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Abstract—An automated, rapid classification of transient events 
detected in the modern synoptic sky surveys is essential for their 
scientific utility and effective follow-up using scarce resources.  
This presents some unusual challenges: the data are sparse, 
heterogeneous and incomplete; evolving in time; and most of the 
relevant information comes not from the data stream itself, but 
from a variety of archival data and contextual information 
(spatial, temporal, and multi-wavelength).  We are exploring a 
variety of novel techniques, mostly Bayesian, to respond to these 
challenges, using the ongoing CRTS sky survey as a testbed.  The 
current surveys are already overwhelming our ability to 
effectively follow all of the potentially interesting events, and 
these challenges will grow by orders of magnitude over the next 
decade as the more ambitious sky surveys get under way.  While 
we focus on an application in a specific domain (astrophysics), 
these challenges are more broadly relevant for event or anomaly 
detection and knowledge discovery in massive data streams. 
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I.  INTRODUCTION 
A new generation of scientific measurement systems 

(instruments or sensor networks) is generating exponentially 
growing data streams, now moving into the Petascale regime, 
that can enable significant new discoveries.  In many cases, 
scientific goals include detection of phenomena where a rapid 
change occurs, that have to be identified, characterized, and 
possibly followed by new measurements. The requirement to 
perform the analysis rapidly and objectively, coupled with huge 
data rates, implies a need for an automated event detection, 
classification, and follow-up decision making. 

This entails some special challenges beyond traditional 
automated classification approaches, which are usually done in 
some feature vector space, with an abundance of self-contained 
data derived from homogeneous measurements. Here, the input 
information is generally sparse and heterogeneous: there are 
only a few initial measurements, that differ from case to case, 
and having differing measurement errors; the contextual 
information is often essential, and yet difficult to capture and 
incorporate in the classification process; many sources of noise, 
instrumental glitches, etc., can masquerade as transient events 
in the data stream; new, heterogeneous data arrive, and the 
classification must be iterated dynamically.  Requiring a high 
completeness (don’t miss any interesting events) and low 
contamination (a few false alarms), and the need to complete 

the classification process and make an optimal decision about 
expending valuable follow-up resources (e.g., obtain additional 
measurements using a more powerful instrument at a certain 
cost) in (near) real time are substantial challenges that require 
some novel approaches. 

While this situation arises in many application domains, it 
is well exemplified in the developing field of time domain 
astronomy, with telescope systems dedicated to discovery of 
moving objects, e.g., potentially hazardous, Earth-crossing 
asteroids [1,2,3], transient or explosive astrophysical 
phenomena, e.g., supernovae (SNe), γ-ray bursts (GRBs), 
detection of extrasolar planets through occultation and 
microlensing flares, and so on  – each of them requiring rapid 
alerts and follow-up observations. The time domain is rapidly 
becoming one of the most exciting new research frontiers in 
astronomy [23,29], broadening substantially our understanding 
of the physical universe, and it may lead to a discovery of 
previously unknown phenomena [16,23,24]. 

The key to progress in time-domain astrophysics is the 
availability of substantial event data streams generated by 
panoramic digital synoptic sky surveys, coupled with a rapid 
follow-up of potentially interesting events (photometric, 
spectroscopic, and multi-wavelength). A number of synoptic 
astronomical surveys are already operating [see, e.g., 
1,2,3,7,17,25,26,43], and much more ambitious enterprises are 
being planned [4,5,6], moving into the Petascale regime, with 
hundreds of thousands of transient events per night, implying a 
need for automated, robust processing and follow-up. There is 
also a growing number of autonomous robotic telescopes 
geared to discovery and follow-up of rare transient events. 
Essentially, a new generation of scientific measurement 
systems is emerging in astronomy, and many other fields: 
connected sensor networks which gather and analyze data 
automatically, and respond to the outcome of these 
measurements in the real-time, often redirecting the 
measurement process itself, and without human intervention.  
Thus, the application of machine learning and machine 
intelligence methods becomes a natural and integral part of the 
scientific discovery process. 

