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Using conditional entropy to identify periodicity
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ABSTRACT
This paper presents a new period-finding method based on conditional entropy that is both
efficient and accurate. We demonstrate its applicability on simulated and real data. We find that
it has comparable performance to other information-based techniques with simulated data but
is superior with real data, both for finding periods and for just identifying periodic behaviour.
In particular, it is robust against common aliasing issues found with other period-finding
algorithms.

Key words: methods: data analysis – techniques: photometric – astronomical data bases:
miscellaneous.

1 IN T RO D U C T I O N

The growing amount of astronomical time series data provided by
the new generation of synoptic sky surveys, e.g. Catalina Real-time
Transient Survey (CRTS; Drake et al. 2009), Palomar Transient
Factory (PTF; Rau et al. 2009), Pan-STARRS (Kaiser et al. 2002),
LSST (Ivezic et al. 2011), has fostered a renewed interest in period-
finding algorithms (e.g. Huijse et al. 2011, 2012; Kato & Uemura
2012; Leroy 2012; Baluev 2013). There is a particular emphasis
on efficiency, both in terms of speed and accuracy, to facilitate
tractable analyses of tera- and peta-scale data sets. Period-finding
techniques can be divided into a number of types. The most pop-
ular seek to model a light curve via a least-squares fit to some
set of (orthogonal) basis functions, most commonly trigonometric,
such as Lomb–Scargle (Lomb 1976; Scargle 1982) and its deriva-
tives/extensions (e.g. Zechmeister & Kurster 2009), though more
complicated function sets, such as wavelets (Foster 1996), have
also been tried. Another approach is to minimize some measure
of the dispersion of time series data in phase space, such as binned
means (Stellingwerf 1978), variance (Schwarzenberg-Czerny 1989)
or entropy (Cincotta, Mendez & Nunez 1995), which can often be
regarded as an expansion in terms of periodic orthogonal step func-
tions. Bayesian methods (Gregory & Loredo 1992; Wang, Khardon
& Protopapas 2012) are also becoming common and there have
even been attempts to search for periodicity using neural networks
(Baluev 2012).

The basis of an algorithm also often determines how well it copes
with the real world aspects of time series data, such as irregular sam-
pling, gaps and errors, e.g. standard Fourier analysis is impossible
for any data diverging from regular sampling. de Jager, Rauben-
heimer & Swanepoel (1989) argue that in the case of weak signals,
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most period-finding methods only work well with certain kinds of
periodic shapes and that this causes a selection effect for the general
identification of weak periodic signals. Similar shape dependences
are found in Schwarzenberg-Czerny (1999).

Intuitively, the fastest period-finding algorithm will involve a
single pass through a data set per trial period and integer counting
operations, e.g. histogram binning. Any higher order function calls,
particularly per data point in a time series, will extend the average
calculation time per trial period and, consequently, the overall time
taken by the algorithm to determine a correct period.

Among the different types of approaches – Fourier-based,
Bayesian, autoregressive modelling, etc. – one of the most promis-
ing is information theory as this type of technique seems better
equipped to deal with uneven sampled time series (as most modern
light curves are). Information theory-based methods extract infor-
mation from the probability density function and so include higher
order statistical moments present in the data whereas Fourier or anal-
ysis of variance (AOV) techniques are based only on second-order
statistical analyses. This implies that information theory brings bet-
ter modelling of the underlying process and robustness to noise
and outliers. Huijse et al. (2012) employ information theory-based
statistical descriptors, such as Renyi quadratic entropy and corren-
tropy, which are generalizations of second-order moment statistics
such as variance and correlation.

Cincotta et al. (1995) introduced a method to find the period of an
(irregularly sampled) time series by minimizing its Shannon entropy
when folded by a trial period. The idea is that a light curve folded at
most trial periods will produce a random arrangement of points in
a particular region, a unit square, say, whereas, when folded at the
correct period, the light curve will be the most ordered arrangement
of data points in the region and so contain the most information
about the signal. As entropy measures the lack of information about
a system, the correct period minimizes this quantity. Moreover, this
can be formally proven to be mathematically correct within the
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framework of information theory (Cincotta et al. 1999) whilst other
measures based on the statistical analysis of the ‘shape’ of the light
curve lack a formal proof.

