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Abstract.

We review progress in understanding dark matter by astrophysics, and particularly

via the effect of gravitational lensing. Evidence from many different directions now

all imply that five sixths of the material content of the universe is in this mysterious

form, separate from and beyond the ordinary “baryonic” particles in the standard

model of particle physics. Dark matter appears not to interact via the electromagnetic

force, and therefore neither emits nor reflects light. However, it definitely does interact

via gravity, and has played the most important role in shaping the Universe on large

scales. The most successful technique with which to investigate it has so far been the

effect of gravitational lensing. The curvature of space-time near any gravitating mass

(including dark matter) deflects passing rays of light – observably shifting, distorting

and magnifying the images of background galaxies. Measurements of such effects

currently provide constraints on the mean density of dark matter, and its density

relative to baryonic matter; the size and mass of individual dark matter particles; and

its cross section under various fundamental forces.
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1. Introduction

Astrophysics now operates under the astonishing hypothesis that the Universe we see

is but the tip of an iceberg. It has taken a wealth of evidence from many independent

observations to confirm that, while the “standard model” of particle physics may

successfully describe quarks, leptons and bosons, it misses the most common form of

matter. The first evidence for this provocative stance came from the unexpectedly high

velocities of galaxies in the Coma cluster [1, 2] and Virgo cluster [3]. The clusters appear

to be gravitationally bound, but all the luminous material inside them does not add up

to sufficient mass to retain the fast-moving galaxies. In individual galaxies too, stars

orbit too fast to be held by the luminous material of Andromeda [4, 5, 6], NGC3115

[7] and other spiral galaxies [8, 9]. Luminous material in these galaxies is concentrated

in the central regions, so the angular rotation of stars ought to slow at large radii, but

stars in the outskirts are seen to rotate at the same rate as those near the centre. Given

the high velocities of their constituents, both galaxies and clusters of galaxies ought to

pull themselves apart. Preserving these self-destructive systems requires gravitational

glue in the form of invisible “dark matter”.

The modern “concordance” cosmological model also relies upon the gravitational

influence of (cold) dark matter to glue together the entire Universe. Slowing the

expansion after the Big Bang required much more gravity than that provided by the

baryons, which alone would have allowed the contents of the Universe to be spread

unhabitably thin [10]. However, if additional dark matter were forged during the same

primordial fireball, it must have quickly stopped interacting with other particles through

the electroweak force, in order to preserve the uniformity of photons in the Cosmic

Microwave Background (CMB) radiation, whose temperature fluctuations reach only

one part in 105 of the mean [11]. Indeed, once dark matter decoupled from standard

model particles, it began collapsing under its own gravity into dense concentrations

of mass. These provided the initial scaffolding for structure formation. Once ordinary

matter had cooled further, and also decoupled from the hot photons, it could fall into the

scaffolding and be built into galaxies [12, 13, 14, 15]. Without dark matter’s headstart,

there would have been insufficient time to build the complex structures we see (and

live in) today. The latest measurements of the CMB and Large-Scale Structure [16, 17]

indicate that the Universe contains approximately one hydrogen atom per cubic metre,

but five times that in the form of dark matter.

On the back of this evidence, determining the nature of ubiquitous dark matter has

become an outstanding problem of modern physics. Yet its low rate of interaction with

the rest of the Universe makes it difficult to detect. Since dark matter does not generally

emit, reflect or absorb light of any wavelength, traditional astrophysics is rendered blind.

No particle colliders have yet achieved sufficient energy to create a single dark matter

particle and, even if they can identify a dark matter candidate, astronomical observations

will still be required to demonstrate that the candidate particle is present in sufficient

quantities throughout the Universe to be the dark matter. Direct detection experiments



The dark matter of gravitational lensing 3

in quiet, underground mines have yet to locate a convincing signal – and explaining this

absence also requires astrophysical explanations, such as the patchiness of dark matter

debris from consumed satellite galaxies [18, 19]. Astronomy will therefore remain vital

in resolving the outstanding problem that it initiated.

As with the first detections, the best way to study dark matter is via its

gravitational influence on more easily visible particles. The most direct method for this is

“gravitational lensing”, the deflection of photons as they pass through the warped space-

time of a gravitational field [20]. Light rays from distant sources are not “straight” (in

a Euclidean frame) if they pass near massive objects, such as stars, clusters of galaxies

or dark matter, along our line of sight. In practice, the effect is similar to optical

refraction, although it arises from very different physics. The effect was first observed

in 1919, during a solar eclipse in front of the Hyades star cluster, whose stars appeared

to move as they passed behind the mass of the sun [21]. This observation provided the

first experimental verification of general relativity. Although neither Einstein nor the

observers saw any further uses for the effect [22], Zwicky suggested that the ultimate

measurement of cluster masses would come from lensing [2], and it has indeed become

the most successful probe of the dark sector.

Many lines of research currently exploit the effect of gravitational lensing. It is

a rapidly growing field, but the first threads of consensus are beginning to emerge in

answer to the top-level questions. As we shall discuss in this review, the technique has

provided vital contributions to the following deductions:

• The Universe contains about five times more dark matter than baryonic matter

• Dark matter interacts approximately normally via gravity

• Dark matter has a very small electroweak and self-interaction cross section

• Dark matter is not in the form of dense, planet-sized bodies

• Dark matter is dynamically cold.

We introduce the various observational flavours of gravitational lensing in §2. We

then describe lensing measurements that have shed light upon the amount of dark

matter in §3, its organisation in §4, and its properties in §5. We try to touch upon

all of the areas of gravitational lensing that have contributed to current knowledge of

dark matter, but cannot comprehensively discuss observations from all fields in a single

review. We discuss future prospects and challenges for the field in §6, and conclude in

§7. Note that measurements of cosmological distances all depend upon the overall rate

of expansion of the Universe, parameterised as Hubble’s constant H . Throughout this

review, we assume a background cosmological model in which this value at the present

day is h = H0/
0 = 70 km/s/Mpc. Since this is only known to ∼ 5% accuracy [23],

uncertainty in the geometry of gravitational lens systems propagates implicitly into the

same uncertainty in all inferred (absolute) lens masses.



The dark matter of gravitational lensing 4

2. Observational flavours of Gravitational Lensing

2.1. Strong lensing

Gravitational lensing is most easily observable around a dense concentration of mass

like the core of a galaxy or cluster of galaxies. In the “strong lensing” regime, nearby

space-time is so warped that light can travel along multiple paths around the lens, and

still be deflected back towards the observer [24]. If a distant source is directly behind

a circular lens, the light can travel around any side of it, and appears as an “Einstein

ring”. The Einstein radius or size of this ring is proportional to the square root of the

projected mass inside it. If the background source is slightly offset, or the lens has

a complex shape, the source can still appear in multiple locations, viewed from very

slightly different angles. Depending on the focussing of the light path, each of these

multiple images can be made brighter (magnified) or fainter (demagnified), and the

magnification is greatest close to the “critical curve” (the asymmetric equivalent of an

Einstein ring) [25]. Since light from opposite ends of an extended source (e.g. a galaxy) is

typically deflected by different amounts, the source appears distorted. Distant galaxies

intrinsically no different from any others appear as tangential arcs around the lens or, if

the lens mass is very concentrated, a line radiating away from it [26]. Such “radial arcs”

are generally difficult to see because they are usually less magnified and appear inside

the Einstein radius, behind any light emitted by the lens object itself. An example of

strong gravitational lensing around a massive galaxy cluster is shown in figure 1.

The first strong gravitational lens was discovered with the Jodrell Bank MkIA

radio telescope in 1979 [27]. Two quasars were found 6 arcseconds apart, with identical

redshifts z = 1.41 and detailed absorption spectra. A foreground z = 0.355 galaxy is

now known between them. Subsequent observational progress has then driven primarily

by technological advance. Photographic plates even on large telescopes and scanned by

computers gather light too inefficiently to capture optical images of the distant (therefore

faint) and thin lensed arcs. Digital CCD cameras have far higher efficiency, and the first

image of a strongly lensed arc was obtained with the Canada-France Hawaii telescope in

galaxy cluster Abell 370 [28, 29], and confirmed to be a single object at redshift z = 0.72

by optical spectroscopy [30]. Several more such giant arcs were quickly identified in other

galaxy clusters [31], soon the first sample of strong lensing clusters was built [32] and

allowed for statistical study of giant arcs [33].

The launch of the Hubble Space Telescope (HST) then revolutionised the field

once again. Its unrivalled imaging resolution helped distinguish a large number of

arcs, arclets and multiple images in many clusters. The first study using the Wide

Field Planetary Camera (WFPC2) identified seven strongly lensed objects behind the

cluster Abell 2218 [34], significantly more than bad been found by using ground-based

telescopes. The Advanced Camera for Surveys (ACS) provided a further step forward,

with 20-30 strongly lensed objects found in several of the most massive clusters [35] and

over 100 multiple images around Abell 1689 [36]. The positions and shapes of the images

can be used to reconstruct the distribution of mass in the lens. The magnification effect
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Figure 1. Strong gravitational lensing around galaxy cluster CL0024+17,

demonstrating at least three layers projected onto a single 2D image. The + shaped

objects are nearby stars in our own galaxy (the + created by optical effects in the

telescope). The yellow, elliptical galaxies are members of the cluster, all at a similar

redshift and gravitationally bound. Also amongst this group of galaxies is a halo of

invisible dark matter. The elongated blue objects are much more distant galaxies,

physically unassociated with, and lying behind, the cluster. Gravitational lensing

has distorted their apparent images into a series of tangential arcs. Figure credit:

NASA/ESA/M.J. Jee (John Hopkins University).

boosts the observed fluxes of background objects, so that a strong lensing cluster can

also be used as a gravitational telescope to see – and even resolve – fainter or more

distant objects than otherwise possible [37].

The detection of strong-lensing events on galaxy scales also enabled constraints

on cosmological parameters using large statistical samples. Throughout the 1990s,

the Cosmic Lens All-Sky Survey (CLASS, [38]) searched for gravitationally lensed

compact radio sources using imaging from the Very Large Array (VLA). Out of ∼16,500

radio sources, they found 22 lens systems. The statistical properties of these lensed

systems constrained cosmological parameters [39] and measurements of their time delays

constrained Hubble’s constant [40]. More recently, systematic homogeneous surveys
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such as the Sloan Digital Sky Survey (SDSS) have provided even larger samples of

strong-lensing galaxies. The SDSS Quasar Lens Search (SQLS, [41]) spectroscopically

found 53 lensing galaxies and tightened constraints on cosmological parameters [42] by

ingeniously looking for the signature of two objects at different redshifts. Finally, the

Sloan Lens ACS (SLACS, [43]) Survey combined the massive data volume of SDSS

with the high-resolution imaging capability of ACS to identify and then follow up 131

galaxy-galaxy lensing systems [172], measuring the average dark matter fraction and

dark matter density profiles within galaxies [74].

2.2. Microlensing

Most distant astronomical observations are static on the scale of a human lifetime but, as

in the case of the 1919 eclipse, an exception is provided by any relative motion between

a source and a gravitational lens. The line of sight to a star along which a foreground

mass would induce gravitational lensing represents a tiny volume of space. Panoramic

imaging cameras now make it possible to monitor the lines of sight to many millions of

stars, and any object traversing any of those small volumes can temporarily brighten it

for days or weeks. Indeed, “pixel lensing” of even unresolved stars can still detect the

statistical passage of a foreground lens in front of one of the many stars contributing to

the light in any pixel [46, 47]. The main observational concern is to avoid false-positive

detections due to intrinsic variability in the luminosity of certain types of star. The two

most exciting results microlensing studies are that dark matter in the Milky Way is not

predominantly in the form of freefloating, planet-sized lumps of dull rock, which would

occasionally brighten stars in the Galactic centre, but that planet-sized lumps of rock

do exist around other stars, and give rise to secondary brighness peaks shortly before

or after their host star itself acts as a gravitational lens.

