lensing (see, e.g., [54]) or the
orbits of satellite galaxies (see, e.g., [55]) to measure halo
ellipticity with respect to local structure.

The internal velocity distribution of halos also shows
regular patterns. In particular, halos seem to have a fairly
universal distribution of internal angular momentum [56]
and of net spin (see, e.g., [51] and earlier references therein).
Overall the spin is small; defining a dimensionless spin
parameter λ from the size, mass and energy of a system, the
typical value for halos is λ = 0.03−0.05.Thus spin contributes
little to the support of the system against gravity. The angular
momentum distribution within halos presumably relates to
the MAH and to the features of the density profile (see, e.g.,
[51] shows that rounder halos have less net spin on average,
for instance), although the connection is still somewhat
unclear.

3.4. Halo Substructure. The standard picture of halo for-
mation suggests halos should contain dense substructure,
corresponding to the visible baryonic structure in groups
and clusters. Halos accrete matter continuously from their
surroundings, and this matter may include other virialized
halos. In fact, in CDM cosmologies the shape of the power
spectrum is such that the variance σ2(M) increases at small
masses, so small regions have a greater range of density
contrast than large ones and are more likely to cross the
threshold for collapse at early times. As a result, at any
time there are many more small halos in the universe than
large ones. The smallest halos collapse and virialize at the
earliest times on average, reaching high virial densities. They
may then be incorporated into larger halos where their
cores can survive as dense substructures, or “subhalos”. The

most massive subhalos (i.e., those closest to their parent
halo in mass) evolve quickly, but otherwise the evolution
is relatively independent of subhalo mass. Thus the mass
spectrum of subhalos within a halo at any given time reflects
the average cosmic mass function of halos present in the
accreted material, although the normalization of the subhalo
mass function decreases slowly as individual subhalos lose
mass through tidal heating and stripping.

From this picture, substructure should correlate with the
“age” of the halo, in the sense of the mean time since its
mass was assembled into a single object. For a given initial
spectrum of subhalos, this prediction can be made quanti-
tative by determining the mean number of orbits subhalos
have spent in the parent halo and assuming a certain amount
of mass loss occurs once per orbit at pericentric passage.
Slightly more elaborate analytic or semianalytic models of
the evolution of the subhalo mass function were developed
in [57–59]. Beyond the systematic variation with halo age,
the shape of the subhalo mass function is approximately
universal. It consists of a power law with an exponential
cutoff at Msat/Mmain ∼ 0.1, as discussed below (see also
[60, 61]).

While the relationship between simulated halos and
observed field galaxies seems reasonably straightforward,
the connection between subhalos and group or cluster
members has historically been much harder to understand.
The earliest simulations found no substructure at all—the
“overmerging” problem, which turned out to be due to a
lack of mass and force resolution [62]. After finally resolving
halo substructure in clusters [63–65], simulations quickly
started producing too much of it in group or galaxy-sized
halos [66, 67]—far more than was needed to host visible
dwarf galaxies in the Local Group, for instance. This issue
continues to generate controversy, but is beyond the scope of
this paper (see [68] for a recent review). Suffice it to say that if
the LCDM model is correct, the current generation of high-
resolution simulations of individual halos [69, 70] indicate
the existence of a huge amount of substructure around the
Milky Way that is not traced by baryons.

3.5. The Dynamical Evolution of Halos. So far I have focussed
on the static properties of halos, but halos are dynamical
systems. As mentioned above, they are constantly accreting
new material, both relatively smooth matter and a spectrum
of other halos. Mergers of one halo with another have long
interested simulators, as they may give rise to galaxy mergers
and drive some of the more spectacular evolution in galaxy
morphology. Thus there has been extensive analytic theory
and numerical work on this subject. I will summarize some
salient points here.