We are developing a novel set of techniques and 
methodology for automated, real-time data analysis and 
discovery, operating on massive and heterogeneous data 
streams from robotic telescope sensor networks, fully 
integrated with the Virtual Observatory (VO) framework 
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[39,40,42].  The system under development incorporates 
machine learning (ML) elements for an iterative, dynamical 
classification of astronomical transient events, based on the 
initial detection measurements, archival information, and newly 
obtained follow-up measurements from robotic telescopes. 

 
Figure 1.   Examples of transient events from the Catalina Real-time 
Transient Survey (CRTS) [17,25].   Images in the top row show objects which 
appear much brighter that night, relative to the baseline images obtained 
earlier (bottom row).  On this basis alone, the three transients are physically 
indistinguishable, yet the subsequent follow-up shows them to be three vastly 
different types of phenomena: a flare star (left), a cataclysmic variable 
powered by an accretion to a compact stellar remnant (middle), and a blazar, 
flaring due to instabilities in a relativistic jet (right).  Accurate transient event 
classification is the key to their follow-up and physical understanding. 

II. THE CHALENGES OF AN AUTOMATED, REAL-TIME 
EVENT CLASSIFICATION 

A full scientific exploitation and understanding of 
astrophysical events requires a rapid, multi-wavelength follow-
up. The essential enabling technologies that need to be 
automated are robust classification and decision making for the 
optimal use of follow-up facilities.  They are the key for 
exploiting the full scientific potential of the ongoing and 
forthcoming synoptic sky surveys. Some approaches to 
automated classification of astronomical sources, transients and 
variables include, e.g., [10, 11, 18, 19, 20, 27, 28, 30, 31, 41, 
44, 45, 46, 47]. 

The goal is to associate classification probabilities that any 
given event belongs to a variety of known classes of variable 
astrophysical objects and to update such classifications as more 
data come in, until a scientifically justified convergence is 
reached [24].  The process has to be as automated as possible, 
robust, and reliable; it has to operate on sparse and 
heterogeneous data; it has to maintain a high completeness (not 
miss any interesting events) yet a low false alarm rate; and it 
has to learn from past experience for an ever improving, 
evolving performance. 

The next step is a development and implementation of an 
automated follow-up event prioritization and decision making 
mechanism, which would actively determine and request 
follow-up observations on demand, driven by the event data 
analysis.  This would include an automated identification of the 
most discriminating potential measurements from the available 
follow-up assets, taking into account their relative cost 
functions, in order to optimize both classification 
discrimination, and the potential scientific returns. 

In the context of time-domain astronomy, we can 
distinguish two regimes regarding data mining and 
classification: (1) A non-time-critical, archival approach, where 
the relatively stable and extensive collection of data on some 
variable object or transient event can be used to classify it, and 
(2) Real-time classification of transient events detected in 
massive data streams, that can be used to guide immediate or 
time-critical follow-up observations.  Generally speaking, 
regime (2) is much more challenging, both due to the time-
critical nature, and the fact that often less information is 
available than in the regime (1); however, results and methods 
obtained in (1) can often be used in the real-time applications 
in (2).  Here we focus on the latter. 

Figure 2.  Examples of light curves (flux histories) for different types of 
variable astrophysical objects from the Catalina Real-time Transient Survey 
(CRTS) [17,25]:  (a) Supernova (red triangles with down-pointing error bars 
are the upper limits, i.e., non-detections); (b) blazar (beamed active galactic 
nucleus); (c) pulsating variable star; (d) cataclysmic variable star.  Such past 
light histories represent an essential temporal contextual information that can 
be used for event classification. 

We can also distinguish between the signal classification, 
i.e., whether a detected event is real, or just an instrumental 
and/or a data processing artifact, and a physical classification, 
where we associate a given event with a range of different 
physical interpretations of its nature.  In the context of synoptic 
sky surveys, the former problem has been successfully 
addressed by the use of Artificial Neural Networks (ANN) 
[50], and Support Vector Machines (SVM) [51], operating on 
feature vectors composed of morphological image parameters 
measured by the source detection pipeline.  These automated 
approaches eliminate up to 95% of image artifacts, making the 
remaining filtering much more viable.  We have also used 
contextual information, e.g., a strong spatial clustering of 
candidate events is almost always indicative of a spurious 
nature, using the a priori knowledge about the instrument or the 
scientific context. 