The term “gravitational microlensing” was coined by Refsdal [44, 45], from the

characteristic ∼ 1 microarcsecond size of a star’s Einstein radius. Only physically

small sources will be significantly affected by microlensing; extended background sources

like galaxies are effectively immune because only a tiny fraction of their light is

strongly magnified, with the rest propagating unaffected. More massive lenses, with

milliarcsecond Einstein radii, produce “gravitational millilensing” that affects slightly

larger background sources on a timescale of months (and the statistical long tail is

strong lensing around massive clusters, with arcsecond Einstein radii). This distinction

has been most useful when looking at the lensed images of Active Galactic Nuclei (a

galaxy’s central, supermassive black hole and surrounding accretion disc), because these

really do have different physical sizes when viewed at different wavelengths. As matter

gradually falls into the black hole, it emits a warm glow of infra-red light from the

large and outer narrow-line region, then optical light from the smaller broad-line region

and finally ultra-violet light from the accretion disc itself. The behaviour of the source

can be modelled from long wavelength observations, which are relatively unaffected

by gravitational lensing, then the lens object and even its substructure probed at
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progressively shorter wavelengths.

2.3. Weak lensing

Most lines of sight through the Universe do not pass near a strong gravitational lens.

Far from the core of a galaxy or cluster of galaxies, the light deflection is very slight.

In this “weak lensing” regime, the distortion of resolved sources can be approximated

to first order as a locally linear transformation of the sky, represented as a 2× 2 matrix

that includes magnification, shear and (potentially, but not usually in practice) rotation

[48, 49, 50, 51, 52]. The theory was developed during the 1990s [53, 54], including

some practical methods to accurately measure galaxy positions and shapes in the new

pixellated CCD images [55]. Either the magnification [56] or the shear distortion can be

measured, but the shear tends to have higher signal to noise, because competing effects

of magnification (the brightening of faint galaxies, but the dilution of the surveyed

volume in a fixed angle on the sky) act against each other and partially cancel [57].

The shear distortion changes the shapes of distant galaxies, adjusting their major-

to-minor axis ratio by ∼ 2%. This cannot be seen in an individual object, since it is

far smaller than the range of intrinsic shape variation in galaxies, which are already

elliptical, have spiral arms and knots of star formation, etc. However, galaxies along

adjacent lines of sight are coherently sheared by a similar amount, while their intrinsic

shapes are (to first order) uncorrelated. In the absence of lensing, if there is no preferred

direction in the Universe, galaxy shapes must average out as circular. Once sheared,

the average shape of adjacent galaxies is an ellipse, from which the shear signal can be

measured statistically. The intrinsic shapes of galaxies are noise in this measurement

(averaging over ∼ 100 galaxies is required to obtain a signal to noise of unity in shear).

The spatial resolution of this measurement is determined by the density on the sky of

galaxies whose shapes are resolved: typically a few square arcminutes from the ground,

or one square arcminute from space.

The observable shear field is proportional to a second derivative of the gravitational

potential projected along a line of sight. Via a convolution, this can be converted into

a map of the projected mass distribution at the same resolution. The mass is just

a different second derivative of the gravitational potential and is responsible for the

circular “E-mode” patterns shown in figure 2 and reminiscent of the tangential strong

lensing arcs around clusters. Conveniently, a second scalar quantity can be extracted

from the shear field. The curl-like “B-mode” signal is not produced by the gravitational

field of a single mass, and only in very low amounts by a complex distribution of mass

[58]. However, many potential systematics produce E and B-modes equally, so checking

that the B-mode is consistent with zero in a final analysis provides a useful test that an

analysis has successully removed any residual instrumental systematics.

By the late 1990s, weak gravitational lensing had been detected around the most

massive clusters, and an optimistic outlook was presented in an influential review in

1997 [48]. The optimism was well founded, for weak lensing really burst onto the
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Figure 2. The statistical signals sought by measurements of weak gravitational

lensing are slight but coherent distortions in the shapes of distant galaxies. (Left): A

tangential, circular pattern of background galaxies is produced around a foreground

mass overdensity, reminiscent of the tangential arcs of strong lensing seen in figure 1.

On much larger scales, an opposite, radial pattern is produced by foreground voids.

Physical gravitational lensing produces only these “E-mode” patterns. However, there

is another degree of freedom in a shear (vector-like) field, and spurious artefacts can

typically mimic both. Measurements of “B-mode” patterns therefore provide a free

test for residual systematic defects. (Right): The observed ellipticities of half a million

distant galaxies within the 2 square degree Hubble Space Telescope COSMOS survey

[148]. Each tick mark represents the mean ellipticity of several hundred galaxies. A

dot represents a circular mean galaxy; lines represent elliptical mean galaxies, with

the length of the line proportional to the ellipticity, and in the direction of the major

axis. The longest lines represent an ellipticity of about 0.06. Several coherent circular

E−mode patterns are evident in this figure, e.g. (149.9, 2.5). Radial E−mode patterns

are also present on larger scales, but the density in voids cannot be negative, so the

contrast is lower and the signal much less apparent to the eye. The B−mode signal is

consistent with zero.

cosmological scene during a single month in 2000 when the first large-format CCDs

allowed four groups to independently detect weak lensing in random patches of the sky

[59, 60, 61, 62], a probe of the true average distribution of dark matter. In particular, it

was the consistency between the four independent measurements that assuaged doubts

from an initially skeptical astronomical community and laid the foundations for larger,

dedicated surveys from telescopes both on the ground and in space. Weak lensing has

rapidly become a standard cosmological tool.

2.4. Flexion

Bridging the gap between strong and weak lensing is the second-order effect known as

flexion. If the projected mass distribution of a lens has a spatial gradient, steep enough

to change the induced shear from one side of a source galaxy to the other, that galaxy

begins to curve as shown in figure 3. This is the next term in a lensing expansion
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Figure 3. The various regimes of gravitational lensing image distortion. Along typical

lines of sight through the Universe, an intrinsically circular source is distorted into an

ellipse by weak lensing shear. The resulting axis ratio is typically only ∼ 2% and has

been exaggerated in this figure for illustration. Nearer concentrations of mass, the

distortion begins to introduce flexion curvature. Along lines of sight passing near the

most massive galaxies of clusters of galaxies, and through the most curved space-time,

strong gravitational lensing produces multiple imaging and giant arcs.

that leads towards the formation of an arc, as in strong lensing. The amplitude of

the flexion signal is lower than the shear signal, but so is the intrinsic curvature of

typical galaxy shapes. Statistical techniques similar to those used in weak lensing can

therefore be applied. Flexion measurements have proven most useful to fill in a gap in

the reconstructed mass around galaxy clusters where the light deflection is too small for

strong lensing, but the area (and hence the number of lensed sources) is too low for a

significant weak lensing analysis.

The initial attempts to mathematically describe the flexion distortion were

forbidding [63, 64, 65]. More recent descriptions adapt the complex notation from

weak lensing shear into an elegant formalism requiring just one extra derivative of

the gravitational potential [66, 67]. Flexion has an equivalent of the E- and B-mode

decomposition [68], and one extra degree of freedom in the second-order equations

produces an additional distortion that is not produced by gravitational lensing [69].

Measurements of all these extra patterns may provide useful crosschecks for residual

image processing systematics.

3. Quantity of Dark Matter

3.1. Amount of dark matter in individual galaxies

Individual galaxies are built of baryonic material encased inside a much larger halo of

dark matter. Gravitational lensing can probe this halo at outer radii far beyond any

visible tracers of mass. Indeed, there is now better agreement about the profile of the

dark matter halo than the distribution of the central baryons!
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The weak lensing signal in SDSS survey imaging is very noisy, but stacking the

signal around a third of a million galaxies reveals a typical halo of total (weak lensing)

mass 1.4×1012M⊙ around galaxies with a stellar mass of 6×1010M⊙ (as determined from

a comparison of the spectrum of emitted light against theoretical models), independently

of their visual morphology [70]. Across all galaxies, these stars would account for

∼ 16% of the expected baryons in the Universe. Within rather uncertain errors, this is

consistent with independent radio observations of atomic gas that indicate that while

only ∼ 10% of baryons end up in galaxies, almost all of these form stars [71].

To more directly measure the mass of the central baryons, the Hubble Space

Telescope SLACS survey of elliptical galaxies probes the distribution of total mass

throughout galaxies by combining weak lensing with strong lensing and parameterizing

the density of dark matter. Such observations necessarily require more massive galaxies,

and find haloes of 1.2±0.3×1013M⊙ around ellipticals with stellar mass 2.6±0.3×1011M⊙

[74]. Crucially, baryons dominate the core by an order of magnitude excess over dark

matter, comprise 27± 4% of the mass in the central ∼ 5 kpc, and this fraction falls as

expected to recover the constant value consistent with cosmological measurements in

the outskirts.

On the contrary, the Red-Sequence Cluster survey finds that elliptical galaxies live

inside ∼ 2× more massive dark matter haloes than spiral galaxies with the same stellar

mass [72]. The ratio of total baryons to dark matter in bound systems is probably

constant so, if these variations are real, they are most likely due to variations in the

efficiencies of star formation between morphological types of galaxies. Other studies

do find this to vary by the required factor of ∼ 2 [73] – although this involves several

assumptions about the loss of baryons from galaxies and the relative production of bright

stars versus faint stars.

As shown in figure 4, the conversion of stars into baryons is most efficient today in

galaxies of a characteristic mass of 1011–1012 M⊙ [75, 76, 77]. This scale has generally

grown over cosmic history, although evidence is also emerging for “cosmic downsizing”,

by which activity may be shifting back to less massive structures [78, 79]. Either side of

this scale, star formation is quenched by astrophysical effects, and the amount of total

mass needed to support a given luminosity increases [80, 81, 82, 83]. Even slightly

smaller <
∼

1010 M⊙ dark matter haloes form very few stars, because their shallow

gravitational potential can not gather a sufficient density of baryons that are being

continually re-heated by a background of photoionising radiation from distant stars

and quasars [84, 85], or kept from being stirred and expelled by winds and supernova

explosions in any first stars [75]. The situation is less clear in more massive haloes,

although outflows from central supermassive black holes certainly contribute to an

inability of baryons to cool and condense into sufficiently dense regions to then collapse

into stars [86].
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3.2. Amount of dark matter in groups and clusters of galaxies

Larger structures have grown through the gradual merger of small structures – which

deepened the gravitational potential well, and accelerated the accretion of more mass

into runaway collapse. According to the Sheth-Tormen/elliptical collapse model of

structure formation [91], 10% of the total mass at the present day is contained

within galaxy clusters over 1014 M⊙ and another 15% within galaxy groups down to

1012 M⊙‡. This non-linear density enhancement exaggerated the dynamic range of

mass fluctuations from the early universe, which began with a Gaussian distribution to

a high level of accuracy. The most massive clusters today are very rare and, since only

slightly less dense initial fluctuations grew more slowly, the present number of haloes of

a given mass forms a steep “mass function” N(M), shown in figure 4. This steepness

means that the growth of clusters over time, N(M, z), is very sensitive to the collapse

process, including the nature of gravity [93, 94] as well as the amount and physics of dark

matter [103]. Conveniently, the dense concentrations of mass also create the strongest

gravitational lensing signal.

