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ABSTRACT. Astronomy is undergoing a methodological revolution triggered by an unprecedented wealth of
complex and accurate data. The new panchromatic, synoptic sky surveys require advanced tools for discovering
patterns and trends hidden behind data which are both complex and of high dimensionality. We present
DAMEWARE (DAta Mining & Exploration Web Application REsource): a general purpose, web-based, distributed
data mining environment developed for the exploration of large data sets, and finely tuned for astronomical ap-
plications. By means of graphical user interfaces, it allows the user to perform classification, regression, or clus-
tering tasks with machine learning methods. Salient features of DAMEWARE include its ability to work on large
datasets with minimal human intervention, and to deal with a wide variety of real problems such as the classification
of globular clusters in the galaxy NGC1399; the evaluation of photometric redshifts; and, finally, the identification
of candidate Active Galactic Nuclei in multiband photometric surveys. In all these applications, DAMEWARE
allowed us to achieve better results than those attained with more traditional methods. With the aim of providing
potential users with all needed information, in this paper we briefly describe the technological background of
DAMEWARE, give a short introduction to some relevant aspects of data mining, followed by a summary of some
science cases and, finally, provide a detailed description of a template use case.

1. INTRODUCTION

Astronomy has recently become a data rich science and not
only data volumes and data rates are growing exponentially,
closely following Moore’s law (Szalay & Gray 2006) but, at
the same time, there are also significant increases in data

complexity and data quality. For instance, the data provided
by the new panchromatic, synoptic surveys often consist
of tables containing many hundreds of parameters and quality
flags for billions of objects. These parameters are often
highly correlated and carry redundant information which in-
troduces hard-to-disentangle ambiguities. In addition these
tables are usually plagued by a large fraction of missing
(not-a-number or NaN) data which need to be taken into ac-
count properly.1 Astronomical Observatory of Capodimonte, INAF, Napoli, Italy.
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It is not just this new data abundance that is fueling this rev-
olution, but also the Internet-enabled data access and extensive
data reuse. The informational content of modern data sets is in
fact so high as to render archival research and data mining man-
datory since, in most cases, the researchers who took the data
tackle just a small fraction of the science that is enabled by it.
The main implication being that the same data sets (or specific
subsets of them) are often used by many different teams to
tackle different problems which were not among the main goals
of the original surveys. This multiplication of experiments re-
quires optimal strategies for data extraction and transfer (from
the data repositories to the final user) and for data processing
and mining.

A first response of the astronomical community to these
challenges was the Virtual Observatory (VO) which was ini-
tially envisioned as a complete, distributed (Web-based) re-
search environment for astronomy with large and complex
data sets, to be implemented by federating geographically dis-
tributed data and computing facilities, as well as the necessary
tools and related expertise (ASP 2001; Djorgovski et al. 2002).
The VO is currently a worldwide enterprise, with a number of
national and international VO organizations federated under the
umbrella of the International Virtual Observatory Alliance
(IVOA).2 The VO implementation, however, has so far focused
mainly on the production of necessary data infrastructure, inter-
operability, standards, protocols, middleware, and data discov-
ery services, and has produced only a limited subset of data
exploration and analysis services. Very little has been done
so far in the production of tools able to explore large data sets
and to extract, in a semiautomatic way, patterns and useful in-
formation from a wealth of data which goes well beyond the
capabilities of individual analysis. This process is usually
called either Knowledge Discovery in Databases or “data min-
ing” with very few, if any, semantic differences between the two
wordings.

In spite of the fact that in the last few years data mining (DM)
seems to have become immensely popular in the astronomical
community (which has begun to label as data mining any sort of
data querying, data analysis, or data visualization procedure),
true data mining—i.e., the extraction of useful information from
the data with automatic methods—is still quite uncommon. This
is probably due to the fact that DM is a complex and nondeter-
ministic process wherein the optimal results can be found only
on a trial-and-error basis, by comparing the output of different
methods and of different experiments performed with the same
method. This implies that, for a specific problem, DM requires a
lengthy fine tuning phase which is often not easily justifiable to
the eyes of a nonexperienced user. Furthermore, in order to be
effective, DM requires a good understanding of the mathematics
underlying the methods, of the computing infrastructures, and

of the complex workflows which need to be implemented. Most
casual users (even in the scientific community) are usually not
willing to make the effort to understand the process, and prefer
recourse to traditional and less demanding approaches which
are far less powerful but often much more user friendly (Hey
et al. 2009). This, however, will become more and more difficult
in the future when DM will become an unavoidable necessity.

Many Data Mining packages are nowadays available to the
scientific community, from desktop applications (i.e., packages
to be downloaded and installed on a user’s local machine) to
web-based tools (services and applications which can be re-
motely executed from a simple browser). To the first group,
to name just a few, belong Knime,3 Orange,4 Weka,5 and
RapidMiner,6 while VOStat7 and DAMEWARE,8 described
here, belong to the second group. Many of these tools have been
the subject of a review study carried out to determine which of
the wide variety of available data mining, statistical analysis,
and visualization applications and algorithms could be most ef-
fectively used by the astrophysical community (Donalek et al.
2011). The main result of this study is that most of these tools
fail to scale when applied even to moderately large (hundreds of
thousands records) data sets.

DAMEWARE (DAta Mining & Exploration Web Applica-
tion REsource) was conceived and engineered in 2007 to enable
a generic user to perform data mining and exploratory experi-
ments on large data sets (of the order of a few tens of gigabytes)
and, by exploiting web 2.0 technologies, it offers several tools
which can be seen as working environments within which to
choose data analysis functionalities such as clustering, classifi-
cation, regression, feature selection, etc., together with models
and algorithms. As will be shown, using DAMEWARE, any
user can setup, configure, and execute experiments on his
own data, on top of a virtualized computing infrastructure, with-
out the need to install any software on his local machines.

DAMEWARE has been offered to the public since early
2012. During its commissioning period, ended in 2013 August,
about 100 scientists from 27 different countries registered as
users and performed many different experiments. In the same
period, the project web site hosted ∼12; 000 independent ac-
cesses. Furthermore, the various functionalities and models of-
fered by DAMEWARE have been extensively tested on real
scientific cases and the results are discussed in 25 publications,
among which are 10 refereed papers, 3 contributions to vol-
umes, and 12 proceedings of international workshops.

This paper merges two aspects: first, it intends to provide
a concise technical description of DAMEWARE; second, it

2 Please see http://ivoa.net.

3 Please see http://www.knime.org/.
4 Please see http://orange.biolab.si.
5 Please see http://www.cs.waikato.ac.nz/~ml/weka/.
6 Please see http://rapid‑i.com/content/view/181/196/.
7 Please see http://astrostatistics.psu.edu/vostat/.
8 Please see http://dame.dsf.unina.it/dameware.html.
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provides the interested reader with a quick overview of the func-
tionalities and with a worked out template use case. In the next
section (§ 2) we describe the design and the architecture of
DAMEWARE web application. Section 3 gives the methodo-
logical background behind DAMEWARE while in § 4 we de-
scribe in some detail how the application works, describing
the data preprocessing (§ 4.1), the experiments, and the post
reduction (§ 4.2). In § 5 we briefly outline some previous ap-
plications of DAMEWARE which can be used by the interested
reader to better understand the potential of DAMEWARE and,
in order to better exemplify the workflow involved in a typical
DAMEWARE experiment, in § 6 we present, as a template use
case, the evaluation of photometric redshifts for a sample of gal-
axies used by our team for the PHAT1 contest (Hildebrandt et al.
2010; Cavuoti et al. 2012). Finally, in § 8, we outline some key
points of the discussion and draw some conclusions.