The physical classification problem is much more difficult.  
The challenge here is that all genuine astrophysical transient 
events look the same in the images (PSF-like), so that 
information other than image morphology must be used.  One 
problem is that in general, not all parameters would be 
measured for all events, e.g., some may be missing a 
measurement in a particular filter, due to a detector problem; 
some may be in the area on the sky where there are no useful 
radio observations; etc.  This make the use of any feature-
vector based classification methods, such as ANN, SVM, etc., 
very problematic, although we describe one approach to this 
methodology below.  In general, we are driven towards 
methods that can operate on an arbitrary subset of 
measurements drawn from the continuous distributions of 
observables, such as the flux histories (light curves) in a 
particular bandpass. 

Another problem is that many observables may be given as 
upper or lower limits, rather than as defined measurements; for 
example, “the increase in brightness is > 3.6 magnitudes”, or 
“the radio to optical flux ratio of this source is < 0.01”.  One 
approach is to treat them as missing data, implying a loss of the 
potentially useful information.  A better approach is to reason 
about “censored” observations, that can be naturally 
incorporated through a Bayesian model by choosing a 
likelihood function that rules out values violating the bounds. 

III. A BAYESIAN APPROACH TO EVENT CLASSIFICATION 
The main astronomical inputs are in the form of 

observational and archival parameters for individual objects, 
which can be put into various, often independent subsets. 
Examples include various fluxes at different wavelengths, 
associated colors or hardness ratios, proximity values, shape 
measurements, magnitude characterizations at different 
timescales, etc. The heterogeneity and sparsity of data makes 
the use of Bayesian methods for classification a natural choice.  

Distributions of such parameters need to be estimated for 
each type of variable astrophysical phenomena that we want to 
classify.  Then an estimated probability of a new event 
belonging to any given class can be evaluated from all of such 
pieces of information available, as follows. Let us denote the 
feature vector of event parameters as x, and the object class that 
gave rise to this vector as y, 1 ≤ y ≤ K.  While certain fields 
within x will generally be known, such as sky position and 
brightness in selected filters, many other parameters will be 
known only sporadically, e.g., brightness change over various 
time baselines. In a Bayesian approach, x and y are related via: 

 

 
Because we are only interested in the above quantity as a 

function of k, we can drop factors that only depend on x.  We 
assume that, conditional on the class y, the feature vector 
decomposes into B roughly independent blocks, generically 
labeled xb.  These blocks may be singleton variables, or contain 
multiple variables, e.g., sets of filters that are highly correlated.  
The resulting algorithm is called naive Bayes because of its 
assumption that we may decouple the inputs in this way [8,9]. 

This decoupling is advantageous because it allows us to 
circumvent the “curse of dimensionality,” because we will 
eventually have to learn the conditional distributions P(xb | 
y = k) for each k.  As more components are added to xb, more 
examples will be needed to learn the corresponding 
distribution.  The decomposition keeps the dimensionality of 
each feature block manageable.  Moreover, such decomposition 
allows us to cope easily with ignorance of missing variables:  
we simply drop the corresponding factors. 

As a simple demonstration of the technique, we have been 
experimenting with a prototype Bayesian Network (BN) model 
[32,33].  We use a small but homogeneous data set involving 
colors of transients detected in the CRTS survey [17,25], as 
measured at the Palomar 1.5-m telescope.  We have used 
multinomial nodes (discrete bins) for 3 colors, with provision 
for missing values, and a multinomial node for Galactic latitude 
which is always present and is a probabilistic indicator of 
whether an object is Galactic or not.  The current priors used 
are for six distinct classes, cataclysmic variables (CVs), 
supernovae (SN), Blazars, other AGNs, UV Ceti stars and all 
else bundled into a sixth class, called Rest. 

