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ABSTRACT
This paper presents a comparison of popular period finding algorithms applied to the light
curves of variable stars from the Catalina Real-Time Transient Survey, MACHO and ASAS
data sets. We analyse the accuracy of the methods against magnitude, sampling rates, quoted
period, quality measures (signal-to-noise and number of observations), variability and object
classes. We find that measure of dispersion-based techniques – analysis of variance with
harmonics and conditional entropy – consistently give the best results but there are clear
dependences on object class and light-curve quality. Period aliasing and identifying a period
harmonic also remain significant issues. We consider the performance of the algorithms
and show that a new conditional entropy-based algorithm is the most optimal in terms of
completeness and speed. We also consider a simple ensemble approach and find that it performs
no better than individual algorithms.

Key words: methods: data analysis – techniques: photometric – astronomical data bases: mis-
cellaneous – virtual observatory tools.

1 INTRODUCTION

The last decade has seen the emergence of large collections of time
series data from searches for microlensing, e.g. MACHO (Alcock
et al. 2003), OGLE (Udalski et al. 1993) and exoplanets, e.g. CoRoT
(Auvergne et al. 2009), Kepler (Koch et al. 2010), as well as legacy
variability collections, e.g. ASAS (Pojmanski 2002). For the first
time, these are amenable to statistical and machine learning-based
analyses, particularly for classification and outlier detection, e.g.
Debosscher et al. (2007), Shin, Sekora & Byun (2009), Dubath
et al. (2011), Richards et al. (2011), with an eye to the new gen-
eration of synoptic sky surveys, e.g. Catalina Real-time Transient
Survey (CRTS; Drake et al. 2009), PTF (Rau et al. 2009), Pan-
STaRRs (Kaiser et al. 2002) and LSST (Ivezić et al. 2011), which
will increase the amount of available data by several orders of mag-
nitude. These surveys are also not unique to optical wavelengths
with efforts underway across the electromagnetic spectrum – LO-
FAR and SKA and its pathfinder precursor projects in the radio,
IR, X-ray – as well as in the more exotic regimes of particle astro-
physics (neutrino) and gravitational waves (LIGO). Although many
different approaches have been attempted, they all follow the same
basic pattern: characterization, categorization and classification.

Time series vary widely in their temporal coverage, sampling
rates and regularity, number of points and error bars, making a very
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disparate data set. Comparing raw light curves1 is therefore difficult;
rather a representation of each light curve in a given data collection
in terms of a feature set is required for any analysis. There is no stan-
dardized set – somewhere around 100 different features2 have been
used or suggested in the literature for characterizing time series, e.g.
moments, flux and shape ratios, variability indices, etc. – but many
of them rely on a derived period for an object, even when it does
not necessarily display any periodic behaviour. Dubath et al. (2011)
show a ∼11 per cent misclassification error rate for non-eclipsing
variable stars with an incorrect period. Richards et al. (2011) also
estimate that periodic feature routines account for 75 per cent of the
computing time used in their time series characterization.

This irregularity means that astronomical time series data does
not lend itself to the standard Fourier-based analysis techniques
that are found in general statistics literature. Consequently, there is
a long history in period finding algorithms with common ones based
upon discrete Fourier transform (Deeming 1975), or a least-squares
approximation to it (LS; Lomb 1976; Scargle 1982), string length
(STR) (Dworetsky 1983), phase dispersion minimization (PDM;
Jurkevic 1975; Stellingwerf 1978) and analysis of variance (AOV)

1 Note that we use the terms ‘time series’ and ‘light curve’ interchangeably
in this paper.
2 A feature is defined as an individual measurable heuristic property of an
object that can be used to characterize it.
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methods (Schwarzenberg-Czerny 1989, 1996), as well as a host of
others (e.g. Huijse et al. 2011; Kato & Uemura 2012).

Obviously with so many different methods, the question arises as
to which one is the best, if any. Heck, Manfroid & Mersch (1985)
used numerical simulations to compare discrete Fourier transforms,
STR and PDMs and found that none of them was superior to the oth-
ers. Schwarzenberg-Czerny (1999) compared model function and
phase binning methods using hypothesis-testing theory to evaluate
their relative sensitivity to different kinds of signals. He found that
the methods using smooth model functions, such as Lomb–Scargle
(LS), are more sensitive than those using the step function, i.e. phase
binning, and that sensitivity increases for models that more closely
fit features in the signal with the orthogonal multiharmonic AOV
method (AOVMHW; Schwarzenberg-Czerny 1996) being optimal.

He also found that a number of methods relying on phase binning
are equivalent for the same number of bins. Similarly, Swingler
(1989) argues that PDM methods should be regarded simply as
approximations to the Fourier method (LS) and that the latter should
be viewed as the periodogram technique of choice. Distefano et al.
(2012) have compared discrete Fourier, LS and PDM techniques
for recovering the rotation periods of solar-like stars from irregular
time sampling of Gaia using synthetic time series. They find that
LS is the most efficient method with at best a recovery rate of
∼60 per cent.

Dubath et al. (2011) report that a single method can lead to a
recovery fraction of around 80 per cent but do not specify to what
degree of accuracy. They also suggest that an ideal combination of
all methods could potentially raise that value to close to 100 per cent
but cannot identify the automated strategy for predicting which
method leads to the correct period for a specific light curve. How-
ever, they propose, as a first step, a combination of unweighted and
weighted LS, depending on the skewness of a source’s magnitude
distribution.

In this work, we present a detailed comparison of the most com-
monly used period finding algorithms and their efficiencies against
observable parameters. This is the first survey using real rather than
simulated data (so with noise, gaps, etc.) to consider both a wide
range of variable stellar classes and light curves generated by dif-
ferent sampling strategies. It is hoped that we can identify the most
effective algorithm with a particular view to the next generation of
survey projects which require automated and efficient period finding
methods.

The paper is structured as follows: in Section 2, we describe the
data sets that form the basis of our analysis whilst in Section 3, we
present the algorithms that we are considering here. We analyse and
discuss our results in Sections 4 and 5 and present our conclusions
in Section 6. We also have provided implementation details about
Open Computing Language (OpenCL)-based versions of the LS
and generalized Lomb–Scargle (GLS) algorithms in an Appendix.

2 DATA SETS

In this analysis, we consider three sets of light curves, drawn from
different surveys – CRTS, ASAS, MACHO, which we take to be
representative of the bulk of ground-based light-curve data sets
currently available and characteristic of future large samples such
as LSST. Together these span a magnitude range of ∼4 ≤ V ≤ 21
(see Fig. 1) and a sampling of up to ∼1800 observations (see Fig. 2)
over a baseline of up to ∼8 yr. Details of the three are summarized in
Table 1. All observation times are converted to Heliocentric Julian
Date from MJD.

Figure 1. This shows the V-band magnitude distribution of the three
data sets considered in this paper: ASAS (red), MACHO (black) and
CRTS (blue).

Figure 2. This shows the distribution of observations per light curve for
the three data sets considered in this paper: ASAS (red), MACHO (black)
and CRTS (blue).

Table 1. This summarizes the three data sets used in this analysis.

Data set No. of sources Median values
Magnitude Observations Baseline (d) Period (d)

ASAS 50 124 11.59 456 2645 44.51
CRTS 15 522 14.35 105 2182 0.59
MACHO 1500 17.82 966 2721 1.74

2.1 Catalina real-time transient survey

The CRTS (Drake et al. 2009) is the largest open time do-
main survey currently operating, covering ∼33 000 deg2 between
−75◦ < Dec. < 75◦ (except for within ∼10–15◦ of the Galactic
plane). It leverages the data streams from three telescopes used in a
search for near-Earth objects, operated by the Lunar and Planetary
Laboratory at University of Arizona, with four exposures per visit,
separated by 10 min, reaching to V ∼ 19 to 21.5 mag (depending
on telescope), over 21 nights per lunation. All data are automati-
cally processed in real time, and optical transients are immediately
distributed using a variety of electronic mechanisms.3 Light curves
of several hundred million objects are available4 with an average of
∼250 observations over an 8 yr baseline.

3 http://www.skyalert.org
4 http://crts.caltech.edu
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Figure 3. This shows the sky distribution in galactic coordinates of ASAS (left) and CRTS (right) sources. MACHO sources are localized to the LMC and
not shown. The sources are colour coded according to their broad variable class: eruptive (black), pulsating (red), rotation (maroon), cataclysmic (yellow),
eclipsing (cyan), X-ray (blue) and other (green). Larger symbols are employed for the less populous classes.

To get a sample of as wide a range of variable sources as possible,
all objects in SIMBAD and the AAVSO Variable Star Index (VSX;
Watson 2006) with a recorded period were selected, giving 146 655
sources (71 per cent of the total combined number). Light curves
were then extracted for those which had been observed by CRTS.
Since very many of the initial data set lie in the galactic plane and
CRTS explicitly avoids the galactic plane, this brought the number
of sources covered to a manageable 15 522 (see Fig. 3 for the
distribution of the sources on the sky). The poorer sampling near
the plane also explains why the median number of observations for
this data set is 105.

All the light curves were inspected by three of us to verify (via
phased light curves) the quoted period against fit periods from two
other methods: AOV and conditional entropy (CE, Graham et al.
2013). When there was no consensus opinion, the quoted period
was used.

