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Summary

The KECK Institute fellowship played an instrumental role in my development as a
scientist. It gave me freedom to pursue new ideas and work on novel concepts leading
to important scientific advancements. I am grateful for having the opportunity to
be part of the group of people comprising KISS and hope that these relationship
will be long-lasting.

My work consisted of developing new general analytical/computational methods
as well as applications in aerospace robotics. The analytical methods were focused
on the dynamics, control, and motion planning of autonomous vehicles. These
methods were applied to the autonomous control of small spacecraft in the context of
the Autonomous Assembly of a Reconfigurable Space Telescope (AAReST) project
lead by Professor Sergio Pellegrino.

This report is composed of several papers that describe key results in my re-
search. In particular, the paper titled “Trajectory Planning for Cubesat Proximity
Operations” details our approach to autonomous path planning for small satellites
such as the ones intended for AAReST. The remaining papers develop general meth-
ods that are applicable to any autonomous vehicles such as asatellite, micro aerial
vehicles, or wheeled rovers.

Outline. The report includes a list of published papers and invited lectures dur-
ing the last two years. The remainder is composed of the key journal articles
documenting the results of this research.
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Trajectory Planning for Cubesat Proximity Operations

Marin Kobilarov and Sergio Pellegrino

–in preparation–

July, 2012

Abstract

This paper considers motion planning for small (e.g. cubesat-type) satellites operating within
a few meters of a target object. The main goal is to develop a principled methodology for han-
dling the coupled effects of orbital dynamics, rotational and translational rigid body dynamics,
underactuation and control bounds, and other constraints such as obstacles. The proposed
approach is based on constructing a reduced-order representation of the dynamics through
dynamics inversion and differential flatness, and on efficient global optimization over a finite
dimensional reduced representation. Two simulated scenarios, a satellite reconfiguration ma-
neuver and asteroid surface sampling, are developed to illustrate the approach. In addition, a
simple 2-D experimental testbed consisting of an air-bearing table and two cubesat engineering
models is developed for partial testing and integration of the proposed methods.

1 Introduction

This paper studies autonomous control of small spacecraft during proximity operations. Au-
tonomous navigation and operation in the proximity of multiple objects in space is becoming
increasingly important. It enables critical capabilities such as autonomous on-orbit assembly
and inspection, servicing of disabled spacecraft, or debris deorbiting.

This work focuses on autonomous navigation of small and low-cost spacecraft such as cube-
sats operating within a range of several meters around the target object (e.g. a satellite being
serviced, an instrument being assembled, or debris being captured). The cubesat platform is a
natural choice for such capability because of its low development and launch costs and unified
standard that has accelerated a wide-spread development effort. Even though various small
satellite technology are quickly maturing, there are various practical limitations that currently
preclude a fully autonomous operation. In particular, robotic operation in space depends on
real-time perception, spatial mapping, path planning and trajectory control. The main chal-
lenges lie in dealing with limited propulsion due to underactuation, bounded thrust, and finite
fuel, and attitude control system (ACS) with bounded torque. In addition, safety constraints
such as avoiding collisions with obstacles and perception constraints, such as maintaining sensor
field-of-view of target object while avoiding the incident sun angle, must be satisfied. Control
methods should also be able to handle high uncertainty in the output response of current cubesat
propulsion systems while this technology is maturing.

An example scenario. Consider the Autonomous Assembly of a Reconfigurable Space Tele-
scope (AAReST) mission [35] illustrated in Figure 1. The mission is intended for a near-circular
orbit at 650km altitude. Table 2 lists the various orbit details. The mission relies on the abil-
ity of individual cubesats to autonomously undock, orbit around the mirror, and redock to a
different position at the main cluster. Note that under ideal conditions such reconfigurations
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Figure 1: Autonomous Assembly of a Reconfigurable Space Telescope (AAReST) concept: a) simulated rendezvous
and docking of multiple cubesats to form a segmented mirror; each spacecraft perceives the environment using ma-
chine vision and autonomously navigates to and docks in a designated configuration. b) a cubesat autonomous
reconfiguration testbed using an air table.

Element Notation Value Units Notes
Dimensions (dx, dy, dz) (0.1, 0.1, 0.3) m
Moments of Inertia I (0.03, 0.03, 0.015) kg ·m2

Mass m 3 kg
Altitude ac 650 km
Inclination ic 97.985823 deg.
Orbit period Te 97.728221 min
Angular rate ωc .00107154 rad/s
Velocity vc 7530.93 m/s

Relative Perturbations ||fhcw‖ ≤ 1.9712× 10−4 N relative ‖v‖ ≤ 2cm/s, range ≤ 2 m.