Using a single epoch measurement of colors, in the relative 
classification of CVs vs. SNe, we obtain a completeness of ~ 
80% and a contamination of ~ 19%, which reflects a qualitative 
color difference between these two types of transients. In the 
relative classification of CVs vs. Blazars, we obtain a 
completeness of ~ 70 – 90% and a contamination of ~ 10 – 
24%, which reflects the fact that colors of these two types of 
transients tend to be similar, and that some additional 
discriminative parameter is needed.  We are currently 
expanding to a BN with an order of magnitude more classes, 
more observable parameters (e.g., flux and color measurements 
with more bandpasses and at different epochs), and additional 
BN layers. 

In this framework the priors come from a set of observed 
parameters like distribution of colors, distribution of objects as 
a function of Galactic latitude, frequencies of different types of 
objects etc.  The posteriors we are interested in are determining 
the type of an object based on, say, its (r-i) color, Galactic 
latitude and proximity to another object etc. Sparse and/or 
irregular light curves (LC) from any given object class can 
have sufficient salient structure that can be exploited by 
automated classification algorithms. We have experimented 
with Gaussian Process Regression [34], and found it to be 
useful for parameter estimation for a certain types of LCs that 
can be represented by a standard data model (e.g., Supernovae). 

Due to the computational complexity of Gaussian Process 
modeling, we are also experimenting with a different and 
simpler probabilistic approach to characterizing LCs and their 
intrinsic shape and structure.  By pooling a large ensemble of 
an object class’s individual LCs (constituting a representative 
training set) we aim to model class-specific shape and structure 
probabilistically. We do this by constructing a histogram of 
empirical probability density function (PDF) over invariant LC 
descriptors or “signatures” (described below), which are then 
used for classification of new event observations (test set).  
Such comparisons (test probe vs. trained model) can be made 
either in batch mode (e.g, as offline searches in a LC database) 



as well as incrementally and on-line, as new observations 
“trickle in”, with the revised classification scores growing more 
confident with each additional observation that is accumulated. 

 
Figure 3.  Probabilistic structure functions representing the  joint distribution 
of (Δt, Δm) values from all (Δt > 0) paired observations in LCs, shown here as 
discretized 2D histograms of 3 classes of transients: (a) supernovae of type 
SN-Ia, (b) supernovae of type SN-IIp and (c) Cataclymic Variables, using bin 
widths of Δt = 1 day, and Δm = 0.25, smoothing with an anisotropic 
convolution kernel, and with pixel intensity corresponding to log-probability. 
These class prototype histograms were obtained by pooling {879, 282, 426} 
LCs from the corresponding 3 object classes. Note that the upward “arch” of 
the supernovae is due to their sustained flux decay (increasing Δm) and that 
the temporal/flux shape structure of all 3 classes forms a distinct signature. 
The probability of observed (Δt, Δm) values from a new (unknown) object’s 
LC can therefore be easily “read off” (scored) by each histogram. Probabilistic 
structure functions can thus be viewed as “generative models” of (Δt, Δm) for 
their respective LC classes (i.e., as nonparametric likelihood functions). 

Since typical survey (flux-only) observations come in the 
form of magnitude changes over time increments – (Δt, Δm) – 
we focus on modeling the joint distribution of all such pairs of 
values for a given LC (note: we consider all causal increments, 
corresponding to Δt > 0, therefore n LC observations lead to 
n(n-1)/2 pairs). By virtue of being increments these (Δt, Δm) 
change values and their PDF will be invariant to absolute 
magnitude and time as well as corresponding shifts in each 
(since distance to an object and “true” onset time of its LC are 
unknown). These densities allow flux upper limits to be 
encoded rather easily – e.g., under poor seeing conditions we 
may only have bounded observations, such as m > 18, which 

leads to a bounded Δm (which maps to a vertical segment in the 
histogram, as opposed to a single bin). 

We can also smooth our 2D histograms in order to model 
uncertainties in (Δt, Δm). Hence, this yields a computationally 
simple and effective way to implement a nonparametric density 
model that is flexible enough for the variety of object classes 
under consideration. Note that our histograms can be viewed as 
probabilistic structure functions: a standard s.f. simply gives 
flux variance (a scalar quantity) as a function of Δt, whereas 
here we have a full PDF on Δm, indexed by Δt (from which a 
standard s.f. can be easily derived). Figure 3 shows examples 
of these 2D histograms for three classes of transient objects.  