2.2 ASAS

The ASAS Catalog of Variable Stars (ACVS; Pojmanski, Pilecki
& Szczygiel 2005) represents one of the largest collections of light
curves of variable stars available, covering a range of 11 science
classes (albeit predominantly MISC) and with good consistent data.
The sky distribution with the limit δ < +28 is shown in Fig. 3.
Richards et al. (2012) (MACC) have applied probabilistic classi-
fiers to ACVS light curves to create a 28-class machine-learned
catalogue of 50 124 sources. We have followed a similar prescrip-
tion to MACC to construct our data set of ACVS light curves: the
data for individual objects are retrieved from the ACVS website
(ACVS 1.15) and those epochs with a quality GRADE=D or quality
GRADE=C when MAG=29.999 excluded, corresponding to a non-
detection. This gives a median of 456 usable epochs of V-band
observations covering 2644.92 d.

ASAS provides five aperture measurements using diameters
ranging from 2 pixels (30 arcsec) to 6 pixels (90 arcsec) and de-
scribes a basic algorithm for choosing which aperture to use for an
object given its average magnitude (Pojmanski et al. 2005). MACC
constructed a simple classifier to determine the optimal aperture
to use for each object which we have followed: using 2 pixels
for V > 12.25, 3 pixels for 11.675 < V < 12.25, 4 pixels for
10.675 < V < 11.675 and 6 pixels for V < 10.675.

ACVS periods were determined using an AOV algorithm and
confirmed visually. MACC has also determined a period for each
object using a GLS-based algorithm (Zechmeister & Kürster 2009)
with corrections for eclipsing and aliased periods (see Section 3.2).

5 http://www.astrouw.edu.pl/asas/

The quoted agreement between the two is 77.2 per cent (exactly
matching) for the 12 008 objects which ACVS confidently classified
into a single periodic class (see Section 4.1 for a discussion of this).
We have inspected a representative sample of the light curves and
consider the ACVS period to be the true value.

2.3 MACHO

The MACHO survey (Alcock et al. 2003) was designed to search
for gravitational microlensing events in the Magellanic Clouds
and the Galactic Bulge and more than 20 million stars were ob-
served, making it an important resource for variable star studies.
A ‘gold standard’ data set of light curves has been produced from
the MACHO survey by the Harvard Time Series Center,6 consist-
ing of approximately 500 each of RR Lyrae, eclipsing binaries and
Cepheids, respectively covering the Large Magellanic Cloud (LMC)
(75◦ < RA < 85◦, −71◦ < Dec. < −67◦). Although MACHO data
normally consists of blue and red channel data for each stellar ob-
ject, only the blue channel (V-band equivalent) have been used here.
The median time span of the data is 2720.88 d. This data set has
also been used in two correntropy-based (generalized correlation)
approaches for estimating periods in non-uniformly sampled time
series: Mishra et al. (2011) employs slots (intervals) (Mishra et al.
2011) to determine the statistic of interest whilst Huijse et al. (2012)
uses a kernel.

2.4 Variable classes

Objects in the CRTS data set have been labelled with classes drawn
from VSX7 which is itself based on the General Catalogue of Vari-
able Stars (GCVS; Samus et al. 2009) classification scheme (a
maximum cross-match distance of 3 arcsec was used). This is a
relatively detailed system that covers most types of variable stellar
phenomena. Objects fall into one of seven broad classes reflecting
both extrinsic and intrinsic phenomena: eruptive, pulsating, rotat-
ing, cataclysmic, eclipsing, X-ray and other. For convenience, we
have converted the VSX codes into a hierarchical coding scheme:
for example, the eclipsing class is P.5, an eclipsing binary is P.5.1
and a β Lyrae-type eclipsing binary is P.5.1.2.

For ASAS data, we use the MACC classifications from
ASAS_CATALOG_CLASS_V3.0.8 MACC employs a 28-term
scheme taken from Debosscher et al. (2007) with the addition of SX
Phe and splitting T Tauri into two subclasses: classic T Tauri and

6 http://timemachine.iic.harvard.edu
7 http://www.aavso.org/vsx/help/VariableStarTypeDesignationsInVSX.pdf
8 http://www.bigmacc.info/

http://www.astrouw.edu.pl/asas/
http://timemachine.iic.harvard.edu
http://www.aavso.org/vsx/help/VariableStarTypeDesignationsInVSX.pdf
http://www.bigmacc.info/
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Figure 4. This shows the distribution of MACHO light curves in the MAD
(from the median) – period plane. The different colours denote different
MACHO classes of object: blue (EB), red (RRAB), cyan (Cepheid funda-
mental), green (RRC), purple (RRE), black (Cepheid first overtone). The
crosses indicate objects for which there is no MACHO classification in the
literature and one must be imputed by a nearest neighbour classifier.

weak-line T Tauri. Six of these classes do not have an equivalent
in the VSX/GCVS scheme and so we add them to ours – they are:
long secondary period red giants, small amplitude red giants split
according to Wood et al. (1999) (SARG_A, SARG_B), red super-
giants (RSG), chemically peculiar (ChemPec), and Herbig AE/BE
(HAEBE). Note that only 8572 out of the 50 124 ASAS sources
have a MACC classification with a probability of 90 per cent or
higher.

The MACHO data initially consisted of just three classes: RR
Lyrae, eclipsing binaries and Cepheids. However, additional data
for these objects (Alcock et al. 2003) gave finer-grained classifica-
tions for 1139 stars based on an automated statistical analysis of
its photometry over time. A plot of the median absolute deviation
(MAD) from the median of the light curves of these objects ver-
sus their quoted period can be useful for discriminating between
different classes (see Fig. 4). A nearest-neighbour classifier in the
MAD-period plane was then used to impute classes to the remain-
ing 361 objects without finer-grained classifications. These were
checked with SIMBAD: of the 305 objects with a SIMBAD classi-
fication but not a fine-grained one, ∼91 per cent agreed with their
imputed class. This is the same level of accuracy as the MACC
classifications.

Table 2 gives the relative numbers of objects per class in the three
data sets considered in this paper. The distribution of periods over
the three data sets is shown in Fig. 5. As mentioned above, these
have all been visually confirmed (either by us or other authors) and
so this is the true distribution with no contamination from aliased
periods. The peaks at log(period) ∼−0.4 in the three distributions
are from RR Lyrae and eclipsing binary objects. Similarly, the peak
at log(period) ∼1.5 in the ASAS data is from small amplitude red
giants, the peak at log(period) ∼0.5 in the MACHO data from
Cepheids, and the peak at log(period) ∼2.5 in the CRTS data from
Mira variables, respectively.

3 ALGORITHMS

Period finding algorithms can be divided into a number of types.
The most popular seek to model a light curve via a least-squares
fit to some set of (orthogonal) basis functions, most commonly
trigonometric, such as LS (Lomb 1976; Scargle 1982) and its deriva-
tives/extensions (e.g. Zechmeister & Kürster 2009), though more
complicated function sets, such as wavelets (Foster 1996), have also

been tried. Another approach is to minimize some measure of the
dispersion of time series data in phase space, such as binned means
(Stellingwerf 1978), variance (Schwarzenberg-Czerny 1989), total
distance between points (Dworetsky 1983) or entropy (Cincotta,
Mendez & Nunez 1995), which can often be regarded as an ex-
pansion in terms of periodic orthogonal step functions. Bayesian
methods (Gregory & Loredo 1992, Wang, Khardon & Protopapas
2012) are also becoming common and there have even been attempts
to search for periodicity using neural networks (Baluev 2012).

The basis of an algorithm also often determines how well it copes
with the real world aspects of time series data, such as irregular sam-
pling, gaps and errors, e.g. standard Fourier analysis is impossible
for any data diverging from regular sampling. de Jager, Rauben-
heimer & Swanepoel (1989) argue that in the case of weak signals,
most period finding methods only work well with certain kinds of
periodic shapes and that this causes a selection effect for the general
identification of weak periodic signals. Similar shape dependences
are found in Schwarzenberg-Czerny (1999).

For this analysis, we have selected a representative set of the
most common algorithms used which claim to be fast and accurate
(see Table 3 for operational details). This is a necessary condition
for automated large-scale analyses of time series – we consider
an algorithm to be fast if it returns an answer in less than 5 s
(assuming ∼250 points for a light curve and an ∼2 GHz CPU – see
Section 5.8. This is a fairly conservative definition but roughly
equates to analysing 1000 light curves in just under 1.5 h on a single
processor. There are methods which can attain very high degrees of
accuracy but do so at the expense of taking up to several minutes to
work on a single time series, e.g. by using a very fine grain resolution
in searching frequency space or involving a multistage process, such
as SuperSmoother (Reimann 1994), Jetsu & Pelt (1999) or Shin &
Byun (2004). These are well suited for small-scale detailed analyses
but not for the bulk processing that the new synoptic sky surveys
warrant. However, for the sake of comparison, we have included
SuperSmoother results for the MACHO data set, since it is largely
regarded as the most accurate period finding technique.

