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Abstract—The nature of scientific and technological data 
collection is evolving rapidly: data volumes and rates grow 
exponentially, with increasing complexity and information 
content, and there has been a transition from static data sets to 
data streams that must be analyzed in real time.  Interesting or 
anomalous phenomena must be quickly characterized and 
followed up with additional measurements via optimal 
deployment of limited assets.  Modern astronomy presents a 
variety of such phenomena in the form of transient events in 
digital synoptic sky surveys, including cosmic explosions 
(supernovae, gamma ray bursts), relativistic phenomena (black 
hole formation, jets), potentially hazardous asteroids, etc. We 
have been developing a set of machine learning tools to detect, 
classify and plan a response to transient events for astronomy 
applications, using the Catalina Real-time Transient Survey 
(CRTS) as a scientific and methodological testbed.  The ability to 
respond rapidly to the potentially most interesting events is a key 
bottleneck that limits the scientific returns from the current and 
anticipated synoptic sky surveys.  Similar challenge arise in other 
contexts, from environmental monitoring using sensor networks 
to autonomous spacecraft systems.  Given the exponential growth 
of data rates, and the time-critical response, we need a fully 
automated and robust approach.   We describe the results 
obtained to date, and the possible future developments. 

Keywords-classification; sky surveys; massive data streams; 
machine learning; Bayesian methods; automated decision making 

I.  INTRODUCTION 

The scientific measurement and discovery process 

traditionally follows the pattern of theory followed by 

experiment, analysis of results, and then follow-up 

experiments, often on time scales from days to decades after 

the original measurements, feeding back to a new theoretical 

understanding.  But that clearly would not work in the case of 

phenomena where a rapid change occurs on time scales shorter 

than what it takes to set up the new round of measurements.  

Thus there is a need for autonomous, real-time scientific 

measurement systems, consisting of discovery instruments or 

sensors, a real-time computational analysis and decision 

engine, and optimized follow-up instruments that can be 

deployed selectively in (or in near) real-time, where 

measurements feed back into the analysis immediately.  The 

need for a rapidly analysis, coupled with massive and 

persistent data streams, implies a need for an automated 
classification and decision making. 

This entails some special challenges beyond traditional 

automated classification approaches, which are usually done in 

some feature vector space, with an abundance of self-

contained data derived from homogeneous measurements.  

The input information here is generally sparse and 

heterogeneous: there are only a few initial measurements, their 

types differ from case to case, and the values have differing 

variances; the contextual information is often essential, and 

yet difficult to capture and incorporate; many sources of noise, 

instrumental glitches, etc., can masquerade as transient events; 

as new data arrive, the classification must be iterated 

dynamically.  There is also the requirement of a high 

completeness (don’t miss any interesting events) and low 

contamination (not too many false alarms), and the need to 

complete the classification process and make an optimal 

decision about expending valuable follow-up resources (e.g., 

obtain additional measurements using a more powerful 

instrument, diverting it from other tasks) in real time.  These 

challenges require novel approaches. 

Astronomy in particular is facing these challenges in the 

context of the rapidly growing field of time domain 

astronomy, based on the new generation of digital synoptic 

sky surveys that cover large areas of the sky repeatedly, 

looking for sources that change position (e.g., potentially 

hazardous asteroids) or change in brightness (a vast variety of 

variable stars, cosmic explosions, accreting black holes, etc.).  

Time domain touches upon all subfields of astronomy, from 

the Solar system to cosmology, and from stellar evolution to 

the measurements of dark energy and extreme relativistic 

phenomena.  Many important phenomena can be studied only 

in the time domain (e.g., Supernovae or other types of cosmic 

explosions), and there is a real possibility of discovering some 

new, previously unknown types of objects or phenomena. 

However, while the surveys discover transient or variable 

sources, the scientific returns are in their physical 

interpretation and follow-up observations.  This entails 

physical classification of objects on the basis of the available 

data, and an intelligent allocation of limited follow-up 

resources (e.g., time on other telescopes or space 

observatories), since generally only a small fraction of all 

detected events can be followed, and some of them are much 

more interesting than others.  Large data rates and the need for 
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a consistent response imply the need for the automation of 

these processes, and the problem is rapidly becoming much 

worse.  Today, we deal with data streams of the order of ~ 0.1 

TB/night and some tens of transients per night; the upcoming 

Large Synoptic Survey Telescope (LSST) [1] is expected to 

generate ~ 20 TB/night, and millions of transient event alerts.  