In the spherically-symmetric limit of halo growth, sub-
halo orbits are expected to be purely radial and start their
infall with a fixed energy corresponding to their potential
energy at turn around. In real halos, departures from
symmetry in the immediate surroundings of a system will
scatter the initial energy and angular momentum of satellites.
The angular momentum distribution of subhalo orbits at
infall (and to a lesser extent the energy distribution) have
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been studied in detail by many authors (see, e.g., [63, 64,
71, 72]); see also recent work by [73, 74]. The angular
momentum of an orbit can be characterized by its circularity
parameter ε = L/Lc, where L is the angular momentum of the
orbit and Lc is the angular momentum of a circular orbit with
the same energy. In terms of ε, the initial orbital distribution
is almost uniform, with a slight peak around ε = 0.5. Given
the steep density profile of dark matter halos, this angular
momentum distribution produces mainly radial orbits, with
a mean axis ratio of 6 : 1 [64, 75].

Subsequent to the merger, subhalo properties evolve
under the influence of dynamical friction, tidal mass loss, and
tidal heating. Dynamical friction drags in the most massive
satellites, but becomes negligible below Msat/Mmain ∼ 0.001
(see, e.g., [58, 76, 77]). Tidal mass loss peaks strongly
once per orbit at passage through pericentre. This episodic
mass loss should produce coherent streams of (dark matter)
debris like those seen in disrupting stellar systems. After
detaching from the progenitor subhalo, tidal streams evolve
quite simply with time, and their physics is well understood
(see, e.g., [78, 79]). Because mass loss, heating, and stream
formation occur once per orbit at the time of pericentric
passage, the characteristic timescale for evolution in halo
properties is the timescale for radial oscillations in the orbit,
Prad = 2π/κ, where κ is the epicyclic frequency. At any
redshift, this timescale is comparable to the instantaneous
Hubble time H(z)−1 [58]. Beyond the first few orbits, the
longer-term evolution of subhalos is an unresolved problem.
It is not clear when (if ever) subhalos are disrupted by
repeated mass loss [80]. This issue is particularly relevant to
the fate of the smallest subhalos, which may or may not have
survived for hundreds of orbits in the halo of the Milky Way
[17, 81–83].

In summary, halos show many simple trends and
properties that are universal, in the sense that they apply
independent of mass or cosmology. The universal density
profile is the best known of these properties, but the
regular trends in mass accretion history (MAH) and the
correlations of other quantities with the MAH deserve
further consideration. They suggest that age is possibly the
most important property of a halo. Recently assembled
halos have massive substructure, nonspherical shapes, low
concentration parameters and possibly more spin and/or
velocity anisotropy. Older halos are generally smoother, more
spherical, and more concentrated. In next section I consider
one specific example of a trend with age, the correlation
between age and substructure, in more detail.

4. Defining and Measuring Halo Age

If age is the organizing principle in halo properties, there
remains the question of how to define and measure it. A
pragmatic approach is simply to construct model halos,
study them with mock observations, and see what observa-
tions produce the clearest determination of age or formation
history. A large number of model halos are required to fully
explore the multivariate distributions in halo properties, so
semianalytic halo models are a convenient tool to use for
this task. In this section I will use the model developed in

[57, 58, 84, 85] to study halo substructure and ask how
well lensing or X-ray studies of cluster substructure can
determine the cluster age distribution.

4.1. Models. The semianalytic model introduced in [57, 58]
consists of two components: a Monte-Carlo algorithm for
generating random merger histories, or merger “trees”, for
individual halos, and an analytic description of subhalo
evolution which is applied to each satellite subhalo as it
merges with the main system. I summarize each component
briefly below; for a full description see [57, 58, 84, 85].

4.1.1. Merger Trees. In the extension to Press-Schechter
mentioned in Section 2, the growth history of a halo is
determined by the distribution of mass around it, averaged
spherically on successively lager scales. Ignoring higher-
order correlations, this distribution is Gaussian with variance
σ2(M) when averaging on a scale R = (3M/4πρ)1/3, where
ρ is the mean density of the universe. The entire history of
a halo can be generated by taking random walks in density
fluctuation δ, using a Gaussian normal variate scaled by
σ(M(R)), as the scale R decreases from infinity (where δ = 0,
since the density must equal the mean value by definition) to
zero, where δ may diverge. The resulting trajectory δ(R) or
δ(M) is then mapped onto evolution with time or redshift
using the condition for collapse δ > δc(z) = δc(0)/D(z).
Since δ can increase or decrease with scale, the trajectory
must be filtered such that δ(R) increases monotonically as
R decreases; this corresponds to finding the largest value of R
in the trajectory with a given δ and assuming that that scale
collapses when δ > δc(z) [26].

