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a b s t r a c t 

This paper presents a novel scheme to biaxially package and deploy flat membranes, in which the thick- 

ness of the membrane is accounted for through the novel concept of slipping folds. The membrane is di- 

vided into parallel strips connected by slipping folds, and specially chosen wrapping profiles that require 

zero slip along the edges of the membrane are identified. This packaging scheme avoids the kinematic 

incompatibilities that in other schemes result in local buckles and wrinkles that increase the deploy- 

ment force and permanently deform the membrane. The paper also presents a scheme to apply uniform 

uniaxial prestress to the deployed membrane, as well as a two-stage deployment scheme. Packaging effi- 

ciencies of up to 83% have been demonstrated for meter-scale models, although for large membranes the 

packaging efficiency approaches 100%. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Membranes are widely used in large-area space structures, in-

cluding photovoltaic arrays, solar sails, drag sails, reflectors, trans-

missive optics, thermal shields, etc. These applications require tight

packaging of the membranes for launch into orbit, followed by in-

orbit deployment. This need for packaging and deployment poses

three fundamental challenges: first, making efficient use of the

stowage volume, leaving minimal voids; second, avoiding perma-

nent deformation of the membrane material, i.e. remaining within

the elastic limit; and, third, being able to deploy with small and

predictable edge forces, to lower the requirements on the edge

structure that will carry out the deployment ( Arya, 2016 ). 

The first of these challenges is well-known and has been ad-

dressed extensively in the literature, but the search for solutions

to all three challenges combined, for the case of biaxial folding, is

a problem still wide open. 

This paper presents a novel scheme to biaxially package and

deploy flat membranes. This packaging scheme accounts for the

thickness of the membrane through the novel concept of slipping

folds, which avoid the kinematic incompatibilities that in other

schemes lead to the formation of buckles and wrinkles. These ef-

fects are responsible for decreased packaging efficiency, plastic de-

formation and non-smooth deployment. 
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The paper begins with a survey of the state of the art on the

ackaging of membrane structures, in Section 2 . Section 3 presents

he proposed packaging concept which, is called slip-wrapping, for

he specific case of a square membrane. Section 4 shows that uni-

orm, uniaxial prestress can be applied to rhombus-shaped mem-

ranes with curved edges, with slits that allow slip-wrapping.

ection 5 presents a deployment scheme for slip-wrapped mem-

ranes. To validate the proposed packaging, deployment and pre-

tressing schemes, experiments were carried out in the laboratory,

sing a simple apparatus that is described in Section 6 . The test

esults are presented in Section 7 , and Section 8 concludes the pa-

er. 

. Background 

Membrane packaging solutions can be divided into two broad

ategories, those providing compaction in one dimension, and

hose providing biaxial compaction. Folding is the most com-

only used deformation mechanism. It can be accomplished ei-

her by creasing, i.e. by imposing a localized bending deforma-

ion of the membrane, or by incorporating mechanical hinges that

llow rigid-body rotation of one part of the membrane with re-

pect to another. Tight creasing results in plastic deformation, and

 plastically creased membrane cannot be pulled flat using in-

lane tension ( Murphey, 20 0 0; Papa and Pellegrino, 2008 ). Me-

hanical hinges, on the other hand, may be unfolded using in-

lane tension alone, though they add mass and complexity to the

tructure. 

http://dx.doi.org/10.1016/j.ijsolstr.2016.08.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijsolstr
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Nomenclature 

A Area 

c Pitch of involute curve 

D Bending stiffness 

D f Flap bending stiffness 

d A , d B Partially deployed diagonal length 

E Young’s modulus, incomplete elliptic integral of first 

kind 

F Tensioning or deployment force, incomplete elliptic 

integral of second kind 

F A , F B Corner forces 

f ( x ) Edge profile 

H p Packaged height 

h Thickness 

i Strip index 

k Elliptic integral parameter 

L Side length 

l Slip 

L a , L b Diagonal lengths 

L c , L f Clip length, flap length 

n Number of strips 

n Normal to base curve 

P Prestress per unit width 

p Generator curve 

Q N , Q T Normal and tangent force components at cage exits 

q Elliptic integral, strip offset from base curve 

R Void radius 

R min Elastic radius of curvature 

R p Packaged radius 

r Base curve 

s Arclength 

w Strip width 

x, y Cartesian coordinates 

δh, δv Tip deflection components of flap 

α Involute angle 

η Packaging efficiency 

θ Involute clock angle 

κ Curvature 

λ Length normalized by h 

μ Coefficient of friction 

ν Poisson’s ratio 

ξ Deployment fraction 

ρ Nondimensional deployed area 

σ Loading ratio 

σ y Yield stress 

φ Thickness multiplier, elliptic integral amplitude 

χ Maximum slip normalized by h 

ψ R min normalized by h 

.1. Uniaxial packaging 

Well-known techniques for one-dimensional packaging include:

-folding, wrapping (or rolling), and fan-folding. These techniques

rovide efficient packaging, can easily accommodate the thickness

f the membrane, and can avoid plastic deformation. Deployment

nd pretensioning can be carried out by a simple, uniaxial deploy-

ent mechanism, e.g. with a linear actuator such as a telescopic

oom. Typically, a spreader bar attached to the edge of the mem-

rane is used to hold the membrane in tension. For example, the

rst set of solar arrays for the Hubble Space Telescope adopted a

olling packaging scheme for the photovoltaic cells and two de-

loyable booms for each wing of the array ( Pellegrino, 1995 ), and
 similar scheme has been recently adopted in the Roll-Out Solar

rray (ROSA) ( Spence et al., 2015 ). 

However, only one dimension of the membrane is reduced in

hese packaging schemes, which are not applicable when both di-

ensions of the membrane exceed the available packaged enve-

ope dimensions. 

.2. Biaxial packaging 

Several solutions for the biaxial compaction of membranes have

een proposed. There are two main categories that use either bi-

xial, translationally periodic crease lines, or asymmetric creases

 Pellegrino, 2001 ); they will be described next. A third approach,

hich so far has been used only for thin-shell structures, uses cuts

r slits; it will be described in Section 2.4 . 

Miura-ori ( Miura, 1980 ), shown in Fig. 1 a, is a well-known

cheme for biaxially packaging a membrane. It modifies the stan-

ard map folding technique (i.e. double z-folding) by skewing one

et of parallel fold lines. Both map folding and Miura-ori have been

sed for packaging space structures ( Miura and Natori, 1985; Biddy

nd Svitek, 2012 ). 

