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ABSTRACT
High-volume feature-rich data sets are becoming the bread-and-butter of 21st century as-
tronomy but present significant challenges to scientific discovery. In particular, identifying
scientifically significant relationships between sets of parameters is non-trivial. Similar prob-
lems in biological and geosciences have led to the development of systems which can explore
large parameter spaces and identify potentially interesting sets of associations. In this paper, we
describe the application of automated discovery systems of relationships to astronomical data
sets, focusing on an evolutionary programming technique and an information-theory technique.
We demonstrate their use with classical astronomical relationships – the Hertzsprung–Russell
diagram and the Fundamental Plane of elliptical galaxies. We also show how they work with
the issue of binary classification which is relevant to the next generation of large synoptic
sky surveys, such as the Large Synoptic Survey Telescope (LSST). We find that comparable
results to more familiar techniques, such as decision trees, are achievable. Finally, we consider
the reality of the relationships discovered and how this can be used for feature selection and
extraction.

Key words: methods: data analysis – astronomical data bases: miscellaneous – virtual
observatory tools.

1 IN T RO D U C T I O N

The rate of scientific discovery in astronomy has traditionally been
tied to the amount of data available. The advent of digital astronomy
with modern detectors and computational resources, e.g. data bases,
has changed this. Although more data in the past two decades has
allowed us to discover the cosmic web, dark energy and exoplanets,
the vast majority of such low-hanging fruit have now been found.
The new challenge is growing data complexity. The era of data-
intensive astronomy promises a vastly more thorough exploration
of parameter space but the discovery of new scientifically significant
relationships is equally more complicated and daunting when faced
with overwhelming data dimensions and volumes.

Given a highly complex data set, such as the Sloan Digital Sky
Survey (SDSS), with hundreds of parameters for each object, and
sufficient numbers of objects – hundreds of millions or more –
to provide a fair and representative covering of parameter space,
one will uncover many significant relationships – linear, non-linear,
functional, structural – between pairs, triplets and groups of parame-
ters. However, only a small fraction of these will be truly causative,
the result of some valid underlying astrophysical process or pro-
cesses, and identifying these is non-trivial. In fact, Cubitt, Eiser &
Wolf (2012) have shown that identifying the underlying dynamical
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equations from any amount of experimental data, however precise,
is a provably computationally hard (NP-hard1) problem.

The framework of astroinformatics, combining astronomy, ap-
plied computer science and information technology, has arisen to
contend with this computational intractability. At its core are so-
phisticated data mining and multivariate statistical techniques which
seek to extract and refine information from highly complex data sets
(see Ball & Brunner 2010 for an overall review of different tech-
niques in astronomy, Bloom & Richards 2012 for those specific to
the time domain and the IVOA KDDIG webpages2 for general ma-
terial related to this). This includes identifying unique or unusual
classes of objects, estimating correlations and computing the statis-
tical significance of a fit to a model in the presence of missing or
bounded data, i.e. with lower or upper limits, as well as visualiz-
ing this information in a useful and meaningful manner. However,
the nature of these methodologies is, at best, semi-automated with

1 In computational complexity theory, a problem that is solvable in polyno-
mial time by a non-deterministic Turing machine is an NP (non-deterministic
polynomial time) problem. NP-hard problems are those which are at least
as hard as any NP-problem, e.g. given a set of integers, does any non-empty
subset of them add up to zero?
2 International Virtual Observatory Alliance Knowledge Discovery
in Databases Interest Group: http://www.ivoa.net/cgi-bin/twiki/bin/view/
IVOA/IvoaKDD.
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focused application in particular regions of discovery space rather
than allowing an unbounded exploration of what might be there.

In recent years, a number of approaches have been presented
in the general scientific literature that seek to redress this, e.g.
Oliver et al. (2004), Schmidt & Lipson (2009), Sparkes et al. (2010)
and Reshef et al. (2011). Discovery-based science employs cutting
edge data mining techniques for automated hypothesis forming and
automated theorem proving. Many of these tend to have originated
within the context of systems biology (out of association analysis)
where researchers are attempting to identify and derive universal
relationships in biological systems akin to those which seem to exist
in physical ones, although there is prior art in computer science,
particularly within the area of genetic programming (Koza 1992).

These methods are also similar in scope to various feature se-
lection and extraction and dimensional reduction techniques, such
as principal component analysis (e.g. Francis et al. 1992) and self-
organizing maps (Kohonen 1982), which attempt to counter the
‘curse of dimensionality’ by reducing high-dimensional data to
lower more manageable dimensions whilst preserving meaning-
ful structures within them. Nonetheless, these so-called automated
discovery methods are applicable to any general data set and espe-
cially to those with many variables, such as those which arise in
economics, climate science, sensor networks or any field advocating
an informatics-based approach.

In this work, we describe the application of automated discovery
systems of relationships to astronomical data. We have focused in
particular on two types of approach – those that seek to identify
general connections (correlations) between particular parameters
in a data set and those that try to formulate a specific functional
relationship between parameters. These may be considered repre-
sentative of the type of mapping of discovery space that has so far
been attempted. A common complaint of data mining techniques
is that they usually follow a ‘black box’ approach – the data go in
and the answer comes out but there is no real understanding of how
one led to the other. We hope to show that automated discovery
systems are also more translucent if not actually transparent and
allow some deconstruction of the methodology to understand what
is going on inside. This is particularly important if their discoveries
are to be scientifically validated, i.e. a particular relationship is not
only statistically significant but also stems from a (new) non-trivial
underlying cause.

It should be noted that although these discovery tools are labelled
as automated, they are actually employed as part of a collaborative
human–machine discovery process. In data-intensive problems, not
only are data processing and analysis automated but also necessarily,
given the data volumes and dimensions, the first levels of data
interpretation. The human expert now validates machine-generated
hypotheses rather than attempting to formulate them themselves.
We still make discoveries, but as the complexity of data increases,
we need machine intelligence to help us guide towards an insight.

This paper is structured as follows: in Section 2, we will describe
the two specific techniques we are applying whilst in Section 3, we
will present a number of different astronomical contexts in which
these have been applied – these both attempt to mimic or recreate
past discoveries as well as find new ones. We will analyse and
discuss our results in Sections 4 and 5 and present our conclusions
in Section 6.

2 AUTOM ATED DISCOV ERY SYSTEMS

The methods we are applying in this paper will probably be unfa-
miliar to many astronomers and so, in this section, we will introduce
some of the pertinent terminology and formalism related to them.

2.1 Maximal information coefficient

The maximal information coefficient (MIC; Reshef et al. 2011)
aims to be the 21st-century equivalent of the Pearson correlation
coefficient (Speed 2011) but it goes beyond just expressing linear
associations and can quantify general associations between vari-
ables. It is based on the mutual information between two random
variables, A and B:

MI(A, B) =
∑
a∈A

∑
b∈B

p(a, b) log

(
p(a, b)

p(a)p(b)

)
, (1)

where p(a) and p(b) are the marginal probability mass functions of A
and B and p(a, b) is the joint probability mass function, respectively.

Now consider a partitioning of a data set, D, of ordered pairs,
{(ai, bi), i = 1, . . . , n}, into an x-by-y grid, G, such that there
are x bins (of variable size) covering a and y bins (also of variable
size) spanning b, respectively. The probability mass function of
a particular grid cell is clearly proportional to the number of data
points falling inside that cell and so, for a given (x, y), there will be a
maximal mutual information. We can then construct a characteristic
matrix M(D) whose elements:

M(D)x,y = max(MI)

log min{x, y}
are the highest normalized mutual information achieved by any of
the corresponding x-by-y grids. The MIC is then defined to be the
maximum value in M, such that xy < C, where C is a function of the
sample size and represents the maximal grid size considered. Too
high a value for C can lead to non-zero scores even for random data
because each data point gets its own cell, while setting it too low
means that only simple patterns are considered. Reshef et al. (2011)
found empirically that C = n0.6 provides a satisfactory limit:

MIC(D) = max
xy<C(n)

{
M(D)x,y

}
.