The planned Square Kilometer Array (SKA) [2] radio 

telescope will move us into the Exascale regime.  Thus, a 

methodology for an automated classification and follow-up 

prioritization of transient events and variable sources is 

critical for the maximum scientific returns from these planned 

facilities, in addition to enabling the time domain science now. 

To respond to these challenges, we have been developing 

and testing a variety of automated classification approaches 

for time domain astronomy.   Our preliminary results have 

been described, e.g., in [3,4,5,6,7,8,9,10,11,12].  Here we give 

some updates to these papers and some of our current work.  

For additional reviews and references, see, e.g., [13,14,15, 

16,17,18,19]. 

As a testbed development data stream, we use transient 

events and variable sources discovered by the Catalina Real-

Time Transient Survey (CRTS) [20,21,22,23,24].  CRTS 

provides a great variety of physical object types, and a realistic 

heterogeneity and sparsity of data. We found that a number of 

published methods, developed on “de luxe” data sets, to say 

nothing about the simulated data, simply fail or significantly 

underperform when applied to the more realistic data (in terms 

of the cadences, S/N, seasonal modulation, etc.), typified by 

the CRTS data stream.  In general, we find that every method 

has some dependence on the quantity and quality of the input 

data (e.g., the number of measurements in a light curve, the 

sampling strategy, etc.), and all of our tests incorporate 

assessment of the robustness and applicability of a given 

method in different data regimes. 

Whereas our focus is on an astronomical context, similar 

situations arise in may other fields, where anomalies or events 

of interest must be identified in some massive data stream, 

characterized, and responded to in as close to the real time as 

possible (e.g., environmental monitoring, security, etc.). 

II. BAYESIAN NETWORKS 

Bayesian techniques may be the most promising approach 

for the classification with sparse, incomplete, or missing data, 

since, generally speaking, one can use the information from 

the available priors, regardless of what data are not available.  

In particular, we experimented with a Bayesian Network (BN) 

[25] based classifier, as it offers a natural way of incorporating 

a variety of the measurements of different types, and more can 

be added as they become available.   However, the network 

complexity increases super-exponentially as more variables 

are included, and there is a premium of selecting a small 

number of the most powerful classification discriminating 

features. 

Our initial implementation used measurements of 

photometric colors obtained at the Palomar 60-inch telescope.  

For example, in the relative classification of Cataclysmic 

Variables (CVs) vs. Supernovae, we obtain a completeness of 

~ 80% and a contamination of ~ 19%. 

We found BN to be an excellent way of incorporating 

quantitative spatial contextual information, e.g., the proximity 

of a given transient event to the nearest star or the nearest 

galaxy detected in the Sloan Digital Sky Survey (SDSS) [26].  

For example, a transient (nearly) coincident with a galaxy will 

most likely be a Supernova (SN), whereas a transient 

coincident to with a star-like object in an archival survey such 

as the SDSS would more likely be some type of a variable star 

or an Active Galactic Nucleus (AGN).  Both of these are 

limited by the depth and the angular resolution of the 

comparison archival survey, but for our tests, transients from 

CRTS and comparisons with SDSS are well matched for this 

purpose. 

 

Figure 1.  Top:  The distribution of normalized distances to the nearest galaxy 

(using the Petrosian radius metric, see the text) for the transients classified as 

having a probability of  > 90% of being SNe (blue), and having a probability 

of  > 90% of not being SNe (red).  The inset shows a distribution of objects in 

the field of a particular transient, with galaxies represented as ellipses, scaled 

by their magnitude.  Bottom:  The distribution of these kinds of objects, plus 

those classified as possible SNe, but with a probability < 90%, in the 

parameter space defined by the two distances. 
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In the case of proximity to the nearest star, a simple 

angular distance is sufficient.  In the case of galaxies, an 

ambiguity arises: is a closer, but very faint galaxy more likely 

to be the possible SN host, or a considerably brighter galaxy 

that is a little further away?  Thus, a different metric is needed, 

and we use angular separation in the units of characteristic 

radii for the light distribution in galaxies.  After some 

experimentation, we decide on the so-called Petrosian radius, 

which is one of the parameters provided by the SDSS archive. 

Temporal contextual information is also important.  

Another distinguishing characteristic of SNe is that they can 

explode only once, so a presence of previously detected spikes 

in the light curve of a given transient diminishes the likelihood 

of it being a SN. 

Thus, we construct a BN with 3 input variables, the 

proximity to the nearest star, to the nearest galaxy (suitably 

normalized), and a light curve peak statistic developed by us.  