There are several techniques for wrapping a membrane around

 polygonal hub using straight creases ( Guest and Pellegrino, 1992;

irbel et al., 2013 ), see the two examples of 6-fold symmetric

rease patterns to wrap a flat membrane around a hexagonal hub,

n Fig. 1 (b and c). The curvature of the near-radial crease lines is

elated to the thickness of the membrane. The coordinates of the

ertices of the crease pattern are computed such as to provide suf-

cient spacing between vertices that fall in the same meridional

lane, in the wrapped configuration. The crease lengths and an-

les are computed by considering both the flat and the wrapped

onfigurations of the membrane, but without considering any in-

ermediate configurations. 

It is also possible to compact membranes biaxially by first fold-

ng in one direction and then wrapping. Both z-folding and wrap-

ing ( Montgomery and Adams, 2008 ; Biddy and Svitek, 2012 ), and

tar folding and wrapping ( Furuya et al., 2011 ) have been pro-

osed. These approaches require the crease lines to be curved to

ccommodate the thickness of the membrane ( Lee and Close, 2013;

ee and Pellegrino, 2014; Satou and Furuya, 2013 ), as is shown in

ig. 2 . 

.3. Thickness effects 

The effect of material thickness must be considered, especially

ear the fold lines and the vertices where the fold lines intersect.

n the case of uniaxial packaging, this is straightforward. The hinge

xes of the folds can be shifted to either the top or the bottom

urface of the material, as illustrated in Fig. 3 . This is known as

he axis shift method ( Edmondson et al., 2014 ). For biaxial packag-

ng, the amount of axis shift for each fold line at a vertex must be

etermined to ensure that the vertex is not overconstrained. The

mount of axis shift that allows folding has been determined for

ymmetric degree-4 vertices ( Hoberman, 1988 ) and for any vertex

 Chen et al., 2015 ). Structures with these specific hinge axis offsets

ave a stepped shape, as different panel thicknesses are needed to

rovide the appropriate axis shifts. Since the hinge axes are not

oplanar in the fully deployed state, the kinematics of such struc-

ures do not follow those of an equivalent, zero-thickness origami

attern. 

A variant of the axis shift approach is to allow sliding along

he hinge lines ( Trautz and Künstler, 2009 ). This enables the hinge

xis offsets to have arbitrary values. However, fully folding a vertex

ith sliding hinges without allowing any deformation of the panels

ould require an infinite amount of sliding. 
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(a) Miura-ori (b) Guest & Pellegrino, 1992 (c) Zirbel et al., 2013

Fig. 1. Fold patterns for biaxial compaction of membranes. Hill folds are shown as solid lines, valley folds as dotted lines. 

(a) Crease pattern (b) Model, deployed (c) Model, folded

Fig. 2. Curved crease folding. Hill folds are shown as solid lines, valley folds as dotted lines. 

Fig. 3. Hinge axis shift method for accommodating thickness. 

Fig. 4. Volume trimming method for accommodating thickness. 

 

 

 

 

 

 

 

 

Fig. 5. Offset panel method for accommodating thickness. 

Fig. 6. Membrane with thinner strips for accommodating thickness. 
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An alternative method that preserves the kinematics of the un-

derlying origami pattern, called volume trimming ( Tachi, 2011 ), is

shown in Fig. 4 . Note that the hinge axes remain planar, and mate-

rial close to the hinge axes is removed to allow folding. However,

this method requires variable-thickness panels and the amount of

material to be removed is a function of the final fold angle; as

this angle approaches ± 180 °, more and more material must be

removed. In the limit of panels that rotate 180 ° all material must

be removed. 
To address these issues with the volume trimming method, it

as been proposed to offset the panels from the hinge axes by

eans of standoffs ( Edmondson et al., 2014 ), as shown in Fig. 5 .

he resulting panels have uniform thickness and can be folded

ully, however the construction of the standoffs may be problem-

tic. Additionally, the unfolded structure does not present flat, co-

lanar faces. 

Another approach is to connect thick panels with thinner strips,

eaving gaps between the thick panels where necessary ( Zirbel
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Fig. 7. Offset creases for accommodating thickness. 
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Fig. 9. Wrapping a stack of thick inextensible strips requires them to slip against 

each other. 

Slip

Rotation

Fold line

Fig. 10. Slipping folds have two degrees of freedom: rotation around the fold line 

and translation along the fold line. 
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t al., 2013; Reynolds and Murphey, 2014 ), as illustrated in Fig. 6 .

he thinner strips introduce additional compliance in the deployed

tructure, which is usually undesired. A further issue is that during

eployment the structure does not follow the kinematics of a flat

rigami. 

A variant of this last approach was proposed for flat-foldable

rigami ( Ku and Demaine, 2015 ), see Fig. 7 . This technique replaces

he compliant strip in the fold region with two separate hinges.

he relationship between the kinematics of such a structure and

hose of its origami counterpart introduces additional complexity. 

.4. Cuts and slits 

A radically different approach to packaging is to introduce a

eries of discontinuities, or cuts, instead of creases or hinges.

his approach was first introduced to enable packaging of curved

tructures, and it was found that a wide range of packaging

chemes could be enabled by introducing localized cuts in thin

hells. Packaging schemes for thin-shell reflectors using either ra-

ial cuts ( Tibbalds et al., 2004; Reynolds et al., 2011 ) or spiral cuts

 Greschik, 1996 ) have been proposed but, to the authors’ knowl-

dge, this approach has not been considered for membrane pack-

ging. It should be noted, though, that the stripped solar sail de-

ign by Greschik and Mikulas (2002) put forward an architec-

ure that consists of separate parallel strips. Greschik and Mikulas

2002) argued that a membrane cut into strips has a statically de-

erminate stress distribution, and hence this approach provides a

ore robust and reliable design than a continuous membrane. 

Since cutting a membrane into strips introduces additional de-

ormation mechanisms that also facilitate packaging, the particular

pproach chosen by Greschik and Mikulas is the inspiration for the

pproach presented in this paper. 

. Wrapping with slipping folds 

Consider a square membrane of side length L and thickness h ,

s shown in Fig. 8 . This membrane is divided into n strips by intro-

ucing n − 1 slipping folds. A slipping fold allows rotation around
ig. 8. Packaging concept consists of two steps: (A) z-folding and (B) symmetric 

rapping. 
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he fold line as well as translation along the fold line. In Fig. 8 the

lipping folds are shown as a series of parallel slits in the mem-

rane, but there are many ways of realizing a slipping fold, as dis-

ussed in Section 3.1 . 