The behaviour of MIC is that it tends to 1 for all never-constant
noiseless functional relationships and to 0 for statistically indepen-
dent variables. Moreover, MIC–r2, where r is the Pearson correla-
tion coefficient, is an indicator of a non-linear relationship between
two variables: as r is a measure of linear dependence, the statistic
MIC–r2, is near to 0 for linear relationships and large for non-linear
relationships with high values of MIC. Other measures involving
MIC and M (the characteristic matrix) can also indicate deviations
from monotonicity, the degree to which the data set appears to be
sampled from a continuous function and the complexity of the as-
sociation, as different relationship types give rise to characteristic
matrices with different properties.

The statistical significance of an MIC value can be determined
from comparison of a real value against a set of values from 1/α −
1 surrogate data sets where α is the probability of false rejection.
Because MIC is a rank-order statistic, the uncorrected p-value [es-
sentially the one-tailed p-value for this statistic; when multiple hy-
potheses (many parameters) are being tested, a corrected value must
be used to mitigate false positives] of a given MIC score under a
null hypothesis of statistical independence depends only on the
score and on the sample size of the relationship in question and not
on the specific relationship being tested. Pre-computed uncorrected
p-values are available for different sample sizes.3

To illustrate this statistic, consider a data set of 100 points ran-
domly selected from a cubic relationship (y = 2x3 − 3x2 − 3x + 2,

3 http://www.exploredata.net/Downloads/P-Value-Tables
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Figure 1. This shows three separate 3 × 2 grid partitions of a data set of 100
points randomly selected from a cubic relationship. The mutual information
for each grid is solid line –0.059, dashed line –0.044 and dotted line – 0.023,
respectively.

x ∈ [−1.5, 2.5]) plus a unitary Gaussian noise term, i.e. a Gaussian
about the y-value with σ = 1. We can partition this data set into a
set of 3 × 2 grids (the maximum grid size is set to xy < 15.8 for this
data) of variable size (see Fig. 1). Each grid has a mutual information
associated with it and for a given partition configuration, e.g. 3 × 2,
there will be a maximal mutual information. The maximal (normal-
ized) mutual information across all configurations (44 in this case)
is the MIC. This data set has a statistically significant MIC of 0.836
compared to a linear regression coefficient of just 0.068. It also has
high values for the measures indicating non-linearity (0.831) and
functionality (0.836) and moderate non-monotonicity (0.427).

2.2 Symbolic regression

Symbolic regression is the task of finding a function, in symbolic
form, that fits a finite sample of data. The most efficient approach
employs a genetic algorithm-based search (Koza 1992) of the space
of mathematical expressions to determine the best-fitting functional
form. Successive generations of formulae are specified in terms of
a (user-defined) mathematical alphabet of atomic building blocks,
such as algebraic and Boolean operators, analytical function types –
trigonometric, exponential/logarithmic, power laws, etc., and state
variables, which keeps the search tenable. Its advantage over more
standard regression methods is that the search process works simul-
taneously on both the model specification problem (the form of the
fitting equation) and the problem of fitting coefficients.

EUREQA4 (now also called FORMULIZE) (Schmidt & Lipson 2009)
is a software tool which employs symbolic regression to describe a
data set by identifying the simplest mathematical formulae which
could describe the underlying mechanisms that produced the data.
The tool works from the numerical partial derivatives of each pair of
variables in the input data set and uses an evolutionary algorithm to
explore this partial differential metric space for non-trivial invariant

4 http://creativemachines.cornell.edu/eureqa

quantities, looking for predicted partial derivatives that best match
the numerical ones:

�y

�x

∣∣∣∣
Di

� δy

δx

∣∣∣∣
f (xi ,yi )

= δf

δx

δf

δy
,

where f (xi, yi) is one of the candidate functions. The search con-
tinues until some stopping criterion – time elapsed, goodness of fit,
confidence of fit (maturity and stability), etc. – is met. The output
is then an ordered list of final candidate analytical expressions on
the accuracy–parsimony Pareto front, i.e. the tradeoff between the
most optimal (best fit according to some criteria) and complexity.
Each mathematical operation in an expression has a numerical value
(cost) associated with it, e.g. addition = 1, exponentiation = 4, and
the complexity of a formula is defined here as the sum of these
values. A high-order polynomial could therefore be more complex
than a straightforward exponential or trigonometric function.

When comparing and optimizing solutions, EUREQA employs a
user-defined error metric. A number of different measures are avail-
able and the nature of the data can help determine which is the
most appropriate, for example, minimizing the mean of the squared
residual errors is suitable for normally distributed noise whereas
the logarithmic error is better for many outliers. Data can also be
weighted according to some prescription, although the importance
of particular variables can always be explicitly stressed in the defini-
tion of the equation form being searched for. There are, too, various
types of data pre-processing operations available, familiar to data
mining, such as normalization, outlier rejection and missing value
handling.

The results of symbolic regression, i.e. the expressions identified
by EUREQA, are the best (non-trivial) mathematical descriptions of
the data. Their interpretation and physical validity, however, remain
an exercise for the human expert, who may take them at face value or
decide to cross-check them (‘prove them’) using other techniques.

3 EXPERI MENTS

In this section, we report on a number of automated discovery
experiments we have carried out with different representative as-
tronomical data sets. A number of different options are available,
depending exactly on how you want to measure the whole process.
It should be noted that in applying our techniques, we are not sim-
ply fitting a set of formulae to data but that the respective discovery
methods decide which variables to use and in what functional rela-
tionship and then find the optimal coefficients and measures of fit.
The two methods are also sufficiently different that it is interesting
to compare their findings relative to each other.

3.1 The Hertzsprung–Russell diagram

The Hertzsprung–Russell (HR) diagram is the quintessential repre-
sentation of physical relationships associated with different stages
of stellar evolution. The original plot of magnitude versus tem-
perature can be considered as the two-dimensional PDF, P(M, Teff);
more modern versions also incorporate metallicity and surface grav-
ity giving a four-dimensional PDF, P(M, Teff, [M/H], log g) – which
constrains all of its arguments. The parametrization of these rela-
tionships in terms of observable and non-observable stellar quan-
tities expressed as a function of the observable colour is an open
problem in astronomy, e.g. Wilson & Hurley (2003) and Zaninetti
(2008). This is particularly relevant for the next generation of large
photometric surveys, e.g. LSST, where spectroscopy of every source
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is not feasible. Note that Liu et al. (2012) describe a related prob-
lem of inferring the astrophysical parameters of stars from Gaia
spectrophotometry.

Unfortunately, prior to the availability of the Gaia data, there is
no single large stellar data set which offers both accurate distances
and physical parameters for a representative sampling of the HR
space. Hipparcos has reliable distances but no intrinsic parameters,
such as Teff or [M/H]. RAVE DR3 (Siebert et al. 2011) and SEGUE
(Yanny et al. 2009) both offer spectroscopically determined param-
eters (Teff, g, [M/H]) but lack distance information – RAVE DR3
shares only 685 objects with Hipparcos and with SEGUE none.
A photometric parallax relationship has been defined for SEGUE
based on stellar metallicity and colour (Ivezic et al. 2008) but the
corresponding HR diagram shows only a main sequence (see Fig. 2).
For a relatively complete coverage of the parameter space, we have
therefore constructed a data set consisting of all stars in SIMBAD
with a quoted parallax, effective temperature (Teff), surface gravity
(g) and metallicity [M/H]). Fig. 3 shows the HR diagram for this
data set of 3865 stars.

As a comparison, we have also considered the distribution of
parameters for stars from a single globular cluster. 47 Tuc is one of
the most-studied globular clusters: it is comparatively near, one of

Figure 2. The HR diagram for the SEGUE data using photometric parallax
to determine absolute magnitude.

Figure 3. The HR diagram for the 3865 stars in SIMBAD with parallax,
effective temperature, surface gravity and metallicity values. The colour
coding is according to spectral type, broadly defined as: blue – O, B, A;
green – F, G; yellow – K; red – M.