Readers who are not interested in the technical aspects and/or
who have enough experience in data mining can skip the first
sections and move directly to §§ 5 and 6.

2. DAMEWARE DESIGN AND ARCHITECTURE

From a technical point of view, DAMEWARE is what is
called a Rich Internet Application (RIA, Bozzon et al. 2010),
consisting of web applications having the traditional interaction
and interface features of computer programs, but usable via web
browsers. The main advantage of using web applications is that
the user is not required to install program clients on his desktop,
and has the ability to collect, retrieve, visualize, and organize the
data, as well as configure and execute the data mining applica-
tions through his web browser. An added value of such ap-
proach is the fact that the user does not need to directly
access large computing and storage facilities, and can transpar-
ently perform his experiments exploiting computing networks
and archives located worldwide, requiring only a local laptop
(or even a smartphone or a tablet) and a network connection.

Most available web-based data mining services run synchro-
nously, and this implies that they execute jobs during a single
HTTP transaction. In other words, all the entities in the chain
(client, workflow engine, broker, processing services) must re-
main up for the entire duration of the activity; if any component
stops, the context of the activity is lost. Obviously, this approach
does not match the needs of long-run tasks which are the
rule when dealing with large data sets. For this reason,
DAMEWARE offers asynchronous access to the infrastructure
tools, thus allowing the running of activity jobs and processes
outside the scope of any particular web service operation and
without depending on the user connection status. In other
words, the user, via a simple web browser, can access the ap-
plication resources and has the ability to keep track of his jobs
by recovering related information (partial/complete results) at
any moment without being forced to maintain the communica-
tion socket.

From the software development point of view, the baselines
behind the engineering design of DAMEWARE were:

1. Modularity: software components with standard interfac-
ing, easy to be replaced.

2. Standardization: in terms of information I/O between user
and infrastructure, as well as between software components (in
this case based on the XML-schema).

3. Interoperability of data: obtained by matching VO require-
ments (standards and formats).

4. Expandability: many parts of the framework will need to
be enlarged and updated along their lifetime. This is particularly
true for the computing architecture, framework capabilities,
GUI (Graphical User Interface) features, data mining function-
alities, and models (this also includes the integration within the
framework of end user proprietary algorithms).

5. Asynchronous interaction: the end user and the client-
server mechanisms do not require a synchronous interaction.
By using the Ajax (Asynchronous Javascript and XML, de-
scribed in Garrett [2005]) mechanism, the web applications
can retrieve data from the server running asynchronously in
the background without interfering with the display and behav-
ior of the existing page;

6. Language-independent Programming: This basically con-
cerns the APIs (Application Programming Interface) forming
the data mining model libraries and packages. Although most
of the available models and algorithms were internally imple-
mented, this is not considered to be mandatory, since it is pos-
sible to reuse existing tools and libraries, to integrate end user
tools, etc. To this aim, the suite includes a Java-based standard
wrapping system to achieve the standard interface with multi-
language APIs.

7. Hardware virtualization: DAMEWARE is independent of
the hardware deployment platform (single or multi processor,
grid, etc.).

To complete this short summary, we wish to note that
DAMEWARE also offers a downloadable Java desktop appli-
cation (called DMPlugin),9 which allows end users to extend
the original library of available data analysis tools by plugging
in, sharing, and executing their own code in a simple way, just
by uploading their programs into the framework without any
restriction on the native programming language.

Furthermore, the many-core (the new parallel processing par-
adigm recently replacing the multi-core concept) hardware plat-
form hosting the web application supports the possibility of
running parallel programs (Barsdell et al. 2010) via a dedicated
Graphical Processing Unit (GPU, NVIDIA Corp. 2012) K20
device.

Finally, we wish to stress that, in order to be as user friendly
as possible, special care was given to the documentation, both

9 Please see http://dame.dsf.unina.it/dameware.html#plugin.
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technical and user oriented, which is accessible through the
website.

3. DATA MINING & DAMEWARE

In order to better understand the problems related to data
mining in general and with astronomical data mining in partic-
ular, it is necessary to say a few words on the distinction be-
tween the well known concept of observed astronomical
space and the so-called measurements astronomical parameter
space as defined in Djorgovski et al. (2012).

3.1. Preparing the Data

Every astronomical observation, surveys included, covers
some finite portion of the Observable Parameter Space
(OPS), whose axes correspond to the observable quantities,
e.g., flux wavelength, sky coverage, etc. (see below). Every as-
tronomical observation or set thereof, surveys included, sub-
tends a multi-dimensional volume (hypervolume) in this
multi-dimensional parameter space. The dimensionality of
the OPS is given by the number of characteristics that can
be defined for a given type of observation. Along some axes,
the coverage may be intrinsically discrete rather than continu-
ous. An observation can be just a single point along some axis,
but have a finite extent in others. A correct characterization of
the OPS is useful for many applications, but for the purposes of
data mining it is necessary to introduce the quite different con-
cept of Measurement Parameter Space (MPS). Catalogs of sour-
ces and their measured properties can be represented as points
(or vectors) in the MPS. Every measured quantity for the indi-
vidual sources has a corresponding axis in the MPS. But, unlike
in OPS, some can be derived from the primary measured quan-
tities; for example, if the data are obtained in multiple band-
passes, we can form axes of flux ratios or colors; a
difference of magnitudes in different apertures forms a concen-
tration index; surface brightness profiles of individual objects
can be constructed and parametrized, e.g., with the Sersic index;
and so on. Some parameters may not even be representable as
numbers, but rather as labels; for example, morphological types
of galaxies, or a star versus a galaxy classification. While OPS
represents the scope and the limitations of observations, MPS is
populated by the detected sources and their measured proper-
ties. It describes completely the content of catalogs derived from
the surveys. Each detected source is then fully represented as a
feature vector in the MPS (“features” is a commonly used com-
puter-science term for what we call measured parameters here).
Modern imaging surveys may measure hundreds of parameters
for each object, with a corresponding (very high) dimensionality
of the MPS which is a curse for any data mining applications,
not only because algorithms scale badly with an increasing
number of features, but also because for increasing numbers
of dimensions the average density of information decreases
(i.e., the n-dimensional table becomes more and more sparsely

populated), thus increasing the level of noise. In other words, to
the contrary of what is normally perceived, a high number of
features is very often a nuisance rather than a help (Djorgovski
et al. 2012).

Missing data, or NaN, change the dimensionality of the af-
fected records in the MPS, a fact which is not easy to deal with
using any DMmethod. Astronomical data present a further level
of complexity since the missing information can be of two
types. In the simplest case, the missing data is truly a NaN:
for instance, objects which have not been observed in one pho-
tometric band and therefore correspond to truly missing infor-
mation. In the second case, the missing data can be, for instance,
an object which has been observed but not detected in a given
band. The nondetection conveys some information on the phys-
ical properties of the object itself and cannot be simply ignored.
In this case, it might be convenient to replace the missing data
with some relevant information such as, in the case of the pre-
vious example, an upper limit to the flux.