This process produces a single, randomly generated but
representative mass accretion history M(z). Because of the
filtering operation, this trajectory may have discontinuous
jumps in mass. These are interpreted as mergers, in which the
mass of the halo instantaneously increases by a finite amount.
If each merger involves a single other halo, we can associate
the mass change with this new halo and follow its evolution
along with the main branch. By following every merged halo
in every branch iteratively down to some mass resolution
limit, we can generate a “merger tree” describing the entire
formation history of our original object.

There are many subtleties to generating accurate merger
trees, and no one method is ideal. A recent comparison of
methods is given in [86]. An analytic expression for the
merger probability in a given redshift step is available only
for binary mergers in which two halos merge, but these
events do not normally account for the whole mass of the
final system, leading to additional branches in the merger
tree and/or accreted mass below the mass resolution of the
tree. The trees used in this section were generated using the
method of Somerville and Kolatt [87], which picks time steps
short enough that binary mergers are very likely in the tree.
In practice, this method breaks the main progenitor down
into small progenitors or accreted mass slightly too quickly,
leading to mass accretion histories that are slightly too young;
this is a common problem for many merger tree algorithms
[44, 86, 88].
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Figure 1: Distribution of parameters describing the mass accretion histories of 1000 randomly generated merger trees. (a) Colors correspond
to the classes defined by McBride et al. in [18]: blue: class I, yellow: class II, orange: class III, red: class IV. (b) colors correspond to the
formation redshift z50: magenta: z50 < 0.3, blue: z50 = 0.3−0.5, green: z50 = 0.5−0.8, yellow: z50 = 0.8−1.1, red: z50 > 1.1. The dotted line
indicates the locus of trajectories with γ − β = 0. For β � 1, formation redshift is roughly constant along this lines parallel to this one.

Part of the inaccuracy may come from the conditional
probability used in the method. In standard EPS theory
[26], the probability of going from a halo of mass M1 at
redshift z1 to a halo of mass M2 at redshift z2 can be
written as a simple function of a single variable Δν =
Δ(δc(z))/

√
Δ(σ2(M)), where Δ(δc(z)) = δc(z1) − δc(z2) =

δc,0(1/D(z1) − 1/D(z2)) and Δ(σ2(M)) = σ2(M1) − σ2(M2).
This function is simply the unconditional probability from
the mass function, shifted to a new origin in ν:

P(Δν)dM = PPS(Δν)dM =
√

2
π

exp

(
−Δν2

2

)
d(Δν)
dM

dM.

(9)

This conditional probability assumes a collapse threshold
independent of mass: δc(M, z) = δc(z), such that Δ(δc) =
δc(z1) − δc(z2). This would be the case for spherical halos;
for nonspherical halos the collapse threshold is different, and
systematic trends in halo shape with mass introduce a net
mass dependence in the collapse threshold, which can be
fitted by

δc(M, z) = √aδsc
[

1 + b
(
aν2)−α], (10)

with a ∼ 0.707, b = 0.485 and α ∼ 0.615, where δsc is
the normal spherical collapse threshold [89, 90]. Now the
change in barrier height Δ(δc) = δc(M1, z1) − δc(M2, z2)
will depend on both masses and both redshifts separately,
complicating the merger tree calculations. We can simplify
the calculations, however, by taking α = 0.5 and using an
approximation to the change in collapse threshold:

Δ(δc) ∼
√
aΔ(δsc(z)) + bΔσ. (11)

For a fixed jump in redshift z1 → z2, finding the exact
solution to this equation still requires iteration since Δσ
itself depends on Δδc, but using the spherical value as an
approximation to Δσ , the approximate change in threshold
can be calculated in one pass. Comparison with simula-
tions (Taylor, in preparation) shows that this approximate
ellipsoidal barrier provides a good match to measured halo
merger probabilities at high values of Δν, while the spherical
barrier works well at low values, so in practice the code used
here switches between the two forms at Δν ∼ 0.15. Using
these adjustments to the merger probability, the correct mass
dependence can be included in the merger trees, improving
their age distribution and MAHs.