In this work, we introduce a new technique based on the con-
ditional Shannon entropy of a light curve. This has the advantage
of accounting for systematic effects in the phase space coverage of
time series, i.e. gaps, concentrations and other artefacts that may be
present in the phase distribution when the light curve is folded by a
trial period as a result of sampling.

The paper is structured as follows: in Section 2, we present the
new algorithm and in Section 3, the data sets we have applied it to.
We discuss our results in Section 4 and conclusions in Section 5.

2 A L G O R I T H M S

2.1 Conditional entropy

Formally, a time series, m(ti), is normalized to occupy a unit square
in the (φ, m) plane where φi is the phase at ti given a trial period, p,
such that φi = ti/p − [ti/p], where the square brackets denote the
integer function. The unit square is then partitioned into k partitions
(bins), and the (Shannon) entropy for the distribution, H0, is defined
by

H0 = −
k∑

i=1

μi ln(μi) ∀μi �= 0, (1)

where μi is the occupation probability for the ith partition, which is
just the number of data points in that partition divided by the total
number of points in the data set.

However, on applying this method to real data, e.g. a typical type
AB RR Lyrae from CRTS (Drake et al. 2013) (see Fig. 1), we found
that the period which minimized the entropy was predominantly
that associated with the mean solar day (p = 1.002 74 d). Looking
at a folded light curve at this period (see Fig. 1b), it is clear that
this does indeed produce the most ordered arrangement of points
in terms of compactness of points within the unit square; however,
this is not the most ordered in terms of an underlying functional
support which the correct period would produce. Another way of
expressing this is that with the solar period, the order of points per
phase interval is not optimized whereas it is with the true period – the
amount of randomness in the normalized magnitude is minimized
given the known values of the phase. We note that this effect can be
mitigated to some degree through an appropriate choice of partition
(Cincotta 1999) but this then introduces an additional step into the
period-finding process.

A related quantity taking this into account is the conditional
entropy (CE), H(m|φ), defined by

Hc =
∑
i,j

p(mi, φj ) ln

(
p(φj )

p(mi, φj )

)
, (2)

where p(mi, φj) is the occupation probability for the ith partition
in normalized magnitude and the j th partition in phase and p(φj)
is the occupation probability of the j th phase partition, which for
rectangular partitions is just

p(φj ) =
∑

i

p(mi, φj ).

Since the definition of Hc is not dependent on the partition shape,
we also consider an optimal estimator for Hc based on an optimal
partitioning of the data using Bayesian blocks (BB; Scargle et al.
2012) (see Appendix A for details). We found good agreement be-
tween the values of the CE for the two partition schemes: applying
the two estimators to the same data set produces conditional en-
tropies that are strongly correlated. Differences in the numerical
value are attributable to the lack of normalization in either estima-
tor. However, the optimal partitioning scheme is computationally
expensive since it involves determining the Voronoi tessellation
for each trial period and this precludes it from being an efficient
period-finding algorithm. We therefore adopt a simple rectangular
partitioning scheme in this analysis.

Fig. 1(c) shows the light curve folded at the trial period which
minimizes the CE. (See Fig. 2 for the associated periodogram –
the plot of test statistic versus frequency. The search for the correct
period is most commonly done using a scan through frequency
space.)

The most likely periods are those associated with the strongest
minima in the periodogram. Although it is possible to associate
a probabilistic significance with a particular value (Cincotta et al.
1999) of this statistic, this is not a powerful enough discriminator
between rare (likely) events. Rather we decided to see whether using
an additional statistic to identify the correct period from the subset
identified by the CE algorithm could boost the overall performance.

Thus, to assess which is the most significant of the CE minima,
we calculate an AOV (Schwarzenberg-Czerny 1989) statistic for the
k most likely periods and select the period which maximizes this
statistic as the measured period for this time series.

We also observe that, in some cases, the CE periodogram is
not flat but exhibits a weak overall dependence on frequency, i.e.
there is a trend for generally lower CE values at lower frequencies.
This could lead to misidentification of the strongest minima in the
periodogram and so we add a normalization step of dividing the

(a) (b) (c)

Figure 1. The light curve of a typical type AB RR Lyrae from CRTS (Drake et al. 2013) (a) folded at the trial period which minimizes the entropy (b) and
conditional entropy (c).

 at C
alifornia Institute of T

echnology on A
pril 30, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


Period finding with conditional entropy 2631

Figure 2. The CE periodogram (frequency in day−1) for the light curve
of a typical type AB RR Lyrae from CRTS in Fig. 1. Note that there is no
discernible minimum at the mean solar day period (1.002 74 d).

periodogram by a smoothed version using a wide rolling median
filter before identifying the strongest minima.

