
Online Motion Planning for Tethered Robots in Extreme Terrain

Melissa M. Tanner1, Joel W. Burdick 1, and Issa A. D. Nesnas2

Abstract— Several potentially important science targets have
been observed in extreme terrains (steep or vertical slopes,
possibly covered in loose soil or granular media) on other
planets. Robots which can access these extreme terrains will
likely use tethers to provide climbing and stabilizing force. To
prevent tether entanglement during descent and subsequent
ascent through such terrain, a motion planning procedure is
needed. Abad-Manterola, Nesnas, and Burdick [1] previously
presented such a motion planner for the case in which the
geometry of the terrain is known a priori with high precision.
Their algorithm finds ascent/descent paths of fixed homotopy,
which minimizes the likelihood of tether entanglement. This
paper presents an extension of the algorithm to the case where
the terrain is poorly known prior to the start of the descent.
In particular, we develop new results for how the discovery
of previously unknown obstacles modifies the homotopy classes
underlying the motion planning problem. We also present a
planning algorithm which takes the modified homotopy into
account. An example illustrates the methodology.

I. INTRODUCTION

The recent successful landing of the Mars Science Labo-

ratory (MSL) Curiosity rover reminds us of the potential for

robots to explore extraplanetary terrains. To date, NASA’s

Martian rovers (Sojourner, Spirit, Opportunity, and now

Curiosity) have used a common mobility platform–the six-

wheeled rocker-bogie suspension design [2]. While it has

been estimated that this type of platform can operate on

∼ 60% of the Martian surface, some of the most interesting

science targets occur in currently inaccessible terrains. For

example, in 2011, seasonal dark streaks were discovered

on the slopes of Mars’ Newton Crater (see Fig. 1). These

recurring slope lineae (RSL) are currently hypothesized to

be flows of briny water caused by the warmer Martian

summer. An extreme terrain rover could access these slopes

to examine and sample the RSL at close range, potentially

confirming the presence of a life-supporting aqueous environ-

ment on Mars. Beyond Mars, cold traps found at the bottom

of deep craters on the Moon might harbor water, crucial to

a future manned base. Nesnas et al. [3] provides a list of

other representative extreme extraplanetary terrains and their

associated scientific targets.

In light of this potential need for extreme terrain rovers, the

Jet Propulsion Laboratory (JPL) and the California Institute

of Technology collaborated to design and develop the Axel

*This work was supported by the Keck Institute for Space Studies. In
addition, the third author was supported by the JPL RTD program.

1M. Tanner and J. Burdick are with the Department of
Mechanical and Civil Engineering, California Institute of Technology,
Pasadena, CA 91125 USA mmtanner@caltech.edu and
jwb@robotics.caltech.edu

2I. Nesnas is with the Jet Propulsion Laboratory, Pasadena, CA 91109
USA nesnas@jpl.nasa.gov

Fig. 1: Orbital imagery of dark briny flows on the Martian

surface. The ability to measure and in-situ sample these flows

on their native steep slopes could confirm the presence of

life-supporting water on Mars [4].

class rover, and its DuAxel rover configuration. Axel is

a two-wheeled robot that can rappel down steep terrain

using a tether in order to carry out science at close range

(see Fig. 2). The tether is routed through the arm, and

wound around a reel in the center of its body. A solo

Axel is conceived as a daughter ship in a mother-daughter

configuration, with Axel’s tether anchored in the mother ship

(a rover or lander at the top of the extreme terrain) [3].

In addition to providing mechanical support, the tether can

provide power and communication. Because the Axel body

acts as a winch, paying out or reeling in the tether as it

travels, the system minimizes tether abrasion.

Axel is minimally actuated, having a motor for each wheel,

one to spool the tether, and one to control the arm through

which the tether passes. This combination of motors allows

Axel to rotate its body independently of its wheels, enabling

it to take pictures or deploy scientific instruments from the

access panels in its instrument modules while on a steep

cliff face. In the DuAxel configuration, two Axel-class rovers

dock with a central module, forming a 4-wheeled rover

which can traverse long distances to the edge of an extreme

terrain area, whereupon one or both Axels disengage from

the central module to descend into the hazardous area (see

Fig. 3). The central module acts as an anchor and mother

ship. For more details on the geometry and capabilities of

the Axel and DuAxel rovers, see Nesnas et al. [3]. Axel is

not the first tethered robot to be developed for steep terrain

access. Nesnas et al. [3] also compares Axel to other extreme

terrain robots, such as Dante, Athlete, Cliffbot, and Lemur.