It may also happen that the information content in a single
table is not homogeneous, i. e., attributes may be of different
types, such as numerical variables mixed with categorical ones.
This level of diversity in the internal information can also be
related to different format type of data sets, such as tables reg-
istered in ASCII code (ANSI et al. 1977), CSV (Comma Sepa-
rated Values; Repici 2010) or FITS (text header followed by
binary code of an image; Wells et al. 1981). In order to reach
an efficient and homogeneous representation of the data set to
be submitted to ML systems, it is mandatory to preliminarily
take care of the data format in order to make them intelligible
by the processing framework. In other words, it is crucial to
transform features and force them into a uniform representation
before starting the DM process. In this respect real working
cases are, almost always, quite different among themselves.
Let us, for instance, think of time series (coming from any sen-
sor monitoring acquisition) where data are collected in a single
long sequence, not simply divisible, or of raw data that could be
affected by noise or aberration factors.

Furthermore, most practical DM methods based on the ML
paradigm, when dealing with massive data sets, make an inten-
sive use of so-called “meta-data,”10 another category of data
representation, based on partial ordering or equivalent generali-
zation/specialization relations. Fields of a meta-data collection
are composed of information describing resources and quick
notes related to the referred original data, able to improve their
fast visibility and access. They also provide the primary infor-
mation retrieval, indexed through description fields, usually for-
matted as records (pattern of labels).

Feature selection (Guyon & Elisseeff 2003) consists of iden-
tifying which among the various input parameters (also called

10A meta-datum - from the Greek meta, or over, after, and the Latin datum, or
information - is the information that describes a whole set of data (Guenther et al.
2004).
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features in DM terminology) carry the largest amount of infor-
mation. This allows one to exclude from subsequent analysis the
less-significant features with the twofold purpose of decreasing
the dimensionality of the problem (thus reducing the noise in the
data), and of improving the performance in terms of computing
time. Feature selection requires a large number of independent
experiments and a lengthy comparison procedure. In practice,
specific combinations of input features are created and submit-
ted as independent runs of the method and only those combi-
nations which do not cause a significant loss in performance are
maintained.

Many different approaches are possible and we shall not
enter into any detail but the interested reader can refer to
Grzymola-Busse & Ming (2001), Piggott (2001), and Vashist
& Garg (2012) for the missing data problem and to Liu (1998)
for an in depth analysis of the possible feature selection
procedures.

One last consideration: in the case of massive data sets, the
user can approach the investigation by extracting randomly a
subset (better several) of data and look at them carefully in order
to operate cleaning and to make decisions about patterns, fea-
tures, and attributes to be organized for future experiments. The
presence of domain experts of course simplifies and reduces this
time-consuming preliminary activity. In any case, the casual
user also needs to be aware that in any successful DM experi-
ment a significant (large) effort must be put into the pre- and
post- data processing. The literature shows that at least 60%
of the time required by a DM application goes for the data prep-
aration and result verification (Cabena et al. 1998).

From what has been said above it should have become clear
that data mining experiments require a delicate pre-processing
phase aimed at: (1) standardizing the input features; (2) minimiz-
ing the effects of missing data; and (3) reducing the dimension-
ality of the MPS to a minimum set of independent axes
(Reduced Parameter Space or RPS).

3.2. Machine Learning Paradigms and Models

There are two standard machine learning paradigms (Duda
et al. 2001): supervised and unsupervised. In the supervised par-
adigm, the dataset needs to contain a subset of data points (or
observations) for which the user already knows the desired out-
put expressed in terms of categorical classes, numerical or logi-
cal variables, or as a generic observed description of any real
problem. The objects with known output form the so called
knowledge base (KB), and provide some level of supervision
since they are used by the learning model to adjust parameters
or to make decisions in order to predict the correct output for
new data. In other words, supervised tasks are the DM equiva-
lent of the usual classification tasks, where the user is required
to divide a sample of objects (for instance galaxies) into classes
according to some predefined scheme (e.g. spirals, ellipticals,
lenticulars, etc) learned on the basis of templates or examples.
This is why supervised algorithms are also called “classifiers.”

The outcome is usually a class or category of the examples. Its
representation depends on the available KB and on its intrinsic
nature, but in most cases it is based on a series of numerical
attributes, organized and submitted in a homogeneous way.
The success of the learning is usually evaluated by trying
out the acquired feature description on an independent set of
data (also known as a test set), having known output but
never submitted to the model before. Some classifiers are also
capable of providing results in a more probabilistic sense, i.e.,
the probability for a data point to belong to a given class. Fi-
nally, a classifier can also be used to predict continuous values,
a model behavior which is usually called “regression” (Duda
et al. 2001).

Unsupervised algorithms, instead of trying to predict the
membership of a datum to one or another a priori defined class,
try to partition the input RPS into disjoint connected regions
sharing the same statistical properties. Each connected region
of the partitioned RPS defines what we call a cluster of data
points. In other words, unsupervised algorithms do not learn
from examples, but try to create groups or subsets of the data
in which points belonging to a cluster are as similar to each
other as possible, by making as large as possible the difference
between different clusters (Haykin 1999). The success of a clus-
tering process can then be evaluated in terms of human experi-
ence, or a posteriori by means of a second step of the
experiment, in which a classification learning process is applied
in order to learn an intelligent mechanism on how new data sam-
ples should be clustered.

This basic distinction between supervised and unsupervised
tasks is reflected in DAMEWARE by the fact that the choice of
any machine learning model is always preceded by selecting its
functionality domain. In other words, since several machine
learning models can be used in more than one functionality do-
main, its choice is defined by the context in which the explora-
tion of the data is performed. In what follows we shall adopt the
following terminology:

1. Functionality: any of the already introduced functional do-
mains, in which the user wants to explore the available data
(such as feature extraction, regression, classification, and clus-
tering). The choice of the functionality target can limit the num-
ber of selectable data mining models.

2. Data mining model: any of the data mining models inte-
grated in the DAMEWARE framework. It can be either a super-
vised machine learning algorithm or an unsupervised one,
depending on the available Knowledge Base (KB), i.e., the
set of training or template cases available, and on the scientific
target of the experiment.

3. Experiment: a complete scientific workflow (including
optional pre-processing or preparation of data and post-
processing), starting from the choice of a combination of a data
mining model and the functionality.

4. Use Case: for each data mining model, different running
cases are exposed to the user. These can be executed singularly
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or in a prefixed sequence. Being the models derived from the
machine learning paradigm, each one may require a sequence of
training (including validation), test, and run use cases, in order
to perform, respectively, learning, verification, and execution
phases of the experiment.

The functionalities and models currently available in
DAMEWARE are listed in Table 1. All models are based on
the machine learning paradigms and can be grouped into neural
networks, genetic algorithms, and other types of self-adaptive
methods. In the category of neural networks, specialized for re-
gression and classification, we list several types of multi layer
perceptrons (MLP, McCulloch 1943) with different learning
rules: (1) Back Propagation (MLPBP; Duda et al. 2001); (2) Ge-
netic Algorithm (FMLPGA), a hybrid model, including genetic
programming rules (Mitchell 1998), implemented on both CPU
and GPU platforms; (3) Levenberg-Marquardt Optimization
Network (MLPLEMON; Levenberg 1944), and (4) Quasi
Newton Algorithm (MLPQNA, Shanno 1990).