Figure 4. The HR diagram for the stars in 47 Tuc taken from Bergbusch
& Stetson (2009). The red points indicate those objects for which spectro-
scopically determined parameters are available (Lane et al. 2011), which are
limited to those which have turned off the main sequence.

the more massive (and hence populous) clusters, and it is relatively
metal rich. Lane et al. (2011) give stellar parameters for 1992 stars in
47 Tuc but only V and I magnitudes. However, Bergbusch & Stetson
(2009) have measured B, V and I for ∼200 000 stars in 47 Tuc,
giving us a final data set of 1739 stars with stellar parameters: Teff,
g, [m/H] (uncalibrated metallicity), [α/Fe], ξ (microturbulence)
and Vrot (rotational velocity) and B and V magnitudes (see Fig. 4 for
its HR diagram).

We ran EUREQA on both data sets to see if we could recover a
suitable formulation of the HR relationships, specifically instructing
the code to look for formulae of the form

MV = f (B − V , g, Teff, [M/H ])

in the first case (general HR) and

MV = f (B − V , g, Teff, [m/H ], [α/Fe], ξ, Vrot )

in the second (47 Tuc). Although these formulations are based on
prior knowledge of what the dependent variables are and also what
data are available, symbolic regression incorporates feature selec-
tion and so will only use a subset of the most relevant variables,
in this case those which persist in successive generations of cal-
culations in the evolutionary algorithm, rather than all available
variables (see Section 3.3 for an explicit demonstration of this). We
also consider the choice of variables more in Section 4.

We use a set of mathematical building blocks restricted to: con-
stants, basic operators (+, −, *, /), exp(), log(), xn. We employed
an R2 goodness-of-fit error metric – EUREQA attempts to maximize
this quantity in its fits – and selected an 80:20 split of the data in
terms of test set and validation set. Data with any missing values
were ignored (other options are available) and no weighting was
used for any parameter in terms of its error, as the heterogeneity of
the data means that not every value has an error associated with it.
27 CPU-hour runs (taking 1.5 h on 18 cores) produced a number
of formulae of varying complexity and correlation coefficients of
around 0.85 red for both data sets (see Table 1). We also ran it for
the SIMBAD data set restricting the formulae to just power-law
expressions [no exp() or log() operators].

We shall consider the results obtained for the SIMBAD data
set first. To validate the results and test against overfitting, i.e. the
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Table 1. The best-fitting formulae found by EUREQA to describe the SIMBAD HR diagram. The goodness-of-fit value (R2) is
determined from the 20 per cent of the data set defined to be the validation set. The error value for each data is the median absolute
error when applying the fit. The first three formulae are free to include exponential-, logarithmic- and power-law components
whilst the second are restricted to just power-law expressions.

Function (MV = f (. . . )) Complexity R2 SIMBAD RAVE DR3 SEGUE

0.374g2 − 4.34 × 10−4Teff 9 0.823 0.569 2.104 0.932

(B − V )(1 − [M/H ]) + 3.73×104g
8396+Teff

− 7.62 16 0.867 0.432 1.584 0.669

g((B − V ) + 2.33) + 6.22(B−V )
exp((B−V )g) − log(Teff ) − 0.645[M/H ] 30 0.889 0.409 1.765 0.644

2133g2

Teff
− 2.48 10 0.822 0.435 1.567 0.891

2255g2

366+Teff
− 1.94 − 9.56 × 10−5Teff − 0.348[M/H ] 20 0.842 0.408 1.488 0.799

0.641+0.791[M/H ]
1.18−(B−V )−g

+ 14000+14720g
6137+Teff−917g

− 5.17 29 0.868 0.401 1.528 0.776

Zaninetti – – 0.597 0.822 0.504

Figure 5. The relative positions of the main sequences of SEGUE (red), SIMBAD (blue) and RAVE DR3 (black) data sets. In the left plot, the SIMBAD and
RAVE data sets agree well but there is an offset of the SEGUE main sequence relative to the other two introduced by errors in the photometric transformation
and parallax methods applied to it. Linear fits to the main sequences estimate the offset as �MV = −1.112. The right plot shows the agreement between the
data sets when this offset and a similarly estimated colour offset of �(B − V) = −0.041 is applied to the SEGUE data.

formulae are actually describing random errors or noise in the data
instead of any underlying relationship, we determined the median
absolute error for each formula when applied to the RAVE DR3 and
SEGUE data sets mentioned above. Johnson B and V magnitudes
were derived from the SEGUE data using the transformation equa-
tions of Lupton (2005) and an absolute V magnitude determined
using the inferred parallax relating apparent r magnitude and abso-
lute r magnitude calculated using the photometric parallax method
of Ivezic et al. (2008). Any systematic errors that these transfor-
mations may introduce can be estimated from a plot of MV versus
Teff for the SEGUE data compared to the SIMBAD data. Since Teff

is calculated spectroscopically, any photometric offset will show in
the relative positions of the main sequences of the two data sets.

The left plot in Fig. 5 shows good agreement between the
SIMBAD and RAVE DR3 data sets with an offset of the SEGUE
data relative to the other two. This offset can be estimated from the
difference between linear fits to the main sequences of both SIM-
BAD and SEGUE data sets defined between the regions of Teff =
5000 and Teff = 6500 and we find a value of �MV = −1.112 for
SEGUE. A similar procedure can be performed with plots of (B −
V) versus Teff to estimate any systematic errors in the colour and
we find a value of �(B − V) = −0.041 for SEGUE. The right plot

in Fig. 5 shows the agreement between the three data sets when the
offsets have been applied.

Table 1 gives the median absolute difference (MAD) between
the ‘measured’ absolute magnitude and the estimated value for
each formula when applied to the SIMBAD, SEGUE and RAVE
data sets. For comparison, we also computed the MAD between
the observed data and the values derived from the semi-analytical
formulae of Zaninetti (2008) relating MV and (B − V) for each
data set (note that Zaninetti’s other formulae relating mass, ra-
dius and luminosity to (B − V) all derive from these), although
those are only defined over the range −0.33 < (B − V) < 1.80
and are stellar luminosity class dependent, with separate rela-
tionships for main sequence, giant, supergiant and white dwarf
stars.

It is worth bearing in mind when looking at these results that
the various functional relationships that this approach finds are, in
some statistical sense, the optimal descriptors of the data – they are
phenomenological. Their physical interpretation, however, remains
the purview of the human scientist. This method aims to identify
all potentially interesting, significant relationships without any pre-
conceived bias, e.g. due to some established notion of what should
actually be there.
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Table 2. The best-fitting formulae found by EUREQA to describe the 47 Tuc HR diagram and the median absolute error
obtained when applying the fit to the data.

Function (MV = f (...)) Complexity R2 47 Tuc SIMBAD PMS

0.685 + g
(B−V ) − ξ 8 – 0.283 –

g−[m/H ]−2.39[α/Fe]
B−V

− ξ 12 – 0.260 –

13.2 + (0.002Teff − 1.62 g − 8.42(B − V))[m/H] − 12.8(B − V) 23 – 0.239 0.990

Zaninetti – – 0.773 0.745

The results for the SIMBAD and SEGUE data sets are broadly
consistent suggesting that the found formulae provide a good de-
scription of the variable relationships in the data but do not overfit
it. It should be not surprising that the Zaninetti formulae give bet-
ter results for the SEGUE data set since it essentially just consists
of a main sequence and uses that class specific result. The EUREQA

results are derived for a range of luminosity types and so give a
better broader fit but not necessarily for specific luminosity classes.
The poor performance on the RAVE DR3 data set can be largely
attributed to the errors on the parallax value (the mean value is
7.63 mas with a mean error of 1.91 mas) and thus the absolute
magnitude (54 per cent of the objects have σMV

> 1). If we restrict
the analysis to those stars with σMV

< 1, we find that the MAD
values drop to ∼1 for the EUREQA formulae and 0.6 for the Zaninetti
formula.

We can also constrain the EUREQA algorithm to use those formulae
which contain particular variables or terms: for example, a number
of the solutions in both sets of formulae contain a g2 term. A set of
formulae derived with these limitations has similar MAD values as
for the more generic power law.