Figure 4 shows Axel descending steep terrain during a

2013 IEEE International Conference on Robotics and Automation (ICRA)
Karlsruhe, Germany, May 6-10, 2013

978-1-4673-5643-5/13/$31.00 ©2013 IEEE 5557



Fig. 2: CAD rendering of the Axel rover.

Fig. 3: The DuAxel rover on rough terrain. DuAxel consists

of two Axel-class rovers docked with a central module.

field test in the Arizona desert. Clearly, without thoughtful

planning of Axel’s descent in such terrain, there is a high

propensity for its tether to become entangled on terrain

features. Most previous efforts to develop motion planning

algorithms for tethered robots exclusively considered the

tether a mere umbilical providing power, communication,

and control signals. In these studies, the tether did not gener-

ate the large reaction forces needed for mobility. The primary

goal of these algorithms was to minimize entanglement of the

trailing tether with obstacles or other robots. For example,

Hert and Lumelsky considered path planning with multiple

tethered robots [5]–[8]. Xavier found the shortest path for

a tethered robot [9]. Axel, however, must use its tether for

support and to generate climbing forces or stabilizing forces,

not just for power and communication. The forces provided

by the tether must be accounted for in the motion planning

process, and the interaction of the tether with the terrain

under load must also be considered.

To date, the only algorithm for planning the motion of

robots whose tethers generate mobility and safety forces has

been presented by Abad-Manterola et al. [1]. This method,

whose underpinnings are reviewed in Section II, is based on

two key observations about tether-based mobility in extreme

terrain:

1) A necessary condition to avoid entanglement of the

tether during a round trip descent/ascent cycle is to

ensure that the descent and ascent paths lie in the same

path homotopy class. When this constraint is violated,

Fig. 4: A picture of Axel descending steep, rough terrain in

the Arizona desert. Tether highlighted in blue.

the tether can become looped around an obstacle.

2) In the course of vehicle ascent, the robot will pull the

tether taut, forming the shortest homotopic path (SHP).

This taut tether configuration must be homotopic to

both the ascent and descent paths, and therefore can

be used as a canonical representation of a homotopy

class.

More importantly, the planning method presented in Abad-

Manterola et al. [1] assumes the geometry of the terrain

and its obstacles are known a priori. While it is true that

high resolution orbital imagery will almost certainly be

available prior to the descent of an extreme terrain vehicle,

the resolution of this imagery cannot be sufficient to identify

all obstacles to the robot’s progress. It must be assumed that

unforeseen obstacles will arise during the robot’s traverse,

and also that orbital imagery will contain errors or misalign-

ments.

This paper extends the method from Abad-Manterola et

al. [1] to develop an algorithm which can plan tethered

robot motions in an extreme terrain whose geometry is not

fully known. The key to this approach is the observation

that newly observed obstacles and terrain features found

during descent have limited, and well-definable, effects on

the special triangulation which is the basis for managing the

homotopy classes of the ascent/descent paths.

Section II reviews the algorithm developed in Abad-

Manterola et al. [1] in order to set the stage for our

new contributions. Section III shows how newly discovered

obstacles or terrain features found during the descent stage

affect the originally constructed plan, and proposes an on-

line algorithm to accommodate new terrain features. Section

IV presents an example using this algorithm. Section V

concludes with a summary of open issues.

II. BACKGROUND: TETHERED ROBOT PATH PLANNING IN

KNOWN TERRAINS WITH HOMOTOPY CONSTRAINTS

The permanently-shadowed depths of the lunar Shackleton

Crater form a cold trap, hypothesized to contain volatile

comet remnants such as water ice. Figure 3 in Abad-

Manterola et al. [1] shows a side view elevation map of

Shackleton Crater’s walls, based on altimetry from NASA’s

Lunar Reconnaissance Orbiter. Like many extraplanetary

science targets, the rim and bottom of the crater are relatively

5558



Fig. 5: Simplified model of an extreme terrain: A tether-

demand plane interposed between two tether-free planes [1].

flat, while the crater walls are composed of stretches of con-

sistent steeper slopes. We can thus idealize such terrains as a

series of planes strewn with obstacles, which we approximate

as polygons (see Fig. 5). The steep slopes are termed tether-

demand planes, as the tether must generate climbing forces

when the robot operates on these steep slopes, while the

gentle slopes are termed tether-free regions (where the rover

can traverse without the need for a tether).