The neural networks for clustering are the Self Organizing
Maps (SOM; Kohonen 2007), Evolving SOM (ESOM; Deng
& Kabasov 2003), and Self Organizing Feature Maps (SOFM,
Kohonen 2007). These methods are also capable of dealing with
images (for instance for pixel based clustering) in the most com-
monly used formats.

To the category of generic self-adaptive methods belong the
Support Vector Machine (SVM; Chang & Lin 2011) for regres-
sion and classification, the K-Means (Hartigan & Wong 1979)
for clustering, and the Principal Probabilistic Surfaces (PPS;
Chang & Ghosh 2001) for feature selection.

Depending on the specific experiment and on the execution
environment, the use of any model can take place with a more or
less advanced degree of parallelization. This requirement arises
from the fact that all models require the fine tuning of some
parameters that cannot be defined a priori, not even by an ex-
perienced user, thus causing the necessity of iterated experi-
ments aimed at finding the best combination.

However, not all the models could be developed under the
MPI (Message Passing Interface) paradigm (Chu et al. 2007),

but some models, such as the FMLPGA, where the F stands
for Fast MLPGA, and a general purpose genetic algorithm, were
also implemented on GPUs in order to speed up performance
(Cavuoti et al. 2013a) moving from multi-core to many-core
architectures.

Where scalability is concerned, there are however two differ-
ent issues: on one hand, most existing ML methods scale badly
(cf. Gaber et al. [2005]) with both increasing number of records
and/or of dimensions (i.e., input variables or features); on the
other hand, datasets in the multi-terabyte range are difficult
if not plainly impossible to transfer across the network from
the hosting data centers to the local processing facilities. During
the development period (2008–2011) it become clear that in or-
der to deal with datasets in the tera- and multi-terabyte range
some changes to the original design had to be introduced even
though the true bottleneck was, and still is, in the fact that very
large data sets cannot be transferred over the network and that,
in these cases, the whole web application had to be mirrored in
the data centers. A crucial step in this direction was the imple-
mentation of the already mentioned DMPlugin, which allows a
generic user to configure the I/O interfaces between his own
algorithm and the available infrastructure by generating a wrap-
per Java which integrates the new model into the suite without
the need to know its internal mechanisms.

4. USING DAMEWARE

In this section we briefly outline the pre-processing and post-
processing facilities included in the DAMEWARE platform.

4.1. Submitting and Preparing Data

DAMEWARE input data can be in any of the following
supported formats: FITS (tabular/image), ASCII (ordinary text,
i.e., space separated values), VOTable (VO compliant XML
documents), CSV (Comma Separated Values), JPG, GIF, and
PNG (image).

In the Graphic User Interface (GUI) the input data belong to
a workspace created by the user at the start of any experiment

TABLE 1

DATA MINING MODELS AND FUNCTIONALITIES AVAILABLE IN THE DAMEWARE FRAMEWORK

Model Name Category Functionality

MLPBP . . . . . . . . . . . Multi Layer Perceptron with Back Propagation Supervised Classification, regression
FMLPGA . . . . . . . . . Fast MLP trained by Genetic Algorithm Supervised Classification, regression
MLPQNA . . . . . . . . MLP with Quasi Newton Approximation Supervised Classification, regression
MLPLEMON . . . . . MLP with Levenberg-Marquardt Supervised Classification, regression

Optimization Network
SVM . . . . . . . . . . . . . . Support Vector Machine Supervised Classification, regression
ESOM . . . . . . . . . . . . Evolving Self Organizing Maps Unsupervised Clustering
K-Means . . . . . . . . . . Unsupervised Clustering
SOFM . . . . . . . . . . . . Self Organizing Feature Maps Unsupervised Clustering
SOM . . . . . . . . . . . . . . Self Organizing Maps Unsupervised Clustering
PPS . . . . . . . . . . . . . . . Probabilistic Principal Surfaces Unsupervised Feature Extraction
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setup process. All data are listed in the File Manager subwindow
(visible in Fig. 1).

Dealing with machine learning methods, starting from an
original data file, a typical pre-processing phase consists of
the preparation of several different files to be submitted as input
for training, testing, and validation of the chosen algorithm. The
pre-processing features available in DAMEWARE are (cf. also
Fig. 2a):

1. Feature Selection: allows the creation of a new file con-
taining only user selected columns from the original input file.

2. Columns Ordering: creates a new file containing the user
specified order of columns.

3. Sort Rows by Column: allows the creation of a new file
containing rows sorted on a user-selected row index.

4. Column Shuffle: it creates a new file containing shuffled
columns.

5. Row Shuffle: creates a new file containing shuffled rows.
6. Split by Rows: allows the creation of two new files con-

taining the user specified percentage of rows (the row distribu-
tion can be randomly extracted).

7. Dataset Scale: creates a new file with normalized values in
a chosen range (½�1;þ1� or [0 ,1]).

8. Single Column scale: allows the creation of a new file with
the values of a selected normalized column in a chosen range,
leaving the rest of columns unchanged.

Other, less DM oriented, tasks need to be executed outside of
DAMEWARE, using programs such as TOPCAT (Taylor 2005).

4.2. Inspecting Results

Any outcome of a machine learning based experiment
originates from an inductive process, and hence needs to be

post-processed. Post-processing always helps to investigate,
as well as to fine tune, the acquired knowledge. It usually
requires both statistics and graphical representations.
DAMEWARE provides both kinds of tools.

For instance, classification confusion matrices (Brescia
2012b) and regression residual analysis are the available
statistical tools for supervised models. A series of graphical
plots enables the investigation of the outcome of unsupervised
(clustering and feature extraction) experiments as well as the
inspection of particular trends in a generic data table or the
viewing of a generic astronomical image.

The graphical options selectable by the user are:

1. multi-column histograms
2. multi-tab scatter plot 2D (two-dimensinoal)
3. multi-tab scatter plot 3D (three-dimensional)
4. multi-column line plot
5. visualization of the most common image types (gif, jpeg,

fits, png)

Some examples of graphical output are shown, respectively,
in Figs. 3a, 3b, 3c, and Fig. 4c.

5. SCIENTIFIC APPLICATIONS OF DAMEWARE

During the development phase, DAMEWARE has been tested
on many science cases which have led to significant results, pub-
lished in several scientific papers. In order to better exemplify the
potential application of DAMEWARE, in what follows we shall
briefly outline some recent applications and results.