When a new transient is detected, its (Δt,Δm) histogram 
starts to be accumulated.  After each new measurement, it is 
compared to a set of template histograms for different classes 
of transients.  We apply a set of metrics that produces relative 
likelihoods of the new transient belonging to any given class.  
As the data accumulate, the classification accuracy improves. 

In our preliminary experimental evaluations with few object 
classes (single-burst like SN, periodic variable stars like RR 
Lyrae / Miras, as well as stochastic sources like Blazars and 
CVs) we have found that these compact (Δt, Δm) density 
models have potential as a simple yet accurate classification 
framework, especially when faced with sparse and irregular 
monochromatic time series like typical observational LC data. 

The next step in the development of this classifier is to use 
4D histograms of data point triplets.  For example, if we 
measure magnitudes m1, m2, and m3 at times t1, t2, and t3, the 
histogram axes are now (Δt12, Δm12, Δt23, Δm23).  These 4D 
histograms are sparsely populated, but separate the different 
classes more clearly.  This work is still in progress. 

IV. CLASSIFICATION OF PARAMETRIZED LIGHT CURVES 
An independent approach uses a parameterization of light 

curves, which have variable lengths, irregular sampling, etc., 
replacing them with a uniform set of statistical descriptors that 
can then be used to compose feature vectors, such as those 
described in [49].  Having the heterogeneously sampled light 
curves converted into a uniform set of feature vectors allows us 
to use a broad array of supervised and unsupervised classifiers, 
such as the ANN, SVM, Decision Trees (DT), etc.  For our 
initial experiments we used DTs, where each internal node 
denotes a test on an attribute, each branch represents the 
outcome of the test and each leaf holds a class label. 

We then search for an optimal set of features that give the 
best discrimination between different classes.  We have 
applied a forward feature selection strategy that consists in 
selecting a subset of features from the training set that best 
predict the test data by sequentially selecting features until 
there is no improvement in prediction. 

To avoid overfitting we use a 10-fold cross validation 
approach: the original sample is randomly partitioned into 10 
subsamples.  Each time a single subsample is retained as test, 
and the remaining  are used as training data. This process is 
then repeated 10 times with each of the subsamples used 
exactly once as test.  Table 1 shows the confusion matrix for 



the classification of 3 types of transient or variable sources 
from the CRTS, using 7 out of about 60 available features. 

These are very encouraging results, and we continue to 
improve the feature selection.  We note that different sets of 
features perform best for different class discriminations (see 
below).  We will also be testing other supervised and 
unsupervised methods, in addition to DTs. 

Table 1 

Class Completeness Contamination 

Blazar 83% 13% 

CV 94% 6% 

RR Lyrae 97% 4% 
 

V. A HIERARCHICAL APPROACH TO CLASSIFICATION 
In the course of this work, it became obvious very quickly 

that different types of classifiers perform better for some event 
classes than for the others.  Therefore, we took a hierarchical 
approach where some astrophysically motivated major features 
are used to separate different groups of classes, and then 
proceeding down the classification hierarchy using at every 
node those classifiers that are demonstrated to work best for 
that particular task, as illustrated schematically in Fig. 4. 

 
Figure 4.  An approach to hierarchical classification in a decision tree mode.  
At each node we deploy an optimized combination of Bayesian classifiers to 
make a binary decision as indicated (the choices are informed by the prior 
astrophysical knowledge).  We indicate the currently achieved best accuracies 
for the top 3 nodes; further work is in progress in optimizing the separation of 
the lower classification. 

For example, events associated with Supernovae should 
have no prior outburst detections at the same location on the 
sky, since a star can only explode once, and repeated SN 

explosions from a small volume in any given galaxy would be 
exceedingly rare.  Thus, if the past light curve shows any 
previous activity (a constant flux is OK, as it may be from the 
host galaxy), then the event cannot be a SN.  Or, if a variable 
object shows variations between two flux bounds, it is very 
likely a pulsating variable star; if it shows more of an 1/f noise 
bursting behavior, then it could be either a cataclysmic variable 
star or a blazar; but if there is a radio source associated with it, 
then it is very likely a blazar; etc. 