Experiments with Axel and DuAxel in rough terrain have

shown that tethered ascent over steep and rocky slopes is

generally more difficult than tethered descent over the same

terrain [3]. Working against gravity, steep terrains covered

by loose soil or granular material often afford little traction,

and thus an ascending tethered robot can easily become

stuck underneath an obstacle that was easily traversed during

the descent. Since not all feasible descent paths will have

a corresponding feasible ascent, the planning procedure of

Abad-Manterola et al. [1] is based on a two step approach:

find safe ascent paths, and then search for feasible descent

paths that are homotopic to those safe ascent paths.

Let a0 denote the location of the anchor point where the

distal end of the tether is anchored, enabling Axel to descend

into steep terrain. Let g denote the location of the goal.

Consider the robot’s ascent on a tether-demand plane.

The robot reels in the tether until it is taut, thereafter using

the cable tension to create ascending forces. If we assume

that the terrain between the obstacles is frictionless, then

the tether will necessarily take the shortest obstacle-free

path between the robot and the anchor point, potentially

contacting the boundary of one or more obstacles. Hence,

one can compute the configuration of a taut tether, given its

slack configuration, by finding the shortest homotopic path

(SHP) from the robot’s configuration to a0.

There will generally be more than one way to thread

a taut tether around obstacles between the anchor and the

goal. Each of the possible windings of the tether through the

obstacles represents a different path homotopy class. Hence,

the path planning process starts with identifying all of the

possible path homotopy classes between the anchor and the

robot’s goal.

A. Boundary Triangulated Manifolds

To find all of the shortest homotopic paths (corresponding

to possible tether routes between a0 and g that do not wind

Fig. 6: Example of a Boundary Triangulated Manifold

(BTM) [1]. Obstacles shown in white.

around an obstacle), one approach first constructs a Boundary

Triangulated Manifold (BTM) of the tether-demand planes.

Definition 1: Let P be a polygonally bounded region

of R
2, which may contain one or more polygonal holes

(obstacles), {Oi} = O1, . . . , ON . A Boundary Triangula-

tion of P\ {Oi} consists a decomposition of P\ {Oi} into

boundary triangles. The vertices of a boundary triangle must

be incident to only two boundary edges. Boundary edges are

incident to only a single triangle. A Boundary Triangulated

2-Manifold (BTM) is a 2-dimensional simplicial complex in

which all vertices are boundary vertices.

Practically speaking, boundary edges form the boundaries

of the tether demand regions, or the edges of obstacles.

The vertices of the triangles in a BTM must always lie on

vertices at the end of boundary edge segments. De Berg [10]

gives algorithms to break a two-dimensional map into y-

monotone pieces, and to triangulate those pieces to form a

BTM. Note that there is not a unique boundary triangulation

of a polygonal region with obstacles. Figure 6 shows an

example of a BTM.

Sleeves. Each homotopy class can be represented by a

sleeve, a polygon formed by those triangles through which

a SHP passes (see Fig. 7) [11]. Any path entirely within the

sleeve is homotopic to any other path within it, although the

set of homotopic paths is not limited to those in the sleeve.

In addition, paths that travel outside of the sleeve and then

return through the same exiting edge without looping around

any obstacles are also homotopic to every path within the

sleeve.

We use Hershberger and Snoeyink’s algorithm to find the

SHP in a sleeve of a BTM [11]. This is based on earlier work

by Chazelle [12] and Lee and Preparata [13], who wrote

funnel algorithms to compute the shortest path in a polygon.

Recently Bespamyatnikh [14] introduced an algorithm that

can compute the SHP of a simple path in reduced time.

Abad-Manterola et al. [1] present a method to find all unique

sleeves of a BTM that contain the anchor and goal points.

Anchor points. Intermediate anchor points are the points

at which the taut tether (the SHP of the given sleeve) contacts

one or more of the obstacles, O1, . . . , ON . The intermediate

anchor points a1, . . . , ak are indexed in increasing order

along the tether from that anchor point. An intermediate

5559



Fig. 7: Example of sleeves, in gray, in a Boundary Triangu-

lated Manifold [1].