5.1. Classification Tasks

A typical astronomical problem tackled in the past with au-
tomatic tools is the so called star/galaxy classification task

FIG. 1.—The Resource Manager panel of the DAMEWARE Graphical User Interface, with the three main areas: Workspace (left), File Manager (right top), and My
Experiments (right bottom), showing the created workspaces, the uploaded data files, and the performed experiments, respectively.
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which, at least until the late 90s, should have been more cor-
rectly described as disentangling unresolved (i.e., point-like)
and spatially resolved (i.e,. extended) objects. Nowadays, even
though the basic problem is always the same, the ability to use
multi-band information adds an additional level of complexity
and allows one to disentangle not only resolved versus unre-
solved objects, but also unresolved extragalactic objects versus
unresolved galactic ones. We performed a particular S/G clas-
sification experiment using DAMEWARE to identify candidate
globular clusters in the halo of the galaxy NGC1399, disentan-
gling them from background galaxies and foreground galactic
stars. In this classification task, the KB consisted of a set of bona
fide globular clusters selected in a small portion of the field on
the basis of color-color diagrams. This selection criterion, while
very effective, requires multiband observations and high angular
resolution. The aim of our DM experiment was to use the KB to
train a model to classify candidate globular clusters using single
band observations obtained with the Hubble Space Telescope
(thus covering a much larger field of view with respect to
the multiband data). DAMEWARE allowed us to test and

compare different DM models and to choose the optimal
one. In particular, three different versions of MLPs, genetic al-
gorithms and SVM, were used on the same data set (Brescia
et al. 2012). The best results were obtained with the MLPQNA
leading to a class accuracy of 98.3%, a completeness of 97.8%,
and a contamination of 1.8%.

Another classification problem tackled with DAMEWARE
was to disentangle on photometric grounds only galaxies host-
ing active nuclei (AGN) from normal (i.e., nonactive) ones and
to try to separate AGNs into broad phenomenological types
such as Seyfert I, Seyfert II, and LINERs (Cavuoti et al. 2013b).
In this case, the KB was more complex since it was assembled
from different catalogues (all built on the basis of spectroscopic
information). Also in this case, DAMEWARE was used to test
different classification models (different implementations of
MLP and SVM). More specifically, we addressed three different
classification problems: (1) the separation of AGNs from non-
AGNs, (2) Seyfert I from Seyfert II, and (3) Seyfert from
LINERs. In terms of classification efficiency, the results indi-
cated that our methods performed fairly well (∼76:5%) when

FIG. 2.—Panel (a): The Feature Selection option panel, used during the pre-processing phase to extract specific columns from any data table file. Panel (b): the Split by
Rows option panel, used during the pre-processing phase to split any data table file into two subsets.
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FIG. 3.—Panel (a): histogram sample produced by the web application, showing the spectroscopic redshift distribution produced after the splitting of a dataset into two
subsets with the Split by Rows function. Panel (b): multi histogram sample showing the photometric distribution of several magnitudes for a given galaxy sample. Panel
(c): 3D scatter plot sample showing the distribution of redshift vs. two photometric colors from several magnitudes.
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applied to the problem of the classification of AGNs versus non-
AGNs, while the performances in the finer classification of
Seyfert versus LINERs resulted ∼78% and ∼81% in the case
Seyfert I vs Seyfert II. The relatively low percentages of suc-
cesful classification are compatible with what is usually
achieved in the literature and reflect the ambiguities present
in the KB. The resulting catalogue, containing more than 3.2
million candidate AGNs, is available online on the VizieR ser-
vice (Cavuoti et al. 2013c).

5.2. Regression for Photometric Redshifts

The evaluation of photometric redshifts (hereinafter photo-z)
is among the first and most common problems dealt with by
astronomers using machine learning or data mining methods.
Photometric redshifts offer an alternative to spectroscopy-based

techniques that is viable and less demanding in terms of pre-
cious observing time with which to derive the redshifts of large
samples of galaxies. In practice, the problem consists of finding
the unknown function which maps a photometric set of features
(magnitudes and/or colors) into the redshift space and many
different techniques and approaches have been developed
(Hildebrandt et al. 2010). When a consistent fraction of the ob-
jects with spectroscopic redshifts exists, the problem can be ap-
proached as a DM regression problem, where the a priori
knowledge (i.e., the spectroscopic redshifts forming the KB)
is used to uncover the mapping function. This function can then
be used to derive photo-z for objects which have no spectro-
scopic information.

Without entering into much detail, which can be found in the
literature quoted below and in the references therein, we just

FIG. 4.—Panel (a): the selection of the desired couple Functionality-Model for the current experiment. Panel (b): the train use case configuration panel for the
MLPQNA selected model. Panel (c): the Scatter Plot 2D panel, used during the post-processing phase to visualize the scatter plot 2D of zspec vs. photo-z. Empty
circles are training objects while filled dots are test objects.
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summarize a few salient aspects tested in many experiments
done on different KBs, often composed through accurate cross-
matching among public surveys, such as SDSS for galaxies
(Brescia et al. 2014), UKIDSS, SDSS, GALEX, and WISE
for quasars (Brescia et al. 2013), GOODS-North for the PHAT1
contest (Hildebrandt et al. 2010; Cavuoti et al. 2012) and
CLASH-VLT data for galaxies (Biviano et al. 2013). Other
photo-z prediction experiments are in progress as preparatory
work for the Euclid Mission (Laureijs et al. 2011) and the
KIDS11 survey projects.

While referring the interested reader to the above-quoted pa-
pers and to § 6 for details, we notice that in all these experiments
we exploited a DM functionality which appears to be relevant
for a better understanding of the feature selection possibilities
offered by DAMEWARE. In Brescia et al. (2013) it is explained
how the use of feature selection, outlined in § 3, could be used to
reduce the number of significant input parameters from the ini-
tial 43 to only 15, with no loss in regression accuracy and with a
huge improvement in computing time.

6. A TEMPLATE SCIENCE CASE

In this section, which must be regarded as a sort of a tutorial,
we show how to use the MLPQNA model in DAMEWARE to
evaluate photometric redshifts for a sample of objects which
was available for the PHAT1 contest (Hildebrandt et al. 2010;
Cavuoti et al. 2012).

According to Hildebrandt et al. (2010), due to the extremely
small KB of spectroscopic redshifts, PHAT1 provides a quite
complex environment within which to test photo-z methods.
The PHAT1 dataset consists of photometric observations, both
from ground and space instruments (GOODS-North; Giavalisco
et al. 2004), complemented by additional data in other bands
derived from Capak et al. (2004). The final dataset covers
the full UV-IR range and includes 18 bands: U (from KPNO),
B, V, R, I, Z (from SUBARU), F435W, F606W, F775W,
F850LP (from HST-ACS), J, H (from ULBCAM), HK (from
QUIRC), K (from WIRC), and 3.6, 4.5, 5.8, and 8.0 μ (from
IRAC Spitzer). The photometric dataset was then cross corre-
lated with spectroscopic data from Cowie et al. (2004), Wirth
et al. (2004), Treu et al. (2005), and Reddy et al. (2006). There-
fore, the final PHAT1 dataset consists of 1984 objects with 18-
band photometry and more than one quarter of the objects (515)
with accurate spectroscopic redshifts. Details about the machine
learning model used in this context (MLPQNA) can be found in
Cavuoti et al. (2012).

In the following we will just describe more practical aspects
of the workflow along the experimental development. Details
and available data of the experiments can be found on the
DAME website.12

All the following experiment phases are intended to be per-
formed after having successfully completed the access and pre-
liminary steps on the DAMEWARE web application:

1. Log into the web application using your username and the
password obtained after the registration procedure.

2. Create a new workspace using the specific button in the
main GUI window (see Fig. 1).

3. Upload the original data files containing the complete KB
(it can be loaded from the user's local machine or from a remote
web address by providing the URI).