Galaxy groups and clusters can be found directly via gravitational lensing surveys

[104, 105]. Clusters sufficiently massive to produce strong lensing are generally already

known because of the corresponding overdensity of galaxies, although the detection

criteria for lensing is a cleaner function of mass. Weak lensing cluster surveys are

advancing even more rapidly. Several hundred cluster candidates have now been found in

weak lensing mass maps from the Canada-France-Hawaii telescope [106] and the Subaru

telescope [107]. Follow-up spectroscopy [108] has identified the baryonic component of

around 60% of these, yielding the redshifts required to place the clusters in N(M, z)

plane shown in figure 5, calibrate their mass through the geometrical distance to the

background galaxies, and also to rule out false detections due to the chance alignment

of multiple small structures along one line of sight [109]. The remaining ∼ 40% of

candidates are possibly chance alignments of unrelated small structures, or the random

orientation of aspherical haloes along the line of sight. Such effects must be carefully

considered in lensing surveys, which are sensitive to the total integrated mass along a

line of sight [110, 111]. Multicolour imaging is also needed to properly identify a clean

sample of source galaxies behind the cluster. Galaxies inside or in front of the cluster are

not lensed by it, and a study of the nearby Coma cluster [112] also shows that member

galaxies may even be radially aligned within it, so they will dilute the signal if they are

misidentified and accidentally included [113].

Gravitational lensing cluster surveys are clean but costly, since it is necessary to

find and resolve galaxies more distant than the structures of interest. The baryonic

components of clusters can be quickly identified from infra-red emission, which traces

old stellar populations and is unobscured by dust [115], the X-ray luminosity and

‡ To include half of the mass, it is necessary to consider haloes of 1010 M⊙, and 20% of mass has yet

to find its way into a bound halo at all. This is much less than in the older Press-Schechter/spherical

collapse model [92], in which 50% of mass was thought to be in groups and clusters.
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Figure 4. The amount of total mass in astrophysical bodies. Left: The number

of galaxies with a given infra-red K-band luminosity in the 2dF [80, circles], SDSS

[89, squares] and local z < 0.1 surveys [90, stars]. In contrast to this, the dashed

line shows a theoretical model of the number of dark matter haloes as a function of

mass, assuming only cold dark matter physics in the growth of structure [82] (see also

[81]). This has been converted into luminosity assuming a fixed mass-to-light ratio. Its

normalisation is arbitrarily chosen to match at the knee of the luminosity function, but

can be adjusted by changing the model mass-to-light ratio. Importantly, the disparity

indicates that baryonic physics act to suppress star formation in low-mass or high-mass

haloes, and that these contain a very large proportion of mass that does not shine.

Right: Mass-to-light ratio as a function of the mass (all measured within the radius

at which the total density is 200 times higher than the mean density in the Universe),

from [72, 74, 76, 95, 96, 97, 98, 99, 100, 101, 102]. The majority of the luminosity

measurements are made in the B band, at redshift z ∼ 0.3 The dotted line shows the

prediction of semi-analytic models of galaxy formation [75].

temperature of intra-cluster gas [116], the Sunayev-Zeldovich (SZ) effect in which the

CMB is scattered to higher energy off warm electrons [117, 118], and Doppler-shifted

light that reveals the clusters’ internal kinematics [119]. In particular, since X-ray

emission is proportional to the square of the electron density in intra-cluster gas, X-ray

surveys are less sensitive than lensing to the chance alignment of many small haloes

along a line of sight. However, the fundamental quantity most easily predicted by

theories is mass, and a scaling relation must be constructed from all of these luminous

observables to mass. The scaling relations often rely on poorly justified assumptions

about the dynamical equilibrium or physical state of the baryonic component [120, 121].

Inherent systematic errors can be investigated by an inter-comparison of the various

observables, but the ultimate comparison is now generally obtained versus gravitational

lensing [95, 122, 123, 124, 125]. Strong lensing arcs directly measure the enclosed mass

within the Einstein radius, providing a robust normalisation of the mass distribution,

and weak lensing traces the outer profile of the halo, where most of the mass is found.

The comparison with X-ray cluster surveys has been most astrophysically
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Figure 5. Counting the number of clusters in the universe N(M, z), as a function

of their redshift z and mass M . Left: Directly detecting clusters via their weak

gravitational lensing signal, which probably provides the cleanest selection criteria,

using the Subaru telescope [114]. The three panels show different cuts in detection S/N,

which is a proxy for mass M . The red histogram shows clusters with spectroscopically

confirmed redshifts, the green histogram shows less secure clusters detected in weak

lensing but not yet confirmed, and the solid line shows the expected distribution. The

matching of weak lensing peaks with a baryonic counterpart requires a large investment

of follow-up telescope time, and is the current limitation to the method. There are

currently fewer confirmed clusters than expected, and there is considerable shot noise.

However, this technique shows great promise for the future, with dedicated wide-field

surveys. Right: Using weak lensing measurements of a subset of galaxies, groups and

clusters to calibrate other observables – in this case the X-ray luminosity – which can

then be used to estimate N(M, z) more cheaply.

interesting. The combination of strong lensing and X-ray measurements of galaxy

clusters was first advocated as a way to probe the dynamics of the intra-cluster gas

[126]. Initial disagreements in the overall normalisation [127, 128] have indeed been

much addressed by accounting for the effects of cool cluster cores on emission from the

intra-cluster medium. Finally, a comparison was completed of strong lensing, X-ray

and infra-red emission from 10 X-ray luminous (LX > 8 × 1044 ergs/s at 0.2-2.4 keV

inside R < 350 kpc) clusters at redshift z ∼ 0.2 [129]. As shown in figure 5, mass

measurements now generally agree for dynamically mature clusters with a circular X-

ray morphology and high central concentration of the infra-red light. However, at a

certain level, there is no such thing as a relaxed cluster. Major mergers leave more than

half of systems dynamically immature, and estimates of their mass from the complex

X-ray morphologies are particularly problematic [130]. In these cases, only lensing mass

estimates appear viable.
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3.3. Amount of dark matter in large-scale structure

Large weak lensing surveys of “cosmic shear” along random lines of sight can be

used to study the distribution of mass on the largest scales, and the mean density

of the Universe (Ωm, which is usually expressed in units of the fraction of the density

required to just close the Universe and prevent perpetual expansion). The amount of

mass clumped on different scales is usually parameterised in terms of the (two-point)

correlation ξE between the cumulative shear distortion along lines of sight to pairs of

galaxies separated by an angle θ on the sky, as illustrated in figure 6. In isolation,

current cosmic shear constraints on Ωm are degenerate with σ8 (see figure 7), another

parameter in cosmological models that normalises the amount of clumping of matter on

a fixed scale of 8h−1 Mpc – in this sense, it describes the physical size of the clumps.

At a redshift z = 0.3, where many recent cosmic shear surveys are most sensitive,

8h−1 Mpc corresponds to an angular size of ∼ 43 arcminutes on the sky (about one

and a half times the diameter of the full moon). The degeneracy between Ωm and σ8 is

gradually being removed, as larger cosmic shear surveys measure probe the distribution

of dark matter with statistical significance on both larger and smaller scales. Extensions

towards large scales are particularly welcomed, because very large-scale structure is still

collapsing linearly, so theoretical predictions are calculable from first-order perturbation

theory. The degeneracy is also being broken by the first measurements of the three-point

correlation function of galaxy triplets [95, 131, 132], which is sensitive to the skewness

of the mass distribution, and depends in an orthogonal way upon Ωm.

The “clumpiness” of matter naturally increases as the Universe transitions from an

almost uniform state at high redshift to the structures we see around us today. The

rate of growth of this structure also depends upon Ωm, since additional mass speeds

up gravitational collapse. The degeneracy between Ωm and σ8 present in a static, 2D

analysis can this be broken by comparing the density fluctuations at different epochs.

Figure 6 shows contraints of Ωm = 0.248 ± 0.019 from a comparison of the primordial

matter fluctuations captured in the Cosmic Microwave Background radiation [133] with

current structure seen in weak lensing measurements from the 50 square degree patch

Canada-France-Hawaii telescope Legacy Survey [134].

Even tighter constraints on Ωm, and unique insight into the nature of gravity as

it shapes dark matter, can be obtained by tracing the continual growth of structure

[135]. This can be obtained from gravitational lensing because, while nearby galaxies

are lensed by local structure between them and us, more distant galaxies are also lensed

by the additional mass in front of them, and the most distant galaxies are lensed by

mass throughout the Universe. The finite speed of light makes distance equivalent to

lookback time, so we can reconstruct the distribution of mass in distant structures

as it was when the light passed near and was lensed by them many billions of years

ago. Redshifts can be used as a proxy for the distance to each lensed galaxy, and are

measured from the spectrum of their emitted light or estimated from multicolour images.

The 2 square degree Hubble Space Telescope COSMOS survey is the largest optical
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Figure 6. The large-scale weak lensing “cosmic shear” signal. Left: Measurement

of the 2D signal from the Canada-France-Hawaii telescope Legacy Survey [134]. This

traces the overall amount of mass in the Universe, projected along the line of sight, and

shows how it is more clumped on small scales than on large scales. Solid points show

the cosmological E-mode lensing signal, and open points show the B-mode, a tracer of

uncorrected systematic effects that should be consistent with zero. Right: The growth

of this signal over cosmic time, measured from the Hubble Space Telescope COSMOS

survey [136]. This uses the 3D locations of source galaxies to trace the distribution

of mass at different distance from the Earth. Dashed lines show the prediction of

the standard ΛCDM cosmological model. Error bars account for only statistical error

within the field and do not include the effect of using only a small field.

survey ever obtained from space, with extremely high quality imaging that resolves the

shapes of even small and faint galaxies at lookback times of more than 10 billion years.

Multiwavelength follow up of the field in about forty other wavelengths, from radio,

through IR, optical, UV and X-ray, provides the most accurate photometric redshift

estimates, for about 2 million galaxies [145]. The right hand panel of figure 6 shows

the essentially independent measurements of ξE(θ) as a function of time, witnessing the

growth of structure. Compared to a 2D analysis, this tightens statistical errors on Ωm

by a factor of 3 [136], yielding Ωm = 0.247 ± 0.016 from only a 2 square degree patch

of sky [17]. A continuous 3D cosmic shear analysis can potentially provide five-fold

improvements over a 2D survey [137, 138], making the investment of follow-up telescope

time very effective.

Galaxies can only be resolved to finite distances, and they did not even exist

in the very early Universe. As well as providing a snapshot of primordial density

fluctuations, the CMB may also provide the ultimate high redshift source that has

been gravitationally lensed by even more foreground matter [139, 140, 141]. Patterns in

the temperature of the CMB form shapes that become distorted by lensing in exactly

the same way as galaxies. More interestingly, lensing moves CMB photons without
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Figure 7. Constraints on cosmological parameters from the distribution of mass in the

early universe, traced by the WMAP satellite in the Cosmic Microwave Background

radiation, compared to the distribution of mass in the local universe from weak

gravitational lensing [133]. The parameter Ωm is the density of all mass in the

Universe, and σ8 is the normalisation of the power spectrum, describing its clumpiness

on 8h−1 Mpc scales. In each case, the two contours depict 68% and 95% confidence

limits, and assume a flat universe. The orthogonality of the two constraints, originating

from the evolution of the mass distribution between very different epochs, is key to

their combined power.

rotating their polarisation. Primordial density fluctuations from a scalar inflationary

field produce a curl-free (E-mode) polarisation signal, but this is mixed by lensing into

a non-zero B-mode signal [142]. This requires high angular resolution measurements of

the CMB and only upper limits have yet been measured [143]. To complicate matters

further, non-zero curl modes in the polarisation can also be created by foreground effects

such as dust emission, and tensor (gravity-wave) perturbations in the early Universe.