VI. INCORPORATING CONTEXTUAL INFORMATION 
Contextual information can be highly relevant to resolving 

competing interpretations: for example, the light curve and 
observed properties of a transient might be consistent with its 
being a cataclysmic variable star, a blazar, or a supernova.  If it 
is subsequently found that that there is a galaxy in close 
proximity, the supernova interpretation becomes much more 
plausible.  Such information, however, can be characterized by 
high uncertainty and absence, and by a rich structure – if there 
are two candidate host galaxies, their morphologies, distances, 
etc., become important, e.g., is this type of supernova more 
consistent with being in the extended halo of a large spiral 
galaxy or in close proximity to a faint dwarf galaxy?  The 
ability to incorporate such contextual information in a 
quantifiable fashion is highly desirable.  In a separate project 
we are investigating the use of crowdsourcing as a means of 
harvesting the human pattern recognition skills, especially in 
the context of capturing the relevant contextual information, 
and turning them into machine-processable algorithms. 

A methodology employing contextual knowledge forms a 
natural extension to the logistic regression and classification 
methods mentioned above. Ideally such knowledge can be 
expressed in a manipulable fashion within a sound logical 
model, for example, it should be possible to state the rule that 
"a supernova has a stellar progenitor and will be substantially 
brighter than it by several order of magnitude" with some 
metric of certainty and infer the probabilities of observed data 
matching it. Markov Logic Networks (MLNs, [36]) are such a 
probabilistic framework using declarative statements (in the 
form of logical formulae) as atoms associated with real-valued 
weights expressing their strength. The higher the weight, the 
greater the difference in log probability between a world that 
satisfies the formula and one that does not, all other things 
being equal. In this way, it becomes possible to specify 'soft' 
rules that are likely to hold in the domain, but subject to 
exceptions - contextual relationships that are likely to hold such 
as supernovae may be associated with a nearby galaxy or 
objects closer to the Galactic plane may be stars. 

A MLN defines a probability distribution over possible 
worlds with weights that can be learned generatively or 
discriminatively: it is a model for the conditional distribution of 
the set of query atoms Y given the set of evidence atoms 
X.  Inference consists of finding the most probable state of the 
world given some evidence or computing the probability that a 
formula holds given a MLN and set of constants, and possibly 
other formulae as evidence. Thus the likelihood of a transient 
being a supernova, depending on whether there was a nearby 
galaxy, can be determined. 

 



The structure of a MLN –  the set of formulae with their 
respective weights –  is also not static but can be revised or 
extended with new formulae either learned from data or 
provided by third parties. In this way, new information can 
easily be incorporated. Continuous quantities, which form 
much of astronomical measurements, can also be easily 
handled with a hybrid MLN [37]. 

VII. COMBINING AND UPDATING THE CLASSIFIERS 
An essential task is to derive an optimal event 

classification, given inputs from a diverse set of classifiers such 
as those described above.  A MLN approach could be used to 
represent a set of different classifiers and the inferred most 
probable state of the world from the MLN would then give the 
optimal classification. For example, a MLN could fuse the 
beliefs of different ML-based transient classifiers – four give a 
Supernova classification, and three give a Cataclysmic 
Variable, say – to give a definitive answer. 

We are experimenting with the so-called “sleeping expert” 
[35] method.  A set of different classifiers each generally works 
best with certain kinds of inputs.  Activating these optionally 
only when those inputs are present provides an optimal solution 
to the fusion of these classifiers.  Sleeping expert can be seen 
as a generalization of the if-then rule:  if that condition is 
satisfied then activate this expert (in this case, a particular 
classifier), e.g., a “ML specialist” that makes a prediction only 
when the instance to be predicted falls within their area of 
expertise.  For example, some classifiers work better when 
certain inputs are present, and some work only when certain 
inputs are present.  It has been shown that this is a powerful 
way to decompose a complex classification problem.   External 
or a priori knowledge can be used to awake or put experts to 
sleep and to modify online the weights associated with a given 
classifier; this contextual information may be expressed in text. 