Gravity Gradient ‖τgg‖ ≤ 2.5830× 10−8 Nm max at 45ø

Solar Torque ‖τSRP‖ ≤ 2.7360× 10−9 Nm COM ±[0.02, 0.02, 0.02]
Solar Force ‖fSRP‖ ≤ 1.3680× 10−7 N at max cross area

Drag Torque ‖τdrag‖ ≤ 3.3166× 10−13 Nm COM ±[0.02, 0.02, 0.02]
Drag Force ‖fdrag‖ ≤ 1.6583× 10−11 N at max cross area

Figure 2: AAReST orbit details.

are accomplished by exploiting relative orbital dynamic forces and thus last around one orbital
period. Yet, a simple calculation yields that if the spacecraft are required to operate within
close proximity (e.g. less than two meters) then the maximum relative perturbation force does
not exceed 1.9712×10−4 N (Figure 2). This corresponds to motions no faster than 2 mm/s that
can only be achieved with very precise boundary conditions. We expect that Such precision will
be very difficult to achieve when interaction between bodies such docking/attaching is involved.
In particular, it is realistic to instead assume that relative velocities between interacting bodies
in on the order of at least several cm/s. The optimal control strategy in such cases will dif-
fer from standard formation flying techniques. For instance, a reconfiguration in the context of
AAReST will last several minutes rather than more than one hour and will only partially exploit
the orbital dynamics perturbations. In addition, thrusters capable of milli-Newton (variable or
high-frequency PWM) thrust will be required.

Approach Motivated by the need for algorithms applicable to shorter time scales and con-
strained underactuated propulsion we develop techniques for designing approximately optimal
trajectories that account for the effects of rigid body dynamics, orbital dynamics, and underactu-
ation. The optimal reconfiguration problem can be regarded as a constrained nonlinear optimal
control problem. The general formulation does not have a closed-form or easily computable
solution. The two key points of the proposed approach are then: 1) to exploit key properties of
the spacecraft dynamics to obtain a reduced order trajectory representation and 2) to employ
efficient stochastic global optimization over this reduced space. The case of fully-actuated and
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under-actuted systems is handled in a unified way through either simple dynamics inversion
or by exploiting differential flatness, respectively. Thus the proposed method can be used to
compute motions to any desired state for cubesats with minimal actuation, i.e. an ACS and a
single thruster (that is realizable with current technology) or with a more advanced conceptual
10-thruster fully actuated propulsion system which could be realizable in the next few years.

Related Work. The reconfiguration problem has been studied from various viewpoints.
Traditionally, it is assumed that the spacecraft is a point mass the can be propelled in any given
direction subject to distance constraints to other spacecraft or obstacles [28, 30]. In this context,
convex programming [1, 32] or mixed-integer linear programming [25] has been successfully used
for designing algorithms with provable convergence and run-time properties. Robotic motion
planning is used to address the case with full rigid body dynamics and more complex avoidance
constraints. The increased dimensionality and related computational burden has been addressed
through e.g. randomized methods [23, 11]. The final stage of rendezvous has also been studied
through a simple linear model [4]. The problem has also been extensively studied in the context
of planned future missions such as Terestial Planet Finder (TPF) [29] and low cost spacecraft
testbeds such as the Spheres [27, 3, 34]. The Spheres testbed has also served as a basis for a
conceptual mission [19] sharing common aspects with AAReST. Differential flatness[7, 21, 37] is
an intrinsic dynamical system property which can be used to transform a highly underactuated
system into a system evolving in fully-controllable flat output space. Flatness has been used for
spacecraft control purposes but primarily limited to underactuated attitude control problems
(see e.g. [33]). An unrelated but interesting application of flatness for handling avoidance
constraints appears in [18]. Other methods for handling complex dynamics and underactuation
include reducing the dynamics to a driftless system through decoupling vector fields [6] or
exploiting symmetries to encode the dynamics through a maneuver automaton [9]. Decoupling
vector fields require the system to stop at various points along the motion and often result in
motions far from optimal. The correct way to employ a maneuver automaton in the context of
symmetries arising from the coupled orbital dynamics and underactuated rigid body dynamics
during proximity operations has yet to be studied.