Intuitively the fastest period finding algorithm will involve a sin-
gle pass through a data set per trial period and integer counting
operations, e.g. histogram binning. Any higher order function calls,
particularly per data point in a time series, will extend the average
calculation time per trial period and, consequently, the overall time
taken by the algorithm to determine a correct period. Of the algo-
rithms considered, CE, AOV and PDM come closest to this ideal
with a basic implementation employing integer arithmetic. AOV
then requires two passes through a data set per trial period – one
to compute the mean/variance of each bin, x̄i , and one to subtract
the appropriate mean value from each data point, xij − x̄i . PDM is
similar but CE only requires one pass. Note that a single pass ver-
sion of AOV has been defined (Schwarzenberg-Czerny & Beaulieu
2006)

One particular issue for automated period finders (particularly
LS) is that they misidentify a multiple (or submultiple) of the period
as the ‘true’ period, i.e. the identified period, pi = mp0, where m is
an integer n or its reciprocal, 1/n, and p0 is the correct period. This
is a common problem for binary systems where the half period is
frequently the most significant peak in a periodogram. For example,
Richards et al. (2012) initially find 70 per cent of their periods for
eclipsing binaries (EBs; ∼49 per cent of all objects) in the ACVS
(Pojmanski et al. 2005) to be half periods. As discussed in Wang
et al. (2012), this is attributable to two aspects: for symmetric EBs,
the true period and half its value are not clearly distinguishable
quantitatively. Meanwhile, methods that are successful for EBs tend
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Table 2. The relative numbers of each class of variable stellar object used in this analysis. Only those classes which have instances are
included. The codes in parentheses are the GCVS or VSX code for this type of variable or, if marked with an asterisk, the code used in
MACC. The method given is the most reliable method for finding periods for this class (see Section 5.6 for details) with an asterisk indicating
that less than 10 periods were recovered by it. A dash denotes that no method recovered an accurate period for the class. When two methods
are given, they both recovered the same number of periods accurately.

Class Label CRTS MACC MACHO Method

Eruptive
Be variable P.1.2.1 (BE) – 337 – GLS
Poorly studied irreg. var. of inter. to late spectral type P.1.3.2 (IB) 43 – – AOVMHW*
Orion variable P.1.3.3 (IN) 5 – – LS*
Orion variable - early spectral type P.1.3.3.1 (INA) 85 – – GLS*
T Tauri P.1.3.3.3 (INT, IT) 28 5 – AOVMHW*
Weak-line T Tauri P.1.3.3.3.2 (WTTS) – 2239 – GLS
Rapid Orion variable of intemediate to late spectral type P.1.3.3.6 (INSB) 2 – – –
Rapid T Tauri P.1.3.3.7 (INST) 5 – – AOV*
Rapid irregular variable without nebula P.1.3.4 (IS) 3 – – AOVMHW*
R Cor Bor type variable P.1.4 (RCB) – 53 – GLS*
RS Can Ven type variable P.1.5 (RS) 178 263 – AOVMHW
S Dor type variable P.1.6 (SDOR) – 1 – –
UV Ceti type variable P.1.7 (UV) 4 – – –
Flaring Orion variable of spectral type Ke - Me P.1.7.1 (UVN) 1 – – –
Young Stellar Object P.1.9 (YSO) 4 – – –
Herbig AE/BE P.1.10 (HAEBE∗) – 111 – CE*
Red supergiant P.1.11 (RSG∗) – 827 – GLS

Pulsating
General pulsating variable P.2 (PULS) 58 – – GLS
Beta Cephei type variable P.2.2 (BCEP) 3 259 – AOVMHW
Cepheid P.2.3 (CEP) 25 568 287 CE
Multimode Cepheid P.2.3.1 (CEP(B)) 202 230 CE
W Vir type variable P.2.4 (CW) 2 – – AOV
W Vir type variable with period longer than 8 d P.2.4.1 (CWA) 26 – – CE
W Vir type variable with period shorter than 8 d P.2.4.2 (CWB) 30 – – AOVMHW
Classical Cepheid (Delta Cep) P.2.5 (DCEP) 53 – – AOVMHW*
D Cep type variable with light amp. and symmetrical LC P.2.5.1 (DCEPS) 2 – – CE*
Delta Scuti type variable P.2.6 (DSCT) 92 1527 – FC
Low amplitude Delta Scuti type variable P.2.6.1 (DSCTC) 5 – – AOVMHW*
High amplitude Delta Scuti type variable P.2.6.2 (HADS) 95 – – LS
Slow irregular variable of late spectral type P.2.7.1 (LB) 7 – – AOVMHW/FC*
Mira type variable P.2.8 (M) 979 3086 – GLS
RR Lyrae type variable P.2.10 (RR) 1957 – 11 CE
RR Lyrae type variable with fundamental mode P.2.10.1 (RRAB) 4518 1460 343 CE
RR Lyrae type variable with fundamental overtone P.2.10.3 (RRC) 692 476 91 AOVMHW
RR Lyrae type variable with double mode P.2.10.4 (RRD) 137 130 15 GLS
RV Tauri type variable P.2.11 (RV) 7 452 – CE
RV Tauri type variable that does not vary in mean mag. P.2.11.1 (RVA) 18 – – AOVMHW*
RV Tauri type variable that varies periodically in mean mag. P.2.11.2 (RVB) 1 – – STR*
Semiregular variable P.2.12 (SR) 436 9982 – GLS
Semiregular late-type giant with persistent periodicity P.2.12.1 (SRA) 142 – – AOVMHW
Semiregular late-type giant with poorly defined periodicity P.2.12.2 (SRB) 168 – – AOVMHW
Semiregular late-type supergiant P.2.12.3 (SRC) 1 – – –
Semiregular variable giant/supergiant P.2.12.4 (SRD) 16 – – CE*
Semiregular variable P.2.12.5 (SRS) 2 – – –
SX Phe type variable P.2.13 (SPXHE) 35 12 – FC
ZZ Ceti type variable P.2.14 (ZZ) 2 – – –
Anomalous Cepheid type variable P.2.17 (BLBOO) 13 – – AOVMHW*
G Dor type variable P.2.18 (GDOR) 2 – – CE*
Small amplitude red giants - type A P.2.19.1 (SARG_A∗) – 3974 – GLS
Small amplitude red giants - type B P.2.19.2 (SARG_B∗) – 7820 – GLS
Long secondary period red giants P.2.20 (LSP∗) – 5096 – GLS

Rotating
Alpha2 Can Ven type variable P.3.1 (ACV) 1 – – AOVMHW*
BY Draconis type variable P.3.2 (BY) 89 – – AOVMHW
Ellipsoidal variable P.3.3 (ELL) 18 2 – AOVMHW*
Chemically peculiar P.3.7 (ChemPec∗) - 345 - GLS
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Table 2 – continued

Class Label CRTS MACC MACHO Method

Cataclysmic
Cataclysmic variable P.4 (CV) 17 – – CE*
Fast novae P.4.1.1 (NA) 4 – – –
Slow novae P.4.1.2 (NB) 6 – – PDM*
Novalike variable P.4.1.4 (NL) 57 – – AOVMHW*
Recurrent novae P.4.1.5 (NR) 5 – – AOVMHW*
U Gem type variable P.4.3 (UG) 88 – – PDM2*
SS Cyg type variable P.4.3.1 (UGSS) 21 – – PDM/CE*
SU U Ma type variable P.4.3.2 (UGSU) 140 – – AOVMHW
Z Cam type variable P.4.3.3 (UGZ) 22 – – AOVMHW*
WZ Sag type variable P.4.3.4 (UGWZ) 19 – – –
Z Andr type variable P.4.4 (ZAND) 1 – – –

P.4.5 () 6

Eclipsing
Eclipsing binary system P.5.1 (E) 109 – 522 CE
Beta Persei (Algol) type system P.5.1.1 (EA) 1025 2855 – STR
Beta Lyrae type system P.5.1.2 (EB) 866 1963 – CE
W U Ma type system P.5.1.3 (EW) 1479 6025 – AOVMHW
Contact system P.5.8 (K) 20 – – CE
Semidetached system P.5.9 (SD) 1 – – STR*
AM Her type system P.5.10 (AM) 76 – – CE*
Close binary system with strong reflection P.5.11 (R) 9 – – CE*
Planet eclipsing system P.5.12 (EP) 2 – – –

X-ray
DQ Her variable type / low-mass X-ray binary P.6.1.8 (DQ, LMXB) 30 – – AOVMHW*
Close-binary super-soft source P.6.2 (CBSS) 1 – – LS*

Other
Variable P.7 1433 – – LS

Figure 5. This shows the distribution of quoted periods in days for the three data sets considered in this paper: ASAS (red), MACHO (black) and CRTS (blue).

to find integer multiple periods of ‘single bump’ stellar types, such
as RR Lyrae and Cepheids, and vice versa. EBs also have two
minima per cycle, while only one is expected by methods looking
for sinusoidal-like variations. Clearly using a period (sub)harmonic
instead of the true value can be a problem for period-based statistics,
such as Fourier decomposition where particular components would
be assigned the wrong weights (amplitudes). We will consider the
issue of period harmonics further in Section 5.

3.1 Frequency sampling

The frequency sampling strategy used with a period finding algo-
rithm is important. Vio, Diaz-Trigo & Andreani (2013) show that

irregular sampling reduces the width of the peak at the correct
frequency in the LS periodogram of a light curve if its temporal
baseline is large. This means that there is a concrete risk of missing
the peak if the periodogram is not computed for a sufficient large
number of test frequencies. However, it also means that the error on
the computed period will be less since this is also dependent on the
width of the associated peak in the periodogram.

For a regularly sampled time series with time spacing, �t, the
Nyquist frequency, νN = 1/2�t , constitutes an upper limit to the
frequency range over which a periodogram can be uniquely calcu-
lated. For irregularly sampled time series, however, this value can
be much higher – Koen (2006) gives an upper limit of 0.5� for this
frequency, where � is the best accuracy with which time is recorded.
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Table 3. Details of the various period finding algorithms used in this analysis. Where possible, we have used provided
code, e.g. AOV/AOVMHW, PDM2, FastChi, and default parameter settings. The asterisk denotes those algorithms which
were only applied to the MACHO data set.