Most ambitiously, independent measurements of Ωm at vastly different cosmic

epochs could also constrain the conservation of mass in the Universe, although the

statistical error on this are likely to remain large for the foreseeable future.

4. Organisation of dark matter

4.1. Distribution on large scales

On the largest scales, dark matter forms a crisscrossing network of filaments, spanning

vast, empty voids, and with the largest concentrations of mass at their intersections.
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Figure 8 compares the expected and observed distribution of mass. The 2 square

degree Hubble Space Telescope COSMOS survey was specifically designed to enclose

a contiguous volume of the universe at redshift z = 1 containing at least one example of

even the largest expected structures [144]. The filamentary network of mass revealed by

weak lensing measurements is apparent, and the multiwavelength imaging also provides

several tracers of baryons [145]. Optical and infra-red emission, when interpreted via

theoretical models of stellar evolution, can be used to infer the mass, age and other

properties of the star populations. X-ray imaging is sensitive to the gas in dense clusters

of galaxies that is heated sufficiently for it to glow at these shorter wavelengths.

The multicolour data also provide redshift estimates for each source galaxy that

can be used to extrude the observed map in 3D along the line of sight [147, 148]. This

technique has also been applied to the distribution of dark matter near the Abell 901/902

galaxy supercluster [149], resulting in the discovery of a previously unknown cluster CB1

that lay behind the foreground [150].

The large-scale distribution of mass can be described statistically in terms of its

power spectrum P (k), which is shown in the left hand panel of figure 9. This is the

Fourier transform of the correlation functions shown in figure 6, and measures the

amount of clumping on different physical scales. If the density field is Gaussian, the

same information can also be expressed as the mass function N(M, z), i.e. the density

of haloes of a given mass as a function of that mass and cosmological redshift. There

has been a substantial amount of work on analysing the properties of the dark matter

power spectrum, including its growth over time from a power spectrum of primordial

density fluctuations. In order to compare theoretical models to data, the semi-analytic

approach of [151] is used, predominantly for its simple fitting functions to the linear

power spectrum, which can be extended (at 5-10% accuracy) into the mildly nonlinear

high-k regime [152, 153].

In the early universe, photons were subject to density waves in which regions could

gravitationally collapse then, with the increased density providing pressure support,

rebound and oscillate. Large regions oscillated slowly, but smaller regions could complete

multiple cycles. The oscillations were frozen when the temperature of the Universe

dropped sufficiently for protons to capture electrons, and fluctuations that happened

to be particularly overdense or underdense are now seen as anisotropies in the Cosmic

Microwave Background. Since standard model particles were coupled to photons at

high energies, they were subject to the same density fluctuations, and also froze out at

decoupling. To this day, baryonic structures like galaxies exist preferentially at certain

fixed physical separations, known in the power spectrum as Baryon Acoustic Oscillations

(BAOs). Dark matter was initially not subject to these fluctuations, having a featureless

power spectrum. Indeed, it decoupled from the primeval soup (of photons and particles)

at very early times, and formed the first network of structures that acted as scaffolding

into which baryonic material could be drawn and assembled, then only later picking

up the preferred scales through gravitational interaction with the baryons. However,

in several candidate particle models, including supersymmetric particles, dark matter
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Figure 8. The large-scale distribution of dark matter. (Left): The expected

distribution of dark matter at the present day, from the “Millenium simulation” (of a

Universe containing only cold dark matter) [146]. Each layer is zoomed from the last

by a factor of four, and shows the projected distribution of dark matter in slices of

∼ 20 Mpc thickness, colour-coded by density and local dark matter velocity dispersion

(Image credit: Volker Springel/Max Planck Institute for Astrophysics). (Right): The

observed large-scale structure in the Hubble Space Telescope COSMOS survey [148].

Contours show the reconstructed mass from weak gravitational lensing, obtained by

running the filters in the left hand panel of figure 2 across the observed distribution of

background galaxies shown the right hand panel of figure 2 (to improve resolution, the

conversion process actually used smaller, noisier bins each containing ∼ 80 galaxies).

Like an ordinary optical lens, a gravitational lens is most effective half-way between

the source and the observer. At redshift z ∼ 0.7, where the lensing measurements

are most sensitive, the field of view is about the same as the second layer from the

top in the left panel. However, the observations also include overlaid contributions

(at a lower weight) from all mass between redshifts 0.3–1.0 along our line of sight,

projected onto the plane of the sky. The various background colours depict different

tracers of baryonic mass. Green shows the density of optically-selected galaxies and

blue shows those galaxies, weighted by their stellar mass from fits to their spectral

energy distributions. These have both been weighted by the same sensitivity function

in redshift as that inherent in the lensing analysis. Red shows X-ray emission from

hot gas in extended sources, with most point sources removed. This has not been

rewighted, so is stronger from nearby sources, and weaker from the more distant ones.

couples to photons at energies even higher than the standard model particles. The

smallest density fluctuations would have had chance to oscillate once or twice, and

imprint their scales on even the primordial distribution of dark matter, as shown in

the right hand panel of figure 9 [88]. In addition, a warm or hot component dark

matter, such as low-mass neutrinos, could continuously free-stream away from any mass

concentrations that build up (refusing to be captured in dense regions of the Universe)

and erase structure on small scales (see Section 5.5 for more details).
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Figure 9. The statistical distribution of dark matter in Fourier space. Left: The

mass power spectrum, showing the clumping of dark matter as a function of large

scales (low k) to small scales (high k) [87], including some very early weak lensing

constraints [154]. Current constraints are tighter and extend over a wider range of

scales in both directions. Right: The effect on the power spectrum of 1 MeV mass

WIMP dark matter that remains coupled to other particles in the early universe [88].

The solid (dashed) line assumes a 10 keV (1 keV) kinetic decoupling temperature. The

dotted line illustrates the similar small-scale damping effect of a component of warm

dark matter.

4.2. Sizes of individual haloes

In numerical simulations, collisionless dark matter particles form structures with a

remarkable, “universal” density profile across a wide range of mass scales from dwarf

galaxies to clusters. There may be some cluster-to-cluster scatter [155, 156, 157], but

the mean density profile ρ(r) is expected to rise as ρ ∝ r−3 in the outskirts, transitioning

to ρ ∝ r−β inside a scale radius rs that is a function of halo mass and formation redshift.

Early simulations found a central cusp with β between 1 and 1.5 [158, 159], but this

appears to have been an effect of their limited resolution, with more recent simulations

predicting a smooth decrease in slope towards a flat core [160]. This appears to be

converging, but thorough testing of the numerical simulations is continuing. Finalising

and comparing these predictions to the observed distribution of dark matter in real

clusters is a strong test of the whole collisionless CDM paradigm – as well as the nature

of gravity.

Individual galaxies of 1012M⊙ at z ∼ 0.22 have weak lensing signals that show

extended dark matter haloes, with large scale radii in agreement with simulations

[70]. Note that the astrophysics literature normally parameterises this in terms of the

‘concentration’ or ratio of the radius containing most of the mass to the scale radius

(individual galaxies are expected to have concentrations of around 7–13, and massive

clusters of 5–6). A sample of 98 galaxies acting as strong lenses was ingeniously found
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Figure 10. The observed radial distribution of mass around elliptical galaxies in the

Hubble Space Telescope COSMOS survey, decomposed into its various components

[177]. The solid blue curve shows the total “galaxy-galaxy” weak gravitational lensing

signal. On small scales around ∼ 10 kpc, this is dominated by the baryonic content

of galaxies represented by the red dashed curve. This particular data set is for a set

of elliptical galaxies whose spectral energy distributions indicate a similar amount of

mass in stars, and the central lensing signal increases as expected for galaxies with

larger predicted stellar masses. At intermediate scales around ∼ 200 kpc, dark matter

haloes become dominant: the main NFW halo term (dotted green), plus an additional

contribution (triple-dot-dash magenta) from occasions when the analysis focuses on

satellite galaxies in the halo of a larger host, rather than main galaxies. On large

scales above 3 Mpc, the galaxy-galaxy lensing signal reverts to the cosmic shear signal

from large-scale structure in which the galaxy is located (dot-dash grey).

by looking for multiple sets of spectral lines at different redshifts within sources that

need not even be resolved in low resolution imaging [171, 172]. A successful observing

campaign with the Hubble Space Telescope has now followed up ∼ 150 such targets,

with a 2 in 3 success rate of resolving strong lens systems [74]. Interestingly, the stacked

gravitational lensing signal behind them, in agreement with dynamical analysis, shows

an apparent conspiracy between the dark matter and baryonic components to produce

an overall “isothermal” ρ ∝ r−2 density profile out to very large (∼ 140 kpc) radii

[173, 174] (or even further [175]). Figure 10 demonstrates the conspiracy of central

baryons, the galaxy’s own dark matter halo, and the haloes of neighbouring galaxies;

none of them is individually isothermal [161, 74, 176, 177]. In addition, the location

of the transition from the host halo to large-scale structure marks the typical size of

dark matter structures and its occurrence at the scale expected from simulations itself

provides strong support for the CDM paradigm [72].
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Galaxy clusters of 1014 − 1015M⊙ in the Sloan Digital Sky Survey also exhibit dark

matter haloes with scale radii rs in line with expectations [161]. Other surveys find

particularly massive clusters to have smaller scale radii (but the expected outer slope),

as would have happened if they had collapsed earlier, when the Universe was more dense

[294, 162, 163, 164, 165]. The baryons that accumulate in the cluster cores (not least

in the typically massive central galaxy) add a complication that is not included in the

simulations and difficult to disentangle in observations. Baryons form stars and radiate

away energy, falling further into a deepening gravitational potential well that also drags

in and increases the central concentration of dark matter [166, 167]. However, additional

baryonic effects would act in the opposite way, and the discrepancy may simply arise

from selection biases that favour the observation of haloes that are centrally concentrated

or triaxially elongated in 3D and oriented along our line of sight [168, 169]. Nonetheless,

these observations suggest the intriguing possibility of non-Gaussian density fluctuations

in the early Universe (potentially cosmic strings) that would have seeded accelerated

structure formation [170].

4.3. Shapes of haloes

In the standard cosmological model, dark matter haloes are expected to be significantly

non-spherical [178, 179]. Measurements of weak gravitational lensing in the Sloan

Digital Sky Survey confirm that the axis ratio of haloes around isolated galaxy

clusters (projected onto the 2D plane of the sky) is 0.48+0.14
−0.19 [180]. This rules out

sphericity at 99.6% confidence and is consistent with the ellipticity of the cluster

galaxy distribution. Albeit with large statistical errors, the dark matter haloes around

individual galaxies appear slightly rounder than the light emission. In the Canada-

France-Hawaii Telescope’s (CFHT) Red Cluster Sequence (RCS) survey, the mean

ellipticity of dark matter haloes around all galaxies is 77+18

−21% that of the host galaxy

ellipticity [102]. This has been subdivided in SDSS to haloes around red (elliptical)

galaxies with 60 ± 38% of the ellipticity of their host galaxies, versus haloes around

blue (spiral) galaxies being anti-aligned with their host galaxies and more oblate by

40+70

−100% [181]. This dichotomy is also seen in the CFHTLS [101]. Such results confirm

that the dark matter haloes guided the formation of the cores of massive galaxies [182].