This papers does not assume a particular propulsion model and considers even the case
when the spacecraft has a single thruster aligned with the center of mass. Our motion plan-
ning methodology leads to high quality open-loop trajectories. Yet, in the underactuated case
a major issue is whether these trajectories are robust to noise and can be stably tracked. We
will only partially address this issue based on results from backstepping control [37, 10, 5, 2].
Considering the underactuated case is motivated by the recent developments of various propul-
sion technologies [20]. Existing technologies such as cold gas and pulsed plasma thrusters are
directly applicable to cubesats today as long as they can be miniaturized and properly packaged.
While there are a number of developments in this direction we mention cold-gas systems such
as VACCO’s five thrusters MEMS system [14] and Aerojet’s CubeSat Hydrazine Adaptable
Monopropellant Propulsion System (CHAMPS)[31] as examples of promising technology for the
near future. We should note that the MEPSI (Micro-Electromechanical-based Picosat Satellite
Inspection Experiment) spacecraft can be considered as precursor to such technologies in its
innovative use of smart materials such as photostructurable glass/ceramic. In addition, new
technologies such as ion thrusters (see e.g. [24]) and electrospray [ref] result in higher efficiency
and delta-V. Only few of these propulsion systems are in near-flight ready state currently. In
general, further development is necessary to produce a versatile thruster system that can fully
actuate all six degrees of freedom of a cubesat with levels of thrusts/torques enabling agile
autonomous navigation.

2 Problem Formulation

The spacecraft is modeled as a single underactuated rigid body with position x = (x, y, z) ∈ R3

and orientation matrix R ∈ SO(3). The configuration (x, R) is defined with respect to a moving
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Figure 3: Cold-gas propulsion systems and an attitude control system: a) VACCO 5-valve MEMS system; b) SSTL
heritage Resistojet; c) Aerojet’s CubeSat Hydrazine Adaptable Monopropellant Propulsion System (CHAMPS); d)
Pumpkin Cubesat MAI-200 ADACS

frame attached to the central body (target), such as an RSW frame [36] where the convention
that x-axis is on-track and z-axis points away from Earth is taken. The body-fixed angular
velocity is denoted by ω ∈ R3. The vehicle has mass m and principal moments of rotational
inertia Jx, Jy, Jz forming the inertia tensor J = diag(Jx, Jy, Jz). The state space of the vehicle
is S = SE(3)× R6 with s = ((R,x), (w, ẋ)) ∈ S denoting the whole state of the system.

The spacecraft is actuated with control inputs u ∈ U where U ⊂ Rc is a bounded set.
The function τ : S × U → R3 and f : S × U → R3 maps from these control inputs to the
resulting torques and forces acting on the body, respectively. The external forces and torques
are denoted by the functions τext : S → R3 and fext : S → R3, respectively. Significant external
forces and torques in LEO are due to relative dynamics and gravity gradients (see Figure 2). For
near-circular orbit the forces are simplified using the Hill-Clohessy-Wiltshire (HCW) linearized
model, i.e.

fext(s) = m




2ωcż
−ω2

cy
−2ωcẋ+ 3ω2

cz


 ,

with constant ωc > 0 denoting the circular orbit angular rate (e.g. see Figure 2). The external
torques due to gravity gradients is defined according to

τext(s) = 3ω2
cRe3 × JRe3,

where e3 = (0, 0, 1). Note that in the context of very close proximity operations such as in
AAReST (Figure 2) assuming that x, y, z < 2m and vx, vy, vz < 2cm/s the forces and torques
do not exceed 1.9712× 10−4N and 2.5830× 10−8 Nm, respectively.

The equations of motion are

Ṙ = Rω̂, (1)

Jω̇ = Jω × ω + τext(s) + τ (s,u), (2)

mẍ = fext(s) + f(s,u), (3)

where the map ·̂ : R3 → so(3) is defined by

ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 ,

Four basic thruster models are detailed next.

Example: full attitude control and one thruster along z-axis (ACS+Z). Con-
sider a cubesat with a 3-axis ACS and a single thruster pointing in the negative z-axis and
aligned with the center of mass. Figure 4a shows a model of this configuration while the actual
hardware that can be employed to realized this system is shown in Figure 3. The control space
is U ⊂ R4 where (u1, u2, u3) are the torque inputs while u4 is the thruster input. The set defined
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Figure 4: Various thruster configuration studied (drawn cones represent the magnitude of thruster firing): a) single
thruster along z-axis (ACS+Z); b) two opposite thrusters along x-axis (ACS±X); c) five-thruster system (VACCO)
also shown in Figure 3a; d) conceptual 10-thruster system (T10).

by U = {u ∈ R4 | |ui| < umaxtorque, for i = 1, 2, 3, uminthrust ≤ u4 ≤ umaxthrust} and the forces
become

τ (s,u) = (u1, u2, u3), f(s,u) = u4Re3, (4)

where e3 = (0, 0, 1) ∈ R3. In practice, rather than directly controlling the attitude with given
torques, the ACS often operates as closed-loop system for a given desired orientation and slew
rate, i.e. the control inputs themselves can be regarded as function of current and desired state
u(s, sd). For trajectory optimization purposes our model assumes that attitude is controlled
through bounded torque inputs with additional angular velocity constraints corresponding to
maximum slew rates achievable by the ACS.