Fig. 8: Example of anchor points and SHP edges. The dotted

line surrounds the controllable set [1].

anchor point, aj, is passable from robot configuration q if,

given q and an SHP with anchor points a1, . . . , aj , the robot

can reach a configuration which removes aj from the SHP

and makes aj−1 the proximal anchor point. In other words,

if the robot can maneuver so as to remove its tether from

contact with the obstacle at that anchor point, that anchor

point is considered passable. See Abad-Manterola et al. [1]

for a procedure to assess passability.

One example is illustrated in Figure 8. For some inter-

mediate anchor point ak, Ck(q) represents the reachable

set, the points that are reachable from the robot’s current

configuration, given the wheel-terrain interaction model. As

it crosses the SHP edge, the robot removes ak from the list

of intermediate anchor points, leaving ak−1 as the proximal

intermediate anchor point. Therefore, ak is passable. The

robot must then compute Ck−1(q) to determine if the next

intermediate anchor point is passable, continuing up the line.

If all of the anchor points are passable, then a feasible ascent

path exists.

B. Using Complex Analysis to Find Multiple Homotopy

Classes

L-values. As a requirement for online path planning, we

add a homotopy feature not found in Abad-Manterola et

al. [1]. Bhattacharya et al. [15] describe a method, based

on the Cauchy Integral Theorem from complex analysis, to

check if two paths are homotopic. While there are alternate

methods to test for homotopy, such as that in Cabello et

al. [16], this complex analysis method also lends itself well

to traditional graph search. Bhattacharya et al. model (x, y)
nodes on a directed graph in the complex plane, as z = x+iy.

Each obstacle O1, ..., ON is represented by a pole placed

somewhere inside that obstacle, ζi. Since (by Cauchy’s

Integral Theorem) the integral of an analytic function around

a simply connected region is 0, and around a pole is some

non-zero multiple of 2πi, we can perform a contour integral

to determine if there is an obstacle inside the loop formed

by two paths. If there is no obstacle, the contour integral is

zero and the two paths are homotopic.

Therefore, we can compare the contour integral for one

path with that of another path to determine if the two paths

are homotopic. The contour integral for each path is called

its L-value, given below:

L(τ) =

∫
τ

f0(z)

(z − ζ1)(z − ζ2)...(z − ζN )
dz

where τ is the path, and f0(z) is any analytic function

over the complex plane. If two paths (oriented in the same

direction, from a0 to g) have the same L-value, they are

homotopic. Therefore, Bhattacharya et al. [15] show that

one can check the homotopy of two paths using a contour

integral over any analytic function. They use homotopy as a

constraint in search, allowing one to limit search to a certain

homotopy class, or rule out other homotopy classes.

We can use this L-augmented search method to quickly

find a number of sleeves in a given BTM. We start by

choosing some heuristic, such as distance. Then we search

for the least-costly route using A*, which uses an open list

for visible paths. Although any informed search algorithm

or evolutionary algorithm can be used, A* was chosen for

its simplicity and bounded time structure. Having found one

path to the goal, we continue the search, constraining new

nodes to have an L-value different from that of the found

path. By continuing in this manner, we can build up a list

of paths, each in a different homotopy class. In addition, by

making each of the graph nodes a triangle in the BTM, we

both simplify our search and make it very easy to find the

associated sleeve, given a path from a0 to g.

C. The Pre-Planning Algorithm

Our path planning algorithm starts similarly to that given

by Abad-Manterola et al. [1]. We first triangulate the tether-

demand plane(s) into a BTM. Without considering kinody-

namics, we then apply an L-value constrained A* search

until we find a path to the goal. We use this path to identify

a sleeve, as classified by its L-value. Using Hershberger

and Snoeyink’s algorithm, we find the SHP for the sleeve,

and identify the anchor points. After checking if the desired

sleeve has a feasible path, we choose ascent and descent

paths from the set of feasible paths. We can ensure backtrack-

ability if we choose a descent path from the set of feasible

ascent paths, such that the robot can always return to its

5560



anchor point at the top. If there is no feasible path in this

sleeve, we add this sleeve’s L-value to the list of constraints

and continue the A* search in regions of different L-values.

This continues until we find a feasible path, or terminate

without finding any path.