Algorithm Implementation Behaviour Reference

Lomb–Scargle (LS) OpenCLa O(n2) Lomb (1976); Scargle (1982);
Townsend (2010)

Generalized Lomb–Scargle (GLS) OpenCLa O(n2) Zechmeister & Kürster (2009)
Binned analysis of variance (AOV)b, c F95 O(nN ) Schwarzenberg-Czerny (1989)
Multiharmonic analysis of variance (AOVMHW)b, d F95 O(nN ) Schwarzenberg-Czerny (1996)
Phase dispersion minimization (PDM)e F90 O(nN ) Stellingwerf (1978)
Phase dispersion minimization (PDM2)f, g C O(nN ) Stellingwerf (2011)
FastChi (FC)h, i C O(N log N ) Palmer (2009)
String length (STR) F90 O(nN ) Dworetsky (1983)
Conditional entropy (CE)j F90 O(nN ) Graham et al. (2013)
Supersmoother (SS)∗k C O(nN ) Reimann (1994)
Correntropy kernel periodogram (CKP)∗ l C O(n2) Huijse et al. (2012)

asee Appendix ; bhttp://users.camk.edu.pl/alex/soft/aovdist.tgz; coverlapping phase bins; d5 harmonics; e10 phase bins;
fhttp://www.stellingwerf.com/rfs-bin/index.cgi?action=PageView&id=34; gStellingwerf’s improved algorithm;
hhttp://public.lanl.gov/palmer/fastchi.html; iharmonics = 3, oversampling = 4; j10 overlapping phase bins, 5 magnitude
bins; kcode obtained from Andy Becker; lCode from Pablo Huijse.

For example, in CRTS time is recorded to five decimal places giving
νN = 5 × 10−4d−1; in practice, though, a more manageable lower
value would be used.

Two common frequency gridding strategies are applied in the
literature when working with large collections of time series. The
first (Debosscher et al. 2007; Richards et al. 2012) uses for all light
curves: νmin = 0, νmax = 10 and δν = 0.1/�τ , where �τ is the
data timespan. The second (Schwarzenberg-Czerny 1996) estimates
optimal values for each light curve: νmin = 0 or δν, νmax = 1/2τmed

and δν = 1/(A × �τ ), where τmed is the median difference between
successive ordered times, A is a factor, typically 10–15, taking into
account oversampling and binning or the number of harmonics used
in a Fourier fit, and �τ is the data timespan.

We have applied both the optimal strategy and fixed δν values of
δν = 0.0001, 0.001 and 0.01 over a frequency range with νmin = 0
and νmax = 20. The median timespan for all the data is ∼2618
d which gives a median δν = 2.5 × 10−5d−1, assuming A = 15
in the optimal case. We also note that many algorithms use a finer
resolution grid to get a more accurate period estimate once a primary
peak has been found with the coarse grid.

4 METRICS

For the purposes of this analysis, we define three metrics: one
to evaluate the accuracy of the recovered period of a light curve
compared to the value of its true period and two to measure the
quality of a light curve.

4.1 Accuracy metric

Oluseyi et al. (2012) define a matching criterion for period recovery
using the quality of the period-folded data as a metric:

|Pal − Pin|
Pin

≤ δφmaxPin

�τ
,

where Pin is the known input period, Pal is the period according the
algorithm under investigation, �τ is the duration of the time series
and δφmax is the maximum allowed phase offset after period-folding

N cycles. For simulated RRab light curves in LSST, this translates
to

|Pal − Pin|
P 2

in

≤ 10−5d−1

for a maximum period-folded phase offset of 1/27th of a cycle or a
period within ∼0.22 s of the true value for a 0.5d period star and a
10 yr survey. Given the variation in the baselines of the light curves
in this analysis, particularly within the CRTS data set where there
is a dependence on both galactic latitude and which telescope was
used to observe the object, a fixed survey length makes little sense.
Instead for each object, we consider its temporal coverage but keep
δφmax = 1/27 so that a 10 yr baseline will give equivalent accuracy
to LSST. We will use the equivalent accuracy level of 10−5 d−1 as
a fiducial value. For the median baselines of the three surveys, the
corresponding accuracy values are 1.4 × 10−5 d−1 for ASAS and
MACHO and 1.7 × 10−5 d−1 for CRTS.

Dubath et al. (2011) consider a period as good if the difference
between the calculated period (using LS/GLS) and the quoted value
leads to a cumulative shift in phase of less than 20 per cent over
the full timespan of the light curve. This equates to an accuracy
level of ∼10−4 d−1 for a 10 yr baseline. Meanwhile, Richards et al.
(2012) claimed 77.2 per cent exact agreement between the periods
they found for ASAS objects (using a GLS-based algorithm) and
those given by ACVS. However, in terms of the matching criterion
used here, only 20.2 per cent of the periods actually agree between
the two sets at the 10−5 d−1 accuracy level. The quoted agreement
of Richards et al. is found at an accuracy level of ∼10−3 d−1.

We have therefore considered equivalent accuracy cutoffs for a
10-yr baseline of 10−3 (δφmax = 100/27), 10−4 (δφmax = 10/27)
and 10−5 d−1 (δφmax = 1/27), respectively for our comparisons to
reflect the range used in the literature and, for the value of 10−5, with
a view to future surveys. We note that the error in the determined
period could be larger than a particular accuracy cutoff. However,
as already noted, most of the algorithms in this analysis use a finer
grain resolution to get a more accurate estimate once an initial value
has been found with a coarser grain resolution. This is typically a
factor of a hundred smaller than the coarse grain resolution step
and in this analysis would be a maximum of �ν = 10−5. The effect

http://users.camk.edu.pl/alex/soft/aovdist.tgz
http://www.stellingwerf.com/rfs-bin/index.cgi?action=PageView
http://public.lanl.gov/palmer/fastchi.html
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of this should therefore be minimal with reference to a particular
cutoff value.

We also want to have an accuracy metric relevant for period
harmonics since periodicity in an object can still be detected, even
if only a harmonic of the true period is found (Huijse et al. 2012). We
modify the criteria used by Huijse et al. (2012) so that an accurate
harmonic is identified if∣∣∣∣Pal

Pin
−

∥∥∥∥ Pal

Pin

∥∥∥∥
∣∣∣∣ <

δφmaxPin

�τ
for Pal > Pin

and∣∣∣∣Pin

Pal
−

∥∥∥∥Pin

Pal

∥∥∥∥
∣∣∣∣ <

δφmaxPin

�τ
for Pal < Pin,

where ‖x‖ is the nearest integer to x relative to the same accuracy
cutoff used for periods.

4.2 Quality measure

There are several sets of light curves of the same class of variable
object that we would like to compare on a common quality basis
but they have been produced by different telescopes and so span
different magnitude ranges; for example, an RR Lyrae light curve
in the ASAS data set has the same subjective quality, i.e. visually
appears the same in terms of error size and scatter, at 12th magnitude
as a 20th magnitude light curve in the MACHO data set.

The signal-to-noise ratio (SNR; mean of signal/standard devi-
ation of noise) provides a general matching criterion. Rimoldini
(2013) gives an expression for the SNR of a light curve and we
employ a slightly modified form here:

SNR =
[∑n

i=1 wi(xi − xm)2 + ∑n
i=1 w2

i ε
2
i /W∑n

i=1 wiε
2
i

]1/2

,

where xm is the median magnitude (instead of the mean), εi the
photometric error of the ith data value and W = ∑

iwi. We employ
wi = 1 in this analysis. Fig 6 shows the distribution of SNR values
for the three surveys considered here.

We note, though, that this measure is based on mean quantities
and that changes in the overall shape of a light curve for different
object types will have an impact: for example, there is a strong
correlation between the SNR of a light curve and the amplitude of
its variability and this is also survey dependent (see Fig. 7). Since
SNR is essentially a measure of the intrinsic scatter within a data

Figure 6. This shows the overall distribution of the SNR for all the light
curves and the stacked relative contributions of each of the individual data
sets: ASAS (red), CRTS (blue) and MACHO (black).

Figure 7. This shows the distributions of the SNR versus the MAD (from
the median) for the three surveys: ASAS (red), CRTS (blue) and MACHO
(black). There is clearly a strong correlation between SNR and the amplitude
of variability and this is a survey-dependent effect – the same SNR value
equates to a different range of variability for each survey.

set, it is conceptually similar to the entropy. Standard estimators for
entropy, though, are optimized for signal detection and do not take
into account the contributions of noise. Cincotta (1999) defines a
modified estimator for the Shannon entropy of a data set which takes
observational errors into account and we will use this as class-based
quality comparisons. The Shannon entropy, H0, for a distribution
on the unit square partitioned into k partitions is:

H0 = −
k∑

i=1

μi ln(μi); ∀μi 	= 0,

where μi is the occupation probability for the i th partition. For a data
set where measurement vi has an error εi, the occupation probability
is given by

μ̃ = R

2

nl∑
i=1

[erf (wim + �wi) − erf (wim)],

where erf(x) is the error function, nl 
 N/L is the number of points
in the lth partition of the x-axis (i.e. with phase in the [l/L, (l + 1)/L]
interval), and

wim = m − Mvi√
2Mεi

, �wi = 1√
2Mεi

,

2

R
=

N∑
i=1

[erf (wiM ) + erf (|wi0|)]

and L and M are the number of partitions along the x-axis and y-axis,
respectively.