Figure 1 shows the distribution of β and γ values fitted to
the semianalytic merger trees using χ2-fitting of their MAH.
The distribution is very similar to the one found by McBride
et al. for halos in the Millenium simulation [18], although
with a slight shift to higher values of γ and/or lower values
of β. This may indicate that the semianalytic trees are still
slightly too young. (Note that the distribution plotted in
figure A1 of McBride et al. includes halos of much lower
mass, so this explains some of the difference.) Mcbride et al.
classify MAH shapes into 4 classes, as indicated by the colors
in the left-hand panel. Compared to their statistics, 47%,
36%, 10%, and 8% of the semianalytic trees are in classes
I, II, III, and IV, respectively, versus to 18%, 57%, 17%, and
8% of the most massive halos of the Millenium simulation.
Thus, while the two distributions overlap significantly, the
difference between them suggests that absolute numbers or
age distributions derived from semianalytic merger trees will
need to be calibrated using simulated halos. The merger trees
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Figure 2: (a) The average differential mass function of subhalos within the virial radius for halos at redshift z = 0 (solid blue line) and
z = 0.2 (dashed red line). (b) The average differential mass function for halos at radii less than 1.0, 0.5, 0.25, 0.125, and 0.0625 times the
virial radius (different histograms, from top to bottom). The excess of massive systems at small radii is clearly visible.

should capture relative trends in age and substructure with
mass, redshift, and cosmology, however.

It is also worth noting one other complicating factor
in the β − γ fit to MAHs. Both in the Millenium runs
and in the semianalytic models, measured parameter values
cluster along a sequence roughly defined at high values of
β by β = γ (dotted line in Figure 1(b)). Different points
along lines parallel to this sequence actually represent almost
indistinguishable fits to the numerical MAH, so it is not
clear that β and γ represent the best parameterization of an
accretion history. The difference β− γ correlates much more
closely with physical quantities like the formation redshift z50

by which a halo had assembled 50% of its present-day (z = 0)
mass, as shown by the colours in Figure 1(b).

4.1.2. Subhalo Evolution. Given a sequence of mergers from
a merger tree, the next question is, how do these affect halo
structure? This can be divided in two distinct questions: how
do the overall properties (mass, concentration, shape, etc.)
of a halo change during a merger, and how much dense
substructure survives the merger?

The model introduced in [58] assumes the halo mass
(really the gravitational potential) increases instantaneously
at the moment of the merger and ignores changes in shape,
treating the halo potential as spherical. For concentration,
it uses a running fit of the MAH, together with the
concentration model of [45] (chosen for its simplicity) at
each redshift. These choices give only a crude approximation
to full 3-dimensional behavior of halos seen in simulations,
but they do capture some of its essential features.

The evolution of merging subhalos is complex, and is dis-
cussed in detail in [57, 58]. Briefly, halo orbits are calculated
in the (evolving) potential of the main system; dynamical
friction gradually reduces the energy and angular momen-
tum of subhalos, particularly massive ones; tidal stripping
removes mass from the outer parts of satellites; tidal heating
modifies their internal structure and accelerates mass-loss;
and finally encounters and collisions also contribute to mass
loss and scatter subhalo velocities. This combination of
physics is required to produce realistic subhalo distributions
that match high-resolution simulations [84, 85].

4.2. The Subhalo Mass Function and Radial Distribution.
Halos retain traces of successive mergers, both in the
positions and in the velocities of dark matter particles.
Velocity substructure, in the form of coherent streams of
particles on correlated orbits, is expected to be common
but is probably only detectable in the halo of the Milky
Way, where it can modify count rates in direct detection
experiments (e.g., [91–94]). Real-space substructure consists
of the dense cores of subhalos surviving from previous
mergers. Since CDM structure formation proceeds from
smaller mass halos to larger mass halos as the universe
evolves from high density to low density, massive low-
density halos at low redshift will contain the undigested
cores of many low-mass, high-density halos, which are stable
against tidal stripping provided they have a few times the
mean density of the background (e.g., [80]).