Algorithm 1 Offline Pre-Planning Algorithm

find BTM

Lc ← ∅ {Initialize list of L-value constraints}
updates← ∅
feasiblePaths← ∅

5: pathToGoal← ∅
while feasiblePaths = ∅ do

while pathToGoal = ∅ do

pathToGoal = Astar(Lc, 0) {Run A* with the

given constraints, and no updates}
end while

10: Identify sleeve of pathToGoal and its L-value

Find SHP and identify anchor points {aj}
if feasibilityCheck() then

find feasiblePaths {pick a pair of ascent/descent

paths that pass through all the anchor reachable set}
end if

15: end while

The ascent path feasibility check remains much the same

as that given by Abad-Manterola et al., but is described here

as a separate function for clarity. For each anchor point on

the SHP, we construct the anchor reachable set based on

the terrain and the robot’s capabilities. If robot can move

so as to remove its tether from contact with the obstacle at

that anchor point, that anchor point is considered passable.

A series of passable anchor points means that the robot can

reach a series of positions that allows it to ascend. If one

of the anchor points is not passable, we add this sleeve’s L-

value to the list of constraints, and return to the main block

of code to continue looking for feasible sleeves.

III. IMPACT OF NEWLY DISCOVERED OBSTACLES AND

TERRAIN FEATURES

The algorithm reviewed in the previous section assumed

a known, stationary map of the terrain prior to the planning

process. In practice, at best a low resolution map will be

available from a satellite flyover as a tethered robot such

as Axel enters an extreme terrain. At worst, the only data

available will be derived from on-board navigation cameras,

and perhaps a mother ship’s stereo camera mast. In either

case, we assume that prior to entry into the extreme area,

a nominal motion plan has been devised by applying the

method of the previous section to the available map data.

This section considers the following important question

for online planning: how can the motion plan be properly

updated to account for errors in the map that are inevitably

encountered during the descent process? In particular, how

can the path homotopy constraints be respected in light of

these errors? Fortunately, the path planning procedure can be

readily adapted to online path-planning.

Algorithm 2 feasibilityCheck()

continue← True

q ← g

j ← length({aj})
pathExists← False

5: while continue do

construct Cj(q) {Construct anchor reachable set}
if aj is passable then

j ← j − 1
if j = 0 then

10: continue← False

pathExists ← True {feasible ascent path ex-

ists}
else

q ← SHP edge of Cj(q)
end if

15: else

Lc ← {Lc, L} {Add L-value to list of constraints}
continue← False

end if

end while

20: return pathExists

A. Adjusting the BTM

Assume that the robot has carried out the aforementioned

offline planning, selecting a sleeve and its associated SHP,

and an ascent/descent path pair. However, as it starts down

the proscribed descent path, it receives new information,

indicating that the original map is in error. A simple analysis

shows that all of the possible errors fall into one or more of

the following categories:

1) An entirely new, unforeseen, obstacle appears.

2) A map obstacle is found to be a phantom (i.e., the

obstacle “disappears”).

3) An obstacle has shifted location.

4) The boundaries of an obstacle or of the planning region

are found to be different from those used to construct

the preliminary plan.

Each of these changes will require a modification of the

boundary triangulation of the descent slopes. Can this modi-

fication be handled in an online fashion? The answer to this

question depends upon how changes in obstacle and terrain

geometry affect the boundary triangulation. The classes of

errors described above can be reduced to two simple classes

of modifications: any error can be accommodated by adding

and removing obstacles from the map–an existing obstacle

or terrain boundary that has changed shape or position can

simply be removed and replaced by a new, slightly different

obstacle. Therefore, let us assume that we are changing

BTMs only to reflect added or removed obstacles.

As proven in Lemma 1 below, the effects of bounded map

errors can be localized to a small region, which we term

the affected region. This region consists of all the BTM

triangles that contain all or part of the added or removed

obstacle components. Since the boundary of the affected

5561



Fig. 9: Left: New obstacle added to BTM. Center: Triangu-

late affected area. Right: New BTM.

Fig. 10: Left: New obstacle added to BTM. Right: Retrian-

gulate affected area for new BTM.

region consists of edges and vertices, which themselves

must be boundary segments due to the properties of the

original boundary triangulation, the affected area can be

retriangulated as a BTM.

Lemma 1: Any boundary triangulated 2-manifold (BTM)

can be locally retriangulated in the affected region around

a new or removed obstacle to construct a proper boundary

triangulation (see Definition 1) which seamlessly meshes

with the boundary triangulation outside the affected region.

The resulting triangulation is a BTM.