Fig 8 shows the distribution of the modified entropy for all the
light curves, phased at their quoted periods, in the CRTS, ASAS
and MACHO data sets against their median photometric errors. This
shows that there is a general relationship between the two quantities
and therefore light curves with the same modified entropy can be
considered to be qualitatively similar (in broad SNR terms) and
therefore compared on an equal footing. Note that the computational
cost of the estimator – here involving error function calculations –
is too high for consideration as a viable period finding algorithm in
this paper.

5 RESULTS AND ANALYSIS

The efficacy of the different period finding algorithms is clearly de-
pendent on a number of factors. We evaluated each of the algorithms
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Figure 8. This shows the distribution of the median photometric error and
the modified entropy for all the light curves phased at their quoted period
considered in this paper. The three surveys are denoted by red (CRTS), blue
(MACHO) and black (ASAS). The artefact at mean error = 0.05 in the CRTS
data set results from a lower limit to error size in this data set. The small
median errors at the highest entropy level may indicate non-monoperiodic
(multiperiodic, irregular, etc.) sources.

in terms of completeness, i.e. the fraction of true periods recovered
within a defined accuracy limit, as a function of various quantities.
The two most obvious variables to consider are magnitude and the
number of observations in a light curve. The resolution used to scan
the range of trial periods (frequencies) will also have an effect. The
variability of a light curve, both naturally due to the actual vari-
ability of the source and acquired as measurement scatter (noise),
as well as the actual class of variable object (and the shape of the
light curve) and its period are also factors to evaluate. Finally, the
actual time taken to determine an accurate period can be an impor-
tant aspect in determining the usability of particular algorithms in
addition to their accuracy.

5.1 Magnitude

Fig. 9 shows the completeness fraction as a function of magnitude
for the three data sets and accuracy cutoffs, respectively. With the
MACHO and CRTS data, there is a general decline in accuracy
with increasing magnitude, particularly past the 90th percentile
in the magnitude distribution, as the photometric errors become
more significant and the light curves noisier. There are also dips
in both data sets around the 60th percentile which is most likely
connected to the relative magnitude distributions of different classes
of object; for example, in the MACHO data, ∼90 per cent of the
objects between 14th and 16th magnitude are Cepheids, whereas
between 16th and 18th magnitude, there are twice as many eclipsing
binaries as Cepheids. The ASAS data seems fairly flat except at its
very faintest end. With this data, magnitude is weakly correlated
with SNR, i.e. fainter objects at fainter magnitudes tend to have
slightly better quality light curves and the methods are more likely
to recover the true period for an object with a higher SNR (see
Section 5.3). The combination of the two in this case gives a fairly
constant relationship between completeness and magnitude. The
low levels of completeness relative to the other two data sets are
a consequence of the large number of semiregular variables and
similar pulsating objects in this data set (∼50 per cent) for which
accurate periods could not be established (see below).

The comparatively better performance of AOVMHW and CE
at brighter magnitudes with the CRTS data set indicates that these
algorithms work well with data which may contain saturated values.
The nominal saturation limit for CRTS is V ∼ 12 and the magnitude
used in this analysis is the mean magnitude of the light curve so

there may well be observations of bright objects near maxima which
are saturated. These algorithms are not attempting to model the
phased light curve as a sum of sinusoidal functions and so are less
susceptible to non-sinusoidal or truncated sinusoidal-shaped light
curves that may occur near a survey’s saturation limit. The poor
performance of PDM2 with this data set indicates an issue with the
irregular sampling strategy of CRTS light curves relative to those
in the other two data sets.

5.2 Observations

Fig. 10 shows the completeness fraction as a function of number
of observations, n, for the three data sets and accuracy cutoffs.
The MACHO and ASAS data sets show no strong dependence
on the number of observations, except possibly at smaller values
(n < 200). However, the CRTS data show a definite dependence.
For n < 200, there is generally insufficient coverage or sampling of
phase for the algorithms to detect the true period effectively. This
is compounded by the observing strategy of the CRTS survey: a set
of four observations, each separated by 10 min, repeated once or
twice per lunation.

Fig. 11 shows the distribution of the time difference, dt , in d
between successive observations for the three data sets considered
here. From these distributions, we can estimate the number of ob-
servations that would be required to ensure a particular minimum
phase coverage density for an object of a given periodicity. For
each data set, we generate a random observing schedule (set of suc-
cessive observations) drawn from the appropriate distribution and
then determine what the corresponding phased light curve coverage
would be for a particular test period in terms of the minimum bin
occupancy assuming bin widths of �φ = 0.1. Table 4 gives the
median number of observations per time series from 5000 simula-
tions of each data set over a frequency (1./ period) range of 0–4
and for minimum bin occupancies of 5, 10 and 20 observations,
respectively.

The bimodal observing distribution of dt of the CRTS data set
(see Fig. 11) means that a larger number of individual observations
are required for the same phase coverage relative to the other distri-
butions. However, this requires fewer actual nights since each night
provides four individual observations. This observing strategy also
provides greater sensitivity to short time-scale phenomena - Vio
et al. (2013) show that irregular sampling permits one to retrieve
information about frequencies much greater than the Nyquist fre-
quency. We note that the proposed core LSST observing strategy
is very similar with two back-to-back 15 s exposures and a return
to the same pointing within 15–60 min, giving four observations
within an hour (Oluseyi et al. 2012).

It may still be the case, however, that there is not enough baseline
in any of the surveys to accurately establish the periods of objects
with very long periods. If we assume a minimum bin occupancy
in phase space of b per bin of width �φ then regular sampling
of an object with period P would require an observation every
�t = P�φ/b days. The total number of observations in a light
curve, n, for a survey with baseline τ would then be given by
n = τ/�t. Rearranging this gives the minimum baseline for a survey
to adequately sample a light curve as τ ≥ Pn�φ/b. For an object
with a period of 2000 d, say, which is observed regularly to ensure
a minimum bin occupancy of 10 with �φ = 0.1 bin widths, the
minimum baseline with 150 observations would be 3000 d.

Fig. 12 shows the results as a function of the quoted period, p,
for the three data sets and accuracy cutoffs. All three surveys have
baselines >2000 d and this is clearly sufficient to recover periods
with an accuracy cutoff of 10−3 for long-period objects but less
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Figure 9. This shows the completeness fraction for the different period finding algorithms as a function of magnitude for each data set: (a) MACHO, (b)
CRTS and (c) ASAS. The three plots in each row are for different accuracy cutoffs, equivalent from the left to 10−5, 10−4 and 10−3 d−1 over a 10 yr baseline,
respectively (see the text). The different algorithms are denoted by: AOVMHW (blue diamonds), AOV (green diamonds), CE (black circles), LS (green
triangles), PDM (left-facing blue triangles), PDM2 (cyan inverted triangles), GLS (right-facing orange triangles), FC (magenta squares), SS (red stars), CKP
(yellow stars) and STR (yellow pentagons). The optimal frequency sampling was used where relevant. The small red dots indicate the cumulative magnitude
distribution of the relevant data set.

so if higher degrees of accuracy are required. The overall lack of
performance for objects with period between roughly 10 and 100 d
is due to the (in)efficiencies of the methods with the particular
classes of object with those period lengths (see Section 4.3.4).

In terms of both the number of observations and the quoted period,
the relative performances of the period finding algorithms seen as a
function of magnitude in the previous section are also repeated here
with AOVMHW and CE the most successful. As well PDM2 again
shows the same issues with CRTS data. We also infer that all the
period finding algorithms are stable with a minimum bin occupancy
of ∼ 10, assuming bin widths of �φ = 0.1.

5.3 Resolution and quality

We have combined the three data sets in terms of our quality mea-
sure (modified entropy). Fig. 13 shows the results for this data for

each algorithm that allowed the frequency resolution to be set –
AOVMHW, AOV, CE, STR, LS, GLS and PDM – and the differ-
ent frequency resolutions employed. At the accuracy cutoff used
(10−3 – note that any possible effects of errors in the derived pe-
riod will be two magnitudes smaller than the cutoff value), there is
very little difference between the performance of δν = 0.0001 and
the optimal δν (as noted in Section 3.1, the median optimal δν is
2.5 × 10−5) for all the algorithms considered. This suggests that
computation time can be saved in future by using a standard fre-
quency resolution of δν = 0.0001 in (initial) frequency range scans
and then a finer/optimal resolution for higher accuracy if required.
If a lower resolution is preferred then the CE algorithm gives the
best performance relative to the others, even for δν = 0.01.

The overall performance of the algorithms as the quality of the
light curves varies is broadly consistent. None of the algorithms
work with the noisiest of light curves, i.e. those showing the most
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Figure 10. This shows the completeness fraction for the different period finding algorithms as a function of the number of observations per time series for
each data set: (a) MACHO, (b) CRTS and (c) ASAS. The three plots in each row again correspond to the different accuracy cutoffs: 10−5, 10−4 and 10−3 d−1

over a 10 yr baseline. The same symbols are used for each algorithm as in Fig. 9 with the optimal frequency sampling used where relevant.

Figure 11. This shows the distribution of time differences in days between
successive observations for the three data sets: ASAS (red), MACHO (black)
and CRTS (blue). The bin widths are 0.1 dex in log(t).