Finally, we note that, as with the original Shannon entropy-based
method of Cincotta et al. (1995), the algorithm does not yet explic-
itly take into account errors on the data. Cincotta (1999) addressed
this with essentially a kernel-based estimator for the Shannon en-
tropy and an equivalent expression is easily derivable for the CE. It
is less efficient, though, as simple integer counting operations have
been replaced with more complicated function calls. The effect of
errors in the data are also somewhat mitigated by our use of overlap-
ping partitions (see below) with individual data points contributing
to the occupation probabilities of more than one bin as they would
with a kernel.

2.2 Period harmonics

One particular issue for automated period finders (particularly
Lomb–Scargle) is that they misidentify a multiple of the period
as the ‘true’ period – this is a common problem for binary systems
where the half period is frequently the most significant peak in a
periodogram. For example, Richards et al. (2012) initially find 70
per cent of their periods for eclipsing binaries (EBs; ∼49 per cent
of all objects) in the ASAS Catalogue of Variable Stars (ACVS;
Pojmanski, Pilecki & Szczygiel 2005) to be half periods. As dis-
cussed in Wang et al. (2012), this is attributable to two aspects: for
symmetric EBs, the true period and half its value are not clearly dis-
tinguishable quantitatively. Meanwhile, methods that are successful
for EBs tend to find integer multiple periods of ‘single-bump’ stellar
types, such as RR Lyrae and Cepheids, and vice versa.

Several techniques have been proposed to deal with this. Stelling-
werf (2011) suggests ‘subharmonic averaging’ where a significant
signal in the periodogram (test statistic versus frequency) is re-
placed by the average of the statistic value at the peak frequency
(that associated with the significant statistic value) and its value
at half the peak frequency. For real signals, the statistic value will
be boosted whilst for false signals, the statistic value will decrease
significantly. This can be computationally expensive, however, as it
involves scanning through all the trial frequencies (periods) used.
Wang et al. (2012) propose to include domain knowledge via a
probabilistic generative filter that attempts to match light curves,

folded at both the best identified periods and their doubled values,
to the learned shapes of common object types with the most likely
giving the assumed value. Use of the filter gives an 18 per cent im-
provement in the accuracy of calculated periods against their quoted
value. Richards et al. (2012) train a random forest-based supervised
classifier to detect and correct for this artefact giving a 24 per cent
boost to their accuracy, although they still find that 15.6 per cent of
their calculated periods for all variable stars in the ACVS are actu-
ally half (14.1 per cent) or double (1.6 per cent) the true (quoted)
value.

We propose a simpler approach based on fitting the light curve,
y(φ), phased at a period, p, with a smoothing spline, f, which mini-
mizes

n∑
i=1

[
yi − f (φi)

wi

]2

+ ρ

∫ ∞

−∞
(f ′′)2dφ,

where wi are the relative weights for each point and ρ is a smoothing
parameter determined by a generalized cross-validation technique
(Hutchinson & de Hoog 1985). Note that f is necessarily a natural
cubic spline with knots at φi for i = 1, . . . , n. We identify the
strongest dip (minimum) in the spline and then repeat the procedure
for the light curve phased at double the period, i.e. 2p, and find the
two strongest dips there. For an object where the measured period
is the true period, p = p0, the two dips in the 2p-spline should
be of the same amplitude within some measurement tolerance and
also the same as the dip in the p-spline; however, for an object
with p = p0/2, i.e. most likely an eclipsing source, there should
be a discernible difference between the two dips in the 2p-spline,
although this will not be generally true for the subclass of binaries
which have equivalent minima, i.e. W UMa-type variables. We
therefore consider the doubled period as the true value for objects
where the difference between the two dips is greater than some
threshold, the photometric error for the light curve, say, and the
difference between the smaller of the two dips in 2p-spline and
the dip in the p-spline is also greater than a similar threshold. We
note, though, that this threshold value may also be dependent on
the signal-to-noise ratios (S/N) of light curves within a particular
survey.