The packaging concept, first presented in Arya et al. (2015) , in-

olves two separate steps. First, the membrane is z-folded to pro-

uce a stack of n strips. Second, this stack of strips is wrapped in

 two-fold rotationally symmetric way . Note that, during this second

tep, the slipping folds are needed to accommodate the incompat-

bility created by wrapping the membrane strips around different

adii, as seen in Fig. 9 . The two-fold rotationally symmetric wrap-

ing reduces to zero the slip at the edges of the membrane, allow-

ng the outer edge to remain continuous. The details of this pack-

ging scheme are explained next. 

.1. Slipping folds 

The proposed packaging concept relies on the existence of par-

llel lines of discontinuity in the membrane, along which folding

nd slipping can take place without any strain in the material.

lacing straight cuts in the membrane is the easiest physical im-

lementation of this concept, although several alternative imple-

entations are possible. 

The two kinematic degrees of freedom at a slipping fold are

hown in Fig. 10 . In addition to rotation around the fold line, the

old also allows translation along the fold line, herein termed slip .

n practice the amount of slip required to package a given mem-

rane can be calculated, and hence the design of the slipping folds

an be targeted to providing this specific amount of slip. 

The slip degree of freedom is required to enable the wrapping

tep in stage B of Fig. 8 , because wrapping the z-folded stack of n

trips requires the outer strips to go around larger radii than the

nner strips. Thus, for the same arclength, the outer strips traverse

maller wrapping angles than the inner strips. If the strips cannot

lip against each other, wrapping the stack of strips will result in

training or micro-buckling of the membrane. 
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Loop

Tab

Rod

(a) Hinged fold. (b) Ligament fold.

Fig. 11. Examples of slipping folds that provide a partial connection across the fold line. 
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(a) n odd

Base curve
i=0 i=1

i=2
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i=-2

r(s)
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q(2)n(s)

s

(b) n even

Fig. 12. Offset curves have index i and are uniformly separated from the base curve. 

The base curve is represented by a dashed line. 
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Because a full discontinuity would significantly reduce the stiff-

ness of the membrane, several realizations of slipping folds have

been considered that preserve some degree of continuity. Two con-

cepts that allow the transmission of tension forces and of limited

shearing forces across a fold line are shown in Fig. 11 . The first

concept is the hinged fold, Fig. 11 (a), consisting of a flexible rod

enclosed within loops attached to alternate sides of the membrane.

The gaps between the loops define the maximum slip that is al-

lowed and tension can be transmitted across the fold line. The con-

cept in Fig. 11 (b) is a ligament fold, consisting of a series of slender

pieces of membrane that join the strips across the fold line. The

length of the ligaments is chosen such as to allow for the required

rotation and slip without any plastic deformation of the ligaments.

Hence, like the hinged fold, the ligament fold is also designed for

the required maximum slip. A ligament fold allows for the trans-

mission of tension and a small amount of shear across the fold

line. Whereas hinged folds are more suitable for larger structures

where mechanical complexity may be appropriate, ligament folds

are useful for small scale prototypes. 

3.2. Wrapped configuration 

In the packaged configuration, the mid-surface of each strip lies

on a cylindrical surface, which in Fig. 8 is shown with a vertical

axis. Imposing the constraint that the strips are nested, the mid-

surfaces of all strips can be determined by fixing the shape of the

mid-surface of a reference strip. Then, once all strips have been de-

termined, the amount of slip between them, the maximum strain

in the strips and the overall packaging efficiency can all be deter-

mined. 

The problem of determining the shape of the packaged config-

uration is analyzed by determining the intersection between the

mid-surface of each strip and the horizontal plane shown in Fig. 8 .

The chosen reference curve, called the base curve , is defined as the

center line of this set of curves. 

The base curve is parametrized by its arclength s , 

r (s ) : [ −L/ 2 , L/ 2] → R 

2 (1)

As shown in Fig. 12 , the strips are indexed by positive integers

on one side of the base curve, and negative integers on the other. If

n is odd, the index i takes integer values between −(n − 1) / 2 and

(n − 1) / 2 , and i = 0 corresponds to the central strip and the base

curve. If n is even, i has integer values between −n/ 2 and n /2, and

i = 0 corresponds to the base curve, but not to a strip. 
The mid-surface of the i th strip, see Fig. 12 , is offset from the

ase curve by q ( i ) n ( s ), where n ( s ) is the normal to the base curve

nd q ( i ) is the separation distance. Thus, the center line of the i th

trip is defined by the offset curve 

 (i ; s ) = r (s ) + q (i ) n (s ) (2)

here 

 (i ) = 

{ 

iφh if n is odd 

iφh − φh 
2 

sgn (i ) if n is even 

(3)

nd φ is a strip thickness multiplier ( φ ≥ 1) that accounts for the

act that in the packaged configuration the strip center lines may

e separated by a distance slightly greater than the thickness of

he membrane. 

Once the strip center lines are known, the slip l ( i ; s ) between

he (i + 1) th and the i th strip can be expressed in terms of the arc

ength s of the base curve. The slip l ( i ; s ) is defined as the differ-

nce between the arc lengths s i +1 and s i of the two strips: 

(i ; s ) ≡ s i +1 (s ) − s i (s ) (4)
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Fig. 13. Example of base curve that provides compact packaging. The shaded areas 

in (b) are the only voids that result from this curve, and their size depends mainly 

on the minimum radius of curvature R min . 
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he arclength of strip i has the expression 

 i (s ) = 

∫ s 

s 0 

‖ r ′ (i ; ˜ s ) ‖ d ̃

 s (5)

here s 0 is some point along the base curve where the slip is iden-

ically 0, and ˜ s is a dummy variable of integration corresponding to

he arclength s . The tangent vector r ′ ( s ) is obtained by differentiat-

ng Eq. (2) : 

 r ′ (i ; s ) ‖ = ‖ r ′ (s ) + q (i ) n 

′ (s ) ‖ (6)

The derivative of the normal vector, n 

′ ( s ), is parallel to the tan-

ent vector and has length | κ( s )| ( Spivak, 1999 ), where κ( s ) is the

igned curvature of the base curve: 

 

′ (s ) = −κ(s ) r ′ (s ) (7) 

ubstituting Eq. (7) into Eq. (6) and noting that ‖ r ′ (s ) ‖ = 1 gives 

 r ′ (i ; s ) ‖ = 1 − q (i ) κ(s ) (8)

ubstituting Eq. (8) into Eq. (5) , evaluating the resulting expression

or i + 1 and i , and then substituting into Eq. (4) gives: 

(i ; s ) = [ q (i ) − q (i + 1) ] 

∫ s 

s 0 

κ( ̃  s ) d ̃

 s (9)

inally, substituting Eq. (3) gives: 

(i ; s ) = φh 

∫ s 

s 0 

κ( ̃  s ) d ̃

 s (10)

Note that, according to Eq. (10) , the slip between two adjacent

trips is independent of the index i and hence the design of the

lipping folds (e.g. the length of the ligaments) can be the same for

ll strips. Eq. (10) provides the relative slip between two sections,

t arclengths s 0 and s of the base curve, and it is particularly useful

o choose s 0 at a location where the slip is zero. The maximum

lip, l max , is a key design parameter for slipping folds. 