The relationships found for the 47 Tuc data set are more specific
since they only cover post-main-sequence (PMS) stars. Table 2
shows that they fare much better than the Zaninetti formula on
this data. We also note that the formula include dependences on
parameters related to convection phenomena in stellar atmospheres
as would be expected for PMS stars. The metallicities used in the
fitting formulae, [m/H], are the uncalibrated ones determined by
the RAVE pipeline in Lane et al. (2011) – the uncertainties are
0.1 dex. To compare the fits on PMS stars from the SIMBAD data
set, we need to replace [m/H] with an equivalent expression in
terms of [M/H]. Zwitter et al. (2008) give a calibration equation for
RAVE-derived metallicities:

[M/H ] = 0.938[m/H ] + 0.767[α/Fe] − 0.064 log g + 0.404,

but note that [α/Fe] has a typical recovery error of up to 0.15 dex
and only spans 0.4 dex in range. Thus, although the SIMBAD data
have no measured [α/Fe], we can assume a mean value of 0.2 for use
in determining uncalibrated metallicities with reasonable accuracy.
We note that the SIMBAD PMS data also show greater intrinsic
scatter than the 47 Tuc data.

As Table 3 shows, for the SIMBAD data, MIC identifies statisti-
cally significant relationships between MV and (B − V), Teff and g,
respectively, but not [M/H]. Those involving Teff and (B − V) are
also more likely to be non-linear in nature than that with g. In fact,
there seems to be a general set of relationships between MV, (B −
V), Teff and g but not with [M/H]. Certainly, this is in line with the
EUREQA formulae where the [M/H] dependence is not complex but
strictly linear. The MIC results for the 47 Tuc data show the sig-
nificant relationships found in the SIMBAD data set but also ones
involving microturbulence and metallicities as we would expect for
PMS stars. Note that there is a weak dependence between Vrot and

MV but not between it and any other parameter. The relationships
between MV and (BV), g, Teff and ξ are also again more likely to be
non-linear in nature.

3.2 The Fundamental Plane of elliptical galaxies

The global properties of elliptical galaxies, such as luminosity,
projected velocity dispersion, etc., form a two-dimensional fam-
ily (Djorgovski & Davis 1987, hereafter DD87). In particular, an
empirical relationship was found by multibivariate statistics be-
tween the mean surface brightness, central velocity dispersion and
effective radius of an elliptical galaxy – the so-called Fundamen-
tal Plane – which can be employed as a distance indicator, e.g.
Dressler et al. (1987). This has its physical basis in the virial
theorem, although there are further structural dependences exhib-
ited between dwarf and giant ellipticals (Guzman, Lucey & Bower
1993).

Using EUREQA, we searched the original data set (161 objects)
used by DD87 for relationships of the form

log(re) = f (log σ, 〈μ〉, Mg),

where re is the semimajor axis, σ is the velocity dispersion, 〈μ〉
is the mean surface brightness and Mg is the absolute magnitude
in the rG band. We used a slightly modified set of building blocks
from that which we used in the previous section, in which we also
allowed for periodic behaviour which could be described in terms
of a sine function. This increases the size of search space available,
allowing for a wider set of possible relationships, but also, poten-
tially, the computation time. We note, however, that we have no
expectation of periodic behaviour; in fact, we know that it would
make no sense in this particular context. Rather part of the experi-
ment is just to see what effect allowing for it in the building blocks
might have. We also employed a fitness metric based on the mean
absolute error.

The best-fitting (lowest complexity, highest accuracy) formula
was

log(re) = log σ + 0.271〈μ〉 − 4.09,

which should be compared with the original relationship reported
by DD87 (see also Fig. 6):

log(re) = 1.39(log σ + 0.26〈μ〉) − 6.71.

The two fits have equivalent accuracies – both give rms errors of
0.157 and correlation coefficients of 0.91. Higher order formulae
give even slightly better fits, e.g. log (re) = (0.14 log σ − 1)〈μ〉 −
Mg with 0.142 and 0.92, respectively, but there is a danger that this
is overfitting the data, particularly given the small size of the data
set. We note also that the sine function was not used.

Given that both relationships are sufficiently similar in form
(complexity) and accuracy, the question arises as to which one
is correct? This judgement call is beyond the scope of current dis-
covery systems and is where the (human) expert must step in and
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Table 3. The MIC measures between the variables used to define the HR diagram for the SIMBAD and 47 Tuc data sets. For
these data sets, a value of MIC >0.41 for SIMBAD and MIC >0.17 for 47 Tuc is significant at the 10−4 level, respectively.
This also illustrates the n × (n − 1)/2 nature of the output for a data set of n variables.

Variable pair MIC Non-linearity Non-monotonicity Functionality Complexity Linear regression

SIMBAD
(B − V) versus Teff 0.82 0.40 0.02 0.82 7.11 −0.65
MV versus g 0.63 0.04 0.05 0.63 7.11 0.77
MV versus Teff 0.54 0.48 0.08 0.54 7.11 −0.24
g versus Teff 0.52 0.46 0.03 0.52 7.11 0.24
MV versus (B − V) 0.49 0.47 0.09 0.48 7.11 −0.12
(B − V) versus g 0.46 0.14 0.0 0.46 7.11 −0.57
Teff versus [M/H] 0.11 0.09 0.02 0.11 7.11 0.14
MV versus [M/H] 0.09 0.08 0.03 0.09 7.11 −0.09
(B − V) versus [M/H] 0.08 0.08 0.01 0.08 7.11 0.01
g versus [M/H] 0.07 0.06 0.02 0.07 7.11 0.10

47 Tuc
MV versus (B − V) 0.75 0.54 0.22 0.75 6.43 −0.45
MV versus g 0.62 0.56 0.03 0.62 6.43 0.23
g versus Teff 0.56 −0.01 0.03 0.56 5.75 0.76
(B − V) versus Teff 0.56 0.08 0.04 0.56 6.29 −0.69
(B − V) versus g 0.54 −0.03 0.06 0.54 6.13 −0.75
MV versus Teff 0.50 0.49 0.09 0.50 6.43 0.14
MV versus ξ 0.38 0.36 0.08 0.38 6.25 −0.12
[α/Fe] versus ξ 0.34 0.32 0.11 0.34 6.43 −0.13
Teff versus ξ 0.29 0.28 0.13 0.28 6.43 0.07
[m/H] versus [α/Fe] 0.23 −0.09 0.01 0.23 6.36 −0.57
g versus ξ 0.23 0.12 0.03 0.23 6.43 −0.33
(B − V) versus ξ 0.22 0.14 0.06 0.22 6.43 0.28
MV versus [m/H] 0.21 0.20 0.09 0.21 6.43 0.11
MV versus Vrot 0.19 0.19 0.14 0.19 6.43 −0.02
g versus [m/H] 0.17 0.03 0.02 0.17 6.43 0.38

Figure 6. The relative distributions of the original Fundamental Plane re-
lationship discovered by Djorgovski & Davis (1987) (diamonds) and that
found by EUREQA (triangles).

provide the necessary interpretative knowledge. In this case, the
relationships are encoding physical correlations between the size of
a galaxy and its effective surface brightness and the luminosity and
central velocity dispersion. Even though the form of the expressions
is similar, they actually translate into quite different predictions. The
DD87 formula gives

〈μ〉 ∼ L−5/4 and Dn ∝ σ 1.4
0 〈μ〉−0.07,

where Dn is the diameter within which the mean surface brightness
is 20.75μB (Dressler et al. 1987), whereas the EUREQA result gives

〈μ〉 ∼ L−3 and Dn ∝ σ0〈μ〉0.16,

implying that more luminous galaxies have much lower surface
brightnesses and that the distances to galaxies is less than that
actually seen.

The EUREQA fit makes no use of Mg and the value of MIC for
this variable relative to log (re) is the lowest, consistent with a lack
of dependency. There is also no indication of any type of bivariate
relationship beyond a linear one, although EUREQA finds non-linear
multivariate relationships to which the MIC is most likely not too
sensitive.