2.3 Data binning

Many period-finding algorithms use data binning [normally just of
the phase (folded period) variable] in calculating their test statistic.
The choice of binning parameters – width, number and location –
can therefore have a significant effect on the resolving power of a
particular method: too wide a bin leads to folded curves with similar
phase distributions having the same test statistic, whilst too narrow
a bin means that the test statistic is dominated by small number
contributions giving a noisy representation of the phase distribu-
tion. Kovacs (1980) describes a process for the optimal phase cell
number of a phase dispersion measure statistic that depends on the
data length, signal form and noise level. There are also a number of
more general prescriptions for selecting the optimal binning param-
eters when binning data – BB mentioned previously and jackknife
likelihood (Hogg 2008) – or replacing the binning entirely with a
suitable Bayesian prior (Loredo 2012). There is, however, no overall
optimal approach amongst these.

In a sweep through a frequency (period) range, the phase dis-
tribution will vary as the trial frequency (period) varies and thus
the optimal bin widths and number of bins required to cover it.
However, it is computationally expensive to calculate these optimal
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Figure 3. Sample synthetically generated time series for: (a) 100 points over 250 d with B = 0.2 and a period of 0.752 d; (b) 250 points over 1500 d with
B = 0.6 and a period of 7.52 d; and (c) 500 points over 3000 d with B = 1.0 and a period of 17.52 d.

values for each specific trial frequency and so fixed ‘mean’ opti-
mal values are used in the relevant algorithms. We have determined
the range of the optimal number of bins and bin widths for a set
of sample light curves with numbers of observations spanning the
range ∼10–2000 using both the jackknife and BB approaches. We
find that a phase bin width of �φ = 0.1 (giving 10 bins) is close to
optimal and use this for the algorithm; we also use a magnitude bin
width of �m = 0.2, determined in a similar fashion.

AOV makes use of flexible bin sizes when there is poor phase
coverage and less than five points in some bins. We have adopted
a similar approach for our algorithm, using an overlapping bin of
width �φ = 0.2 to calculate Hc and accounting for data points being
included twice, e.g. a point at φ = 0.25 will be included in both
the bins covering φ = 0.1–0.3 and 0.2–0.4, respectively, when there
is poor phase coverage. The PDM2 algorithm (Stellingwerf 2011)
also follows a similar strategy.

We also omit all points in a light curve which are defined as
outliers according to

|xi − medj xj |
MADn

> 3.0,

where medixi is the sample median and MADn is the median abso-
lute deviation from the median.

3 DATA SETS

In this analysis, we consider synthetic data and real data from the
massive compact halo object (MACHO) surveys.

3.1 Synthetic data

We generate synthetic time series with the form

m(t) = A0 +
3∑

n=1

An sin

(
2nπt

P

)
+ Bσ,

where A0 = 15, A1 = −0.5, A2 = 0.15, A3 = −0.05, P is the period,
B is a scaling factor ranging from 0.1 to 1.0 and σ is a Gaussian dis-
tributed random variable with zero mean and unit standard deviation
[N (0, 1)]. Periods are generated according to P = 10(p − 1), where
p is a random variable drawn from a lognormal distribution with
zero mean and a standard deviation of 0.75 – this broadly mimics
the stellar period distribution from variable surveys. We note that
this form of synthetic data is fairly standard (e.g. Cincotta et al.
1995; Huijse et al. 2011), apart from the scalable noise term we are
employing.

We have produced sets of 1000 light curves consisting of n points
randomly spanning a temporal baseline of τ days with noise scale

B for a grid of (n, τ , B), such that n = 50–500 with �n = 50,
τ = 250–3000 with �τ = 250 and B = 0.1–1.0 with �B = 0.1.
Sample light curves are shown in Fig. 3.

3.2 MACHO

The MACHO survey (Alcock et al. 2003) was designed to search for
gravitational microlensing events in the Magellanic Clouds and the
Galactic bulge, and more than 20 million stars were observed, mak-
ing it an important resource for variable star studies. A ‘gold stan-
dard’ data set of light curves has been produced from the MACHO
survey by the Harvard Time Series Center, consisting of approxi-
mately 500 each of RR Lyrae, EBs and Cepheids, respectively, cov-
ering the Large Magellanic Cloud (75◦ < RA < 85◦, −71◦ < Dec.
< −67◦). Although MACHO data normally consist of blue and red
channel data for each stellar object, only the blue channel (V-band
equivalent) data have been used here. This data set has also been
used in two correntropy-based (generalized correlation) approaches
for estimating periods in non-uniformly sampled time series (Mishra
et al. 2011; Huijse et al. 2012).