For example, consider the square membrane shown in Fig. 8 .

e choose s 0 = −L/ 2 , where there is no slip between the strips

ecause they are continuous along the edge of the square, and set

(i ; L/ 2) = 0 to enforce zero slip also at the other end of the stack.

ence, we obtain: 

 L/ 2 

−L/ 2 

κ(s ) d s = 0 (11) 

 simple way to meet this condition is to choose κ( s ) as an odd

unction of the arclength, i.e. −κ(−s ) = κ(s ) . A base curve that has

his property may be defined in a piecewise manner, using a gen-

rator curve p (s ) : [0 , L/ 2] → R 

2 and a copy of the generator curve

otated by 180 °: 

 (s ) = 

{−p (−s ) if s ∈ [ −L/ 2 , 0) 

p (s ) if s ∈ [0 , L/ 2] 
(12) 

Eq. (12) defines a wrapping with two-fold rotational symmetry,

nd hence it has been shown that a two-fold rotationally symmet-

ic wrapping scheme is a sufficient (though not necessary) condi-

ion for having zero slip at both ends of the wrapped stack. 

.3. Simple geometric solution 

A simple example of a base curve that provides compact wrap-

ing is the piecewise curve in Fig. 13 , consisting of a semi-circle

f radius R , a straight line of length c , and an involute of a circle

ith pitch 2 πc . An involute of a circle is a spiral-like curve with

he property that the normal distance between successive turns re-

ains constant. This distance is the pitch of the involute, and it

an be set equal to 2 φnh to account for the thickness of the 2 n
trips that must fit between successive turns of the involute, as is

hown in Fig. 13 (b): 

 (s ) = 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

R { 1 − cos (s/R ) , − sin (s/R ) } if s ∈ [0 , πR ] 

R { 2 , (s/R ) − π} if s ∈ (πR, πR + c) 

c { cos (α − θ ) + α sin (α − θ ) , 

sin (α − θ ) − α cos (α − θ ) } if s ∈ (πR + c, L/ 2) 

(13) 

ith: α2 = 

2 

c 
( s − πR − c ) + 

(
2 R 

c 

)2 

(14) 

= 

2 R 

c 
− π

2 

(15) 

Due to the curvature discontinuities that have been assumed in

efining this simple base curve, an actual wrapped membrane will

ot follow this curve exactly. However, this simple, geometrically

efined curve may be used to obtain preliminary, analytical esti-

ates of maximum slip and packaging efficiency. 

The radius of the semi-circle can be defined such as to avoid

lastic deformation of the most tightly wound membrane strip, i.e.

he strip that is curved with radius R min , where 

 min = R − φhn 

2 

(16) 

Hence, given the elastic modulus, E , Poisson’s ratio, ν , and yield

tress, σ y of the membrane, the Tresca yield criterion can be used

o estimate the minimum radius of longitudinal curvature of an

nitially flat strip that is wrapped on a cylinder: 

 min ≥
Eh 

2(1 − ν2 ) σy 
(17) 

.4. Maximum slip 

For the particular solution described in Section 3.3 the curva-

ure κ( s ) is entirely negative for one sign of s and entirely positive

or the other sign. Hence, the magnitude of l obtained from Eq.

10) , grows monotonically from one end of the strip to s = 0 , and

hen it decreases monotonically. Thus, it follows that l max occurs at

he center of the curve, at s = 0 , and it has the following expres-

ion: 

 max = φh 

∫ 0 

−L/ 2 

κ(s ) d s = φh 

∫ L/ 2 

0 

κ(s ) d s (18) 
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Fig. 14. Variation of non-dimensional maximum slip χ with non-dimensional membrane size λ, for φ = 1 ; (a) for different n but constant ψ , and (b) different ψ but 

constant n . 
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where κ( s ) can be calculated from Eq. (13) by noting that κ(s ) =
−r ′ (s ) · n 

′ (s ) : 

κ(s ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

1 /R if s ∈ [0 , πR ] 

0 if s ∈ (πR, πR + c) 

1 / [ cα(s )] if s ∈ (πR + c, L/ 2) 

(19)

Integrating Eq. (19) gives: 

∫ 
κ(s ) d s = C+ 

⎧ ⎪ ⎨ 

⎪ ⎩ 

s/R if s ∈ [0 , πR ] 

π if s ∈ (πR, πR + c) 

π − 2 R/c + α(s ) if s ∈ (πR + c, L/ 2) 

(20)

and substituting Eq. (19) into Eq. (18) gives: 

l max = φh 

∫ L/ 2 

0 

κ(s ) d s = φh 

(
αmax + π − 2 R 

c 

)
(21)

Defining the non-dimensional slip: 

χ ≡ l max 

h 

(22)

we obtain: 

χ = φαmax − 2 πψ 

n 

(23)

with 

αmax = 

√ 

πλ

nφ
+ 

2 π2 ψ 

nφ
− 2 + 

(
2 πψ 

nφ

)2 

(24)

where the non-dimensional minimum bend radius is defined as 

ψ = 

R min 

h 

(25)

and the non-dimensional strip length is defined as 

λ = 

L 

h 

(26)

Fig. 14 shows plots of the variation of the non-dimensional

maximum slip χ with the non-dimensional length λ for different

values of n and ψ , with φ held constant. As λ becomes larger, the

dominant term in Eq. (24) is the first term and hence, from Eq.