Table 4. The median number of observations re-
quired to ensure the specified minimum coverage
in the binned phased light curve of an object for
each data set, assuming bin widths of �φ = 0.1

Sampling distribution Minimum bin occupancy
5 10 20

ASAS 90 155 276
MACHO 87 150 270
CRTS 138 214 350

acquired scatter as opposed to variability. All methods show a peak
at μ̃ ∼ −2 in the best resolution curves, corresponding to RR Lyrae
stars, and a slight hump at μ̃ ∼ 2.5 from eclipsing variables. The
best quality light curves (μ̃ < −3) are dominated by semiregu-
lar and pulsating red giant variables. The slightly better relative
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Figure 12. This shows the completeness fraction for the different period finding algorithms as a function of the quoted period in days for each data set: (a)
MACHO, (b) CRTS and (c) ASAS. The three plots in each row again correspond to the different accuracy cutoffs: 10−5, 10−4 and 10−3 d−1 over a 10 yr
baseline. The same symbols are used for each algorithm as in Fig. 9 with the optimal frequency sampling used where relevant.

performance of the best frequency resolution LS and GLS algo-
rithms with these classes is most likely related to the quoted periods
for these objects also having been determined with these algorithms.
We will discuss this more in the next subsection.

5.4 Class

The combined data set can also be considered in terms of the various
classes of object represented in the data. Fig. 14 shows the results
as a function of modified entropy for each of the broadest class des-
ignations used: eruptive (P.1, 4194 objects), pulsating (P.2, 45599
objects), rotating (P.3, 455 objects), cataclysmic (P.4, 386 objects),
eclipsing (P.5, 14952 objects), X-ray (P.6, 31 objects) and other (P.7,
1434 objects). Unsurprisingly the best results are obtained for the
pulsating and eclipsing variable classes as these contain the best de-
fined periodic objects; however, the periods of rotating objects can
also be recovered to a reasonable degree. The poor performance
for the other classes is most likely caused by a general lack of any
clear periodic signal in the light curves for these types of object, for

example, LPVs do not seem to oscillate in a clean fashion and so
their periods are intrinsically not very well defined.

The shapes of these curves can be attributed to the relative con-
tributions made by different subclasses of object within each of the
broadest classes. For example, within the pulsating class, classi-
cal Cepheids (Delta Cep) have a mean μ̃ = −1.22, RR Lyrae have
μ̃ = −1.96, Mira have μ̃ = −2.37 and semiregular variables have
μ̃ = −2.74. Similarly, within the eclipsing class, there is a sequence
from AM Her variables to Algol types to Beta Lyrae types to W
UMa types, although the performance for the three eclipsing binary
classes is fairly constant. The peak at μ̃ ∼ 3 in the eruptive class
results corresponds to weak-line T Tauri stars.

Relative to the other algorithms, PDM2 shows poorer perfor-
mance with RR Lyrae and eclipsing binaries. The (STR) algorithm
also seems to fare worse with semiregular variables than with other
pulsating types. However, the clearest differentiation between the
algorithms comes with eclipsing variables. AOVMHW and CE are
again the most successful and LS and GLS the least. If, however,
we relax our accuracy criterion and also include (sub)harmonics
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Figure 13. This shows the completeness fraction for the combined data set for the seven algorithms where multiple frequency sampling strategies were
applied: AOVMHW, AOV, CE, STR, GLS, LS and PDM. The four curves per plot are: optimal δν (blue diamonds), δν = 0.0001 (green triangles), δν = 0.001
(inverted cyan triangles) and δν = 0.01 (magenta squares), respectively. An accuracy cutoff of 10−3 was used for greatest contrast. The quality of the light
curves improves from left to right, i.e. there is less acquired scatter in a light curve with increasing SNR. The red dots indicate the cumulative SNR distribution
of the combined data set.

of the true period then we find a significant improvement in LS
and GLS relative to the other algorithms (see Fig. 15). Clearly, LS
and GLS are the most susceptible of all the algorithms considered
here to misidentifying a multiple of the period as the true value and
this seems to be particularly the case with W UMa-type eclipsing
binaries (hence the decline in performance at μ̃ ∼ 3).

Dubath et al. (2011) report a correct period recovery rate of
91 per cent for LS/GLS depending on skewness value for non-
eclipsing variable periods. The same approach finds a half period
for 82 per cent of eclipsing variables. They note that better results
are obtained with PDM with 38 per cent of the correct periods found
and 38 per cent with half periods. However, for eclipsing variables,
they adopt a strategy of only assigning a period once the object type
has been assigned – doubling an LS-derived period for eclipsing
binaries and ellipsoidal variables. Our results for LS/GLS certainly
support this approach.

Finally, we note that Drake et al. (2012) find that VSX periods for
RR Lyrae have an intrinsic error of ∼0.004 per cent which equates to
an accuracy cutoff of ∼10−4. This may contribute to the difference

in recovery completeness seen in Sections 4.3.1 and 4.3.2 between
cutoffs of 10−5 and 10−4. However, we have used a limit of 10−4 in
this section for comparison and so any effect would be reduced.

5.5 Variability

The results in the previous section show the dependences of the
various algorithms on the specific object classes but it is also in-
teresting to see whether there is any more general dependence on
the variability of an object, i.e. it is easier to find the period of an
object with strong variability than with weak. Note that the source
of the variability here is in the physical nature of the star rather
than in measurement errors which is covered by the dependence on
the quality of the light curves (see Section 5.3). Fig. 16 shows the
results for the algorithms as a function of MAD (from the median)
– a more robust measure of the amplitude of variation than just the
extrema values in a light curve.

At the most conservative accuracy cutoff (10−5 d−1), there is
essentially no dependence on object variability; however, with the
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Figure 14. This shows the completeness fraction for the different period finding algorithms on the full combined data set in terms of the seven different
broadest classes of variable object represented: P.1 (eruptive), P.2 (pulsating), P.3 (rotating), P.4 (cataclysmic), P.5 (eclipsing), P.6 (X-ray) and P.7 (other). The
same symbols are used for each algorithm as in Fig. 9 with the optimal frequency sampling used where relevant. An accuracy cutoff of 10−4 was used.

Figure 15. This shows the completeness fraction for the different period finding algorithms for eclipsing variables (P.5) in the full combined data set using
just strict period matching (left-hand plot) and allowing period (sub)harmonics as well (right-hand plot). The same symbols are used for each algorithm as in
Fig. 9 with the optimal frequency sampling used where relevant. An accuracy cutoff of 10−4 was used.
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Figure 16. This shows the completeness fraction for the different period finding algorithms on the full combined data set in terms of the MAD from the
median of the light curve of the variable object. (a) gives almost the full range of MAD covered by the data set whilst (b) focuses on the smaller range covered
by 97 per cent of the data. The three plots in each row again correspond to the different accuracy cutoffs: 10−5, 10−4 and 10−3 d−1 over a 10 yr baseline. The
same symbols are used for each algorithm as in Fig. 9 with the optimal frequency sampling used where relevant.

other cutoffs, all the algorithms except STR show better perfor-
mance with more variable objects. The objects with a correct period
at the strictest cutoff tend to have more observations in their light
curves so the periodic signal is already better sampled and the in-
creased variability has no real effect. At the other cutoffs, those
objects with a poorly sampled light curve due to fewer observa-
tions get a boost from larger amplitude variability which makes the
periodic signal easier to detect by the algorithms.

This behaviour is modulated by the noise characteristics of the
light curves: objects with the same amplitude variability but dif-
ferent noise levels will have different period recovery accuracies.
We can use the ratio MAD/log(SNR) as a proxy for the noise in
the light curve and Fig. 17 shows the recovery accuracy in terms of
this quantity for the different algorithms on the combined data set.
The structure in this plot is due to the individual contributions from
the data sets with the initial peak at MAD/log(SNR) ∼ −2.5 from
ASAS and that at ∼−1.2 from CRTS.

One difficulty with the low amplitude variability sources is that
the phase errors could be substantial and yet we would not be able
to visually recognize this, i.e. a correctly phased light curve and
an incorrectly phased one are indistinguishable in the limit of van-
ishing variability – they both appear constant within observational
error tolerance. This should particularly affect those object classes
associated with low scale variability, such as small amplitude red
giants or weak-line T Tauri objects. If we assume a photometric
error of 0.05 mag then ∼19 per cent of objects have a MAD value
less than this and could potentially have a misassigned period.

5.6 Reliability

For each class in Table 2, we have determined the most reliable
method, i.e. method which gives the most number of periods within

Figure 17. This shows the completeness fraction for the different period
finding algorithms on the full combined data set in terms of the ratio of the
MAD to log(SNR). An accuracy cutoff of 10−3 d−1 was used. The same
symbols are used for each algorithm as in Fig. 9 with the optimal frequency
sampling used where relevant.

an accuracy of 10−4 d−1. This is a somewhat subjective measure
since a method which finds a few highly accurate periods may be
considered more reliable than one which gives a larger number of
less accurate ones: when a correct answer is given, it will be very
accurate but a larger number of workable periods might be more
useful for a particular study. The accuracy limit of 10−4 reflects a
suitable tradeoff between the two. Fig. 18 shows the distribution
of period accuracies for δ Scuti stars (DSCT, P.2.6) for AOVMHW
and CE. Although the overall distributions are similar, CE provides
slightly more accurate periods (below 10−5) whereas AOVMHW
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Figure 18. This shows the distribution of the accuracies of AOVMHW
(blue) and CE (red) periods for δ Scuti stars (P.2.6).

gives ∼10 per cent more periods overall less than the 10−4 d−1 limit
and so is the more ‘reliable’ of the two.