4 R ESULTS

For each of the synthetic data sets, we have estimated the efficiency
of the algorithm as a function of accuracy, i.e. the fraction of 1000
light curves with different numbers of data points, temporal cov-
erage and noise levels the method recovers with the true period to
a prescribed level of accuracy. We define our accuracy in terms of
the absolute difference between the recovered period and the true
period relative to the true period:

accuracy = |Prec − Ptrue|
Ptrue

.

As we noted in Section 2, a period-finding algorithm may also
frequently find a period (sub)harmonic instead of the true period. To
determine how close the found period is to an integer (sub)multiple
of the true period, we use

accuracy =
∣∣∣∣ Prec

Ptrue
−

∥∥∥∥ Prec

Ptrue

∥∥∥∥
∣∣∣∣ for Prec > Ptrue

and

accuracy =
∣∣∣∣Ptrue

Prec
−

∥∥∥∥Ptrue

Prec

∥∥∥∥
∣∣∣∣ for Prec < Ptrue,

where ‖x‖ is the nearest integer to x. As a comparison for the per-
formance of the CE method, we have also tested the straightforward
(Shannon) entropy algorithm of Cincotta et al. (1995).
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Figure 4. The distribution of accuracies from the synthetic data in terms of the number of observations per cycle for the two entropy-based methods:
(a) CE and (b) Shannon entropy. The concentrations at poor accuracy and high observations per cycle originate with the noisiest simulated data (B > 0.8). Both
methods are successful, although the CE is marginally better – it returns slightly more objects at higher accuracies.

For each simulated light curve with a period P and n observations
spanning a baseline of τ days, we can determine the number of
observations per cycle, i.e. the density of points in the folded light
curve, and this allows us to easily compare the accuracies across
our simulation grid, for example, that of objects with a period of
0.5 d and 50 observations over a 1 yr baseline with those with a
period of 500 d and 500 observations over a 10 yr baseline.

Fig. 4 shows the distribution of accuracies against the number of
observations per cycle for the two entropy-based methods with the
synthetic data. Clearly, the better sampled the folded light curve,
the better is the accuracy of both methods, although the CE method
returns a slightly higher proportion of accurate results than the
regular entropy – 5 per cent more of objects have an accuracy less
than a 10−5 cutoff with CE than with Shannon. The tracks of the
median centroid of the distributions with varying B are shown in
Fig. 5, indicating that as the light curves get noisier, both methods
also get less accurate but that the Shannon method does so at a
quicker rate – past B = 0.5 there is a 0.5 dex difference in the
median accuracy for the two.

Fig. 6 shows the overall accuracy distributions for the two entropy
methods for the different values of the error scaling factor used.
Again both methods show a dependence on how noisy the light
curve is, but the CE performs slightly better in all cases, i.e. for a
particular accuracy cutoff value, the CE returns a larger number of

Figure 5. The tracks of the median centroids of the accuracy distributions
from the synthetic data for the two entropy-based methods – red (CE) and
blue (Shannon entropy) – with the different values of the error scaling
factor, B.

periods than the Shannon entropy. This also shows the harmonic
data with the CE method a much better indicator of periodicity for
all noise levels. Note that for B > 0.7, most of the Shannon entropy
accuracies are significantly wrong (the strong concentration in the
top-right corner of Fig. 6d).