Proof: We assume that a new obstacle added to the map,

or the obstacle to be removed from the map, is a bounded

polygon. First consider the case of an added polygonal obsta-

cle. This polygon will intersect a finite number of triangles

in the boundary triangulation. The union of these triangles

is termed the affected region, and is naturally a polygon. By

the properties of boundary triangulation (Definition 1), the

vertices bounding the affected region are boundary vertices.

Hence, when a polygonal hole representing an obstacle is

added to the BTM, a retriangulation of the affected region

(incorporating the presence of the new obstacle) using de

Berg’s algorithm [10] results in a BTM of the affected region.

Since the vertices of the affected area are, by definition,

boundary vertices of the overall map, the retriangulation

within the affected region maintains the BTM requirements

for the overall map. Similarly, if an obstacle is removed, let

the affected region consist of the union of the triangles whose

edges or vertices are incident on the polygonal hole formed

by the removed obstacle. Again, the boundary of the affected

region satisfies the properties of a boundary triangulation,

and thus the affected region can be retriangulated to form a

BTM which naturally integrates with the existing BTM. �

Figure 9 illustrates how the process of adding an obstacle

affects the triangulation. In the left panel, the new triangular

obstacle added to the existing BTM lies wholly within a

triangular simplex. That triangle is the affected region, and

it is triangulated to form a local BTM (center diagram).

Since all of the boundary vertices of this affected region

are also boundary vertices of the larger map, the union of

the retriangulation and the unaffected region forms a BTM

(right panel of Fig. 9). The case of an obstacle falling

into multiple simplices is illustrated in Figure 10. The two

triangles incident to the obstacle become the affected region,

and the entire square containing both simplices, as well as

the newly discovered obstacle, are retriangulated (right-hand

diagram of Fig. 10). As in Figure 9, the overall BTM remains

a BTM, due to this specific retriangulation of the affected

region.

The case for removing an obstacle is much the same, as

can be seen by reading Figures 9 and 10 backwards. The

affected region consists of the removed obstacle plus its

adjacent simplices. The affected region is retriangulated to

form a BTM, which conserves the BTM of the larger map.

B. Adjusting the Sleeve and Paths

Let the current sleeve denote the sleeve in which the

robot’s evolving descent path lies. When an unexpected

obstacle is encountered, it may affect the geometry of the

current sleeve, or it may not. In the most drastic effect, the

current sleeve can be split into two sleeves, which will have

coincident simplices up to the affected region. If there is

no effect on the current sleeve, then the original plan can

be continued until the next map error is encountered. The

retriangulation may be useful later if the robot needs to

backtrack.

If the newly observed obstacle intersects the current sleeve,

it can have one of several effects:

1) The current sleeve is blocked. The robot must ascend

until it finds a junction with an as-yet unexplored

sleeve.

2) The sleeve geometry may be altered, but it does not

alter the shortest homotopic path. In this case, there

are no homotopy effects due to the map errors. The

original plan will not be altered unless the obstacle

blocks access to terrain whose trafficability is neces-

sary for robot safety and controllability on the ascent

or descent path.

3) The sleeve is not split into two pieces, but the shortest

homotopic path is altered. The robot must reassess the

feasibility of the new SHP. If the path is feasible,

the robot can continue. Otherwise, the robot must

backtrack to a junction with an as yet unexplored

sleeve.

4) The current sleeve is split into two sleeves. The two

sleeves will contain the same simplices up until the

affected region. In the affected region, the new obstacle

will force a leftward and rightward sleeve around the

obstacle. The robot must then find and evaluate the

feasiblility of the SHPs for each sleeve.

Similarly, removing an obstacle might free up a new

sleeve, but it could also change the anchor points to make

5562



a path infeasible. Therefore, we must check for path in-

tersection and feasibility. Algorithm 3 describes when to

recompute sleeves and feasibility.