(23) , the maximum slip grows with the square-root of λ. Hence, 

for λ → ∞ , αmax → 

√ 

πλ

nφ
and χ → 

√ 

πφλ

n 

This result implies that the proposed concept incurs a less-than-

proportional increase in maximum slip when it is applied to larger

membranes, while keeping constant the thickness. 
.5. Packaging efficiency 

The wrapped membrane stack is contained within a cylinder of

adius 

 p = max ‖ r (i ; s ) ‖ (27)

nd height 

 p = 

L 

n 

(28)

ence, the packaging efficiency, η, is defined as the ratio between

he volume enclosed by this cylinder and the volume of membrane

aterial. It is given by 

η = 

L 2 h 

πR 

2 
p H p 

(29)

It can be shown that the packaging efficiency is a function of

our non-dimensional parameters: the number of strips n , the non-

imensional minimum bend radius ψ , the length-to-thickness ra-

io λ, and the thickness multiplier φ. It has the following expres-

ion: 

= 

nλ

πφ2 

[(
n 

π

)2 

+ 

(
nαmax 

π

)2 

+ 

(
n − 1 

2 

)2 

+ 

n (n − 1) 

π
αmax 

]−1 

(30)

The variation of the packaging efficiency with these parameters

an be better understood with the aid of Fig. 15 , showing the ef-

ects of λ, ψ , and φ. It can be seen in Fig. 15 (a) that the strip

hickness multiplier φ has the greatest effect for large λ. In fact, 

s λ → ∞ , η → 1 /φ (31)

his result implies that for very large or very thin membranes,

he global packaging efficiency depends mainly on the amount of

mpty space that is left around each strip. The plots in Fig. 15 (b)

how the effects of varying the minimum bend radius of the mem-

rane, R min . Since from Eq. (25) R min = hψ, increasing ψ , and

ence increasing R min causes a significant reduction in packaging

fficiency for small λ. As λ increases, the size of the two voids

t the center of the wrapped membrane (which is determined by

 min ), shown in Fig. 13 , becomes smaller in relation to the overall

embrane volume, and hence the effect of ψ decreases. 

Also note that the effect of the number of strips n on the pack-

ging efficiency is minimal since, as n increases, the height of the

ackage decreases but also the radius increases, and thus the pack-

ged volume varies only minimally. 
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Fig. 15. Variation of packaging efficiency η with dimensionless deployed length λ, for n = 100 and (a) different values of φ but constant ψ and (b) different values of ψ but 

φ = 1 . 
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Fig. 16. Membrane with parabolic edges, loaded by corner pairs of diagonal forces, 

and subject to uniform uniaxial tension per unit width. 
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. Prestressing concept 

After deployment, the membrane must be pretensioned to sta-

ilize it in the flat configuration. A further advantage of the pro-

osed discontinuous structural architecture, chosen because of its

ackaging advantages, is that it is compatible with a statically de-

erminate pretensioning scheme. 

The symmetric wrapping scheme presented in Section 3 allows

he edges of the membrane to remain continuous; hence, a ten-

ion force can be applied along the edge of the membrane and,

y shaping the edge profile, this edge tension can be used to in-

uce a uniform prestress in the inner part of the membrane. This

pproach is a continuum version of a standard approach in the de-

ign of suspension bridges ( Irvine, 1981 ). 

Consider the membrane shown in Fig. 16 , with slipping folds

arallel to the y -axis, and diagonal lengths L a along the x -axis and

 b along the y -axis. It is desired that each strip has uniform pre-

ension in the y -direction, i.e. parallel to the slipping folds, and

o pretension in the x -direction, i.e. perpendicular to the slipping

olds. 

The desired, uniform uniaxial tension per unit width P in the

embrane, acting in the y -direction, is in equilibrium with corner

orces F x at [ ± L a /2, 0] and F y at [0, ±L b /2] applied by suitable ex-

ernal compression members, e.g. deployable booms or masts, and

he edge profile is 

f (x ) = 

(
P 

F x 

)
x 2 −

(
P L a 

2 F x 
+ 

L b 
L a 

)
x + 

L b 
2 

, for x ∈ [0 , L a / 2] (32)

s shown in Fig. 16 . 
The remaining edges of the membrane can be defined by reflec-

ions of f ( x ) through the x and y axes. To ensure f ( x ) ≥ 0 over x ∈
0, a /2], the slope at the vertex must satisfy the condition f ′ ( L a /2)

0, and hence 

P L a 

2 F x 
− L b 

L a 
≤ 0 (33) 

The non-dimensional parameters that control this design are

he loading ratio 

= 

P L a 

2 F x 
(34) 

nd the aspect ratio 

= 

L b 
L a 

(35) 

Then, the membrane area A normalized by the rhombus area,

 a L b /2, is denoted by 

= 

2 A 

L a L b 
= 1 − 1 

3 

γ σ (36) 

nd the corner force ratio F y / F x , is given by: 

F y 

F x 
= σ + γ (37) 

Fig. 17 shows a plot of the dimensionless area as a function of

and γ . Obviously, ρ ≤ 1, because the deployed area cannot ex-

eed the area of the rhombus. In fact, ρ = 1 requires σ = 0 , i.e. the

embrane is unstressed. 
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Fig. 18. Two stages of deploying a slip-wrapped membrane with parabolic edges. For clarity, only one strip is shown for the unwrapping stage. 
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Fig. 19. Components of deployment restraint concept. 
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5. Deployment concept 

A two-stage deployment concept for symmetrically slip-

wrapped membranes with curved edges, as described in Section 4 ,

is shown in Fig. 18 . The deployment process consists of an unwrap-

ping stage followed by an unfolding stage. 

In the unwrapping stage, the two ends B and B ′ of the wrapped

stack are pulled in opposite directions by applying forces F B and

F B ′ . The separation d B between B and B ′ increases until d B = L b .

In the unfolding stage, the stack of strips is unfolded by applying

forces F A and F A ′ at points A and A 

′ . The separation d A between

these points increases until d A = L a , at the end of deployment. 

The deployment restraint system consists of two elements, a

cage and a clip, as shown in Fig. 19 . The two-part cage, Fig. 19 (a), is

used to control the unwrapping process. The endpoints B and B ′ of

the packaged membrane stack are pulled out through these slots.

During the unfolding stage, the two halves of the cage separate

and move apart, as shown in Fig. 18 . The clip, shown in Fig. 19 (b),

holds together the folded stack of strips, at its midpoint. It consists

of four thin plates (flaps) that gradually release the strips during

the unfolding stage. When the end points A and A 

′ of the folded

stack are pulled apart, the flaps bend elastically and allow a single

strip at a time to deploy. Note that the wrapped membrane rotates

with respect to the cage during the unwrapping stage, and hence

the clip has to rotate. 

5.1. Deployment forces 

The first stage of the deployment process, the unwrapping of

the stack, is dominated by the frictional sliding of the stack against
he cage. There are also frictional interactions between the strips

s they slip against each other. The wrapped stack can be modeled

s an elastic rod of uniform cross-section, assuming that all strips

ave equal length, for simplicity, as shown in Fig. 20 . It is assumed

hat the n strips in the stack are overlapped, and hence follow the

ame curve, hence the geometrical effects of strip thickness are

eglected. 