The mass spectrum and spatial distribution of these
cores, or subhalos, are particularly simple, as illustrated
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Figure 3: The evolution of a single cluster halo versus time. The
bottom panel shows how the total mass (upper black line) and the
mass within the central 390 kpc (lower red line) build up with time.
The upper panel shows how the number of satellites changes with
time. The dashed curves are for satellites with masses in excess of
1011M�, 1012M�, and 1013M�, respectively, from top to bottom. The
solid curves are for satellites with masses of more than 0.1% or 1%
of the main system’s mass, respectively, from top to bottom.

in Figure 2 which shows average mass functions for an
ensemble of 3000 semianalytic halo models. Relative to the
mass of the main halo, the distribution of subhalo masses is
a power law with an exponential cutoff around Msat/Mmain ∼
0.1. Normalized in this way, the mass function is almost
invariant with redshift and varies only slowly with halo mass
(see also [60, 61, 84, 85, 95]). The spatial distribution with
halo-centric radius (Figure 2(b)) is also very simple until
one reaches 10%−20% of the virial radius from the centre. A
small population of massive subhalos (∼1 or less per halo on
average, with masses greater than 1% of the main halo mass)
is predicted in this region. These are systems which have
been dragged in by dynamical friction and are in the process
of disruption. The semianalytic models ignore the effects
of baryons, however, which should be strong in the central
region. Thus it is not clear how many of the central merging
systems exist in real cluster or galaxy halos—hydrodynamic
simulations would help clarify the situation here.

4.3. Evolution with Time. The subhalo mass function is
not completely static, but changes systematically with time.
While low-mass halos reach an equilibrium in mass, energy,
and angular momentum loss after a few orbits in the main
halo, massive subhalos evolve quickly due to dynamical
friction. As a result, massive substructure is a key indicator
of recent growth and merging. Figure 3 shows the evolution
of a single semianalytic model halo over time. The lower
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Figure 4: The differential mass function of subhalos for systems
with different ranges of formation epoch: z50 = 0−0.25 (blue), z50 =
0.25−0.45 (green), z50 = 0.45−0.65 (yellow), and z50 > 0.65 (red).

panel shows how the total mass of the main halo (upper,
black line) and the mass within the central 390 kpc build
up with time. The upper panel shows how the number
of satellites changes with time. The dashed curves are for
satellites with masses in excess of 1011M�, 1012M�, and
1013M�, respectively, from top to bottom. The solid curves
are for satellites with masses of more than 0.1% or 1% of
the main system’s mass, respectively, from top to bottom. As
the halo grows, its total number of satellites increases, but the
mass ratio of each individual subhalo decreases, both because
it loses mass through tidal stripping and because its parent
halo increases in mass. Thus the amplitude of the halo mass
function expressed in terms of the ratio Msat/Mmain decays
with time, particularly for large values of Msat/Mmain (e.g.,
the green solid curve in the upper panel).

As a result of these trends, the slope of the subhalo
mass function changes with time. This suggests a first
observational test of halo age, based on substructure. If one
can measure subhalo masses for individual halos, particularly
at the high mass end, then the amplitude of the mass function
will correlate with evolutionary history. The correlation is
strongest with recent tracers of halo growth such as z90, the
redshift by which a halo built up 90% of its present-day
(z = 0) mass [84], but is evident even for longer-term tracers
like z50, as shown in Figure 4. (Note that this is a differential
mass function; integrating the contribution from all halos
would produce an even stronger signal.) I explore this idea
further below.