Let us start from the construction of the knowledge base
needed for training, validation, and testing. For supervised
methods it is common practice to split the KB into at least three
disjoint subsets: one (training set) to be used for training pur-
poses, i.e., to teach the method how to perform the regression;
the second one (validation set) to check against the possible loss
of generalization capabilities (also known as overfitting); and
the third one (test set) needed to evaluate the performances
of the model.

As a rule of thumb, these sets should be populated with 60%,
20%, and 20% of the objects in the KB. In order to ensure a
proper coverage of the MPS, objects in the KB are divided
up among the three datasets by random extraction, and usually
this process is iterated several times in order to minimize the
biases introduced by fluctuations in the coverage of the PS.
In the case of MLPQNA described here, we used the leave-
one-out k-fold cross-validation (cf. Geisser 1975) to minimize
the size of the validation set. Training and validation were there-
fore performed together using ∼80% of the objects as a training
set, leaving the remaining ∼20% as test set (in practice 400 re-
cords in the training set and 115 in the test set).

To ensure proper coverage of the MPS, we checked that the
randomly extracted populations had a spec-z distribution com-
patible with that of the whole KB. The automated process of
cross-validation (K ¼ 10) was then done by performing ten dif-
ferent training runs with the following procedure: (1) the train-
ing set was split into ten random subsets, each one containing
10% of the objects; (2) at each run we used 9 of the small data-
sets for the training and the remaining one for validation.

The second phase of the experiment consists of the analysis
of data features and missing data. As already mentioned, the
presence of features with a large fraction of NaNs can seriously
affect the performance of a given model and lower the accuracy
or the generalization capabilities of a specific model. It is there-
fore good practice to analyze the performance of a specific
model in presence of features with large fractions of NaNs. This
procedure is strictly related to the feature selection phase, which
consists of evaluating the significance of individual features to
the solution of a specific problem. We wish to recall that, as a
rule of thumb, feature selection methods belong to two large
families: “filter modeling” and “wrapper modeling”. The first
group includes methods based either on specific models (such

11 Please see http://www.astro‑wise.org/projects/KIDS/.
12 Please see http://dame.dsf.unina.it/dame_photoz.html#phat.
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as Principal Component Analysis or PCA, etc.) or on statistical
filtering which require some a priori knowledge on the data
model, while the second group uses the machine learning
method itself to assess the significance of individual features.
It is also necessary to underline that, especially in the presence
of small datasets, there is a need for compromise: on one hand, it
is necessary to minimize the effects of NaNs; on the other, it is
not possible to simply remove each record containing NaNs,
because otherwise too much information would be lost. Details
of the data analysis and feature selection performed on the
PHAT1 dataset are described in Cavuoti et al. (2012).

The construction and manipulation of the data sets for the
above phases can be performed in DAMEWARE, after user ac-
cess, through the data editing options presented in § 4.1.

Starting from the availability in any user workspace of the
data sets (train and test set) containing columns related to
the input features (photometric magnitudes, colors, or fluxes
of all selected/available bands) and reference output (spectro-
scopic redshift) for all objects, the train and test phases can
be done by performing the following series of steps:

1. Upload in the created workspace the train, test, and run
data sets from the website.13 Here for run data set we mean
the whole data set containing photometric information only
to which the network will be applied at the end of the training
and test procedure.

2. Create the files to be used for the train and test phases, by
using the Feature Selection option in the editing menu (enabled
by clicking the Edit icon close to each file). In particular, the
three columns labeled ID, 18-band, and 14-band, respectively,
should be removed in both train and test sets, because they are
not involved as input features in the experiment.

3. Create a new train experiment (by clicking the icon named
Experiment close to the workspace name). Select the desired
ML model having the regression functionality among those
vailables in the experiment type list (in this case, Regres-
sion_MLPQNA; see for example Fig. 4a).

4. Choose the use case train among those made available in
the selected model list (the train use case is always the first re-
quired for new experiments).

5. Configure all required model and experiment type param-
eters (you can also follow the suggestions obtained by pressing
the Help button, as shown in Fig. 4b). The optimal setup of the
parameters is usually found by following a trial-and-error pro-
cedure but, in this case, if the user does not want to run the nu-
merous experiment needed, he can use the set of parameters
defined in Cavuoti et al. (2012).

6. Launch the train experiment and wait until the status
“ended” appears in the My Experiments panel (after the launch
the user can disconnect from the web application).

7. At the end of the experiment, move the internal configu-
ration files of the trained model (depending on the model
used) from the experiment output list to the File Manager area
of the current workspace (by pressing the AddInWS button
nearby). For instance, if MLPQNA was selected, the weight
file is named “mlpqna_TRAIN_weights.txt” and the network
setup file is named “[inputfilename]_mlpqna_TRAIN_frozen_
net.txt,” where the prefix depends on the specific input
file name.

8. Create a new test experiment in the same workspace and
choose the use case test, configure its parameters (a subset of
those already used in the train setup, with the obvious difference
that in this case the input must be the test set previously pre-
pared in the workspace, and by selecting the weight and network
setup files, obtained at the end of training) and launch it.

9. At the end of the test case experiment, move the output
table file in the File Manager area.

10. Evaluate the results by performing some post-processing
steps. For instance:

a) Visualize the scatter plot (zspec vs photo-z) by pressing
the menu button Plot Editor.

b) Select the subtab Scatter Plot 2D, load the input file, con-
figure the plot options, and create it (an example is shown
in Fig. 4c).

c) Create a new statistics experiment by selecting the
Regression-statistics experiment option and launch it by submit-
ting the test output file as input data and columns 2 and 3 as
references for the calculations (see Fig. 5).

d) Download and visualize on your local machine the resid-
ual statistics output file.

In the case that the user has not adopted the suggested values
but is trying to derive the optimal setup on a trial-and-error ba-
sis, the whole procedure needs to be repeated many times by
varying the setup parameters and by comparing the resulted
statistics.

After completing the sequence of train, test, statistics, and
plotting experiments, the user can use the trained model to
produce photo-z for the objects without spectroscopic redshift,
i.e., the run set. To do this, he needs a third file containing
the photometric only objects, pruned of all the data with incom-
plete information and filtered according to the same photometric
selection criteria mentioned above. Using the trained network,
the user must choose the use case run, configure its parameters
(a subset of those already used in the train and test setup with
the obvious difference that in this case the input must be the run
set previously prepared in the workspace) and launch it. The
output file will contain the estimated photo-z for all given
objects.

7. FUTURE DEVELOPMENTS

As discussed in the previous sections, DAMEWARE is
fully able to deal with most existing data sets but, due to the13 Please see http://dame.dsf.unina.it/dame_photoz.html#phat.
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limitations imposed by data transfer over the network, it is clear
that the future of any DAMEWARE-like service will depend on
the capability of moving the data mining applications to the data
centers hosting the data themselves.

The VO community has already designed web-based proto-
cols for application interoperability (such as the Web Samp
Connector), which solve some problems but still require the ex-
change of data between application sites (Derrierre et al. 2010;
Goodman et al. 2012). From a conceptual point of view, the
possible interoperability scenarios are (hereafter DA stands
for Desktop Application and WA for Web Application):

1. DA1⇔DA2 (data+application bi-directional flow)

a) Full interoperability between DAs
b) Local user desktop fully involved (requires comput-

ing power)
2. DA⇔WA (data + application bi-directional flow)

a) Full WA ⇒ DA interoperability
b) Partial DA ⇒ WA interoperability (such as remote file

storing)
c) MDS must be moved between local and remote

applications
d) user desktop partially involved (requires minor computing

and storage power)
3. WA⇔WA (data + application bi-directional flow)

a) Except from URI exchange, no interoperability and differ-
ent accounting policy

b) MDS must be moved between remote apps (but larger
bandwidth)

c) No local computing power required

However, all these mechanisms are just partial solutions
since they still require an exchange of data over the web be-
tween application sites.