The results are illustrated in Fig. 1. The results using just these 

3 contextual variables (the nearest star distance, the nearest 

galaxy distance, and the peak statistics) are very encouraging. 

For the transients correctly classified as SNe, the completeness 

is in the range ~ 80% – 92% with contamination in the range ~ 

18% – 29%.  For the transients correctly classified as not 
being SNe, the completeness is in the range ~ 79% – 83% with 

contamination in the range ~ 8% – 14%.  These results can be 

improved substantially by introducing other priors, e.g., 

colors, or light curve based parameters, at the expense of an 

increased computational complexity. 

III. STATISTICAL DESCRIPTORS OF VARIABILITY AND THE 

OPTIMAL FEATURE SELECTION 

Data heterogeneity is perhaps the key problem for the 

automated classification of astronomical light curves, or, for 

that matter, any other irregularly sampled time series.  Since 

the numbers of the data points and their temporal separations 

vary, the light curves themselves cannot be used directly in 

any method that assumes data in the form of uniform feature 

vectors.  In order to circumvent this problem, we evaluate a 

number of statistical descriptors of light curves that can be 

evaluated regardless of the number of data points or the 

cadence,  e.g., the variance of the observed magnitudes, the 

skew, kurtosis, etc.  About 60 such parameters have been 

defined in the literature, to which we added a dozen of our 

own devising.  Their definitions can be found at the Caltech 
Time Series Characterization Service [27].  These statistical 

descriptors can then be used to form feature vectors that can 

be fed into automated classifiers. 

Obviously, not all would be equally useful, and different 

ones may be more useful in different circumstances. We are 

conducting a detailed study of their utility for different aspects 

of the classification problem, for different classifiers, and in 

different data regimes (e.g., S/N, number of data points, etc.).  

Ideally, one seeks combinations of features that optimally 

separate different classes of transients or variables.  Here we 

summarize some of the key results; more details are given in 

[28]. 

 

Figure 2.  Top:  A relative ranking of light curve features in terms of the 

classification discriminating power.  Bottom:  Standard box plot 

representation of the distributions of the top ranked parameter (nsigma) for 

different physical types of transients and variables. 

Given a set of feature vectors, a broad variety of automated 
classification tools can be applied, both supervised and 
unsupervised.  Supervised methods include artificial neural 
networks (ANN), and in particular the multi-layer perceptron 
(MLP), support vector machines (SVM), decision trees (DT) 
and their generalization random forests (RF), etc.  
Unsupervised methods include Kohonen self-organizing maps 
(SOM), k Means (KM), k  nearest neighbors (kNN), etc.  Given 
a particular classifier, and a particular classification problem, 
e.g., separating two different types of periodic variables, or 
supernovae vs. non-explosive transients, we can evaluate the 

relative importance of different features using several methods. 

One way to reduce the dimensionality of the input space is 

applying a forward feature selection strategy that consists in 

selecting a subset of features from the training set that best 

predict the test data by sequentially selecting features until 

there is no improvement in prediction [35,36]. The optimal 

feature selection varies both with the particular classification 
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problem (e.g., separating two different types of variable stars) 

and the algorithm used.  We have performed an extensive set 

of experiments for this optimization. 

 

Figure 3.  Top:  A relative ranking of light curve features for a particular 

classification problem in separating two types of variable stars, RR Lyrae (red 

crosses) and W UMa (green circles).  Bottom:  The two classes are separated 

very effectively in the 3-dimensional space of the 3 top ranked features. 

We have employed different classifiers in the selected 
feature space to assess the performance of different feature 
selection algorithms, to prove that feature selection strategies 
actually help in reduce the dimensionality of the problem 
without loss in accuracy. The performance of the classifiers is 
rated based on the following three criteria.  Completeness is the 
percentage of objects of a given class correctly classified as 
such.  Contamination is the percentage of objects of a given 
class, incorrectly classified as belonging to another class.  Loss 

is the fraction of misclassified data.  

To avoid overfitting, a cross-validation approach is 

recommended, e.g., with 10-fold cross-validation the original 

sample is randomly partitioned into 10 subsamples.  Each time 

a single subsample is retained as test data, and the remaining 

are used as training data. This process is then repeated 10 

times with each of the subsamples used exactly once as the 

test. In presence of few training data, Leave-One-Out Cross-

Validation (LOOCV) may be used: a single observation from 

the original sample is used as the validation data, and the 

remaining observations as the training data. This is repeated 

such that each observation in the sample is used once as the 

validation data. Leave-one-out cross-validation is usually very 

computationally expensive because of the large number of 

times the training process is repeated. 