3.3 Binary classification of light curves

Determining whether an object belongs to a specified class or not,
e.g. a transient detection is a supernova (SN) or not, or, alternatively,
whether it falls into one of the two different (mutually exclusive)
classes, such as star or galaxy, is an increasingly common activ-
ity in astronomy (note that multiclass classification problems can
always be recast as a series of such binary decisions). This is partic-
ularly true of survey astronomy where large data volumes and, most
recently, real-time data streams require fast, accurate and reliable
classification systems. A variety of techniques have been employed
in response, e.g. Djorgovski et al. (2012b), including decision trees
(e.g. Vasconcellos et al. 2011), Bayesian networks (e.g. Dubath
et al. 2011) and support vector machines (SVM; e.g. Beaumont,
Williams & Goodman 2011), the latter representing the state of the
art.
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Although it seems somewhat counterintuitive, automated discov-
ery systems can also be used as binary classifiers. With EUREQA, the
‘trick’ is to formulate the search relationship as

class = g(f (x1, x2, x3, . . . , xn)),

where g is either the Heaviside step function or the logistic func-
tion, which gives a better search gradient and can be used to produce
Receiver Operator Character (ROC)5 curves for the resulting clas-
sification. EUREQA finds a best-fitting function, f , to the data that
will get mapped to a 0 or a 1, depending on whether it is positively
or negatively valued (or lies on either side of a specified threshold
value, say 0.5, in the case of the logistic function). In other words,
it finds an equation for the discriminating hyperplane which sepa-
rates the two classes in some high-dimensional feature space. This
is comparable to what an SVM6 does but with an explicit compu-
tation of the mapping into feature space rather than just relying on
inner products within it. An advantage of this approach is that the
structure of the analytical fit function can also give insight into how
the classification works, which is not normally true of other ‘black
box’ classifiers, such as neural networks.

The Catalina Real-Time Transient Survey (CRTS; Drake et al.
2009; Mahabal et al. 2011; Djorgovski et al. 2012a) is the
largest open-time domain survey currently operating, cover-
ing ∼33 000 deg2 between −75◦ < Dec. < 75◦ (except for
within ∼10–15◦ of the Galactic plane) to ∼20 mag. Light curves
of several hundred million objects are available7 with an average
of ∼250 observations over a 7-year baseline. A common approach to
light-curve classification is to characterize the light curves through
extracted features, such as moments, flux and shape ratios, vari-
ability indices and periodicity measures. Vectors of such features
derived from the light curves of known classes of objects are then
used as the training sets for particular classifiers.

We have considered three specific binary light-curve classifica-
tion problems using EUREQA: RR Lyrae versus W UMa, CV versus
blazar and Type Ia versus core-collapse SN (CCSN). For each case,
we compiled data sets of light curves of the appropriate classes of
object and derived ∼30–60-dimensional feature vectors for each
object (see Appendix 1 for the full list of features used). These
are a combination of the features used by Richards et al. (2011)
and Debosscher et al. (2007) and include statistical moments, flux
ratios, Stetson J and K variability indices, a quasar-fitting measure
and frequency analysis statistics.

We ran a set of 10 4-CPU-hour EUREQA runs (1 h on a quad-
core machine) for each of the three cases with each run omitting
10 per cent of the data (giving training sets that are 90 per cent of
the data set) and the best-fitting solution for that run (defined as the
least complex which produces the largest number of true positive
and negative class attributions), and then applied with the omitted
data as the validation set so giving us 10× cross-validation on the
resulting solutions. We report our results (see Table 4) in terms of
the sum of all the results from the cross-validation runs. A logistic
function was used in all cases to map the fitted function to the class
variable. The physical interpretation of any relationships identified

5 An ROC curve is a graphical plot which summarizes the performance of a
classifier over a range of tradeoffs between true positive and false positive
errors rates (see Fig. 9.)
6 A support vector machine (SVM) is the state-of-the-art binary classification
algorithm.
7 http://crts.caltech.edu

Table 4. The combined best-fitting confusion matrices
for the three binary classification cases using EUREQA

and 10× cross-validation. The results are the sums of
each cross-validation run.

(a) RR Lyrae W UMa

RR Lyrae 464 (96.3 per cent) 18 (3.7 per cent)
W UMa 7 (2.5 per cent) 456 (98.5 per cent)

(b) CV Blazar

CV 368 (91.1 per cent) 36 (8.9 per cent)
Blazar 45 (37.5 per cent) 75 (62.5 per cent)

(c) SNe Ia CC SNe

SNe Ia 773 (92.5 per cent) 63 (7.5 per cent)
CC SNe 250 (58.6 per cent) 177 (41.4 per cent)

Figure 7. The magnitude distributions of the RR Lyrae (blue) and eclipsing
binary (red) data sets used in the binary classification analysis.

in these problems is beyond the scope of the paper and will be
addressed elsewhere.

3.3.1 RR Lyrae versus W UMa

Eclipsing binaries (W UMa) are the predominant contaminant in
studies using RR Lyrae as tracers of Galactic structures, e.g. Sesar
(2011), and therefore being able to distinguish between them would
be useful. We extracted CRTS light curves for 482 RR Lyrae and
463 W UMa from SIMBAD and the AAVSO International Variable
Star Index (Watson, Henden & Price 2006) obtained from VizieR
(Ochsenbein, Bauer & Marcout 2000). The magnitude distribution
for both classes of objects are shown in Fig. 7. Since both classes
of object are periodic, we included periodic features in our charac-
terization and used 60-dimensional feature vectors.

The overall best-fitting formula was

f = 278 x24 − 6.63

x10
− 24,

where x24 is the principal period from the Lomb–Scargle peri-
odogram (Lomb 1976; Scargle 1982) and x10 is the median absolute
deviation. The resulting values of class are 1 for RR Lyrae and 0 for
W UMa objects. The combined confusion matrix for the best-fitting
classifying formulae, i.e. summing the individual cross-validation
results, is shown in Table 4 a and the ROC curve showing the de-
pendences between the true and false positive classification rates,
respectively, as the logistic function threshold value is varied in
Fig. 9a. It is interesting to note that this is essentially the period–
amplitude relation which is used to differentiate between subclasses
of RR Lyrae (e.g. Smith, Catelan & Kuehn 2011). Fig. 8 shows how
the two populations are clearly separated in this parameter plane.
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Figure 8. The distribution of RR Lyrae (blue) and W UMa (red) stars in
the period–MAD plane identified by EUREQA.

MIC measures were calculated for all pairs of features in this
feature set. We would expect that significant relationships would
be found for pairs of variables having a common basis, e.g. those
derived from the Lomb–Scargle periodograms of the light curves
or those which measure the fraction of outliers or degree of spread
in the light curve, and this was confirmed. The MIC measure also
largely correlated with the regression coefficient for these pairs,
i.e. those with a high MIC value had a high r2 value as well and
vice versa, but one strongly related pair (MIC close to 1) had a
very low linear regression (∼0.12). The non-linearity MIC statistic
indicated was also large for this pair and the two features were found
to be inversely proportional to each other. This clearly illustrates
the power of MIC over traditional bivariate relationship analysis
algorithms.

MIC analysis of this feature set – calculating the MIC measures
for all pairs of features – showed significant relationships between
expected pairs of variables, e.g. those derived from the Lomb–
Scargle periodograms of the light curves or those which measure
the fraction of outliers or degree of spread in the light curve. These
largely correlated with the regression coefficient for these pairs but
one strongly related pair has a very low linear regression (∼0.12).
The non-linearity MIC statistic indicated such a relationship and the
two features were found to be inversely proportional to each other.
This clearly illustrates the power of MIC over traditional bivariate
relationship analysis algorithms.

Looking for relationships between the class variable for the data
set and the features showed a number of significant (p < 10−4)
pairings. All associations were also deemed to be complex and,
with the exception of the median absolute deviation, non-linear. We
will discuss these in further detail later in this paper.