4.4. Inferring Age from Observation of Substructure. The
differences shown in Figure 4 suggest there should be
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Figure 5: Two cluster halos extracted from an n-body simulation at z = 0. One is isolated and relaxed (a), while the other is in the process
of forming through a major merger (b). In each case, only particles within 1 Mpc of the halo are plotted.

a strong correlation between the total amount of sub-
structure in a halo and its formation history. Numerical
studies find similar results, albeit with large halo-to-halo
scatter [60, 96]. At a broader level, it has long been
appreciated that cluster substructure indicates recent growth
[97]. Figure 5 shows two regions extracted from a recent n-
body simulation run with WMAP-7 parameters. For clarity,
only the particles within 1 Mpc of the centre of each region
are plotted. Figure 5(a) contains relatively isolated halo,
while Figure 5(b) catches an ongoing merger between two
components. Even with an imperfect reconstruction of the
matter density, for example, via lensing measurements of
the convergence field or X-ray measurements of the gaseous
emission in each region, observations could clearly tell one
from the other. The challenge is to detect more subtle signs
of recent growth, and to do so for a large sample of halos.

Galaxy clusters are a tempting target for this sort of study,
for several reasons. Luminous baryons can be used to trace
at least part of the substructure in cluster halos down to
very small values ofMsat/Mmain, since individual galaxies have
mass ratios of 10−5 or less relative to the cluster. Hot gas
provides an independent measure of the shape of the main
halo potential, as does lensing. Lensing is the more appealing
of these tracers, since it avoids possible offsets or biases
between the baryonic matter distribution and the dark mat-
ter distribution, but it requires deep observations of massive
clusters at moderate redshifts. Many groups have used lens-
ing to reconstruct the matter distributions in famous systems
like Abell 1689 (e.g., [98, 99]) or the Bullet Cluster [100].
The LoCuSS survey (http://www.sr.bham.ac.uk/locuss/) is a
more general attempt to measure the shape of the potential
in a large sample of cluster halos and to relate the mass
distribution in clusters to their dynamical state and galaxy
populations.

These studies combine large scale weak lensing measure-
ments (measurements of weak distortions in galaxy shape
only apparent in averages over hundreds of galaxies), to
get the overall mass distribution in the cluster, with strong
lensing observations, which can reveal small-scale features
in the central part of the cluster. The relative contribution
of structure to the projected mass distribution in the cluster
can be estimated by comparing a smooth ellipsoidal model
to the full mass distribution inferred from the observations.
For a particular choice of aperture (roughly 390 kpc in the
case of LoCuSS, based on the field of view of the camera and
the redshifts of the clusters), the difference between the two,
normalized to the total mass, gives the substructure fraction
fsub. It is straightforward to calculate the distribution of
fsub in the semianalytic models, assuming a perfect set of
observations which reconstruct the full mass distribution to
high precision over the entire aperture. It is less clear (and
the subject of ongoing work) how gaps in the lensing map
affect measurements of fsub in real clusters. Nonetheless,
preliminary comparisons of the models with the data show
good general agreement [101].

The predicted distribution of fsub is roughly log normal,
as discussed below. The substructure fraction correlates
strongly with the formation redshifts z90 and z50 defined pre-
viously, although in both cases the relationship is not quite
monotonic (Figure 6). As discussed in [101], for systems that
have formed very recently, merging material will not have
reached the centre of the halo yet. Thus systems with z90 < 0.1
sometimes have relatively low central substructure fractions.
The dotted lines in the two panels indicate the formation
redshift such that merging substructure has reached the
centre of the halo and is on its first pericentric passage.
Beyond this point the correlation between formation epoch
and substructure fraction is clear and monotonic. Only the

http://www.sr.bham.ac.uk/locuss/
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Figure 6: Lensing substructure fraction versus the formation reshifts z90 (a) and z50 (b). The dotted line indicates the epoch approximately
one infall time before present.

vertical axis of these figures corresponds to an observable
quantity, fsub, but clearly by binning in fsub one can select
samples of clusters with very different age distributions. Thus
measurements of fsub represent one realistic approach to
determining the underlying distribution of halo ages.