A crucial feature is the ability to update and revise the prior 
distributions on the basis of the actual performance, as we 
accumulate the true physical classifications of events, e.g., on 
the basis of follow-up spectroscopy.  Learning, in the Bayesian 
view, is precisely the action of determining the probability 
models above – once determined, the overall model can be 
used to answer many relevant questions about the events.  
Analytically, we formulate this as determining unknown 
distributional parameters θ in parameterized versions of the 
conditional distributions above, P(x | y = k; θ).  (Of course, the 
parameters depend on the object class k, but we suppress this 
below.)  In a histogram representation, θ are just the 
probabilities associated with each bin, which may be 
determined by computing the histogram itself.  In a Gaussian 
representation, θ would be the mean vector µ and covariance 
matrix Σ of a multivariate Gaussian distribution, and the 
parameter estimates are just the corresponding mean and 
covariance of the object-k data.  When enough data is available 
we can adopt a semi-parametric representation in which the 
distribution is a linear superposition of such Gaussian 
distributions. The corresponding parameters may be chosen by 
the Expectation-Maximization algorithm [13].  Alternatively, 
kernel density estimation could be used, with density values 
compiled into a lookup table [14,21]. 

We can identify three possible sources of information that 
can be used to find the unknown parameters, e.g., from the a 
priori knowledge, e.g. from physics or monotonicity 
considerations, or from examples that are labeled by experts, or 
from the feedback from the downstream observatories once 
labels are determined.  The first case would serve to give an 
analytical form for the distribution, but the second two amount 
to the provision of labeled examples, (x, y), which can be used 
to select a set of k probability distributions. 

VIII. AUTOMATING FOLLOW-UP DECISION MAKING 
We typically have sparse observations of a given object of 

interest, leading to classification ambiguities among several 
possible object types (e.g., when an event is roughly equally 
likely to belong to two or more possible object classes, or when 
the initial data are simply inadequate to generate a meaningful 
classification at all).  Generally speaking, some of them would 
be of a greater scientific interest than others, and thus their 
follow-up observations would have a higher scientific return.  
Observational resources are scarce, and always have some cost 
function associated with them, so a key challenge is to 
determine the follow-up observations that are most useful for 
improving classification accuracy, and detect objects of 
scientific interest.  

There are two parts to this challenge.  First, what type of a 
follow-up measurement – given the available set of resources 
(e.g., only some telescopes/instruments may be available) – 
would yield the maximum information gain in a particular 
situation?  And second, if the resources are finite and have a 
cost function associated with them (e.g., you can use only so 
many hours of the telescope time), when is the potential for an 
interesting discovery worth spending the resources? 

We take an information-theoretic approach to this problem 
[15] that uses Shannon entropy to measure ambiguity in the 
current classification.  We can compute the entropy drop 
offered by the available follow-up measurements – for 
example, the system may decide that obtaining an optical light 
curve with a particular temporal cadence would discriminate 
between a Supernova and a flaring blazar, or that a particular 
color measurement would discriminate between, say, a 
cataclysmic variable eruption and a gravitational microlensing 
event.  A suitable prioritized request for the best follow-up 
observations would be sent to the appropriate robotic (or even 
human-operated) telescopes. 

Note that the system is suggesting follow-up observations 
that may involve imperfect observations of a block of 
individual variables.  This is a more powerful capability than 
rank-ordering individual variables regarding their helpfulness.  
Furthermore, we will ascertain that the framework accounts for 
the varying degrees of accuracy of different observations.  The 
key to quantifying the classification uncertainty is the 
conditional entropy of the posterior distribution for object class 
y, given all the available data.  Let H[p] denote the Shannon 
entropy of the distribution p, which is always a distribution 
over object class y.  (The classification is discrete, so we only 
need to compute entropies of discrete distributions.)  Then, 
when we take an additional observation x+, uncertainty drops 
from H[p(y | x0)] to H[p(y | x0, x+)].  We want to choose the 
observation x+ so that the expected final entropy is lowest. 