Each strip has modulus E , Poisson’s ratio ν , width w , and thick-

ess h , leading to a stack bending stiffness of 

 = nE 
wh 

3 

12(1 − ν2 ) 
(38)

hat is uniform over the length of the rod. 

The stack is pulled at point B by a horizontal force F B = [ F B , 0] ,

arallel to the x -axis. It is assumed that no moments are applied

t point B, to satisfy moment equilibrium for the free body com-

rising the membrane stack and the cage. The stack exits the cage

t point C , where the cage applies an equal and opposite force

 = −F B . A non-zero internal bending moment at point C ensures

oment equilibrium of the arc BC , highlighted in red in Fig. 20 . 

At point C , the slope of the rod is denoted by θ1 (note that the

od is not assumed to be tangent to the cage at this point), such

hat the normal component Q N and the tangent component Q T of

 are related through the coefficient of friction μ, hence 

 T = μQ N (39)

aking components of the forces acting at C: 

 Q ‖ sin ( π − θ1 ) = μ‖ Q ‖ cos ( π − θ1 ) (40)

nd solving for θ1 

1 = π − tan 

−1 
(

1 

μ

)
(41)

The problem of finding the profile of the unwrapping force

an be posed as follows: given the location of points B = [ x , 0]
B 
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determined by the imposed motion of point B) and C = [ x C , y C ]

determined by the design of the slot in the cage), the bending

tiffness D of the rod, find F B such that the tangent angle is θ1 at

 and the bending moment at point B is zero. This is a standard

lastica problem, whose solution is described by two coupled non-

inear equations ( Timoshenko and Gere, 1961 ): 

 C = 

2 

k 
q cos φ1 (42) 

 B − x C = 

1 

k 
[ F (φ1 ; q ) − F (π/ 2 ; q ) ] − 2 

k 
[ E(φ1 ; q ) − E(π/ 2 ; q ) ] 

(43) 

ere, F ( φ; q ) is the incomplete elliptic integral of the first kind,

nd E ( φ; q ) is the incomplete elliptic integral of the second kind.

, φ1 , and k are defined as: 

 = sin 

(
θ2 

2 

)
(44) 

in φ1 = 

1 

q 
sin 

(
θ1 

2 

)
(45) 

 

2 = 

F B 
D 

(46) 

here θ2 is the tangent angle of the rod at B . 

Eqs. (42) and 43 can be solved numerically for a range of values

f x B to obtain k as a function of x B . Then, the variation of F B over

he unwrapping process can be found using Eq. (46) . 

Fig. 21 plots the predictions of this model in a non-dimensional

orm, for various values of the coefficient of friction μ. The model

redicts an initial smooth ramp up in force, followed by a plateau

s the amount of total curvature in the bent stack approaches an

symptote, thus requiring less additional work. The model predicts

igher values of this force plateau as the coefficient of friction de-

reases; this is because the tangent angle, θ1 , at point C increases

ith increasing coefficient of friction, μ, and at high values of θ1 ,

he stack needs to bend less to accommodate the boundary condi-

ions. This model does not account for the final stages of unwrap-

ing; when the stack is almost fully unwrapped, the contact be-

ween the stack and the cage at point C is lost, and the unwrapping

orce drops. The particular model described above cannot capture

his behavior. 

Next, we turn to the second stage of the deployment process.

he deployment force F A during the unfolding stage is mainly due

o the elastic deformation of the clip; its magnitude increases as

ach membrane strip is pulled out and then suddenly decreases.

 A can be estimated from the simple two-dimensional model in

ig. 22 , where the membrane strips are modeled as rigid rods of
qual length connected by frictionless pin joints. The rods are held

n the packaged configuration by two elastic cantilevers that rep-

esent the flaps. The thickness of the membrane is small with re-

pect to the deployed dimensions of the membrane, and hence for

implicity it is neglected in the following analysis. 

There are two different configurations of this model, depending

n whether the rods that have been previously released are non-

ollinear, and hence F A = 0 , Fig. 23 (a), or collinear, Fig. 23 (b). In the

atter case F A > 0 and the next flap is deformed, until a maximum

mount of deformation is reached and the hinge i + 1 is released. 

Define d A, i as the specific value of d A that corresponds to the

nstance when F A first becomes non-zero after the release of hinge

 . This is the situation shown in Fig. 23 (b). From Fig. 23 (b), d A, i can

e determined from Pythagoras’ theorem: 

d A,i 

2 

)2 

+ 

(
L 

2 n 

)2 

= 

(
iL 

n 

)2 

(47) 

The condition for hinge i + 1 to snap out is that the vertical de-

ection of the tip of the flap, δv , due to a tip of force ∼ F A becomes

qual to the initial overlap, L o , between the clip and the hinge. The

ertical and horizontal deflections of the flap δv and δh can be
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/D f as a function of deployment frac- 
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Table 1 

Packaging models. 

Model# Edges h (μm) L ( m ) λ n ψ 

1 Straight 25 .4 0 .5 19,685 13 78 .7 

2 Straight 50 .8 0 .5 9842 13 39 .4 

3 Straight 25 .4 0 .9 35,433 23 78 .7 

4 Curved 50 .8 0 .8 15,748 18 39 .4 

5 Curved 25 .4 1 .0 39,370 26 78 .7 

45 mm

plugend plate
pegthreaded rod

Fig. 25. Wrapping plug. 

Fig. 26. Model #2 wrapped around the plug. The packaged diameter was 23.9 mm. 
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calculated as a function of the applied force F A by treating the flap

as an in extensional elastic rod ( Timoshenko and Gere, 1961 ): 

δh = −2 

k 
[ E(φ1 ; q ) − E(π/ 2 ; q ) ] − L f (48)

δv = 

2 

k 
q cos φ1 (49)

Given a value of F A , k can be calculated from: 

k 2 = 

F A 
D f 

(50)

The deflected length of the flap is constrained to remain equal to

L f : 

L f = −1 

k 
[ F (φ1 ; q ) − F (π/ 2 ; q ) ] (51)

φ1 is defined as in Eq. (45) , with the value of θ1 set to be π /2

because the flap is held vertical at the root: 

sin φ1 = 

1 

q 
sin 

(
θ1 

2 

)
= 

1 

q 
sin 

(
π

4 

)
(52)

q can be found by solving Eqs. (51 ) and ( 52 ). Once q has been

found, δv and δh can be calculated from Eqs. (48 ) and ( 49 ). 

This model predicts a sawtooth-like force profile: a series of

smooth ramps up followed by sharp decreases in force as the flap

disengages from the hinges. Fig. 24 shows the evolution of the

non-dimensional unfolding force F A L 
2 
f 
/D f with respect to the de-

ployment fraction d A / L for a particular choice of model parameters.