3.3.2 CV versus blazar

The light curves of cataclysmic variables (CVs) and blazars can
be difficult to differentiate as both exhibit aperiodic/quasi-periodic
variability with significant (several magnitudes) sudden outbursts.
We extracted CRTS light curves for 404 known CVs8 and 120

8 http://nesssi.cacr.caltech.edu/catalina/CVservice/CVtable.html

Fermi and MOJAVE blazars.9 Periodic features were omitted in the
characterization, giving 25-dimensional feature vectors. The overall
best-fitting formula was

f = 140 067x17 sin

( −0.979

x1 − 1.481

)
− 264 152,

where x1 is the amplitude and x17 is the significance of the χ2 quasar
statistic (Butler & Bloom 2011). The combined confusion matrix
for the best-fitting classifying formulae is shown in Table 4b and the
ROC curve in Fig. 9b. From the matrix, the classifier is clearly more
successful at identifying CVs than blazars. This may reflect stronger
class localization for CVs in the feature space than for blazars, i.e.
the distribution of CVs in the feature space is more compact and
therefore a discriminating (bounding) hyperplane is more easily
defined than for blazers. However, it is more likely due to the 10:3
population ratio of CVs and blazers in the data set and a learning
bias – the so-called test distribution effect (Weiss & Provost 2003)
– that this has created in the classifier, i.e. with more exposure to
CVs, the algorithm has preferentially evolved to classify them. We
defer further discussion of this issue to Section 5.

MIC analysis of the feature set again shows a number of ex-
pected significant relationships, i.e. flux ratios and quasar statistics,
although the correlation with the respective regression coefficients
is much less than in the RR Lyrae versus W UMa case, which may
be related to the lack of periodic features. The relationships also
tend to be non-linear but monotonic. In terms of associations with
the class variable, only three significant features were found with
no clear indication of non-linearity or non-monotonicity.

3.3.3 SN Ia versus CCSN

Spectroscopic confirmation of SNe candidates can be resource in-
tensive and becomes intractable with the increasingly large numbers
expected from the next generation of wide-field surveys, e.g. a few
hundred thousand from Pan-STARRS and LSST. The Supernova
Photometric Classification Challenge (SPCC; Kessler et al. 2010)
aimed to improve the state of the art of SN classification algorithms
based solely on photometric data, and, in particular, separating out
SNe Type Ia, which is important for cosmological studies. We tested
our methodology on a set of 836 SNe Ia and 427 CCSNe (Ib, Ic, IIn,
IIp) light curves from the SPCC data set. Again, since we do not
believe these to be periodic, we used only non-periodic features to
characterize the light curves, giving 25-dimensional feature vectors.
The overall best-fitting formula was

f = x18 − 22.9

x15 + 0.21x18
− x13 − x10,

where x10 is the median absolute deviation, x13 is the percentage
difference between the extremum flux and the median, x15 is the χ2

quasar statistic and x18 is the significance of the χ2 non-quasar statis-
tic, respectively. The combined confusion matrix for the best-fitting
classifying formulae is shown in Table 4c and the corresponding
ROC curve in Fig. 9c. The matrix again shows a strong classifi-
cation bias for the more numerous class, although this time the
population ratio is only ∼2:1.

The MIC results show expected relationships between flux ratios
and measures of variability, all of which are mainly linear, mono-
tonic and in line with the respective regression coefficient results.
More interestingly, though, is that there are no really significant

9 http://nesssi.cacr.caltech.edu/catalina/Blazars/Blazar.html
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Figure 9. The ROC curves – true positive rate (TPR) versus false positive rate (FPR) as the discrimination threshold is varied – for the three binary classification
cases using EUREQA: (a) RR Lyrae versus W UMa; (b) CV versus blazar and (c) SN Ia versus CCSNe. The best possible classifier would yield a point in the
upper-left corner (0,1) of the plot. The area under the curve (AUC) is an accepted performance metric for an ROC curve and related to the Mann–Whitney U
statistic. The line y = x represents the scenario of randomly guessing the class.

associations between the class variable and the features – the most
significant, the ratio between the (95th–5th) flux percentile and the
median, is only significant at the ∼3 per cent level. This may indi-
cate that the conventional set of features used to characterize light
curves are inappropriate for those of SNe, which would also ex-
plain the poor performance of the classifier – a clear discriminating
hyperplane cannot be defined in this feature space.

4 FE AT U R E S E L E C T I O N

4.1 Posterior feature selection

In examining data mining systems, it is often worth asking whether
a successful outcome is due to the power of the particular algorithm
under consideration or due to a comprehensive training data set
being used, with which any algorithm worth its salt would achieve
good results. (Alternatively, a poor result with an otherwise excel-
lent algorithm may be due to a limited training set.) One way to
answer this is to consider which features in the data set are em-
ployed by the algorithm and ask whether the features selected show
any degree of sense – do they provide additional insight into the
data set – or should we regard them purely as phenomenological
selections that just happen to give good results? This is particularly
so when only a subset of all the available features actually end up
being used, i.e. there is some degree of feature selection present
in the process, whether explicit or implicit (embedded), as happens
with evolution-based algorithms and the decision tree work we have
compared EUREQA against.

The MIC statistics already give some handle on the relative im-
portance of different bivariate relationships within the feature space
and of particular features relative to the class variable in the classifi-
cation examples. However, we would also like to be able to consider
larger multivariate subsets of features, both for feature ranking ac-
cording to some metric and to identify the optimal subset of features
that characterizes the problem. We have considered two further spe-
cific feature-selection techniques to compare against the results of
EUREQA, MIC and the decision trees, and determine whether there
is any consistency in the features used by the different techniques:
consensus would imply that the shared features are relevant to un-
derstanding the problem under consideration.

4.1.1 Sequential backward ranking

Sequential backward ranking (SBR) is an unsupervised feature-
selection method based on the entropy measure that aims to pro-

gressively reduce the dimension of a data set in an optimal fashion,
i.e. at each stage, the reduced data set represents the best approxi-
mation to the original. It thus works as follows:

(i) Start with a full feature set F which characterizes a data set.
(ii) For each feature, f ∈ F , define a set of subsets, {Ff }, such

that Ff = F − f .
(iii) Select the feature f m which maximizes the quantity S(F ) −

S(Ffm ), where S(F ) is the Shannon entropy (see below) of the
feature set F .

(iv) Update F such that F = F − fm.
(v) Repeat steps (ii)–(iv) until there is only one feature left.

The output is an ordered list of features in descending order of
their entropy contribution or their significance. A supervised version
can also be constructed by replacing the constraint in step (iii) with
minimizing the classification error between that for F and Ffm .

In order to apply this technique, we must first define and evaluate
the Shannon entropy of a feature set. Traditional estimators of the
Shannon entropy, H(X) of a multivariate data set, X = {X1, X2, . . . ,
Xn}, require knowledge of the joint probability distribution of all
the Xn:

H (X1, . . . , Xn) = −
∑
x1

. . .
∑
xn

P (x1, . . . , xn) log [P (x1, . . . , xn)]

which is usually a fairly intractable problem. However, Kozachenko
& Leonenko (1987) provide an alternative estimator based on the
distance to the kth-nearest neighbour:

H (X1, . . . , Xn) = −ψ(k) + ψ(n) + log cd + d

n

n∑
i=1

log(εi),

where ψ is the digamma function (ψ(x) = �′(x)/�(x)), cd is the vol-
ume of the d-dimensional unit ball (cd = πd/2/�(1 + d/2)) and εi is
twice the distance from xi to its kth-nearest neighbour, respectively.
The error on the estimate is typically ∼k/N or ∼k/N log (N/k).

4.1.2 Minimum redundancy maximum relevance

In feature selection, it has been recognized that the combinations of
individually good features do not necessarily lead to good overall
performance, i.e. the m best features are not the best m features (e.g.
Cover 1974). One way to tackle this is to consider simultaneously
the relevance – the average mutual information between a set of
features and a classification variable – and the redundancy – the
average mutual information between pairs of features – of a feature
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Table 5. The features selected by the various feature-selection methods discussed in the text. For MIC,
SBR and mRMR, the lists are in descending order of feature significance (indicated by an asterisk). The
features to which the variables correspond are described in Table A1.