Fig. 19 shows the distribution of accuracies for all methods with
the combined data set. This shows that CE and PDM both perform
well below 10−4 along with AOVMHW. The poor reliability of
PDM2 is also very clear. The peak at log(accuracy) ∼ 0 is largely
due to methods finding half-periods for objects with periods around
1d. AOVMHW shows less susceptibility to this since it involves
fitting higher harmonic orders.

5.7 Ensemble method

The accuracy of each of the individual algorithms is clearly de-
pendent on observational factors such as the number of epochs in
and the overall quality of a light curve as well as aspects natural to
the source itself, such as the amplitude of variability and the actual
object type. An ensemble approach, however, might serve to mit-
igate the effects of these dependences and give a more robust and
consistent result. While we reserve a full comparison of ensemble
techniques to a forthcoming paper (Graham et al., in preparation),
we will consider a simple approach here involving majority opinion.

Each light curve is associated with a set of period estimates, one
for each algorithm considered. Within a set, we identify the largest
subset of similar values, i.e. those which are within a specified
tolerance of each other, and take the median value of this subset as
the ensemble period estimate. Table 5 gives the relative performance
of AOVMHW, CE and GLS against the ensemble estimate for the
three different accuracy cutoff levels used here. We have used the
accuracy cutoff as the tolerance value for the three cases, although

Table 5. The relative performance of some
of the algorithms compared against the en-
semble majority opinion estimate in terms
of total numbers of objects accurately mea-
sured at the various accuracy cutoffs.

Algorithm 10−5 10−4 10−3

AOVMHW 10 804 20 983 25 402
CE 9980 20 818 25 746
GLS 4318 15 230 22 468
Ensemble 8452 18 249 24 516
Mean 1678 3075 8188

for a specific accuracy cutoff there is only ∼10 per cent variation
in performance if a fixed tolerance of 10−5 is used. The results
show that a simple ensemble approach does no better than the
two strongest single algorithms. If we reduce the set of algorithms
considered to just one of each type (AOVMHW, GLS, PDM, STR,
CE, FC), we get similar results and just using the mean of the set
performs poorly in comparison.

The relative insensitivity of the ensemble result to the specific
tolerance level used (10 per cent over three orders of magnitude)
suggests that care should be taken when selecting values that are
similar from multiple algorithms.

5.8 Performance

The time taken by an algorithm to determine the period of a light
curve is another important factor for large-scale automated analy-
ses. Binning algorithms should show O(nN ) behaviour, where n is
the number of measurements and N is the number of frequencies
tested whereas FFT-based algorithms should exhibit anO(N log N )
dependence (Palmer 2009). Graphics processing unit (GPU)-based
algorithms, at least for LS and GLS methods, should show O(nN )
scaling tending to O(n2) in the limit of large n (Townsend 2010). Of
course, the constant in front of the dependent terms in all cases will
vary between algorithms and this can be the deciding factor too.

We have measured the computational time required by each al-
gorithm to process each light curve in the MACHO data set with
different frequency resolutions (spanning 0.1 to 10−6 d−1) on the
same machine (an Apple iMac with a 2.8 GHz Intel Core i7 CPU
and 8 GB 1333 MHz DDR3 memory running Mac OS X 10.7.4
and AMD Radeon HD 6770M with 512MB for the GPU algo-
rithms) and then performed a linear regression fit to the time taken
in seconds as a function of the expected behaviour. Note that the

Figure 19. This shows the relative distribution of the accuracies of all the methods with the combined data set.
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Table 6. The parameters of the regression fits to the timings of the
various algorithms in seconds as a function of number of observations
in the light curve, n, and the number of trial frequencies tested, N:
t = AnxNy + c or t = ANlog N + c, respectively. An asterisk indicates a
GPU-based algorithm. Note that the GLS and LS fits are only valid for
N > 105, otherwise a constant value of 1.5s should be assumed.

Algorithm log A x y c

O(nxNy ) AOV −7.939 0.987 0.989 −0.010
AOVMHW −6.754 0.997 0.998 0.480
PDM −9.446 0.686 0.990 0.156
PDM2 −5.067 0.948 0.376 0.010
STR −9.846 1.073 0.995 0.289
CE −8.921 0.600 0.955 0.053
SS −1.293 1.007 0.0 0.436
CKP −3.166 2.009 0.0 −16.3
LS* −2.732 −0.007 0.513 0.078
GLS* −2.793 −0.007 0.523 0.088

O(N log N ) FC −7.085 – – 1.472

frequency resolution cannot be set as an argument for SS and CKP
and so we just estimate N for these algorithms based on their docu-
mentation. We find that the binned algorithms are better described
by an O(nxNy) relationship than a strict O(nN ) one but the FFT-
based algorithms agree well with the expected N log N dependence.
The GPU-based algorithms (LS, GLS) show an essentially constant
timing behaviour to N = 105 and then transition to O(nN ). Unfor-
tunately we do not have sufficiently large values of n relative to N to

show the asymptotic scaling. The constant term is an implementa-
tion artefact, attributable to memory overheads in transferring data
between the CPU and GPU, and only for N > 105 does the GPU
computation begin to take a discernible amount of time.

Table 6 gives the details of the regression fits to the respective
behaviours. Whilst the absolute performance of the algorithms will
depend on the hardware used (CPU speed, memory configuration,
etc.), the constant values, (A), can give a reasonable indication of
their relative speeds. For example, there is a clear factor of ∼15
in performance time between the two versions of AOV – the faster
just relying on binning and the slower on model fitting. The two
GPU-based algorithms also show a slight difference with GLS being
slightly slower as it involves slightly more trigonometric function
calls. Note that the intercept (c) for these indicates the memory
overhead time and so for small values of N these are not particularly
performant.

In fact, we can estimate the minimum approximate time taken
by the relative algorithms to determine the period for any light
curve and frequency sampling. For a light curve consisting of n
observations covering a timespan T and with a fastest time-scale of
interest, δt, the maximum frequency νmax � 1/2δt and frequency
sampling δν � 1/T . The minimum number of frequencies to test is
then Nmin 
 T /2δt .

The MACHO data set consists of RR Lyrae, Cepheids and
eclipsing binaries and so a realistic fastest time-scale of interest
is δt = 0.2 d. Taking the median timespan (T = 2720.881d) and
number of observations (n = 966), we can calculate a representa-
tive minimum time for each algorithm as an indicator of perfor-
mance. Fig. 20 shows the accuracies versus performance for the

Figure 20. This shows the distribution of the accuracies and timings in seconds for the algorithms considered in this analysis applied to the MACHO data set
with n = 966 and Nmin = 6803 for (a) exact periods and (b) including period harmonics. The three plots in each row again correspond to the different accuracy
cutoffs: 10−5, 10−4 and 10−3 d−1 over a 10 yr baseline.
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Figure 21. This shows the distribution of the accuracies and timings in seconds for the algorithms applied to the regular periodic variables data set with
n = 347 and Nmin = 648 425 for (a) exact periods and (b) including period harmonics. The three plots in each row again correspond to the different accuracy
cutoffs: 10−5, 10−4 and 10−3 d−1 over a 10 yr baseline.

algorithms applied to the MACHO data set, for both exact periods
and harmonics.

We have also considered a set of regular periodic variables drawn
from all three surveys, consisting of all objects in the following
classes or class families: T Tauri (P.1.3.3.3), RS Can Ven (P.1.5),
Beta Cepheid (P.2.2), Cepheid (P.2.3), W Vir (P.2.4), Delta Cep
(P.2.5), Delta Scuti (P.2.6), Mira (P.2.8), RR Lyrae (P.2.10), rotating
(P.3) and eclipsing binary (P.5.1). This has a total of 40 550 members
with a median timespan of 2593.97 d and a median number of
observations of 347. Fig. 21 shows the accuracies versus timings for
the algorithms when applied to this data set, assuming a fastest time-
scale of interest of δt = 0.02 (for Delta Scuti objects) and a frequency
oversampling of 10. In both sets of plots, the ideal algorithm will
be closest to the top left of the plot, i.e. high completeness and low
timing slope (fast). We identify this as the CE method.

6 DISCUSSION

The results in the previous section show that at best period find-
ing algorithms can recover the period of a regularly periodic object
with a reasonable degree of accuracy (an equivalent phase offset
between 10−3 and 10−4 d−1, say, over a 10 yr baseline) in only
about 50 per cent of cases. If one is only interested in detecting pe-
riodic behaviour, i.e. the period or a (sub)harmonic, then rates of
∼70 per cent are achievable. For objects which do not show simple
periodicity, i.e. they are semiperiodic, quasi-periodic or multiperi-
odic, the situation is broadly much worse, typically only around
10–20 per cent of cases. Of course, the fundamental assumption un-
derlying this analysis is that the quoted period is correct. We have

been careful, however, to use data sets where all the light curves
have been inspected and the periods confirmed visually.

It should be noted that many of the algorithms score very highly
when tested on simulated periodic signals, typically sinusoids with
Gaussian noise; the problem seems to come with real data. For many
objects, quoted periods would have originally been determined from
a small number of observations over a short time baseline. The ad-
vent of large-scale synoptic sky surveys means that hundreds of
observations over baselines of 5 to 10 yr are now readily available
and future projects such as LSST will extend this to baselines of
a couple of decades. The digitization of the Harvard plate library
(DASCH9) offers multidecade baselines for many objects as do
other similar historical collections. At the other end of the scale,
exoplanet searches and space astroseismology projects, such as Su-
perWASP, Kepler and CoRoT, are providing (very) high-resolution
samplings of a few periodic cycles over periods of days and months.