Although we have included random sampling and a noise term in
our generated data, we have so far only demonstrated the efficacy
of the algorithm with a synthetic sinusoidal signal which is not the
most realistic situation. However, as Table 1 shows, when applied
to real data with all its additional characteristics (such as observing
cadences rather than random sampling and heteroscedastic errors),
the CE method is vastly more effective and robust. We note that
Huijse et al. (2012) get fractional recovery rates of 0.88 and 0.99
for the true period and an integer (sub)multiple of the period, respec-
tively, for an accuracy cutoff of 5 × 10−3. However, we reserve a
far more extensive comparison of the CE algorithm to other period-
finding techniques with real data to our companion paper (Graham
et al. 2013)

The accuracy distributions for the two entropy-based methods
are shown in Fig. 7. The line of CE points at log(accuracy) = 0.5
indicates those light curves (12 per cent) for which the method has
incorrectly recovered a half period. As expected, these are predom-
inantly EBs with a few type C RR Lyrae as well. A large fraction
of the Shannon entropy periods (blue points) are clearly around
the ∼1 d value (the phenomenon shown in Fig. 1). In fact, this is
also class-related behaviour with the Shannon entropy method only
correctly recovering the true periods for mainly Cepheid variables.
Of the three classes in this data set, the distinguishing feature of
the Cepheids is that they have a higher S/N than RR Lyrae or EBs.
This makes it easier for the Shannon entropy method to identify
their correctly phased light curves than the other two classes. Again
we present a more extensive discussion of the class dependences of
various period-finding algorithms in our companion paper.

5 C O N C L U S I O N S

In this paper, we have introduced a new period-finding algorithm
based on the CE of the time series. As Cincotta (1999) suggested,
this improves on the results of a basic Shannon entropy-based ap-
proach. Although CE shows similar results to existing algorithms
when applied to standard synthetic data, it proves itself to be a much
more powerful technique in detecting general periodicity [via an

 at C
alifornia Institute of T

echnology on A
pril 30, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


2634 M. J. Graham et al.

Figure 6. The upper plots show the normalized distribution of accuracies of the recovered period relative to the true period for the two entropy-based algorithms
for the difference values of the error scaling factor, B, in the synthetic data: (a) the conditional entropy, (b) the Shannon entropy. The lower plots show the
normalized distribution of accuracies of the recovered period relative to an integer (sub)multiple of the true period: (c) the conditional entropy, (d) the Shannon
entropy. The conditional entropy performs moderately better at higher noise levels, particularly in detecting period harmonics.

Table 1. The fractional recovery rate of true periods for the two
entropy algorithms with the real MACHO data and different ac-
curacy cutoffs.

Method True period Harmonic
10−5 10−4 10−3 10−5 10−4 10−3

Conditional 0.47 0.82 0.86 0.52 0.94 0.99
Shannon 0.07 0.28 0.29 0.07 0.29 0.30

Figure 7. The distribution of accuracies for the MACHO data in terms of
the number of observations per cycle for the two entropy-based methods:
red (CE) and blue (Shannon entropy).

integer (sub)multiple of the true period] and real data. This stresses
the importance of using real data whenever possible to test new
techniques. Although we have only considered the application of
this algorithm to single-band light curves, we think that the tech-
nique can easily be extended to multiband light curves and also to
transit searches and will explore these in a future paper.
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APPENDI X A : O PTI MAL ESTI MATO R
F O R TH E C E

Scargle et al. (2012) describe an algorithm – Bayesian blocks (BB)
– that finds the optimal segmentation of 1D data in an observa-
tion interval. This can be extended to arbitrary dimensions in the
following way (Scargle, private communication):

(i) compute the 2D Voronoi tessellation of the points;
(ii) compute the areas of the Voronoi cells;
(iii) sort the (1D array of) areas (increasing);
(iv) feed this array to the 1D BB algorithm;
(v) the blocks coming out of the previous step will in general be

broken up into non-connecting pieces – so at this point it may be
necessary to identify these pieces – yielding a set of blocks (hyper-
Voronoi regions) that are connected subsets of the Voronoi cells in
the original blocks.

The (Shannon) entropy of the point distribution (light curve) can
be estimated (Miller 2003) as

HV =
m∑

i=1

C(Ui)

N
log

(
NA(Ui)

C(Ui)

)
,

where each hyper-Voronoi region Ui has C(Ui) Voronoi regions
in it, N = ∑

iC(Ui), and A(Ui) is the 2-dimensional volume of
Ui. The CE is then given by H(m|φ) = H(m, φ) − H(φ), where
HV = H(m, φ). H(φ) can be estimated from the BB partitioning of
the phase distribution via H (φ) = −∑m

i=1 f (xi) log(f (xi)/w(xi)),
where f(xi) is the fraction of points in the ith BB partition and w(xi)
is its width.
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