6. Experimental apparatus and test procedures 

Five test models were made from aluminized polyester film,

with ligament slipping folds made using a computer-controlled

laser cutter (Universal Laser Systems ® ILS9.75). The ligaments had

widths of 1.5 mm, lengths of 8 mm, and rounded corners. Assum-

ing E = 3 . 50 GPa and σy = 100 MPa for polyester films, Eq. (17) re-

quires R min ≥ 0 . 89 mm . Three models had straight edges and the

remaining two had curved edges, with diagonals of equal length

L A = L B = L . Further details about these models are provided in

Table 1 . 

6.1. Packaging 

A “wrapping plug” was made, to impose the required void

shape in Fig. 13 (b) and thus achieve the desired wrapped shape for

the membrane stack. The plug also prevents the membrane from
xceeding the maximum curvature limit provided by Eq. (17) . The

esign of the plug consisted of two identical pieces, see Fig. 25 ,

ith R min = 2 mm, to achieve a margin of 2.25 against plastic de-

ormation in a 50.8 μm thick polyester membrane. The two pieces

ere fabricated from UV-curable acrylic plastic using stereolithog-

aphy. A lengthwise hole in each piece was used to assemble the

lug with end plates and threaded rods. Each piece also has small

egs at either end that mate with the two end plates. These end

lates hold the two halves of the plug in alignment. 

To test the packaging scheme, the three models with straight

dges were first folded into a stack of strips. The strips were then

re-slipped with respect to each other at the middle of the stack,

efore the membrane stack was inserted into the plug, by 1.1 mm,

.7 mm, and 1.5 mm respectively for models #1, #2, and #3. This

re-slip was calculated from Eq. (21) . When packaging without a

lug, pre-slipping is not required since the strips are free to slip

uring packaging. In the present tests it was necessary to pre-slip

he strips, since the plug tightly clamps the strips against each

ther and hence prevents slip from developing during packaging. 

The strips were then tightly wrapped against the plug. A loop of

tring was used to hold the membrane wrapped, see Fig. 26 , and a

igital caliper was used to measure the diameter of the cylindrical

ackage at mid height. 

.2. Prestressing 

This test had the objective of demonstrating the feasibility of

he prestressing concept, and was carried out on model #4. To sat-

sfy Eq. (33) the prestress was chosen such that σ = 1 ; hence, Eq.

37) gives F y /F x = 2 . 

Fig. 27 shows the model hanging on a metal-backed chalk-

oard using magnets. The tensioning forces were applied by
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Fig. 27. Hanging model test of prestressing concept. 
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were omitted in this test. 
anging weights: F y was applied by hanging a 50 gm weight from

he bottom corner and holding the top corner of the membrane

ith a pin and F x was applied through a pulley by hanging a 25

m weight and pinning the right corner of the membrane. 

Inspection of this model showed that each strip was in a state

f tension, and that the model was hanging flat. Some residual

ransverse curvature of the strips was observed, due to the film

aving been stored on a roll. 

.3. Deployment 

The deployment test apparatus shown in Fig. 28 was used to

est the deployment concept on model #5. The apparatus consisted
Force sens

Stepper 
motor

Lead screw

Cage

Force sensor

y

Fig. 28. Two-axis de
f: four independent linear actuators to provide the deployment

orces F B , F B ′ , F A , F A ′ ; four force sensors to measure these deploy-

ent forces; and a suspension system to partially offload the mass

f the membrane. 

Each linear actuator consisted of a lead screw (with a pitch of

.54 mm) coupled to a stepper motor that drives a carriage back

nd forth along a rail. Each stepper motor (1.8 ° full step size) was

riven by a microstepping driver (Allegro TM 4988 driving the mo-

or with 1/4 steps). A microcontroller (Arduino Leonardo based on

n Atmel ® ATmega32u4) synchronized the four motors, as well as

roviding logic, displacement data logging, and an interface to a

aptop personal computer. One 1/4 step (corresponding to a mo-

ion of 0.003175 mm) was applied every 500 μs; slight microcon-

roller delays led to a carriage speed of 5.93 mm/s. The motion of

ach carriage was controlled in open-loop, based on the number of

teps commanded. 

A six-axis force sensor (ATI Industrial Automation Nano17) was

ounted on each carriage, to measure the components of the de-

loyment force with a resolution of 3.1 μN. Moment components

ere also measured by the sensor, but these measurements were

ot utilized. 

Fig. 29 shows the cage, with inner diameter of 37 mm and

eight of 49 mm, and the clip that were used for the deploy-

ent tests. The cage consisted of two laser-cut acrylic base plates,

wo 125 μm-thick polyimide plates elastically bent into semicylin-

ers by means of threaded rods that also attached the semicylin-

ers to the base plates. The cage was constructed in two halves,

hich separate during the unfolding stage of the deployment. The

nner faces of the semicylinders were coated with a spray-on PTFE-

ased dry lubricant (Saint-Gobain Fluoroglide ®) to reduce friction

etween the cage and the membrane during unwrapping. The loca-

ion of the edge of the cage in relation to its center was measured

o be x c = 19 . 6 mm , y c = 4 . 0 mm . Note that the wrapping plugs
or

Carriage

2.1 m

x

ployment rig. 
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Paintbrush head

Threaded rod

Steel rod

Semicylinder

Base plate

Fig. 29. Membrane model, wrapped and inserted into the cage. The cage had a 

diameter of 37 mm and a height of 49 mm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

λ

η

102 103 104 105 106 107 1080

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

φ = 1.057
Model 1 (η = 69%)

Model 2 (η = 73%)

Model 3 (η = 83%)

φ = 1.106

φ = 1.042

Fig. 30. Packaging test results. 
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The clip was made from two paintbrush heads (7 mm × 4 mm

cross section, 11 mm length) connected by a steel rod. The paint-

brush bristles were pushed into the wrapped membrane stack, in-

troducing a small spacing between the membrane strips. This en-

sured that the membrane strips would deploy one by one. 

The membrane was deployed horizontally, minimizing the ef-

fects of gravity by suspending the clip about 0.25 m above the base

of the two-axis deployment rig. Since the clip holds the middle of

the membrane during most of the deployment, suspending the clip

helped offload some of the weight of the membrane. A 400 gm

weight was suspended from the bottom of the clip to stabilize its

orientation. The membrane weight was also partially offloaded at

the attachment to the force sensors. 

The deployment was displacement controlled at a rate of about

11.9 mm/s, by moving opposite carriages at 5.93 mm/s. Full deploy-

ment was achieved in about 4 min. 