Constraints on the ellipticity of dark matter haloes may be two orders of magnitude

tighter from gravitational flexion than those from shear [183]. As survey get larger and

observations improve, the next step will be to test whether the haloes align with the

large-scale structure in which they formed. For example, tidal gravitational forces along

filaments may preferentially align haloes, elliptical galaxies, and the angular momenta

of spiral galaxies [184]. It has also been suggested [185, 186] that the average ellipticity

of dark matter haloes can be used to probe cosmological parameter σ8 (and to a lesser

extent Ωm), and the nature of gravity.

Very oblate mass distributions can produce three images of a strongly-lensed source,

as opposed to the usual double or quadruple images. The paucity of observed triple
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image systems therefore suggests that most are quite spherical [169] – although the

expected abundance also depends upon the inner profile of the mass distribution.

For strong lenses with a small separation (<
∼

5′′), the radial profile and hence the

image multiplicities depend sensitively on the alignment of the dark matter and central

baryonic components [187]. Conveniently however, although the orientation of an

individual galaxy (particularly spiral galaxies) with respect to the line of sight affects

its strong lensing cross-section, when averaged over all possible orientations or relative

orientations of dark matter and luminous components, the shape of a spiral or elliptical

galaxy does not bias the strong lensing signal by more than ∼ 10% [187, 188, 169].

Numerical simulations suggest that the dark matter haloes around spiral disc

galaxies have an additional interesting feature. Merging subhaloes approaching from

within or near the plane of the disc are gravitationally dragged into a “dark disc” [189],

which maintains a similar velocity dispersion to the stars that form the thick disc. A dark

disc would have important implications for dark matter direct detection experiments,

because of the low velocity of those dark matter particles with respect to the Earth.

However, the stellar disc is a small fraction of stellar mass, and it will be challenging to

detect an equivalent dark component via lensing (or dynamical) measurements.

4.4. Cusp versus core central profiles

Debate has been raging for several years about the inner profile of dark matter haloes

within the scale radius. Examples of elliptical galaxies shown in figure 11 have been

found with a cuspy β ≈ 1 inner dark matter component, as expected from the original

NFW simulations. These include the “jackpot” double Einstein ring, which provides

the best lensing-only galaxy mass profile, and also shows that a dark halo is required.

However, most observations tend to prefer a flatter profile, with a low β <
∼
0.5 on all

mass scales. For example, the kinematics of dwarf and low surface brightness galaxies,

which are expected to be dark matter dominated throughout, suggest a dark matter

distribution closer to a “core” (β = 0) and incompatible with NFW haloes [190, 191].

Rotation curves of spiral galaxies also indicate lower central densities than expected in

NFW haloes [192, 193, 194, 195]. The discrepancy is fundamentally interesting because

it could be due to the properties of dark matter: either the free-streaming of a partial

‘warm’ component away from the gravitational potential well, or a low level of (self-

)interaction via the weak force to provide pressure support and thus prevent collapse

[196, 197]. However, neither provides a complete explanation. For example, it has

been pointed out that the self-annihilation of dark matter particles would only provide

significant heating in dense cores with cuspy slopes β & 1.5, even assuming a generous

interaction cross-section and efficient transfer of released energy into the baryons [83].

Slopes with β = 1 provide a factor of 1000 less heating.

Galaxies that can be further studied because they act as strong gravitataional

lenses appear to be a representative sample of all galaxies – chosen solely by the chance

of another source lying directly behind them. Two independent studies confirm that
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Figure 11. Left: The “cosmic eye” elliptical galaxy lens [225]. If it is assumed that the

baryonic component of mass in the yellow lens galaxy traces the distribution of light,

the distribution of dark matter must be cuspy, in line with predictions from simulations

[226, 227]. Right: a rare alignment of two sources behind one elliptical galaxy

SDSSJ0946+1006 (after subtracting the foreground galaxy) [174]. This produced

concentric, near-perfect Einstein rings, and allows particularly precise measurement

of the radial slope of the mass distribution, since both rings constrain the total interior

mass. Both of these high resolution images were obtained with the Hubble Space

Telescope, but the second system was initially found in unresolved ground-based data,

from the spectroscopic signature of two sources at different redshifts [171].

the fraction of elliptical galaxies acting as a lens is independent of local environment

and stellar properties [209, 210]. More elliptical galaxies overall are found in clusters,

and simulations predicted that these would have a lower stellar to total mass ratio, and

more lensed images with larger arc radii [211]. However, the encouraging observational

result confirms that, at least within current statistical limits, the lens galaxy selection

have the same gross characteristics (e.g. inner profile slope, which increases the strong

lensing cross section) as those in the field, and there is negligible boost from additional

mass in large-scale structure.

The main challenge in extending the interpretation of the total mass near the

centres of haloes will be that most of that mass is baryonic, and therefore influenced

by additional astrophysical processes that require more work to be understood and

subtracted [198]. Observationally, galaxies appear sharply divided into (mainly faint,

discy and rapidly rotating) morphologies with a central cusp, and (mainly brighter,

boxy and slowly rotating) morphologies with a central core [212]. Cored galaxies also

tend to exhibit radio-loud active nuclei [213] and X-ray emission [214], confirming that

major merger events, especially the merging of binary black holes, profoundly impact

the central distribution of baryons. Simulations demonstrate that baryonic cusps can

be gradually softened by stellar winds or supernovae. Dynamical friction can build up a

central baryonic cusp, but preserve the overall mass distribution by softening the dark

matter core even if 0.01% the total mass exists in subclumps [199, 200]. The dark

matter profile can also be softened by scattering from or accretion onto central black
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holes, especially when tidally stirred by infalling satellites [201, 202]. Any remaining

mass is rearranged into flat (β ≈ 0) cores particularly efficiently in low-mass dwarf

galaxies or if the mass loss events are intermittent [203].

Massive clusters of galaxies provide more multiple strong lensing systems, including

radial arcs, and are marginally better understood. Since cuspy cores act as more efficient

gravitational lenses, the inner slopes of haloes can also be statistically constrained by

the abundance on the sky of any strongly lensed arcs [204, 205], the relative abundance

of radial to tangential arcs [206], and the relative abundance of double- to quad-imaged

systems [207, 169]. The high resolution of space-based imaging is particularly needed to

identify radial arcs, which are typically embedded within the light from a bright central

galaxy. A systematic search of 128 clusters in the Hubble Space Telescope archive

[208] found a uniform ratio of 12:104 radial to tangential arcs with large radii behind

clusters of a wide range of mass. This ratio is consistent with β < 1.6, although the

interpretation again depends upon the assumed mass of the central galaxies.

Studies of individual galaxy clusters have been particularly effective when

combining strong lensing measurements with optical tracers of the velocities of stars

within the central galaxy. Analysis of the cores of nearly round, apparently “relaxed”

clusters initially found β = 0.52 ± 0.05 [215, 216]. At the time, this was thought to be

low, and concerns were raised about various simplifying assumptions [217, 218, 219]. A

more sophisticated analysis [220] of two clusters has since reached similar conclusions.

However, degeneracies were noticed that could only be broken by mass tracers at larger

radii, and weak lensing observations are currently being used [221] to extend the range

of measurement.

Another interesting observable is the light travel time to multiple images of a

strongly-lensed source, which may differ by months or years (in a cluster, or weeks

or months in an individual galaxy) because of variations in both the geometric distance

and the accumulated amount of gravitational time dilation. If the source is itself variable

(e.g. a quasar with varying output), the relative travel time can be measured between the

images. This is usually used to determine the value of Hubble’s constant, by assuming

a mass distribution for the lens, often through the shape of strong lensing arcs, which

then specifies the relative distance and time dilation along the two paths [44, 222, 223].

However, if cosmological parameters are externally known, the same technique can be

used to improve constraints on the inner profile [224].

4.5. Substructure

Structures in the Universe grow hierarchically via the ingestion of progressively larger

objects, each of which themselves grew from the merging of smaller units. Not all of the

material in subhaloes is stripped from merging subhaloes and smoothly redistributed

amongst the cluster. Speculation still continues [228, 229, 156, 157] on the expected

fraction of mass in substructure, with estimates typically ranging from ∼ 5–65% and

options for the relatives sizes of the substructure shown in the left panel of figure 12.
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According to semi-analytic models, the substructure mass fraction varies with cluster age

and assembly history, so “archaeological” investigation can probe dark matter physics

during mergers, and also “age-date” smooth haloes that formed early and grew little,

versus clumpy haloes that formed in a recent flurry of activity [129, 230, 231, 232].

The largest dark matter simulations currently resolve up to four generations of

vestigial haloes within haloes [233]. A robust prediction of several hundred first

generation subhaloes around galaxies like the Milky Way led to the well-known “missing

satellites problem”, because too few were observed. This issue is beginning to be

resolved, as larger and deeper surveys have finally unearthed a wealth of faint dwarf

satellite galaxies [234], each of which contains very few stars (see §3.1) but a lot of dark

matter [235]. To fine-tune the number of these “dark haloes”, the focus of the debate

has now switched from the nature of dark matter to astrophysical issues such as the

efficiency of star formation and reionisation. Beneath the four hierarchical generations of

substructure, simulations also contain an additional smooth component of dark matter.

This may imply that the fourth level is the end of the self-similarity, or may just be a

limitation of the simulation resolution. Endless, fractal self-similarly in the substructure

mass function is appealing because it implies a patchy distribution of dark matter within

the Milky Way [236]. If the Earth is currently within a void, this could explain the lack

of robust evidence for local dark matter from subterranean direct detection experiments.

However, testing this theory is difficult because star formation is so strongly damped

in small dark matter haloes that they can only be indirectly observed. Once again,

gravitational lensing provides the only tool to do this in structures outside the Local

Group, studies of which will soon become statistically limited by the small sample size

available.

Strong gravitational lensing is most sensitive to small mass variations close to

a line of sight, and multiple images in which light followed paths through the lens

separated by more than the scale of substructure provide a unique opportunity to

observe a source both with and without its effect. The smooth potential of a galaxy lens

affects all the multiple images in a coherent way, but substructure affects each image

individually. Thus the amount and mass function of substructure can be probed in

the relative positions, fluxes and time delay of multiple images of (point-like) quasar

sources [237, 238, 239], and also “fine structure” variations in (extended) galaxy sources

[240]. Caution must be taken to rule out discrepancies caused by differential light

propagation effects along alternative paths through the lens, and (for optical imaging of

quasar sources) potential confusion from month–year long microlensing events by stars

in the lens galaxy [241]. In both cases, multiwavelength imaging provides the quickest

solution. Firstly, infra-red light is much less absorbed or scattered. Multiwavelength

imaging of lensed quasars is especially useful because the intrinsic source image ahanges

size at different wavelengths. A coarse model of the mass distribution in the lens can

be determined from multiple imaging of the large (∼ 1 kiloparsec), low energy narrow

line emission region. Smaller substructure in the lens introduces millilensing (small

Einstein radius lensing) that perturbs the relative intensity or “flux ratios” of the same
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Figure 12. Substructure in galaxies’ dark matter haloes. Left: Expected fraction of

mass in subhaloes more massive than 105 M⊙ from a semi-analytic model incorporating

merger histories, survival probabilities and destruction rates of infalling substructure

[264]. Lines show models of standard cold dark matter (black) and warm dark matter

with various particle masses (colours). Error bars reflect statistical scatter between

realisations of the model calculations. Right: Adaptive optics 2.2 µm imaging of lensed

quasar B2045+265 [265]. The lensed images (A, B, C, D) have one of the most extreme

anomalous flux ratios known: models of lens galaxy G1 require that B should be the

brightest image, but instead it is the faintest, suggesting the presence of an additional

perturbing mass. Indeed, this high resolution imaging revealed a small satellite galaxy

(G2) that explains the anomalous flux ratio.

multiple images, as seen in higher energy radiation originating from the ∼ 1 parsec

broad line region [242]. The fraction of mass in stars within the lens can be found from

“microlensing densitometry” variations of the continuum emission from the ∼ 10−3 pc

central accretion disc [243, 244, 245].