This wealth of new information allows the long-term stability of
periods to be examined as well as intra/intercycle variations and
is now suggesting that, even for astrophysical objects exhibiting
periodicity, a single value is not capable of characterizing their
temporal behaviour. Kepler results have shown that 60 per cent of
dwarf stars are more variable than the Sun and probably pulsat-
ing variables (Mcquillan, Aigrain & Roberts 2011). RR Lyrae are
one of the most populous of pulsating variables and employed as
standard candles in studies of galactic structure. However, it has
long been known that ∼10 per cent exhibit a long-term, generally
quasi-periodic modulation of widely varying strength known as the

9 http://hea-www.harvard.edu/DASCH

http://www.harvard.edu/DASCH
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Blazhko effect. Studies of variable stars in M3 now show that about
a third of RR Lyrae display Blazhko behaviour and the discovery of
small amplitude cycle-to-cycle modulations of RRabs (Szabo et al.
2010), in addition to Blazhko effects, cautions that large surveys
may have seriously underestimated the number of modulated RR
Lyrae stars.

For other populous classes, the situation is equally as compli-
cated with many types of variables showing cyclic period changes
over multidecade baselines, such as close binary systems (Zavala
et al. 2002) and long-period variables (Lebzelter 2011). Sterken &
Jaschek (1996) note that a subgroup of semiregular variables show
very clear double periods. In some cases, the longer period may be
due to orbital effects indicating that the star is in a binary system.
Other semiregular variables apparently show multiperiodicity (e.g.
Kerschbaum, Lebzelter & Lazaro 2001), but in general it is not clear
whether these stars are truly multiperiodic, chaotic or both, although
the actual existence of irregular, i.e. non-periodic, variables among
red giants is in dispute (Lebzelter & Obbrugger 2009).

The traditional approach to characterizing periodicity variation is
the O−C diagram (e.g. Sterken 2005) which tracks the evolution of
the time of appearance of a feature (say the light curve maximum)
relative to the corresponding multiples of the period. The functional
form of the period change (dp/dt) determined from it can be used in
principle to infer the physics of the situation, e.g. a steadily increas-
ing pulsation period implies an expanding star; however, stochastic
evolution, e.g. the mean period follows a random walk, can produce
equivalent effects in the O−C diagram and distinguishing between
the two is an area of active research (Koen 2007). However, the
method cannot be applied to long-period pulsating variables where
the intrinsic scatter of the period is usually comparable to the exper-
imental error in the period determination (Lombard & Koen 1992).
It also has issues with multiperiodic light curves and those with
strong modulation.

Alternate approaches rely on techniques from communication
and signal processing theory, e.g. wavelets (Foster 1996; Blackman
2011), carrier signals (Pelt et al. 2011) and other time frequency
analysis methods. Though these can be very powerful, they are
complicated and it is difficult to distil the results down to a single
useful characterizing feature, akin to the period. It is possible that
the first derivative of the period as a measure of periodicity variation
or the (largest) Lyapunov exponent to describe the degree of chaos
in a time series (Wolf et al. 1985) may be suitable; however, further
discussion of these is outside the scope of this paper.

Another issue potentially affecting the results in this paper is that
of object misclassification or class uncertainty. Dubath et al. (2011)
only assign a period to eclipsing binaries and ellipsoidal variables
once the object type has been determined (to mitigate the half-
period issue with these objects). Our results support this as a viable
strategy for the LS/GLS algorithms: the improvement seen on our
combined data set is ∼4 per cent recovery to ∼50 per cent whereas
other algorithms show a significant drop. The biggest source of
error, however, will be those objects that have been misidentified
as eclipsing variables, although this could be mitigated by a high
classification accuracy for eclipsing binaries. Whilst a detailed dis-
cussion on object classification is beyond the scope of this paper,
we will note a few points.

The MACC classes that we employ for the ASAS data use a
probabilistically determined 28-term scheme whilst the original
ACVS classifications for the same objects used 439 different cate-
gories (different combinations and permutations of a set of about 20
terms), although 60 per cent of objects were classified as ‘MISC’.
One of the hardest classes to distinguish between is RR Lyrae with

fundamental overtones (RRC) and W UMas (EC) and the effect
of misidentification would be that a half-period (for a W UMa) is
reported as the true period (for a RRC). 12 per cent of MACC W
UMas are considered to be RRCs by ACVS and about 10 per cent
vice versa, although in only a handful of cases are the probabilities
of both classes within 5 per cent. The MACHO data set shows a
similar level of misclassification (∼10 per cent) between the pro-
vided object type (RR) and the MACHO assigned class (eclipsing
binary). We therefore estimate that there may be ∼10 per cent error
in the class-based results arising from misassigned object types.
Note, however, that if data from more than one band is available
then these types can be better distinguished with PCA (Süveges
et al. 2012).

It is also possible to use additional data to check the classifi-
cations, e.g. T Tauri/HAEBE stars and any massive star classes
should be near the plane. Weak-line T Tauri (WTTS) objects in
the ASAS data set do not correspond very well with the plane or
nearby star-forming regions casting doubt on the reliability of these
classifications (Feigelson, private communication). We have also
compared the reported periods for objects against the expected pe-
riod ranges for their class drawn from Debosscher et al. (2007) and
object definitions in VSX. We find that of the 41 299 objects in the
combined data set for which we have ranges, 40 052 have periods
which lie within the expected class ranges. This is certainly well
within the ∼10 per cent misclassification error we have estimated
and suggests that class uncertainty is not a significant issue in this
analysis. We note, however, that coupling classification and period
finding may produce more accurate results, e.g. Rimoldini (2013)
finds improved classifications using a weighting scheme based on
the period-folded light curve.

7 CONCLUSIONS

In this paper, we have analysed the performance and dependences of
the most popular period finding algorithms against a comprehensive
set of light curves. We find that

(i) all methods are dependent on the quality of the light curve and
show a decline in period recovery with lower quality light curves
as a consequence of fewer observations, fainter magnitudes and/or
noisier data and an increase in period recovery with higher object
variability;

(ii) all algorithms are stable with a minimum bin occupancy of
10 (assuming �φ = 0.1);

(iii) a bimodal observing strategy consisting of pairs (or more)
of short δt observations per night and normal repeat visits is better
than single observations with normal repeats;

(iv) a minimum frequency step of δν = 0.0001 is sufficient;
(v) the algorithms work best with pulsating and eclipsing variable

classes;
(vi) straightforward ensemble methods show no improvement

over single algorithms.

We also confirm that LS/GLS are strongly effected by the half-
period issue for eclipsing binaries and find that PDM2 has issues
with irregular sampling of light curves and that AOVMHW and
CE work well at bright magnitudes (containing saturated values).
Finally, in terms of overall performance factors considered here –
greatest period recovery and time – CE is the best algorithm with
AOV and PDM viable alternatives.

New and better techniques may be proposed that change the find-
ings of this analysis. To keep track of these, we intend to maintain
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an online version of this work, updating it as appropriate. If anyone
has an algorithm that they would like to see included then they
should get in touch with us.
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APPENDIX A: GPU VERSIONS OF
LOMB–SCARGLE ALGORITHMS

GPUs offer a significant performance improvement for paralleliz-
able algorithms (see Barsdell, Barnes & Fluke 2010 for a review of
their potential for astronomy). Townsend (2010) provides a LS pe-
riodogram code implemented within NVIDIA’s CUDA framework.
We have ported this to OpenCL which provides a platform-neutral
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manner to program devices such as multicore CPUs and GPUs
at a slight performance expense. This allows us to run the code
on non-NVIDIA devices, such as AMD Radeon GPUs. We have
also implemented an OpenCL version of the GLS periodogram
(Zechmeister & Kürster 2009). Details of both are given below.

A1 Porting CUDA Lomb–Scargle to OpenCL

Porting the CULSP computation kernel essentially consists of just
three steps.

A1.1 Rewriting the kernel signature

The kernel signature under CUDA is
__global__ void

__launch_bounds__(BLOCK_SIZE)

culsp_kernel(float *d_t, float *d_X, float *d_P,

float df, int N_t) {
Under OpenCL, this becomes

__kernel void culsp_kernel(__global float *d_t,

__global float *d_X, __global float *d_P,

float df, int N_t) {

A1.2 Thread management

OpenCL has global commands for addressing threads so
blockIDx.x is given by get_group_id(0) and
threadIdx.x by get_local_id(0). Synching threads
within a block, _syncthreads, is replaced with
barrier(CLK_LOCAL_MEM_FENCE). Shared memory is also
allocated with a __local keyword instead of __shared__.

A1.3 Intrinsic function calls

The OpenCL library has slightly different versions of certain func-
tions to CUDA. rintf is rint under OpenCL and the CUDA
function call __sincosf(TWOPI*ft, &s, &c) becomes a vari-
able assignment: s = sincos(TWOPI*ft, &c).

A2 An OpenCL generalized Lomb–Scargle kernel

As noted in Townsend (2010), the expressions derived in
Zechmeister & Kürster (2009) to calculate the GLS periodogram
are very similar in form to those used in the CUDA LS kernel. It
is therefore straightforward to construct a GPU kernel for the GLS
(see Fig. A1).
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Figure A1. This gives an OpenCL computation kernel for the GLS periodogram.
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