For example in an experiment where we classify two types 

of variable stars, RR Lyrae and W UMa, using a Relief 

method, only four parameters out of the 60 available were 

selected (Fig. 3). For this particular problem, we obtain 

completeness rates of ~ 96-97%, and contamination rates of ~ 

3-4%.  It is interesting to note that the parameters 

automatically selected by this procedure essentially represent 

the period-amplitude relationship which is used to differentiate 

between subclasses of RR Lyrae, i.e., the algorithm uncovers a 

physically meaningful relation. 

A more challenging, but more realistic and relevant 
problem is multi-class classification.  To find the parameters 
that give the most of the classification discriminating 
information, we have used a subset from CRTS containing six 
classes (Supernovae, Cataclysmic Variables, Blazars, other 
AGNs, RR Lyrae and Flare Stars) and 20 parameters.  Table 1 
shows some of these results for two different multi-class 
experiments.  It is interesting to note that different features 
appear among the most significant subsets, depending on the 

physical nature of the classes considered. 

 

Table 1. Optimal feature selection in two different multi-class experiments. 

Thus, we see that feature selection strategies can lead to a 

substantial dimensionality reduction and improved classifier 

performance in a broad range of astrophysical situations. 

Since many types of variable stars show a periodic 

behavior, and periods and their significance play an important 

role in their physical classification, we conducted a detailed 

study of different algorithms for period determination [29].  

We find that superior results are obtained using the 

Conditional Entropy algorithm [30].  More details are given in 

these references. 
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IV. MACHINE-ASSISTED DISCOVERY 

As the exponential growth of data volumes, rates, and 

complexity continues, we may see an increased use of 

methods for a collaborative human-computer discovery.  

Recognizing meaningful patterns and correlations in high 

dimensionality data parameter spaces is a very non-trivial task. 

 Another novel approach that we explored in the course of 

this study is the use of Machine Discovery, i.e., software that 

can formulate and test data models.  The particular package 

that we used, with M. Graham as the lead, is Eureqa [31].  

Here we outline some of the key results; more details are 

given in [32]. 

Eureqa is a software tool which aims to describe a data set 

by identifying the simplest mathematical formulae which 

could describe the underlying mechanism that produced the 

data. It employs symbolic regression to search the space of 

mathematical expressions to determine the best-fitting 

functional form – this involves fitting both the form of the 

equation and its parameters simultaneously.  Binary 

classification can be cast as a problem amenable to this tool – 

the “trick” is to formulate the search relationship as: class = 
g(f(x1, x2, x3, …, xn)) where g is either the Heaviside step 

function or the logistic function, which gives a better search 

gradient. Eureqa finds a best-fit function, f, to the data that will 

get mapped to a 0 or a 1, depending on whether it is positively 

or negatively valued (or lies on either side of a specified 

threshold, say 0.5, in the case of the logistic function.) 

We considered three specific binary light curve 

classification problems using Eureqa: RR Lyrae vs. W UMa 

(Fig. 4), CV vs. blazar, and Type Ia vs. core-collapse 

Supernovae.  For each case, we compiled data sets of light 

curves from the CRTS survey for the appropriate classes of 

objects, and derived ~30 – 60 dimensional feature vectors for 

each object. A set of 10 Eureqa runs was performed for each 

case with each run omitting 10% of the data and the best-fit 

solution for that run then applied with the omitted data as the 

validation set so giving us 10x-cross-validation on the 

resulting solutions. 

For example, in the binary classification of these periodic 

variables, Eureqa correctly identifies the optimal feature 

parameter plane that separates them as physically distinct 

classes (Figs. 5, 6).  This is very impressive, since the program 

does not “know” anything about these objects, and simply 

discovers the relationship contained in the data. 

Some of the preliminary results for multiple classes, 

comparing Eureqa with one of the best “traditional” machine 

learning methods, Decision Trees (DT), are given in Table 2.  

We note that DT is a supervised classification method, and 

thus it incorporates the domain knowledge from the training 

data set; Eureqa has no such expert-provided input.  Even so, 

the results are broadly comparable for most classes.  Eureqa 
does not do as well in the situation where the light curves are 

qualitatively similar, e.g., blazars vs. CVs, or different 

subtypes of Supernovae.  However, a random person with no 

expert knowledge in this field (just as Eureqa doesn’t have it) 

would probably also fail completely in separating those 

classes. 

 

Figure 4.  Light curves of two types of periodic variables (not folded 

by the period) from the CRTS survey, used in this experiment. 