7. Test results 

7.1. Packaging tests 

Models #1, #2, and #3, see Table 1 , were packaged according

to the procedure described in Section 6.1 . The packaged models

had an approximately cylindrical form. The diameters of the pack-

aged models were measured at mid-height along the axis of the

cylinder, i.e., away from the ligaments and close to the restraining

string. The height of each model was taken to be equal to the strip

width, thus neglecting any small shift, along the axis of the cylin-

der, of the strips due to uneven folding. Using this measured diam-

eter and assumed height of the cylindrical wrapped configuration

of the model, the packaged volume was calculated. The material

volume was taken as L 2 h . From these two values, the packaging

efficiencies of the models were calculated. The resulting values are

plotted in Fig. 30 with respect to the length-to-thickness ratio. 

Also plotted in Fig. 30 are three curves with the same n and

ψ values as the three models. For each test the particular value

of φ for which the curve passes through the experimental point

was calculated and the corresponding curve has been plotted.

These lines represent packaging efficiencies achievable using sim-

ilar manufacturing and packaging techniques to those used in the

present study, but scaled to different values of λ. 
Since the experimental models had been wrapped tightly and

ithout gaps, a thickness multiplier φ ∼ 1 was expected. Two

f the experimentally obtained values of φ = 1 . 057 , 1 . 042 , corre-

ponding to residual voids of around 5%, confirmed this expecta-

ion. The third measurement, with φ = 1 . 106 and hence voids of

round 11%, was obtained from the thicker model ( h = 55 μm),

hich indicates that packaging with small gaps is more difficult

o achieve for thicker and hence stiffer models. 

.2. Deployment tests 

First, it should be noted that both during unwrapping and un-

olding, the pair of forces pulling on the structure are coupled. For

xample, unwrapping and unfolding could be still successfully car-

ied out if one of the two forces is set to zero as the other forces

s sufficient to successfully carry out the deployment. Therefore, in

omparing experimental measurements to predictions from the an-

lytical model, it is better to focus on the mean value of the two

orces. 

The average deployment forces, (F B + F B ′ ) / 2 and (F A + F A ′ ) / 2 ,
easured during a single deployment of model #5 are plotted in

ig. 31 with respect to the unwrapping fraction d B / L b and the un-

olding fraction d A / L a . Note that the radial component of the de-

loyment forces is dominant: the in-plane transverse deployment

orces were about 20 times smaller than the radial force com-

onent, and the out-of-plane deployment forces were about 3–4

imes smaller than the radial forces. 

Fig. 32 shows plots of the radial component of the average de-

loyment forces measured during three separate deployments of

odel #5, along with the predicted deployment forces, computed

sing the analytical prediction models presented in Section 5.1 . 

For the unwrapping force prediction, the elastic modulus was

hosen as E = 3 . 5 GPa, the Poisson’s ratio was ν = 0 . 38 , and the

oefficient of friction was μ = 0 . 25 . The elastic properties were ob-

ained from the manufacturer’s datasheet. The coefficient of kinetic

riction between an aluminized Mylar® film (the model material)

nd a Kapton 

® film treated with PTFE-based dry lubricant (the ma-

erial of the cage walls) was measured in a separate experiment,

n which a disc of aluminized Mylar ®, glued to a known mass, was

ragged over a PTFE-treated flat Kapton 

® sample. This was done

sing one of the linear actuators described in Section 6.3 , and the

ragging force was measured by one of the force sensors also de-

cribed in Section 6.3 . The coefficient of kinetic friction was ex-

racted from the force measurements and the known mass. 

For the unfolding force predictions a clip length L c = 11 mm

nd a clip overlap L o = 8 mm were used. Also, in generating the

redicted unfolding force profile, a different flap bending stiffness

 f was used for each snap, to account for the increasing number
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f paintbrush bristles engaged with the fold, which increased with

uccessive snaps. 

Regarding the comparison of experiments and predictions, in

ig. 32 , it can be noted that both sets of force predictions capture

he overall trends in the experimentally measured forces and their

agnitude variation. Overall, there is a good match between pre-

ictions and experiments, suggesting that the physical mechanisms

nderlying these models (that is, friction and stack bending for the

nwrapping stage and clip bending for the unfolding stage) were

ndeed dominant during the deployment experiments. 

There are many physical effects not captured by the simple

echanical models presented in Section 5.1 . These effects include

ravity, contact and sliding between the strips, the non-uniform

ending stiffness of the folded stack, the snagging of the folded lig-

ments against each other or the cage walls, and variations in the

lastic and geometric properties of the crude clips. It is expected

hat these unmodeled effects account for most of the discrepan-

ies between the predicted and measured deployment forces. 

Fig. 33 shows photos taken by an overhead camera at the be-

inning of deployment, at the end of the unwrapping stage, during

he unfolding stage, and at the end of the deployment. 
. Discussion and conclusion 

A novel packaging scheme for thin membranes of finite thick-

ess has been proposed. This scheme divides the membrane into

arallel strips connected by slipping folds, and uses specially cho-

en base curves for the wrapping profile in order to avoid slippage

long the outer edges of the membrane. It has been shown that a

ighly efficient packaging can be achieved, and also that continuity

f the membrane along the edges can be maintained. 

In the packaged configuration, the membrane strips are pre-

lipped by specific amounts and are then bent smoothly around

he chosen wrapping profile. This approach ensures that localized

ending deformation occurs only in the ligaments between the

trips, if this is the type of slipping fold that is chosen. Since lo-

alized creasing of the membrane is avoided, there is no plastic

eformation and hence, after deployment, the membrane can re-

over its initial shape. 

A scheme to apply uniform uniaxial prestress to the deployed

embrane has also been proposed. This prestressing concept ex-

loits the edge continuity of the membrane to create a catenary-

ike boundary that equilibrates the internal pretension. This
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(a) Packaged (b) Unwrapped

(c) Unfolding (d) Deployed

Fig. 33. Deployment of model #5 viewed from an overhead camera. 
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approach requires curved membrane edges which, depending on

the required level of pretension, results in a reduction in the avail-

able surface area of the membrane. 

A two-stage deployment process, in which the stacked mem-

brane strips are first unwrapped and then unfolded, has also been

proposed, analyzed in detail, and demonstrated experimentally. It

has been shown that the deployment is well controlled and that

the corner forces required to deploy the membrane can be esti-

mated analytically with good accuracy. 

For membranes with high length-to-thickness ratios, the pack-

aging efficiency of this concept approaches 100%. Packaging tests

on meter-scale models were conducted, and packaging efficiencies

of up to 83% were demonstrated at this scale. 
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