Because all observing scenarios start out at the same 
entropy H [p(y | x0)], maximizing entropy drop is the same as 
minimizing expected final entropy, E [H [p(y | x0, x+)]].  The 
expectation is with respect to the distribution of the new 
variable x+, whose value is not yet known.  Therefore, this 
entropy is a function of the distribution of x+, but not the value 
of the random variable x+.  The distribution captures any 
imprecision and noise in the new observation.  In our notation, 
the best follow-on observation thus minimizes, over available 
variables x+, 

 
This is equivalent to maximizing the conditional mutual 

information of x+ about y, given x0; that is, I(y; x+ | x0) [22].  
The density above is known within the context of our assumed 
statistical model.  Thus, we can compute, within the context of 
the previously learned statistical model, a rank-ordered list of 
follow-on observations, which will lead to the most efficient 
use of resources. 

Alternatively, instead of maximizing the classification 
accuracy, we consider a scenario where the algorithm chooses a 
set of events for follow-up and subsequent display to an 
astronomer. The astronomer then provides information on how 
interesting the observation is. The goal of the algorithm is to 
learn to choose follow-up observations which are considered 
most interesting, given the cost function constraints (e.g., the 
value of a limited amount of observing time at a given 
telescope or an instrument. 

This problem can be naturally modeled using Multi-Armed 
Bandit algorithms (MABs) [38].  The MAB problem can 
abstractly be described as a slot machine with k levers, each of 
which has different expected returns (unknown to the decision 
maker).  The aim is to determine the best strategy to maximize 
returns.  There are two extreme approaches: (1) exploitation - 
keep pulling the lever which, as per your current knowledge, 
returns most, and (2) exploration – experiment with different 
levers in order to gather information about the expected returns 
associated with each lever.  They key challenge is to trade off 
exploration and exploitation. There are algorithms [47] 
guaranteed to determine the best choice as the number of 
available tries goes to infinity. 

In this analogy different telescopes and instruments are the 
levers that can be pulled. Their ability to discriminate between 
object classes forms the returns. This works best when the 
priors are well assembled and a lot is already known about the 
type of object one is dealing with.  But due to the heterogeneity 
of objects, and increasing depth leading to transients being 
detected at fainter levels, and more examples of relatively rarer 
subclasses coming to light, treating the follow-up telescopes as 
a MAB will provide a useful way to rapidly improve the 
classification and gather more diverse priors.  An analogy 
could be that of a genetic algorithm which does not get stuck in 
a local maxima because of its ability to sample a larger part of 
the parameter space. 

IX. A BROADER APPLICABILITY:  KNOWLEDGE DISCOVERY 
IN MASSIVE DATA STREAMS 

While our work was motivated largely by the acute and 
growing need for real-time data analysis and exploitation in 
astronomy and space science, the challenges we are tackling 
are common to many other fields, and it is easy to envision 
applications in fields as diverse as environmental monitoring, 
security, etc.  In many situations, the intrinsically short time 
scales and large raw data volumes, combined with bandwidth 
limitations or signal latency, imply a need for a highly 
automated system; with machine learning, decision making, 
and rapid and prioritized follow-up response, without any 
human intervention.  This has to be a dynamic process, 
incorporating the new data as they come in to make use of 
limited follow-up resources and constrained local processing 
capability (e.g., on a spacecraft, or in a field sensor).  This 
presents a number of highly non-trivial challenges, some of 
which we addressed here, but with a potentially very broad 
applicability in terms of the methodology and technological 
solutions. 

We are now dealing with Terascale data streams, and 
moving into the Petascale regime, but within a decade we will 
be facing challenges posed by data and event streams orders of 
magnitude larger and more complex, characterized by 
heterogeneity and diversity, in terms of both the phenomena, 
and the measurements.   Tackling the problems of a rapid, 
automated classification and prioritization of interesting or 
anomalous events in massive data streams can only grow in 
relevance and a potential scientific utility. 

More broadly, since the Petascale data sets and data streams 
exceed the human ability to inspect and explore them in any 
traditional way, incorporation of machine learning and machine 
intelligence tools is becoming a natural and a necessary part of 
the scientific method for the data-intensive research in the 21st 
century, a key component of the “fourth paradigm” [48]. 
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