 

Figure 5.  Separation of two types of periodic variables, RR Lyrae 

(blue) and W UMa (red) in the optimal feature plane discovered by 

Eureqa. 
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Table 2. Performance of Eureqa compared with that of a traditional DT 

classifier for several classes of variable objects.  From [REF]. 

As these preliminary results show, at least in some cases 

Eureqa can identify and characterize physically meaningful 

structures in feature vector data to a sufficient degree that it 

can be employed for binary classification.  An advantage of 

this is that Eureqa provides an analytical expression to 

separate the classes rather than relying on application of a 

trained black box algorithm.   We see this as one of the first 

steps in a practical human-computer collaborative discovery in 

the era of big data.  We think that such novel methods will 

become increasingly important for the data-intensive science 

in the 21st century.  

V. METACLASSIFICATION:  OPTIMAL COMBINING OF 

CLASSIFIERS AND CONTEXTUAL KNOWLEDGE 

Contextual information can be highly relevant to resolving 

competing interpretations: for example, the light curve and 

observed properties of a transient might be consistent with 

both it being a cataclysmic variable star, an active galactic 

nucleus, or a supernova.  If it is subsequently known that there 

is a galaxy in close proximity, the supernova interpretation 

becomes much more plausible.  Such information, however, 

can be characterized by high uncertainty and absence, and by a 

rich structure – if there were two candidate host galaxies, their 

morphologies, distance, etc., become important, e.g., is this 

type of supernova more consistent with being in the extended 

halo of a large spiral galaxy or in close proximity to a faint 

dwarf galaxy?  The ability to incorporate such contextual 

information in a quantifiable fashion is highly desirable. 

We are investigating the use of crowdsourcing as a means 

of harvesting human pattern recognition skills, especially in 

the context of capturing the relevant contextual information, 

and turning it into machine-processible algorithms. 

We can identify three possible sources of information that 

can be used to find the unknown parameters.  They can be 

from a priori knowledge, e.g. from physics or monotonicity 

considerations, or from examples that are labeled by experts, 

or from the feedback from downstream observatories once 

labels are determined.  The first case would serve to give an 

analytical form for the distribution, but the second two amount 

to the provision of labeled examples, (x, y), which can be used 

to select a set of k probability distributions. 

A methodology employing contextual knowledge forms a 

natural extension to the logistic regression and classification 

methods mentioned above. Ideally such knowledge can be 

expressed in a manipulable fashion within a sound logical 

model, for example, it should be possible to state the rule that 

"a supernova has a stellar progenitor and will be substantially 

brighter than it by several order of magnitude" with some 

metric of certainty and infer the probabilities of observed data 

matching it.  

Markov Logic Networks (MLN) [33] are such a 

probabilistic framework using declarative statements (in the 

form of logical formulae) as atoms associated with real-valued 

weights expressing their strength. The higher the weight, the 

greater the difference in log probability between a world that 

satisfies the formula and one that does not, all other things 

being equal. In this way, it becomes possible to specify 'soft' 

rules that are likely to hold in the domain, but subject to 

exceptions - contextual relationships that are likely to hold 

such as supernovae may be associated with a nearby galaxy or 

objects closer to the Galactic plane may be stars. 

The structure of a MLN – the set of formulae with their 

respective weights –  is also not static but can be revised or 

extended with new formulae either learned from data or 

provided by third parties. In this way, new information can 

easily be incorporated. Continuous quantities, which form 

much of astronomical measurements, can also be easily 

handled with a hybrid MLN.  This approach could be used to 

represent a set of different classifiers and the inferred most 

probable state of the world from the MLN would then give the 

optimal classification. 

 

Figure 12.  A schematic illustration of the metaclassifier for an optimal 

combination of the output of different classifiers. 

We are also experimenting with the “sleeping expert” 

method [34].  A set of different classifiers each generally 

works best with certain kinds of inputs.  Activating these 

optionally only when those inputs are present provides an 

optimal solution to the fusion of these classifiers. Sleeping 

expert can be seen as a generalization of the if-then rule:  if 
this condition is satisfied then activate this expert, e.g., a 
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specialist that makes a prediction only when the instance to be 

predicted falls within their area of expertise.  For example, 

some classifiers work better when certain inputs are present, 

and some work only when certain inputs are present.  It has 

been shown that this is a powerful way to decompose a 

complex classification problem.   External or a priori 
knowledge can be used to awake or put experts to sleep and to 

modify online the weights associated to a given classifier; this 

contextual information may be also expressed in text. 