Substructure of 104 − 107 M⊙ in elliptical galaxies provides the only explanation

for observations of anomalous flux ratios in multiply imaged quasars [241, 245, 246].

Indeed, very deep near-infrared imaging in one of these cases, shown in the right panel

of figure 12, did eventually find emission from one of the large pieces of substructure.

Curiously, the amount of substructure implied by millilensing seems to be greater

than that predicted by simulations, turning the missing satellites problem on its head

[247, 248]. Time delays from substructure lensing have also been tentatively detected

as changes in the order of arrival time of multiple images [249].

Within galaxy clusters, group-scale substructure was revealed from early ground-

based studies of strong lensing arcs [250, 251, 252], and subsequent Hubble Space

Telescope imaging refined the precision [34]. An sample of 10 clusters observed with

Hubble (5 of them including strong-lenses) demonstrated that (70 ± 20)% of clusters

contain major substructure, including multiple main density peaks [129]. In a further

sample of 20 strong lensing clusters it has recently been confirmed that the amount of

substructure required in parametric mass reconstructions is indeed anticorrelated with

the dynamical age of the cluster, as measured by the contribution of the brightest cluster
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galaxy and the magnitude difference between the two brightest central galaxies, as seen

in near-infrared light [253].

The fundamental limitation with strong lensing techniques is the finite number of

sight lines through the Universe that end in a strong lens. Weak gravitational lensing

analyses can overcome this in the most massive clusters. The weak lensing signal is

sensitive to all mass within an extended radius of the line of sight, so the reconstruction

of the mass distribution is inevitably non-local, but individual 1011−1012.5 M⊙ subhaloes

can be found amongst the larger net signal from the host halo with HST imaging

[254]. A weak lensing analysis of five massive clusters [255] shows a significant signal

of substructure, excluding the possibility of an entirely smooth mass distribution, and

with a mass function N(M) of substructure that is noisy but consistent with simulations.

The substructure contributes 10–20% of the clusters’ total mass. On even larger (and

entirely statistical) scales, the accumulated presence of small-scale substructure can

move power to small scales k >
∼
100h Mpc−1 in the matter power spectrum, from large

scales 1 <
∼

k <
∼

100h Mpc−1 that should be accessible with the next generation of

dedicated cosmic shear surveys [256].

Flexion mapping is the most exciting compromise between these two regimes. The

flexion signal is more local than weak lensing and sensitive to the gradient of the mass

distribution, which can be large near substructure even when the total amount of mass

is not [257, 258, 259]. A direct reconstruction of the mass distribution from flexion

has been achieved in cluster Abell 1689 [260, 261], and revealed a new subclump not

resolved by weak lensing. The amount of substructure in dark matter haloes down to

masses of ∼ 109 M⊙ should also be statistically detectable as an excess variance in the

flexion signal [262]. The flexion signal has a (small and spatially uniform) component of

variance due to the intrinsic shapes of distant galaxies. This is unaffected by a cluster

with a smooth distribution of mass [263, 183], but any substructure will increase this

variance, which can be measured in radial apertures about a cluster centre, and averaged

over many clusters to overcome noise.

5. Properties of dark matter

5.1. Gravitational interaction

It is assumed in the default cosmological scenario that dark matter interacts via

normal Einstein gravity. The ubiquitous coincidence of mass and light on all scales

[294, 266, 148, 97] certainly demonstrates that dark matter and baryons are mutually

attracted. But the best probe of dark matter’s precise interaction lies in the tidal

gravitational stripping of dark matter subhaloes as they are accreted on to a larger

structure. High resolution simulations of galaxy clusters [267, 268] show that tidal

stripping should rapidly reduce the mass of dark matter subhaloes as they are accreted

on to a larger structure, compared to both isolated haloes and also those already at

the centre, which are only weakly affected by tidal forces. The stripped dark matter is
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dispersed into the smooth underlying distribution.

Observational evidence confirms this scenario, although current statistical

uncertainties are large, since only the most massive clusters have substructure that

can be studied in detail, and homogeneous samples have only been gathered for a

few of these. Nevertheless, weak lensing measurements from CFHT show that typical

elliptical galaxies of a given brightness live inside haloes that extend to 377 ± 60 kpc

[102]. Independent measurements of galaxies with a different camera on CFHT yield a

size of ∼ 430 kpc in the outskirts of supercluster MS 0302+17, but galaxies near the

cluster core are truncated at a radius <
∼
290 kpc [266]. Higher resolution weak lensing

measurements are not possible from the ground because of the smoothing required

to achieve statistical precision, but an even more thorough treatment has been made

of galaxy cluster Cl 0024+1654, which has been observed extensively from HST. The

morphologies of the infalling galaxies appear to change dramatically only once they

fall within ∼ 1 Mpc of the cluster core [269]. However, as shown in figure 13, the

weak lensing signal around elliptical galaxies within 3 Mpc indicates truncated haloes

with a mean total mass of 1.3 ± 0.8 × 1012 M⊙, compared to 3.7 ± 1.4 × 1012 M⊙ for

similarly bright galaxies in the outskirts [270]. Indeed, different physical effects seem to

dominate in three distinct zones around a cluster [269, 270]. Outside the cluster virial

radius, galaxies are entering the cluster for the first time, and evolution is driven by the

rare interactions and mergers of individual objects [271]. Inside a transition region of a

few megaparsecs, tidal stripping of dark matter haloes begins to decrease the mass-to-

light ratio of galaxies that may make several passes through the cluster core. Within

the central megaparsec, tidal stripping is strongest, but baryonic effects including ram-

pressure stripping also affect the observed morphology of galaxies’ baryonic component.

There is slight evidence that tidal stripping in Cl 0024+1654 is less efficient than in

dark-matter only simulations [270], but this is probably due to additional baryonic

effects.

Measurements of strong lensing can push the analysis down to even smaller

(kiloparsec) scales. Parametric reconstructions of the haloes of elliptical galaxies

[272, 273, 36, 274, 210] confirm that cluster members have less massive dark matter

haloes than galaxies in the field, and are truncated at radii around 17-66 kpc, depending

on the cluster. There is also preliminary evidence that the inner profiles of galaxy

dark matter haloes are steepened by gravitational tidal effects during infall [210]. This

is expected from simulations [275], and also needed to resolve discrepancies between

measurements of Hubble’s constant from time delays in strongly lensed multiple images

behind a foreground cluster, and those derived from independent techniques. With

larger surveys planned in the future, this technique promises to be very fruitful in

constraining the properties of dark matter.

It is particularly important to pin down the interaction of dark matter with gravity

because all the current evidence for dark matter is gravitational. Indeed, many attempts

have been made to circumvent the need for dark matter by modifying general relativity.

Some of these theories of gravity can also predict the accelerating expansion of the



The dark matter of gravitational lensing 29

Figure 13. The removal of mass from the dark matter haloes around elliptical galaxies

of a fixed luminosity by tidal gravitational forces, as they fall into a large cluster [270].

Circles and triangles mark observations from gravitational lensing data, and squares

show predictions from the Millenium n-body simulation. The radial trend is consistent

with dark matter being stripped as expected by a full gravitational force; the different

normalisations reflect uncertainty in the overall mass to light ratio.

Universe, otherwise attributed to dark energy [276, 277, 278, 279]. Modifications

of general relativity generally involve additional source terms (e.g. a scalar field) to

explain individual phenomena, such as the fast rotation of galaxies or the separation

between X-ray and lensing signals in the bullet cluster [280, 281]. However, none of

these alternative theories has yet been able to consistently explain the whole range of

dark matter observations that are successfully verified within the standard cosmological

model, without requiring at least a small additional component of weakly interacting

mass [102, 282, 283, 284].

5.2. Electroweak interaction

The complex physical processes during the assembly of clusters from subhaloes stir up

the distribution of baryonic mass and obscure much of the behaviour of dark matter.

However, the differences between baryons and dark matter are also highlighted by their

different reactions to these processes. The most striking example of this, and the cluster

that has provided the most direct empirical evidence for dark matter, is undoubtedly

the “bullet cluster” 1E 0657-56 [285, 286, 287], shown in figure 14.

Galaxy clusters contain three basic ingredients: galaxies, intra-cluster gas, and dark

matter. Inconveniently for those trying to interpret the total mass distribution, these

ordinarily come to rest in approximately the same place. However, this is not always

the case. The bullet cluster is strictly two clusters that collided about 150 million years
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Figure 14. The “bullet cluster” 1E0657-56 and “baby bullet” MACSJ0025.4-1222.

The background images show the location of galaxies, with most of the larger yellow

galaxies associated with one of the clusters. The overlaid pink features show X-ray

emission from hot, intra-cluster gas. Galaxies and gas are baryonic material. The

overlaid blue features show a reconstruction of the total mass from measurements

of gravitational lensing. This appears coincident with the locations of the galaxies,

implying it has a similarly small interaction cross-section. However, there is far

more mass than that present in the stars within those galaxies, providing strong

evidence for the existence of an additional reserve of dark matter. (Figure credit:

Left: X-ray: NASA/CXC/CfA/ M.Markevitch et al.; Lensing Map: NASA/STScI;

ESO WFI; Magellan/U.Arizona/ D.Clowe et al. Optical image: NASA/STScI;

Magellan/U.Arizona/D.Clowe et al.; Right: NASA/ESA/M.Bradac et al.).

ago, within or close to the plane of the sky, and the ingredients have become separated.

Rather like the scattered ejections from a particle collider, the trajectories of the cluster

detritus are governed by the properties of its components. Since individual galaxies

within the clusters (and stars within those galaxies) are well-spaced, they have a very

low collisional cross-section: most continued moving during the collision, and today lie

far from the point of impact. On the other hand, intra-cluster gas was uniformly spread

throughout the incident clusters. This had a large interaction cross-section and was

slowed dramatically during the collision. The two concentrations of hot gas, seen in X-

ray emission, have now passed through each other, but have not travelled far from the

point of impact. The collision speed and gas density were sufficient for a shock front to

be observed in the gas from the smaller of the two clusters, allowing the determination

of the collision speed. Initial concern that the shock velocity of 4700 km/s is higher than

that expected for any merging haloes [288] has now been resolved by properly taking

into account the relative motion of the gas clouds in the rest frame of the smaller cluster.

Crucially, gravitational lensing observations require the third ingredient of the bullet

cluster. A great deal of extra mass (∼ 30− 40× than that seen in the galaxies’ stars) is

located near the galaxies, and 8σ away from the gas peaks. To have travelled so far, this

mass must have a self-interaction collisional cross section σ/m < 1.25 cm2g−1 at 68%

confidence (or σ/m < 0.7 cm2g−1 under the assumption that the mass to light ratio of

the initial clusters was the same) [289]. Note that this does not include a constraint on

the dark matter-baryon interaction cross section.
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The visible separation between the three ingredients of each cluster is temporary.