Finally, I note that similar work constraining substruc-
ture fractions with lensing observations may also be possible
on much smaller mass scales, in the halos of individual
galaxies. While individual galaxies are not massive enough
to be detected through weak lensing, their central regions
reach surface densities high enough to produce strong
lensing of background galaxies or quasars. Substructure in
the halo of a lensing system can produce variations in
brightness (e.g., [102–104]), image position (e.g., [105]),
or the time delays between multiple images of variable
background sources (see, e.g., [106])—see [107] for a recent
review. Separating the signals from dark and luminous
substructure is more complicated on this scale, since there
is possible contamination from microlensing by stars in the
lensing galaxy, and since many subhalos large enough to
produce detectable variations in the lensing potential do
not host galaxies bright enough to detect at cosmological
redshifts. Nonetheless, with forthcoming large samples of
strong lenses, this may be promising avenue for measuring
dark substructure on very small scales (e.g., [108]).

5. Prospects

The simple, universal distributions of halo parameters—
concentration, shape, spin, substructure—that emerge from
numerical simulations, and the strong correlations found
between these quantities, suggest the one or two main
properties determine much of the internal structure of

dark matter halos. Section 3 reviewed the evidence that
a halo’s concentration parameter is determined directly
by its mass accretion history, and in Section 4 I shown
how substructure should also reflect formation history. The
semianalytic models used to study this relationship are
somewhat approximate and need confirmation from a large
suit of numerical simulations (Wong et al. in preparation),
but the predicted trends are clear and match those seen
in earlier numerical work. Thus in these two examples,
the fundamental parameter which accounts for most of the
scatter in halo properties seems to be age, in the broad sense
encapsulated by the mass accretion history.

Mass accretion histories can in principle contain an
arbitrary number of independent degrees of freedom. Based
on the numerical fits discussed in Section 3, real examples
seem to form a much more limited set with only one
(or possibly two) main degree(s) of freedom. Likewise,
while the shape of the substructure mass function can in
principle have many degrees of freedom, it seems to follow
a single-parameter sequence in practice, and of course scalar
properties like concentration necessarily form 1-dimensional
distributions. All this suggests there may be a single “best”
measure of halo age, “best” in the sense that it captures
most of the variety in halo properties. This exact identity
of this parameter, its physical interpretation, and the best
observational estimators for it remain to be determined.

Assuming a single-parameter sequence of halo “age”
or degree of relaxation exists, why bother measuring it?
Understanding how halos achieve their particular internal
states is intrinsically interesting, of course, but informa-
tion about halo structure and dynamics also has several
immediate practical applications. As discussed in Section 2,
halo occupation (HOD) models predict or interpret galaxy
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Figure 7: Distributions of lensing substructure fraction at z = 0 (a) and z = 0.2 (b). The solid histogram is for 1000 merger trees in a
cosmology with Ωm = 0.27, σ8 = 0.80. The dashed histogram is for 1000 merger trees in a cosmology with Ωm = 0.23, σ8 = 0.85. These
two cosmologies are chosen to produce the same abundance of massive clusters at low redshift, so cluster number counts alone would not
distinguish between them.

clustering by matching galaxies to halos, and this approach
is also useful in producing “mock” catalogues of galaxies
from dark-matter-only simulations. These models normally
assume that mass is the most important halo property to
match, despite evidence that halo age is correlated with
large-scale clustering and environment [109–115]. Better
definitions and metrics for age, together with simulations of
galaxy formation in halos with different formation histories,
would clarify the connection between the age of the host halo
and its resident galaxy’s properties.

A second practical application is testing standard struc-
ture formation and breaking parameter degeneracies. One
simple example is the age distribution of galaxy clusters.
Clusters form through the amplification of peaks in the
early density field by the growth factor D(z). Measuring the
abundance of clusters constrains the product of the power
spectrum and the growth factor, leading to a degeneracy
between Ωm and σ8 (σ8 = σ(M(R)) for R = 8 h−1 Mpc,
where h = (H0/100 km s−1 Mpc−1)) or for more general
cosmologies, between late-time growth and initial power.
At fixed cluster abundance, there is a physical difference
between cosmologies with low Ωm and high σ8 and those
with highΩm and low σ8, however; in the former case clusters
form earlier, and should be more relaxed, rounder, more
concentrated and have less substructure. Figure 7 shows how
the substructure fraction distributions reflect the difference
in cluster ages for two very similar cosmologies located
along the degeneracy in the Ωm − σ8 plane. The shift in

the distribution is subtle (partly because substructure is
being measured in projection—see Section 4), but should be
measurable with a sample of O(100) clusters, provided the
effect can be calibrated carefully in simulations.