Building upon the DAMEWARE experience and in particu-
lar upon the experience gained with the implementation of the
DMPlugin resource, we decided to investigate a new concept
called Hydra.14 Within this concept, we started by designing
a prototype of a standardized web application repository, named
HEAD. A HEAD (Hosting Environment Application Dock)
cloud is in practice a group of standardized software containers
of data mining models and tools, to be installed and deployed in
a pre-existing data warehouse. In such a scenario, the various
HEADs can be different in terms of number and type of models
made available at the time of installation. This is essentially be-
cause any hosting data center could require specific kinds of
data mining and analysis tools, strictly related with their specific
type of data and specific knowledge search types. All HEADs,
however, would be based on a predesigned set of standards
completely describing their interaction with external environ-
ments, application plugins, and execution procedures, and
therefore would be identical in terms of internal structure and
I/O interfaces. If two generic data warehouses host two different
HEADs on their site, they are able to engage the mining appli-
cation interoperability mechanism by exchanging algorithms
and tool packages on demand.

FIG. 5.—The output of the test experiment with the residual statistics report. On the right side the File Manager and My Experiments areas are shown.

14The name was inspired by the Greek mythological monster called Lernaean
Hydra, the ancient nameless serpent-like water beast, with reptilian traits that
possessed many independent but equally functional heads.
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Upon a specific request, the mechanism engages an auto-
matic procedure which moves applications, organized under
the form of small packages (a few MB in the worst case),
through the Web from a HEAD source to a HEAD destination,
installs them, and makes the receiving HEAD able to execute
the imported model on local data.

Of course, such a strategy requires a well-defined design ap-
proach in order to provide a suitable set of standards and com-
mon rules to build and codify the internal structure of HEADs
and data mining applications, such as, for example, any kind
of rules like PMML, Predictive Model Markup Language
(Guazzelli et al. 2009). These standards can be in principle de-
signed to maintain and preserve the compliance with data repre-
sentation rules and protocols already defined and currently
operative in a particular scientific community (such as VO in
Astronomy).

In order to fine tune the Hydra concepts, we recently ap-
proached the design and development of a desktop application
prototype able to deal with general classification and regres-
sion problems, but fine tuned to tackle specific astrophysical
problems. The first example being the PhotoRApToR15

(PHOTOmetric Research APplication To Redshifts) App,
freely downloadable at the DAMEWARE project website,
for the supervised prediction of photometric redshifts (De
Stefano et al. 2014).

8. CONCLUSIONS

The DAMEWARE project started in 2007 and was released
in 2013. These have been momentous years for astronomy,
which has become a data-rich science and is now coping with
data problems whose full extension could just be imagined a
decade ago.

We therefore think it useful to briefly account for some les-
sons learned in the making of a project which, to our knowl-
edge, is among the very few projects aimed at providing the
astronomical community with a user-friendly tool able to per-
form extensive data mining experiments on massive data sets.
Some of the considerations below arise from the experience
gathered in answering frequent questions raised by the commu-
nity of users and might prove of general interest.

An important aspect, revealed through the DAMEWARE ex-
perience, regards the computing latency time required by large
data mining experiments. For instance, the completion of the set
of experiments described in Brescia et al. (2013) required sev-
eral weeks of computing time on a multi-core processor.

The harder problem for the future will be heterogeneity of
platforms, data, and applications, rather than simply the scale
of the deployed resources. The goal should be to allow scientists
to explore the data easily, with sufficient processing power for
any desired algorithm to efficiently process it. Most existing ML

methods scale badly with both increasing number of records
and/or of dimensionality (i.e., input variables or features). In
other words, the very richness of astronomical data sets makes
them difficult to analyze. This can be circumvented by extract-
ing subsets of data, performing the training and validation of the
methods on these more manageable data subsets, and then ex-
trapolating the results to the whole data set. This approach ob-
viously does not use the full informational content of the data
sets, and may introduce biases which are often difficult to con-
trol. Typically, a lengthy fine tuning procedure is needed for
such subsampling experiments, which may require tens or
sometimes hundreds of experiments to be performed in order
to identify and optimize, for the problem in hand, the DM
method or its architecture and parameter setup.

The DAMEWARE resource was designed by taking all these
issues into account, thus including the parallel computing facil-
ities, based on GPGPU hardware and CUDA+OpenACC soft-
ware paradigms (NVIDIA Corp. 2012), applied to most
expensive models, like hybrid architectures (neural networks
with genetic algorithms). The speedup gain obtained by execut-
ing such models on the parallel platforms ensures the scalability
of our algorithms and makes feasible the data mining process
with them on huge data sets. So far, all future astrophysical
data mining resources require a massive exploitation of such
paradigms.

With the release of the current version, DAMEWARE has
concluded the test phase and has become fully operational.
However, besides debugging and the addition of further data
mining models and methods, no major revisions and/or addi-
tions are foreseen.

The authors wish to thank the many students who contrib-
uted one way or another to the project. Many of them played
such an important role to earn a place in the authors list; some
others made small but significant contributions. To all of them
we are very grateful. The authors wish also to thank the anony-
mous referee for his/her many helpful suggestions.

DAMEWARE has been a multiyear project funded by many
sponsors. The Italian Ministry of Foreign Affairs through a bi-
lateral Great Relevance Italy-USA project; the European funded
VO-Tech (Virtual Observatory Technological Infrastructure)
6-th European FW project; the Department of Physics and
the Polo della Scienza e Della Tecnologia of the University Fed-
erico II in Napoli. GL, MB and SC acknowledge financial sup-
port by the Project F.A.R.O., 3rd call by the University Federico
II of Naples. GL wish also to thank the financial support by the
PRIN-MIUR 2011, Cosmology with the Euclid space mission.
SGD, CD, AAM, and MJG acknowledge a partial support from
the NSF grants AST-0834235 and IIS-1118041, and the NASA
grant 08-AISR08-0085.

Some of the work reported here benefited from the
discussions which took place during a study and the work-
shops organized by the Keck Institute for Space Studies at
Caltech.15 Please see http://dame.dsf.unina.it/dame_photoz.html#photoraptor.