Within another billion years, the mutual gravitational attraction of the galaxies, gas

and dark matter will have pulled them back together, spiralling back into the usual

configuration of baryonic material within a dark matter cocoon. Consequently, such

objects are rare. One very similar “baby bullet” object has been detected [290] (see right

panel of figure 14), as well as a “cosmic train wreck” counter-example [291], which shows

separated dark matter and gas components, but in a complex distribution that probably

implies a collision between three clusters. Collisions along the line of sight would provide

complementary information, but the one possible example [292] is probably an artefact

of spurious instrumental effects [293] and substructure within the cluster [294]. However,

the race is now on to find more bullet clusters, at a range of collision speeds, masses,

impact parameters and angles to the line of sight [295]. A statistical analysis of many

bullet clusters would overcome uncertainties in any individual system, and help dispel

any lingering doubts that a set of chance effects (or features of the nature of gravity)

conspire to produce the observed appearance.

5.3. Self-annihilation/decay

As discussed in §4.4, gravitational lensing observations of flat cores in the centres of dark

matter haloes could be explained by a finite self-interaction dark matter cross section.

Relying on this effect to produce cores in galaxy haloes requires a cross section σ ∼ 0.56-

5.6 cm2g−1 [296, 297]. However, smoothing the mass profile of clusters requires a much

larger σ ∼ 200 cm2g−1 [298]. If both are to be explained by self-interaction, either

the cross-section is velocity dependent and/or other astrophysical effects are dominant.

Self-interacting dark matter also generally produces haloes that are more spherical than

standard CDM, especially in the core [296], although current measurement uncertainty

is too large to discriminate. Measurements from the PAMELA satellite [299], ATIC

balloon [300] and of the WMAP haze [301, 302] tentatively suggest a high value of the

related dark matter-dark matter annihilation rate. These results are being greeted with

cautious skepticism, as similar effects have not been reproduced in other detectors that

ought to see decay products.

If axions exist as a component of dark matter, they would couple to standard-

model particles [303, 304] and should be detectable via photon-photon decay into a

single optical emission line with a flux proportional to the dark matter density. Integral

field spectroscopic searches for this signature emission from the dark matter haloes of

two galaxy clusters have benefitted from strong gravitational lensing [305]. The search

efficiency was improved by a factor of 3 over previous analyses by correlating the search

with strong lensing mass maps of the densest regions, where the emission from such

decays is expected to be strongest. The sensitivity for emission line detection in the

optical wavelength range allowed them to derive interesting upper limits on the two-

photon coupling in the mass range 4.5 eV< m < 7.7 eV. This work highlights the

potential of spectroscopy coupled with accurate maps of the dark matter distribution
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to explore a larger axion mass window at higher sensitivity, and the same data can also

be used to constrain the decay rate of other ∼5 eV relics, such as sterile neutrinos.

5.4. Particles or planets?

In the broadest sense, “dark matter” refers to any matter that is undetectable through

either emission or absorption in the electromagnetic spectrum. Some astrophysical

objects are naturally dark, such as black holes — and we face technological limitations

in the detection of any faint sources. It is a particularly attractive proposition that a

large population of “dark”, ∼planet-sized Massive Compact Halo Objects (MACHOs)

contribute a major component of the missing mass but have so far evaded detection.

Such objects could be baryonic in nature and could even fit within our standard

understanding of stellar evolution, thus removing the need for any new particles.

There have been extensive and sustained efforts to characterise the number of

MACHOs in the halo of the Milky Way, its satellites the Large and Small Magellanic

Clouds, and our neighbouring galaxy Andromeda (M31). Even though MACHOs are not

visible themselves, whenever one passes in front of a star its gravitational microlensing

briefly brightens the star. Since the volume of space along lines of sight that would

cause microlensing is tiny, many millions of stars need to be continually monitored.

Looking towards 12 million stars in the Magellanic Clouds for 5.7 years, the

MACHO survey [306] found only 13–17 microlensing events (and some of these have

been challenged as supernovae or variable stars). At 95% confidence, this rules out

a model in which all of the Milky Way’s dark matter halo is (uniformly distributed)

MACHOs. However, if all events are real, the rate is still ∼ 3 times larger than that

expected from a purely stellar population, indicating either that they contribute up to

20% of the Milky Way halo’s mass [307], or a larger fraction of the Magellanic Cloud

halo, in less massive bodies [308]. Also looking towards the Magellanic Clouds, the

Expérience pour la Recherche d’Objets Sombres (EROS) project [309] found only 1

event in 6.7 years of monitoring 7 million stars, compared to the 39 expected were local

dark matter composed entirely of 0.6 × 10−7–15 M⊙ MACHOs. Looking towards the

Magellanic Clouds and the densely populated central bulge of the Milky Way, the Optical

Gravitational Lensing Experiment (OGLE) [310, 311, 312] detected only 2 microlensing

events in 16 years, and even these events are consistent with self-lensing by stars, rather

than MACHOs [313, 310]. The OGLE results conclude that at most 19% of the mass

of the Milky Way halo is in objects of more than 0.4 M⊙, and that at most 10% is in

objects of 0.01–0.2 M⊙. The POINT-AGAPE experiment [314, 47] observed unresolved

(pixel) microlensing in the more distant Andromeda galaxy, and found that at most

20% of its dark matter halo is in 0.5–1.0 M⊙ mass objects (at 95% confidence).

The gravitational microlensing results provide convincing evidence that less than

20% of the mass of the Galactic halo is in the form of MACHOs. Coupled with

cosmological measurements of the baryonic and total mass density, this is strong

evidence that remaining dark matter must be non-baryonic. Weakly interacting massive
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particles have become well-established as the favourite candidate. However we note that

while MACHOs down to planet mass scales have been convincingly ruled out, the jump

in scale from this to a sub-atomic description is not one that should necessarily be taken

for granted.

The rarity of MACHOs has meant that every individual event has become a great

source of information. An industry of follow up observations has developed to help

try to determine the nature of massive compact objects as either neutron stars, black

holes/dwarfs or something more exotic.

5.5. Warm and Hot Dark Matter

If dark matter is in thermal equilibrium, the mean velocity of the particles can be

characterised by a dark matter temperature. If the dark matter particles were produced

in the early Universe by standard “freeze-out” from a primordial soup, this temperature

is also related to the mass of the particles. Relativistic free-streaming of dark matter

particles lighter than ∼ 1 MeV would have suppressed subsequent gravitational collapse.

The large-scale structure visible today, and that in the Cosmic Microwave Background

[315], require the dominant component of dark matter to have been dynamically cold and

therefore massive. However, it seems most likely that dark matter consists of several

components, potentially including a small contribution of dynamically warm or hot

particle species such as gravitinos or massive neutrinos. Massive Majorana (να = ν̄α)§

neutrinos also provide an attractive theoretical explanation for the baryon asymmetry

[316]. Note that, although very light, sterile neutrinos (which do not couple with any

standard electroweak interaction) or axions would be dynamically cold, since they were

produced due to symmetry breaking and have never picked up large kinetic energy by

being in thermal equilibrium with the Universe.

Neutrino particle physics and astronomy first joined forces to explain the “solar

neutrino problem”, that fewer electron neutrinos than expected are detected from the

Sun. The Solar Neutrino Observatory (SNO) [317] explained this deficit as the oscillation

of electron neutrinos to other (µ or τ) flavours en route to Earth. SuperKamiokande

[318] studied cosmic ray collisions and found a similar result that only ∼ 1/3 the flux

of muon neutrinos νµ from cosmic ray collisions in the atmosphere were observed along

the line-of-sight through the Earth. This implies an oscillation of νµ to some other

flavour with a scale length comparable to the radius of the Earth. Further evidence

for neutrino oscillations comes from nuclear reactors (KamLAND, [319]) and neutrino

beam experiments (K2K, [320]). The LSND [321] results suggest the existence of sterile

neutrinos, and the MiniBOONE experiment [322] should confirm or refute this result.

There have also been cosmological constraints on the abundance of sterile neutrinos

[323].

§ For cosmological purposes the distinction between Majorana and Dirac neutrinos is not important.

However, astrophysics could feasibly detect the neutrinoless double beta decay possible with Majorana

neutrinos, thus constriaining neutrino mass (and distinguishing between normal or inverted hierarchies).
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The rate of neutrino oscillations depends upon the (square of) the mass differences

between neutrino flavours. Current constraints on the mass differences from large

particle physics experiments are |δm23| ∼ 0.05 eV and |δm12| ∼ 0.007 eV. There are

currently no strong constraints on |δm13|, though upcoming experiments like T2K [324]

should measure this with an accuracy of ∼ 0.05 eV. Thus current constraints allow for

two possible orders of the massive neutrino hierarchy: m1 < m2 < m3 or the inverted

hierarchy m3 < m1 < m2. Particle physics experiments are planned that will measure

the absolute mass scale via the beta decay of Tritium [325, 326, 327, 328, 329, 330]. For

example, KATRIN [331] is expected to reach an accuracy of ∆mνe ∼ 0.35 eV. However,

providing useful information on the hierarchy configuration will require an accuracy of

∆mν < 0.1 eV [332].

If dark matter does include a component of massive neutrinos, they will have

left a key signature in the Cosmic Microwave Background [333] and in large-scale

structure [151, 334]. Neutrinos free-stream out of gravitational potentials, reducing

the amount of matter that can accumulate on small scales. This erases substructure in

dark matter haloes and softens their central cusps. This is observable via strong lensing

of galaxies [196, 197] and quasars [335, 336]. The altered flexion variance signal on due

to substructure could detect 2 keV neutrinos [262].

The suppression of small scale structure also shifts (free-streams) power onto

the larger scales accessible by weak lensing [337, 338, 339]. Current weak lensing

observations of the cluster mass function, in conjunction with the SDSS and 2dF galaxy

redshift surveys, constrain the total neutrino mass mν < 1.43 eV (at 95% confidence)

[340]. Two independent analyses of cosmic shear in the CFHTLS Wide survey [341, 342]

both tentatively find an upper limit ofmν < 0.54 eV (at 95% confidence) when combined

with data from the CMB (WMAP 3 year), supernovae and baryon acoustic oscillations.

Whilst these constraints are heavily dependent on priors, the statistical accuracy is well

matched to that expected from the size of the survey. The next generation of large,

three dimensional cosmic shear surveys expect to detect warm dark matter particles

with a mass of ∼ 5 keV [343] and constrain the effective number of neutrino species

Nν to ∼ 0.1 and ∆mν to within a few times 10−2 eV [344]. Weak lensing should even

be able to distinguish between inverted and normal neutrino hierarchies, because the

lighter species become relativistic at a higher redshift than more massive particles and

consequently have a different impact on the dark matter power spectrum P (k) [345] and

the weak lensing of the CMB [346].

6. Future directions

6.1. Hardware

Several facilities are being designed or converted for dedicated measurements of

gravitational lensing. The Japanese 8m Subaru telescope on Mauna Kea, Hawaii, shown

in the left panel of figure 15, was built with weak gravitational lensing measurements
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Figure 15. The investigation of dark matter via gravitational lensing has a bright

near-term future. Left: The 8m Subaru telescope atop the 4200m inactive volcano

Mauna Kea, Hawaii. Subaru will soon receive an upgraded imaging camera, mounted

at prime focus – the top of the telescope and visible in the photo. Prime focus allows

a wide field of view, but requires sturdy support to avoid flexure of the optical path

as the telescope is pointed in different directions around the sky (credit: National

Astronomical Observatory of Japan). Right: Artist’s impression of the planned HALO

telescope, observing gravitational lensing from a long-duration balloon at an altitude

of 35km, above 99% of the Earth’s atmosphere (credit: NASA Columbia Scientific

Balloon Facility).

explicitly in mind. Its robust construction stabilizes the optical path and has produced

the highest quality imaging of all ground-based telescopes. A replacement is currently

being built for its 0.25 square degree field of view SuPrime-Cam imager. The next

generation, 1.5 gigapixel HyperSuPrime camera will have a 2.5 square degree field of

view [347], and will carry out a multiwavelength gravitational lensing survey covering

2000 square degrees. The KIlo Degree Survey (KIDS) should cover 1400 square degrees,

exploiting a new, 0.3 gigapixel, 1 square degree OmegaCAM optical imager on the

European 2.4m VST telescope at Paranal, Chile [348]. The Dark Energy Survey (DES)

will cover 5000 square degrees, using a 0.5 gigapixel, 2.2 square degree DECam imager

being designed for the 4m Blanco telescope at Cerro Tololo, Chile [350]. Most of

this survey will also be covered by the South Pole Telescope’s CMB survey to find

galaxy clusters via the Sunyaev-Zeldovich effect, allowing an important cross-correlation.