Algorithm 3 Online Path Planning Algorithm

updates← ∅
repeat

if mapChanged then

updateBTM()

5: updates← {updates,mapChanges}
if affected area is in the current sleeve then

SHPold ← SHP

update sleeve around SHP

recompute SHP and anchor points

10: if SHP 6= SHPold then

if feasibilityCheck() == False then

Lc = {Lc, L} {Add L-value to constraints}
Astar(Lc, update)
Backtrack to go down that sleeve

15: end if

select ascent and descent paths

else

if obstacle blocks ascent or descent paths or

Lascent 6= Ldescent then

if feasibilityCheck() then

20: select new ascent and descent paths

else

Lc = {Lc, L}
Astar(Lc, update)
Backtrack to go down that sleeve

25: end if

end if

end if

end if

end if

30: until goal reached

Every map change invokes a local retriangulation–this is

a computationally cheap operation. We ignore those changes

that happen outside the current sleeve, placing them in a

list of updates to be propagated when necessary. For those

changes that affect the current sleeve, we update the sleeve

to reflect the new triangulation, and recompute the SHP

if necessary. If the SHP has changed, then the paths have

been materially altered and we must replan from the affected

region down to the goal. If there is no feasible path forward,

this sleeve is marked as as infeasible by adding its L-value

to the list of constraints. Similarly, if the SHP remains the

same, but an obstacle blocks a path or comes between the

ascent and descent paths, we must select new paths or block

A* in that sleeve by adding that new L-value constraint. Note

that L-values are only computed as A* expands that node.

We then run the A* search algorithm again, propagating

map updates as we go. Having found a promising sleeve,

the robot backtracks to the junction of the two sleeves, and

starts down the new sleeve. If there is a feasible path, we

must again select an ascent and descent path. By selecting a

descent path within the set of feasible ascent paths, we ensure

that the robot can always safely backtrack to its starting

position.

This algorithm isn’t optimal; because it doesn’t recompute

sleeves and paths globally, a removed or moved object may

open up a more optimal sleeve, but the robot prefers to stay in

the current sleeve when possible. However, it will eventually

find a path to the bottom, if there is one.

C. Multiple Changed Obstacles

Numerous simultaneous updates to the map do not sig-

nificantly change the online path planning algorithm. The

updates can be processed in sequence by simply inserting a

for loop before line 6 in Algorithm 3, with an end after line

28, running the intervening code for every affected region.

IV. WORKED EXAMPLE

This section covers an example of finding a feasible ascent

and descent path pair using Algorithm 1. Then, we will

demonstrate Algorithm 3 with an online example, in which

a new obstacle appears in the sleeve of the descent path.

Assume that the robot starts with a map, which it can parse

into a series of 2-dimensional tether-free and tether-demand

planes with polygonal obstacles. Figure 11a shows an exam-

ple tether-demand plane with two triangular obstacles shown

in blue. The start and goal points are marked with X’s, with

a0 at the top, and g at the bottom. We start by triangulating

this planar map into a BTM. The triangles outlined in black

depict the BTM, and the orange line shows a potential path

found with A*. Having found a path, one can reduce the

crossing sequence to find its sleeve, shown in gray.

Using Hershberger and Snoeyink’s algorithm [11], we find

the SHP, shown in green in Figure 11b. Anchor points, where

the SHP intersects the vertex of an obstacle, are circled

in green. We examine each intermediate anchor point to

determine if it is passable, and if all the anchor points in the

list are passable, feasibilityCheck() returns True.

In Figure 11c we have selected an ascent/descent path pair,

shown in orange, from the set of all feasible paths.

After the robot completes its offline preplanning actions,

it starts down the chosen descent path and turns a corner,

only to discover a hitherto unknown obstacle. Figure 11d

shows the path the robot has completed so far in red. Upon

spying a new obstacle, the robot retriangulates the BTM in

the affected area, and recomputes the SHP as in Figure 11e.

The SHP change represents a change in the associated sleeve.

Since the anchor points have changed, the robot must re-run

Algorithm 2, feasibilityCheck(), to ensure that the

sleeve is still traversable.

In our example, a feasible path exists, so the robot selects

new ascent and descent paths and continues down the slope.

Figure 11f shows the new descent path in orange, starting

from the robot’s current position. Its ascent path is not shown.

The robot continues these steps until it reaches the goal.

Every time a sleeve becomes untraversable, the search space

is further constrained to avoid that L-value, and the robot

5563



(a) (d)

(b) (e)

(c) (f)

Fig. 11: An online example, with preplanning.

continues searching for new sleeves. Since it can backtrack,

the robot can always return to the start to try another path

in an as-yet unexplored sleeve.