796 BRESCIA & CAVUOTI

2014 PASP, 126:783–797

This content downloaded from 131.215.144.100 on Fri, 16 Jan 2015 13:39:24 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


REFERENCES

ANSI (American National Standards Institute), et al. 1977, American
National Standard Code for Information Interchange

ASP 2001, in ASP Conf. Ser. 225, Virtual Observatories of the Future,
ed. R. Brunner, S. G. Djorgovski, & A. Szalay (San Francisco: ASP)

Barsdell, B. R., Barnes, D. G., & Fluke, C. J. 2010, MNRAS, 408, 3,
1936–1944

Biviano, A., et al. 2013, A&A, 558, A1, 22
Bozzon, A., et al. 2010, Engineering Rich Internet Applications with a

Model-Driven approach, ACM Transaction on the Web (TWEB),
Vol. 4, 7.1–7.47

Brescia, M. 2012b, in Horizons in Computer Science Research 7, ed.
T. S. Clary (Hauppauge: Nova)

Brescia, M., Cavuoti, S., D’Abrusco, R., Longo, G., & Mercurio, A.
2013, ApJ, 772, 2, 140

Brescia, M., Cavuoti, S., De Stefano, V., & Longo, G. 2014, to appear,
A&A, astro-ph: 1407.2527

Brescia, M., Cavuoti, S., Paolillo, M., Longo, G., & Puzia, T. 2012a,
MNRAS, 421, 2, 1155–1165

Capak, P., Cowie, L. L., Hu, E. M., et al. 2004, AJ, 127, 180
Cabena, P., Hadjinian, P., Stadler, R., Verhees, J., & Zanasi, A. 1998,

Discovering Data Mining: From Concepts to Implementation (Upper
Saddle River: Prentice Hall)

Cavuoti, S., Brescia, M., D’Abrusco, R., Longo, G., & Paolillo, M.
2013b, MNRAS, 437, 1, 968–975

Cavuoti, S., Brescia, M., D’Abrusco, R., Longo, G., & Paolillo, M.
2013c, MNRAS, 437, 968

Cavuoti, S., Brescia, M., Longo, G., & Mercurio, A. 2012, A&A, 546,
A13, 1–8

Cavuoti, S., Garofalo, M., Brescia, M., Paolillo, M., Pescape’, A.,
Longo, G., & Ventre, G. 2013a, NewA, 26, 12–22

Chang, K., & Ghosh, J. 2001, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 23, 22–41

Chang, C. C., & Lin, C. J. 2011, ACM Transactions on Intelligent
Systems and Technology, 2, 27

Chu, C. T., et al. 2007, in NIPS Proceedings 19, ed. B. Schölkopf, J. C.
Platt, & T. Hoffman (Cambridge: MIT Press)

Cowie, L. L., Barger, A. J., Hu, E. M., Capak, P., & Songaila, A. 2004,
AJ, 127, 3137

Deng, D., & Kabasov, N. 2003, Neurocomputing, 51, 87–103
Derrierre, S., & Boch, T. 2010, in ASP Conf. Ser. 434, Astronomical

Data Analysis Software and Systems XIX, ed. M. Ohishi (San Fran-
cisco: ASP), 159

De Stefano, V., Brescia, M., Cavuoti, S., & Longo, G. 2014, submitted
to MNRAS

Djorgovski, S. G., et al. 2002, Towards the National Virtual Observa-
tory, http://www.us‑vo.org/sdt/

Djorgovski, G. S., Donalek, C., Mahabal, A. A., Drake, A. J., &
Graham, M. J. 2012, Planets, Stars and Stellar Systems, ed. T.
Otswald, & H. Bond (New York: Springer)

Donalek, C., Graham, M., Mahabal, A., Djorgovski, S. G., & Plante, R.
2011, Tools for Data to Knowledge, IVOA Technical Report

Duda, R. O., Hart, P. D., & Storck, D. G. 2001, Pattern Classification,
2nd Edition (Hoboken: Wiley)

Gaber, M. M., Zaslavsky, A. D., & Krishnaswamy, S. 2005, Newsletter
ACM SIGMOD, 34, 18

Garrett, J. J. 2005, Ajax: A New Approach to Web Applications, http://
www.adaptivepath.com/ideas/ajax‑new‑approach‑web‑applications/

Geisser, S. 1975, J. Am. Stat. Assoc., 70 (350), 320–328
Giavalisco, M., Ferguson, H. C., Koekemoer, A. M., et al. 2004, ApJ,

600, L 93
Goodman, A., Fay, J., Muench, A., Pepe, A., Udomprasert, P., &

Wong, C. 2012, WorldWide Telescope in Research and Education
(arXiv:1201.1285)

Grzymola-Busse, J., & Ming, H. 2001, Rough Sets and Current Trends
in Computing (New York: Springer), 378–385

Guazzelli, A., Zeller, M., Chen, W., & Williams, G. 2009, The R
Journal, 1

Guenther, R., & Radebaugh, J. 2004, Understanding Metadata.
(Bethesda MD, USA: National Information Standards Organization
(NISO) Press)

Guyon, I., & Elisseeff, A. 2003, Journal of Machine Learning Re-
search, 3, 1157–1182

Hartigan, J., & Wong, M. 1979, Applied Statistic, 28, 100–108
Haykin, S. 1999, Neural Networks - A Comprehensive Foundation,

2nd Ed. (Upper Saddle River: Prentice Hall)
Hey, T., Tansley, S., & Tolle, K. 2009, The Fourth Paradigm: Data-

Intensive Scientific Discovery (Redmond: Microsoft Research)
Hildebrandt, H., Arnouts, S., Capak, P., Wolf, C., et al. 2010, A&A,

523, 31
Kohonen, T. 2007, Self-Organizing Maps, 2nd Ed., Vol. 30

(Heidelberg: Springer)
Laureijs, R., et al. 2011, Euclid Definition Study Report, ESA/SRE

(2011)12, 1.1
Levenberg, K. 1944, Q. Appl. Math., 2, 164–168
Liu, H. H. 1998, Springer International Series in Engineering and Com-

puter Science (New York: Springer), 453
McCulloch, W. S., & Pitts, W. H. 1943, Bulletin of Mathematical

Biophysics, 5, 115–133
Mitchell, M. 1998, An Introduction to Genetic Algorithms

(Cambridge: MIT Press)
NVIDIA Corp., 2012. CUDA C Best Practices Guide, Ed. 4.1
Piggott, T. D. 2001, Educational Research and Evaluation, 7,

353–383
Reddy, N. A., Steidel, C. C., Erb, D. K., Shapley, A. E., & Pettini, M.

2006, ApJ, 653, 1004
Repici, J. 2010, The Comma Separated Value (CSV) File Format,

http://creativyst.com/Doc/Articles/CSV/CSV01.htm
Shanno, D. F. 1990, Recent Advances in Numerical Techniques for

Large-Scale Optimization, Neural Networks for Control (Cam-
bridge: MIT Press)

Szalay, A., & Gray, J. 2006, Nature, 440, 413
Taylor, M. B. 2005, in ASP Conf. Ser. 347, Astronomical Data Analy-

sis Software and Systems XIV, ed. P. Shopbell, M. Britton, & R.
Ebert (San Francisco: ASP), 29

Treu, T., Ellis, R. S., Liao, T. X., & van Dokkum, P. G. 2005, ApJ,
633, 174

Vashist, R., & Garg, M. L. 2012, IJCA, 42, 14, 31, 35
Wells, D. C., Greisen, E. W., & Harten, R. H. 1981, A&AS, 44, 363
Wirth, G. D., Willmer, C. N. A., Amico, P., et al. 2004, AJ, 127,

3121

DAMEWARE: ATROPHYSICAL DATA MINING 797

2014 PASP, 126:783–797

This content downloaded from 131.215.144.100 on Fri, 16 Jan 2015 13:39:24 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Impact
    /LucidaConsole
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