Looking further ahead the Large Synoptic Survey Telescope (LSST) is being planned,

with a 6m effective primary mirror and a 3.2 gigapixel optical camera [349]. All of these

surveys will include imaging at multiple optical and near-infrared bands in order to

obtain photometric estimates of galaxy redshifts and thus perform 3D lensing analyses.

Circumventing the drive toward ever-larger single-dish telescopes is the Panoramic

Survey Telescope and Rapid Response System (Pan-STARRS) on Haleakala, Hawaii

[351]. Survey imaging has just begun using a single 1.8m telescope (PS1) with a

1 gigapixel optical camera to cover a shallow but full-hemisphere Wide Survey plus a

70 square degree Medium Deep Survey (to the same depth as the Canada-France-Hawaii

telescope’s deep legacy survey, which covers only 1 square degree). The detectors include
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the unique ability to transfer accumulated charge between pixels during an exposure,

following short-term variations in the atmosphere to improve image quality. Most

importantly, PS1 is a prototype for a much larger sequence of facilities. Construction

of PS2 has already begun: a duplicate unit that will be situated alongside and may

be used in conjunction with the original. Its goal will be to demonstrate that repeat

production of relatively small telescopes can be cost-efficient. If this is successful, two

more identical telescopes will be built to create PS4, all potentially housed in the same

dome but moved to a higher altitude site on Mauna Kea, and more still for PS16 situated

at various locations around the world, allowing 24 hour-a-day continual observation of

the sky [352].

There have been some attempts to use radio data to measure the weak lensing effect

[353, 354]. Such exploratory investigations suggest that surveys such as LOFAR and the

Square Kilometer Array (SKA) could use long baseline interferometry (approximately

300 to 500 km for the SKA frequencies) to image radio sources at a sufficient resolution

to measure weak lensing distortion [355, 356]. The expected sources are star-forming

galaxies, whose spatial density is uncertain, but whose intrinsic shapes are probably

more regular than usual radio sources. If possible, such radio observations would also

open up a whole new lensing regime: the large scale structure at very high redshift could

be inferred from lensing of the pre-galactic Hydrogen 21cm emission [357].

The most exquisite weak lensing measurements require telescopes above the Earth’s

atmosphere. The Hubble Space Telescope already offers imaging with more than ten

times higher resolution — and crucially stability – than even the Subaru telescope,

although over a narrow field of view [358]. The proposed High Altitude Lensing

Observatory (HALO), illustrated in the right panel of figure 15, will fly on a long-

duration balloon above 99% of the atmosphere. If its pointing accuracy can be

successfully stabilized, it will offer wide-field imaging of almost space-based resolution

for about the same cost as most cameras currently under construction for ground-based

telescopes. However, achieving the ultimate precision in lensing observations of dark

matter will eventually require deep imaging from a dedicated space-bourne telescope

in a dynamically and thermally stable environment at the Earth-Moon Lagrange point

L2. The SuperNova/Acceleration Probe (SNAP) and Dark Energy Space Telescope

(DESTINY) mission concepts proposed for the NASA/DoE Joint Dark Energy Mission

(JDEM) include major components of gravitational lensing surveys [360, 361]. At the

time of writing, the JDEM selection procedure is on hold, pending the outcome of the

US decadal review. The European Space Agency’s Euclid mission concept has been

designed explicitly with gravitational lensing as a primary science and instrumentation

driver. Euclid will image the entire extra-galactic sky (20, 000 square degrees) in optical

and infra-red with an image resolution and depth similar to the HST Deep Field, and

obtain spectra for a quarter of the lensed galaxies [362]. The Euclid dark matter science

objectives include providing a dark matter map of the Universe to a redshift of 2,

detecting hundreds of thousands of dark matter clusters and haloes from 108 M⊙ to

1015 M⊙ and constraining the neutrino mass, number and hierarchy to percent accuracy.
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High resolution space-based imaging has also proven essential for measurements

of strong gravitational lensing, in which the most important factor is generally the

number of lensed sources resolved around each foreground mass (which can then be

cross-compared to remove degeneracies), rather than the total number of lenses on the

sky. About 1 in 200 elliptical galaxies are strong lenses, and about 1 in 90 strong lenses

provide something close to a double Einstein ring. An all-sky survey with Euclid should

therefore find several tens of thousands of strong lenses, several hundred double Einstein

rings, and maybe a “golden lens” with more. Following up all these detections with

spectroscopic observations to obtain their redshifts will require a significant investment

of time on ground-based telescopes such as some proposed 30m-class telescopes. The

proposed Observatory for Multi-Epoch Gravitational lens Astrophysics (OMEGA) space

telescope will continually monitor ∼ 100 strongly lensed Active Galactic Nuclei (AGN)

using near-UV to near-IR imaging and spectroscopy with a cadence of hours to days

[363]. AGN take on different physical sizes when observed at different wavelengths, so

each imaging band will be sensitive to millilensing by different masses of substructure in

the lens. The regular imaging will calibrate the physical size of the sources as a function

of wavelength, via the “reverberation mapping” technique, and also measure the time

delays between multiple images in order to better understand the lens geometry.

6.2. Software

Fully exploiting the wealth of new survey data will require simultaneous advances in

analysis techniques, computer hardware to implement those techniques on huge data

sets, and theoretical calculations against which the observations can be compared. As

appropriate for a mature scientific field, statistical weak lensing experiments will need

to simulate the entire experiment, from the growth of structure through observation

and data processing, in order to avoid systematics and correctly interpret the results.

This begins with computer simulations of structure formation – and while there is a

substantial existing industry of dark matter simulations, these tend to include neither

the complicating baryonic processes, nor the specific visualisation of dark matter as

seen by a lensing survey. For example, ∼ 10% biases can be introduced by simulations

too small to include even the largest coherent structures at any redshift [364], or by

simply integrating the mass distribution along radial lines away from the Earth [365].

Instead, it is necessary to raytrace backwards along the paths followed by light and

follow multiple deflections [366, 367]. Implementing this in petabyte-scale simulations

requires preplanned organisation of the output during runtime.

Simulations will then be required to realise images of the Universe through the

Earth’s atmosphere, the telescope’s point spread function (PSF) and distortions in the

optical path, and pixellisation and other effects at the detector. All of these change the

shape of a galaxy. But, while this forward process is easily mimicked, it is a challenging

inverse problem to start from the observed data and extract the underlying weak lensing

signal. Many image analysis techniques have been developed to measure galaxy shapes
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and correct them for these effects. To make the challenge more difficult still, the most

distant galaxies, which contain the largest integrated lensing signal, are very faint and

noisy.

The archetypal weak lensing measurement method KSB measures galaxies’

quadrupole shape moments to infer the shear [55]. However, the physical simplicity

of KSB is known to be biased in some observational regimes and at low signal to noise.

A host of new methods have been developed and are now being used for the most recent

analyses. Two notable methods, lensfit [368, 369] and shapelets [370, 371, 372] both

work by forward-fitting a model galaxy shape that has been pre-convolved with the

PSF, in order to obtain a deconvolved image. Shapelets uses a model that generalises

KSB’s quadrupole moments to higher order. Lensfit uses a parametric model based

on the typical shapes of galaxies and in particular deals with the noisy regime via

a fully Bayesian framework. The Shear TEsting Programme (STEP) [373, 374], an

international collaboration of lensing groups, then the GRaviational lEnsing Accuracy

Testing (GREAT) [375, 376] scheme, which also included input from computer scientists

and experts in machine learning, have provided lensing simulations upon which methods

can be tested. Both schemes took the format of a blind competition, in which simulated

astronomical images containing a known weak lensing signal were distributed to entrants

(who were not told the input signal) for independent analysis. Flexion measurement

methods are still in relative infancy, but shapelets contain all the higher order shape

information necessary to construct flexion estimators [66, 377, 378]. The similar HOLICS

estimator [379] is identical to shapelets (and KSB) at low order, but uses non-orthogonal

moments at higher order. This improves the signal to noise, but at the expense of

correlated errors. All these flexion methods have been implemented on small amounts

of real data, and the FLexion Improvement Programme (FLIP) is underway to calibrate

them via simulated images.

The final step of a data analysis pipeline is to reconstruct the distribution of

mass from a gravitational lensing observable. Weak lensing shear and flexion are both

related simply to the projected mass in Fourier space [54, 68], but the conversion is

non-local and also noisy. Several methods have been developed to optimally filter the

reconstruction, the most successful being maximum entropy wavelet-based techniques

[380, 381]. Incorporating additional constraints from strong gravitational lensing is

not so simple, and usually requires iteration of a model until it matches the observed

positions, fluxes, redshifts and complex shapes of observed sources [382, 383]. Strong

lensing observations yield very high information density along lines of sight that lead to

an image, but zero elsewhere, and two styles have been developed to realise a continuous

mass model from this. Parametric models assume the mass distribution to have some

symmetry or to follow the distribution of light within a lens but, by construction, the

parameters are physical quantities of direct interest [34, 36]. Non-parametric models

avoid such assumptions, but require a large number of multiple images to provide

accurate mass reconstructions on different scales [35, 384]. One new method uses a

multi-scale adaptive grid to combine advantages of both styles [385]. This technique
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should be able to simultaneously reconstruct the mass distribution on cluster, group

and galaxy scales, and therefore provides more accurate measurements of substructure.

7. Conclusions

During the past decade, there has been tremendous progress in the measurement of

gravitational lensing, and this has contributed to key observations of dark matter. We

now know that there is a lot of dark matter, and its distribution has been mapped

on a wide range of physical scales. Dark matter is certainly not baryonic, and

measurements are beginning to ascertain properties including its dynamical temperature

and interaction cross-section through fundamental forces with both itself and baryonic

matter.

In this revolution, the techniques of gravitational lensing have moved rapidly into

mainstream astronomy. Progress is most apparent in the field of weak gravitational

lensing, which is now a standard tool for many astrophysicists. The excited aniticipation

of a 1997 review [48] was quickly realised in the almost immediate detection of cosmic

shear, and has been brought by continual observational and technical advances into a

mature scientific field.

The future prospects are bright. The first telescopes purpose-built for gravitational

lensing measurements have just begun dedicated surveys. More facilities are being

planned and built – including pioneering space-based telescopes that will provide the

most discriminating data to investigate the dark sector. To keep pace with these surveys

and interpret the observations, image analysis techniques and theoretical calculations

are entering a new regime in precision. Over the next decade, particle physics may

find particles that are a candidate for dark matter; astrophysics will study the missing

matter directly. Together, we tiny specs of baryonic matter may be able to join up the

two sides of the dark Universe.
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