V. CONCLUSION AND FUTURE WORK

This paper presented an online path planning algorithm

for a tethered extreme-terrain robot. Despite incomplete or

incorrect initial information, our algorithm will find a safe

path to the goal, if one exists. We have so far chosen to

expand and compare only select sleeves and their SHPs,

based on the heuristic in our A* algorithm. The sleeve is

useful because it provides a useful framework for enumerat-

ing paths in a homotopy class. However, it is also possible to

compute all SHPs by pruning the visibility graph of our map,

as described in [17] and implemented in [18]. We intend to

implement both methods in the future, to compare in practice

the speed gain of precomputing SHPs versus the benefits of

knowing the sleeve. We will implement an online planner in

simulation and on the Axel rover.

ACKNOWLEDGMENTS

The authors yould like to thank the Keck Institute for

Space Studies for their support, and the reviewers for their

insightful comments. The third author would like to acknowl-

edge support from the JPL RTD program.

REFERENCES

[1] P. Abad-Manterola, I. Nesnas, and J. Burdick, “Motion planning on
steep terrain for the tethered Axel rover,” in Proc. IEEE Int. Conf.

Robotics and Automation, Shanghai, China, May 2010, pp. 4188–
4195.

[2] Mars Science Laboratory: Wheels and legs. [Online]. Available:
http://mars.jpl.nasa.gov/msl/mission/rover/wheelslegs/

[3] I. Nesnas, J. Matthews, P. Abad-Manterola, J. Burdick, J. Edlund,
J. Morrison, R. Peters, M. Tanner, R. Miyake, B. S. Solish, and
R. Anderson, “Axel and DuAxel rovers for sustainable exploration
of extreme terrains,” J. Field Robotics, pp. 663–685, Jul-Aug 2012.

[4] (2011) Mars Reconnaisance Orbiter: Multimedia. [Online]. Available:
http://mars.jpl.nasa.gov/mro/multimedia/images/?ImageID=3580

[5] S. Hert and V. Lumelsky, “Moving multiple tethered robots between
arbitrary configurations,” Int. Conf. Robots and Intelligent Systems,
vol. 2, pp. 280–285, August 1995.

[6] ——, “The ties that bind: Motion planning for multiple tethered
robots,” Robotics and Autonomous Systems, vol. 17, pp. 187–215, May
1996.

[7] ——, “Planar curve routing for tethered-robot motion planning,” Int.

J. Computational Geometry and Applications, vol. 8, pp. 437–466,
August 1998.

[8] ——, “Motion planning in R3 for multiple tethered robots,” IEEE

Trans. Robotics and Autonomation, vol. 15, pp. 623–639, August 1999.
[9] P. G. Xavier, “Shortest path planning for a tethered robot or anchored

cable,” vol. 2, May 1999, pp. 1011–1017.
[10] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Compu-

tational Geometry: Algorithms and Applications, 3rd ed. New York:
Springer-Verlag, 2008.

[11] J. Hershberger and J. Snoeyink, “Computing minimum length paths of
a given homotopy class,” Computational Geometry, vol. 4, pp. 63–97,
June 1994.

[12] B. Chazelle, “A theorem on polygon cutting with applications,” in 23rd

Ann. Symp. Foundations of Computer Science, 1982, pp. 339–349.
[13] D. T. Lee and F. P. Preparata, “Euclidean shortest paths in the presence

of rectilinear barriers,” Networks: An International Journal, vol. 14,
pp. 393–410, 1984.

[14] S. Bespamyatnikh, “Computing homotopic shortest paths in the plane,”
Journal of Algorithms, vol. 49, pp. 284–303, November 2003.

[15] S. Bhattacharya, M. Likhachev, and V. Kumar, “Search-based path
planning with homotopy class constraints,” in Proc. 24th AAAI Conf.

Artificial Intelligence, Atlanta, Georgia, July 2010.
[16] S. Cabello, Y. Liu, A. Mantler, and J. Snoeyink, “Testing homotopy for

paths in the plane,” in Proc. 18th Ann. Symp. Computational Geometry,
2002, pp. 160–169.

[17] J. S. B. Mitchell, “Shortest paths and networks,” in CRC Hand-

book of Discrete and Computational Geometry, J. E. Goodman and
J. O’Rourke, Eds. CRC Press LLC, 1997, ch. 24, pp. 445–446.

[18] A. Akce and T. Bretl, “A compact representation of locally-shortest
paths and its application to a human-robot interface,” in Proc. IEEE

Int. Conf. Robotics and Automation, Shanghai, China, May 2011.

5564