VI. CLASSIFICATION-INFORMED AUTOMATED DECISION 

MAKING 

While at least preliminary astrophysical classifications of 

variable sources and transient events may be obtained using 

survey and archival data and the methods described above, in 

many cases the classifications will be ambiguous, or, in the 

case of particularly interesting events, additional data from 

other instruments would be needed to fully exploit them 

scientifically.  This poses the challenge of automated decision 

making as to the optimal use of the available, finite follow-up 

resources, e.g., other telescopes or instruments.  This work is 

still in progress, but we outline here some of the key ideas. 

We typically have sparse observations of a given object of 

interest, leading to classification ambiguities among several 

possible object types (e.g., when an event is roughly equally 

likely to belong to two or more possible object classes, or 

when the initial data are simply inadequate to generate a 

meaningful classification at all).  Generally speaking, some of 

them would be of a greater scientific interest than others, and 

thus their follow-up observations would have a higher 

scientific return.  Observational resources are scarce, and 

always have some cost function associated with them, so a key 

challenge is to determine the follow-up observations that are 

most useful for improving classification accuracy, and detect 

objects of scientific interest.  

There are two parts to this challenge.  First, what type of a 

follow-up measurement – given the available set of resources 

(e.g., only some telescopes/instruments may be available) – 

would yield the maximum information gain in a particular 

situation?  And second, if the resources are finite and have a 

cost function associated with them (e.g., you can use only so 

many hours of the telescope time), when is the potential for an 

interesting discovery worth spending the resources? 

We take an information-theoretic approach to this problem 

that uses Shannon entropy to measure ambiguity in the current 

classification.  We can compute the entropy drop offered by 

the available follow-up measurements – for example, the 

system may decide that obtaining an optical light curve with a 

particular temporal cadence would discriminate between a 

supernova and a flaring blazar, or that a particular color 

measurement would discriminate between, say, a cataclysmic 

variable eruption and a gravitational microlensing event.  A 

suitable prioritized request for the best follow-up observations 

would be sent to the appropriate robotic (or even human-

operated) telescopes. 

Alternatively, instead of maximizing the classification 

accuracy, we consider a scenario where the algorithm chooses 

a set of events for follow-up and subsequent display to an 

astronomer. The astronomer then provides information on how 

interesting the observation is. The goal of the algorithm is to 

learn to choose follow-up observations which are considered 

most interesting.  This problem can be naturally modeled 

using Multi-Armed Bandit algorithms (MAB).  The MAB 

problem can abstractly be described as a slot machine with k 

levers, each of which has different expected returns (unknown 

to the decision maker).  The aim is to determine the best 

strategy to maximize returns.  There are two extreme 

approaches: (1) exploitation – keep pulling the lever which, as 

per your current knowledge, returns most, and (2) exploration 

– experiment with different levers in order to gather 

information about the expected returns associated with each 

lever.  They key challenge is to trade off exploration and 

exploitation. There are algorithms guaranteed to determine the 

best choice as the number of available tries goes to infinity. 

In this analogy different telescopes and instruments are the 

levers that can be pulled. Their ability to discriminate between 

object classes forms the returns. This works best when the 

priors are well assembled and a lot is already known about the 

type of object one is dealing with.  But due to the 

heterogeneity of objects, and increasing depth leading to 

transients being detected at fainter levels, and more examples 

of relatively rarer subclasses coming to light, treating the 

follow-up telescopes as a MAB will provide a useful way to 

rapidly improve the classification and gather more diverse 

priors.  An analogy could be that of a genetic algorithm which 

does not get stuck in a local maxima because of its ability to 

sample a larger part of the parameter space. 

VII. CONCLUDING COMMENTS 

Our goal in this paper was to illustrate the richness and the 
challenges associated with the problem of an automated 
classification of transient events and variable sources (or, more 
generally, heterogeneous time series of measurements of a 
population of objects containing a number of different classes).  
Whereas this is one of the core challenges of the vibrant and 
emerging field of time-domain astronomy, similar problems 

can be easily identified in other domains. 

Several aspects of this problem make it particularly 
interesting:  dealing with the data heterogeneity and sparsity; 
use of statistical descriptors to form feature vectors, instead of 
using the data directly; dimensionality reduction of feature 
spaces that is context-dependent; forays into the collaborative 
human-computer discovery; optimal combining of different 
classifiers that is also context dependent; and finally, optimal 
allocation of limited follow-up resources when there are 

multiple cost functions involved. 
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