Method RR Lyrae/W UMa CV / Blazar SN Ia/CC SNe

MIC� x24, x26, x34, x14, x28, x37, x19, x39 x17, x22, x21 –
EUREQA x10, x24 x1, x17 x13, x15, x18

Decision tree x10, x14, x22, x21, x35, x62 x1, x2, x6, x9, x15, x19, x22 x5, x10, x12, x13, x14

SBR� x9, x52, x43, x20, x32 x18, x16, x15, x22, x20 x22, x18, x16, x15, x9

mRMR� x9, x20, x11, x19, x13 x2, x17, x15, x12, x7 x1, x2, x22, x15, x8

Table 6. The relative fractions of shared features between those identified by EUREQA or decision trees and those that the three
ordered algorithms have provided.

Method RR Lyrae/W UMa CV / Blazar SN Ia/CC SNe
(MIC/SBR/mRMR) (8/5/5) (3/5/5) (0/5/5)

EUREQA 50 per cent/0 per cent/0 per cent 50 per cent/0 per cent/50 per cent 0 per cent/67 per cent/33 per cent
Decision tree 16 per cent/0 per cent/0 per cent 14 per cent/28 per cent/14 per cent 0 per cent/0 per cent/0 per cent

set. Peng, Long & Ding (2005) proposed such a criterion [minimum
redundancy maximum relevance (mRMR)]:

max
S

⎡
⎣ 1

|S|
∑
fi∈S

MI(fi ; c) − 1

|S|2
∑

fi ,fj ∈S

MI(fi ; fj )

⎤
⎦ ,

where the feature set S has individual features f i, c is the classi-
fication variable and MI the mutual information (see equation 1),
respectively. This approximates maximizing the mutual informa-
tion between the joint distribution of the selected features and the
classification variable but in terms of bivariate quantities and not
much harder to deal with multivariate ones. Note that mRMR em-
ploys data discretization as a pre-processing step for continuous data
since it is often difficult to compute the integral form of equation
(1) in a continuous space with limited numbers of samples.

4.1.3 Feature comparison

Table 5 gives the (ordered) lists of features selected by each method
– MIC, EUREQA, decision tree, SBR and mRMR – for the three data
sets used in the binary classification problems. We did not consider
the HR diagram or Fundamental Plane of elliptical galaxies data
sets since these both involved too few variables to show any differ-
ences between the methods. The MIC results are those deemed to be
statistically significant at the 10−3 level relative to the classification
variable (see Section 2.1 for details). Similarly, the mRMR results
are also relative to the classification variable. Feature data for the
mRMR algorithm was discretized into three states at the positions
μ ± σ (where μ is the mean and σ the standard deviation, respec-
tively) such that it takes −1 if it is less than μ − σ , 1 if larger than
μ + σ and 0 if otherwise. The SBR and mRMR results also just list
the top five features in each case. Finally, the EUREQA and decision
tree entries list the variables used without any implied ranking.

The disparate nature of the rankings – ordered and unordered,
different numbers of variables – makes any formal quantitative
analysis, such as ranking aggregation, difficult. However, there a
number of general comparisons that can be made. The features
employed by EUREQA and decision trees are generally different –
they only share one feature in each of the three problems – and
decision trees are less parsimonious with more features. A similar
lack of commonality is shown between MIC and both SBR and
mRMR, although SBR and mRMR show a marginally stronger

degree of overlap, which should not be that surprising since they
both rely directly on entropy-related measures. Table 6 gives the
relative fractions of the features selected by EUREQA and decision
trees that are also identified by MIC, SBR and mRMR, respectively.
This suggests that there is more agreement between EUREQA and
the three explicit feature-selection methods than between decision
trees and the same techniques, although none of them display any
particularly strong association.

The differing nature of the classes of object in the three experi-
ments leads one to expect that specific features or types of features
would be selected in each and this does seem to be the case. The RR
Lyrae/W UMa results include periodic measures for all methods
except mRMR, reflecting the period–amplitude relationship, and
the CV/Blazar results include either the QSO or non-QSO statistic
for all methods. More interestingly, the QSO statistics are also se-
lected by EUREQA, SBR and mRMR as discriminating features in the
SNe data set (the other features selected are not common across the
methods). These statistics measure the applicability of a damped
random walk model to a light curve versus it exhibiting temporally
uncorrelated variability. Although neither behaviour is shown in ei-
ther type of SN light curve, both exhibiting a brightening and then
decaying pattern with additional features in CCSNe, there must be
some further information inherent in the light curves to which these
statistics are sensitive.

Graczyk & Eyer (2010) propose that eclipsing binaries can be
identified in large photometric surveys based on the skew and kur-
tosis of their light curves. MIC finds some degree of relationship be-
tween the skew and kurtosis but not a non-linear one and a stronger
non-linear dependence between the class type and the skew than
the kurtosis (the dependence of which is actually not statistically
significant). mRMR identifies both skew and kurtosis, however, as
significant features. Neither are flagged by EUREQA or decision trees,
although in the former case, the ‘survivability’ of the period – MAD
solution dominates that of other possible relationships. Restricting
EUREQA to non-periodic features gives a set of formulae all depen-
dent on the skew and variously the kurtosis and percentile ratios.
A viable EUREQA-based feature-selection strategy, particularly for
feature-rich data sets, might therefore be to progressively restrict
the set of features that are considered in any single iteration.

It is also worth noting which features are not selected at all or only
once by one method: flux ratios and the Stetson K variability index.
These statistics can be broadly thought of as quantitative measures
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of the shape of the light curve and there is indeed little discrimina-
tion to be found in the shapes of the three binary categories of object
alone, e.g. although RR Lyrae AB and W UMa are relatively easily
distinguished from their phased light curves, RR Lyrae C are not.
CV and blazar light curves are similarly not easily separable, par-
ticularly when sparsely and irregularly sampled such as the CRTS
light curves. SN Ia and CCSNe can be differentiated if enough of
the light curve has been sampled but this is not necessarily the case
with many of the examples in the SPCC.

This suggests that the current features which aim to capture the
shape of a light curve are neither robust enough in the presence of
noisy inhomogeneous data nor do they capture enough information
to act as significant discriminators. Clearly further research in this
area would be extremely beneficial to the next generation of time
domain surveys.

5 D ISC U SSION

The results in the previous sections show that automated discovery
systems of relationships can identify and characterize physically
meaningful structure in data. The fact that known relationships in
the HR diagram, the Fundamental Plane of elliptical galaxies and
the period–amplitude plane of RR Lyrae stars can be automatically
recovered is very encouraging, particularly as more complex and
accurate (with smaller errors) expressions are possible. The fitness
metrics, however, provide a good balance between accuracy and
parsimony, ensuring high-quality general hypotheses. It should also
be noted that the discovery process consists not only of identifying
the best functional expressions but also the most relevant subset
of variables. There are, of course, other specific feature-selection
algorithms, such as those mentioned in Section 4, that could have
been applied to the data sets prior to the application of our methods
as a pre-processing step.

Perhaps one of the more surprising applications of these systems
is as part of efficient binary classifiers, particularly as it has been
said that we should not expect a lightly parametrized form for
mapping between feature space and class space (Richards, private
communication). To get some idea of how competitive this approach
is, we can compare directly with the results of Donalek et al. (in
preparation) who have applied C4.5 decision trees using the Gini
diversity index as the splitting criterion to the same data sets as used
in Section 3. Table 7 gives the relative performances of the two
approaches in terms of purity – the fraction of true classifications
recovered out of all objects assigned to that class – and efficiency
– the fraction of true classifications recovered out of all objects
actually belonging to that class. For example from Table 4, 464
true RR Lyrae are recovered, 471 (464 + 7) objects are assigned
a class of RR Lyrae, and there are 482 (464 + 18) RR Lyrae in

Table 7. The overall success rates for the EUREQA-based classi-
fiers and the decision trees of Donalek et al. (in preparation)

Data set EUREQA Decision tree
Purity Efficiency Purity Efficiency

(per cent) (per cent) (per cent) (per cent)

RR Lyrae 98 96 95 95
W UMa 97 99 96 96
CV 89 91 92 92
Blazar 68 63 87 83
SN Ia 76 93 90 96
CC SN 74 41 92 80

the data set – this gives a purity of 464/471 (98 per cent) and an
efficiency of 464/482 (96 per cent). It can be seen that for four
of the classes, the EUREQA-based approach performs as well as the
decision tree one, particularly in terms of efficiency (completeness).
For additional comparison, the best results reported in SPCC were
96 per cent efficiency and 79 per cent purity for classifying SNe Ia
(Kessler et al. 2010). However, as expected, it does not perform so
well with the two minority class populations.