In the longer term, a more fundamental goal of the study
of nonlinear structure is to understand dark matter itself.
Nonlinear structure—or halo properties more specifically—
are connected to the fundamental physics of dark matter
in several ways. Throughout this paper I have assumed
that all dark matter is a single particle of a “plain vanilla”
sort, that is cold, collisionless, and stable over cosmological
timescales and on all the length scales we can probe. In
fact a much greater range of possibilities exist—see [9]
for a comprehensive review. Real candidates could behave
quite differently on small scales or at high densities, their
properties could vary over cosmological time, or they could
start off with a quite different initial distribution in the early
universe. Detailed studies of dark matter halos will help
constrain all three of these possibilities.

There are a number of particle properties which would
only become evident at high densities or on small spatial
scales. Supersymmetric dark matter particles such as neu-
tralinos are their own antiparticle and can annihilate with
one another, producing gamma rays and other secondary
particles with energies in the GeV-TeV range. This emission
is strongly weighted to the densest part of halos and thus
depends sensitively on the amount of substructure within a
halo (see, e.g., [116] for a recent review). In principle, dark
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matter particles could also have important collisional cross-
sections with themselves and/or normal matter, or their
coupling to gravity might even be different. All these possibil-
ities are already quite strongly constrained by current obser-
vations, however. Observations by the Fermi Gamma-ray
telescope constrain the annihilation cross-section for dark
matter [117], observations of the bullet cluster constrain
the elastic scattering cross-section [100] and observations
of the disruption of the Sagittarius dwarf galaxy constrain a
modified gravitational coupling [118]. As our measurements
of halo structure improve, probing denser substructure and
smaller mass scales, these constraints will grow stronger.
The time evolution of dark matter properties is slightly less
well constrained, but since most of the evidence for dense
substructure in dark matter halos comes from low redshift,
this suggests that dark matter particles have remained stable
over the age of the universe. Better observational constraints
on dense halo substructure and the overall distribution of
halo ages could strengthen this argument considerably.

The initial conditions for structure formation are a
much more open question. Modifications to dark matter
couplings, or variations in the equation of state of the
universe at early times, could leave their imprint in the
power spectrum of fluctuations from which halos formed.
Warm dark matter, strongly annihilating or rapidly decaying
dark matter, collisional dark matter, and other variations
on the plain vanilla model all produce a truncated power
spectrum and a minimum scale to structure formation. This
would eliminate halo substructure below that scale, and
produce rounder and more relaxed halos on slightly larger
scales. There have been many appeals to modified physics
of this kind to explain apparent discrepancies between the
distributions of dark and luminous matter in galaxy cores
(as reviewed in [119]) or in the halo of the Milky Way (as
reviewed in [68]). These arguments have the problem that
the baryonic tracers themselves are expected to disappear on
small scales, due to strong negative feedback effects in star
formation and galaxy formation on these scales. When we fail
to observe dense, small-scale dark structure in the universe,
it is unclear whether this is telling us something about
the behavior of dark matter on these scales, or something
about the behavior of baryons. Current and future lensing
experiments will be crucial for resolving this problem and
establishing or disproving definitively the existence of dark
structure on subgalactic scales. This in turn should lead to
strong constraints on warm or collisional dark matter, or
similar models.

A generation of numerical experiments and analytic
work have made remarkable progress in understanding
nonlinear structure formation and the “deeply” nonlinear
internal properties of dark matter halos. While the field
lacks the analytical simplicity of linear theory and may seem
less suited to precision cosmology as a result, some simple
patterns have emerged from simulations. Dark matter
halo properties correlate strongly with their formation
history and may even form a single-parameter sequence
in “age”, provided this parameter can be defined clearly.
With powerful new observational measures of halo structure
and substructure becoming available, small-scale nonlinear

structure formation may be the next great source of tests of
cosmology, dark matter, and fundamental physics.
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