Imbalanced data sets, such as the CV/blazar and SN Ia/CC SN
examples, may reflect natural class distributions – one type of object
is just more common than the other – or may be the result of pa-
rameter/feature space sampling – observations are probing regions
preferentially occupied by one class, even if the overall population
sizes are similar. We chose to use as much data as possible in both
the CV/blazar and SN Ia/CC SN cases, which probably involves a
mixture of both these effects. With such data sets, minority class
examples are classified incorrectly much more often than majority
class examples (Weiss & Provost 2003), as we found in Section 3.
Determining what the correct distribution is for a learning algorithm
in this context is an active area of research in machine learning (see
Chawla 2010 for an overview). Some practitioners believe that the
naturally occurring marginal class distribution should be used so
that new examples will be classified using a model built from the
same underlying distribution. Others feel that the training set should
contain an increased percentage of minority class examples or the
induced classifier will not classify minority class examples well.
Weiss & Provost (2003) show that the choice of training distribu-
tion can depend on the performance measure used with the natural
distribution for predictive accuracy (confusion matrices) and a bal-
anced distribution for ROC curves, respectively. Although, Chawla
(2010) argues that predictive accuracy may be an inappropriate per-
formance measure for imbalanced data sets. Our results are certainly
consistent with all these findings.

Finally, it is worth considering the limitations of automated dis-
covery systems. EUREQA assumes that relationships must be express-
ible as invariant (conserved) quantities in a partial differential metric
space. However, this would not necessarily be true for systems that
might be exhibiting fractal behaviour, such as scale dependence in
the correlation properties of the large-scale distribution of galaxies
(e.g. Joyce et al. 2005), or chaotic or stochastic activity, such as
in accretion discs (e.g. Karak, Dutta & Mukhopadhyay 2010). It is
computationally expensive and more than linearly so as the size of
the search space is increased with the number of building blocks
employed in search formulae. It can also suffer from the general
limitations of evolutionary algorithms, requiring time to move out
of local minima and the nature of the fitness landscape being un-
clear so it is difficult to determine how well the algorithm might be
doing. Although there is no guarantee that it will find a good solu-
tion nor that this will be the optimum, the results we have shown
demonstrate that it is a useful technique to consider.

MIC and its associated statistics have fewer assumptions in
just looking for and broadly characterizing bivariate relationships
through their maximal mutual information – note that they are not
directly related to mutual information as they perform well in sit-
uations where other direct mutual information-based measures do
not (Reshef et al. 2011). Ideally, the MIC algorithm would optimize
over all possible grid partitions of a data set but the computational
expense is avoided with a dynamic programming approach that ap-
pears to approximate well in most cases. It is unclear, however, how
well these perform in the presence of outliers or how large data
sets need to be for stable estimates. Probably the biggest current
limitation to MIC is its bivariate nature – generalizations to higher
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dimensions are necessary to search for multivariate relationships
(these will not necessarily show in a two-dimensional projection)
but this comes at the additional expense of both finding an optimal
hypergrid partitioning of the data set and also using multivariate
mutual information which is a poorly understood concept.

6 C O N C L U S I O N S

In this paper, we have demonstrated that automated discovery sys-
tems can uncover significant (non-trivial) relationships in high-
dimensional complex data parameter spaces. As with any relation-
ship found in data, whether by an automated system or a human,
these may or may not have a physical meaning or cause – correlation
does not imply causation – and they may be due to some incidental
properties of a given data set. The interpretation and evaluation of
their possible physical significance remains in the hands of a human
scientist.

Whilst the ones we have shown may not be the most scientifi-
cally exciting, being more for illustrative purposes than anything,
we should bear in mind that astronomy is an already relationship-
rich science. Many of these are expected or predictable associa-
tions, given what we already understand about the nature of (as-
tro)physical systems. In contrast, systems biology and similar sci-
ences, wherein lie the origins of these automated discovery tech-
niques, are relationship-poor and there is potentially more upfront
impact to be had by applying them in that particular context. Astron-
omy perhaps stands to benefit more from them as discovery filters,
tackling the curse of dimensionality of high-dimensional parameter
spaces and reducing the number of relationships to be examined to
only the most significant, than as ab initio discovery engines.

Although these systems represent the cutting-edge of currently
applicable tools, this is very much an initial entry point for their
application to astronomy. Such tools will very likely become both
more powerful and also more prevalent with time, given the data
challenges all sciences are facing. Expanded abilities such as not
just relying on brute-force searches of feature spaces but being
able to incorporate domain knowledge, both as additional features,
e.g. distance to nearest galaxy for SNe, or as rulesets, and make
inferences leading to more interesting discoveries are active areas
of research.

The importance of such approaches as we are faced with ever
more parameter/feature rich data sets cannot be underestimated. In
particular, the possibilities of high-dimensional scientific relation-
ships, particularly those that do not necessarily reveal themselves
in lower dimension representations, can only really be investigated
using automated discovery techniques which are (relatively) uncon-
strained in their exploration of parameter space. These tools promise
to cherry pick the higher hanging fruit of LSST, SKA and future
surveys.
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A P P E N D I X A : C H A R AC T E R I Z I N G FE AT U R E S

A variety of statistically- and morphologically based features have
been used to characterize light curves in the literature, e.g. Richards
et al. (2011) and Debosscher et al. (2007). Table A1 summarizes
the statistics that we have used in this analysis.

Table A1. This table describes the features used to characterize the light curves used in this analysis.

Name Variables Description

Amplitude x1 Half the difference between the minimum and maximum magnitudes
Beyond 1 std x2 The percentage of points beyond one standard deviation from the weighted mean
Flux percentile ratio (60–40) x3 The ratio of flux percentiles: (60th–40th) to (95th–5th)
Flux percentile ratio (67.5–32.5) x4 The ratio of flux percentiles: (67.5th–32.5th) to (95th–5th)
Flux percentile ratio (75–25) x5 The ratio of flux percentiles: (75th–25th) to (95th–5th)
Flux percentile ratio (82.5–17.5) x6 The ratio of flux percentiles: (82.5th–17.5th) to (95th–5th)
Flux percentile ratio (90–10) x7 The ratio of flux percentiles: (90th–10th) to (95th–5th)
Linear trend x8 The slope of a linear fit to the light curve
Maximum slope x9 The maximum absolute flux slope between two consecutive observations
Median absolute deviation x10 The median discrepancy of the fluxes from the median flux
Median buffer range percentage x11 The percentage of fluxes within 10 per cent of the amplitude from the median
Pair slope trend x12 The percentage of the last 30 pairs of consecutive flux measurements that have a positive slope
Percent amplitude x13 The largest percentage difference between either the maximum or minimum flux and the median
Percent difference flux percentile x14 The ratio of the (95th–5th) flux percentile to the median flux
QSO x15−x18 The chisq/qso and chisq/non-qso statistics and their significance levels from the quasar

(non-)variability metric of Butler & Bloom (2011)
Skew x19 The skew of the magnitudes
Small kurtosis x20 The kurtosis of the magnitudes
Standard deviation x21 The standard deviation of the magnitudes
Stetson J x22 The Welch–Stetson J variability index with an exponential weighting scheme
Stetson K x23 The Welch–Stetson K variability index
Lomb–Scargle peaks x24−x33 The periods and false-peak detection probabilities of the top five peaks in the Lomb–Scargle

periodogram of the light curve
Frequency parameters x34−x62 The frequency analysis statistics described in Debosscher et al. (2007): the slope of the linear

trend, the three prime frequencies and their first four harmonics (amplitude and phase for each)
and the ratio of the variances of the light curve after and before subtraction of a harmonic fit
with the first frequency.
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