Example: full attitude control and two opposite thrusters along x-axis (ACS±X)
Cubesat with an ADC and two opposing thrusters along the x-axis aligned with the center of
mass (see Figure 4b). The two thrusters can be modeled as a single input since they are never
operated simultaneously. The thruster bound is then simply written as uminthrust ≤ ‖u4‖ ≤
umaxthrust and the control forces become

τ (s,u) = (u1, u2, u3), f(s,u) = u4Re1, (5)

where e1 = (1, 0, 0) ∈ R3.

Example: VACCO system without ACS. Consider the micro-thruster system [14]
shown in Figure 3a with simulated model shown in Figure 4c. Assuming no additional ACS the
control forces can be expressed as

[
τ (s,u)
f(s,u)

]
=

[
1 0
0 R

]
Bu, (6)

where 1 denotes identity matrix and the thruster allocation matrix takes the form

B =




ry sinα 0 0 0 0 0
0 rz cosα+ rx sinα 0 0 0 0
0 0 ry cosα 0 0 0
0 0 0 cosα 0 0
0 0 0 0 0 0
0 0 0 0 0 sinα







−1 −1 1 1 0
1 −1 −1 1 0
1 −1 1 −1 0
−1 1 1 −1 0
0 0 0 0 0
−1 −1 −1 −1 0



,

where rx, ry, rz > 0 are the offsets of the VACCO thruster valves from the center of mass in the
x, y, and z axes respectively, and α = 15o is the angle with which the four lateral thrusters are
pointing in the +z-axis.
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Note that although there are 5 inputs we have rank(B) = 4 signifying that only four degrees
of freedom can be controlled simultaneously. This is evident considering that the second and
forth row of the matrix are linearly dependent which physically corresponds to the fact that
the VACCO system cannot simultaneously control rotation around the y-axis and translation
in x-axis.

Example: fully actuated 10 thruster system (T10). Ideally, all degrees of freedom
should be controllable. This can be accomplished by a variety of thruster configurations. One
such conceptual configuration appropriate for cubesats is shown in Figure 4d and can be defined
similarly to (6) but with matrix

B =




0 −h 0 h h 0 −h 0 0 0
h 0 −h 0 0 h 0 −h 0 0
a a a a −a −a −a −a 0 0
−1 0 1 0 0 1 0 −1 0 0
0 −1 0 1 −1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 −1



, (7)

where a > 0 and h > 0 are the lateral and vertical offsets of each of the side thrusters.

Constraints. In addition, the vehicle is subject to constraints arising from velocity limits,
obstacles in the environment, and avoidance of instrument-sensitive orientations. These con-
straints are expressed through the m inequalities

Fi(s(t),u(t)) ≥ 0 (8)

for i = 1, ...,m. The simplest velocity constraint is to maintain a translational velocity below a
given magnitude vmax > 0 expressed as

F1(s,u) = ‖ẋ‖ − vmax. (9)

Obstacle constraints enforce that the vehicle must not collide with obstacles denoted byO1, ...,Ono .
Assume that the vehicle is occupying a region A(R,x) ⊂ R3, and let prox(A1,A2) be the Eu-
clidean distance between two sets A1,2 that is negative in the case of intersection. Obstacle
avoidance constraints in (8) can be written as

F2(s,u) = min
i

prox(A(R,x),Oi), for all t ∈ [0, T ]. (10)

We use a standard collision checking algorithm (Proximity Query Package [12]) to compute
prox.

Objective. The goal is to compute the optimal controls u∗ and final time T ∗ driving the
system from its initial state s(0) to a given goal region Sg ⊂ S, i.e.

(u∗, T ∗) = arg min
u,T

∫ T

0

C(s(t),u(t))dt,

s.t. s(T ∗) ∈ Sg while satisfying dynamics (1)− (3) and constraints (8),

(11)

where C : S × U → R is a given cost function encoding e.g. fuel consumption or total time
taken. For instance, a typical cost function includes the total time taken and fuel expended
encoded by the L1 control norm, i.e. C(s,u) = 1 + λ|u|1 for some constant λ ≥ 0.
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3 Trajectory Generation

The nonlinear optimization problem (11) has no closed form or easily computable solution in
general. Nonlinear programming methods can be used to perform the optimization. Yet, such
local variational methods are very sensitive to underactuated dynamics and obstacle constraints
and require hand-tuned initialization and take long run-times. This precludes real-time perfor-
mance and direct implementation on-board the spacecraft.

The complexity of the problem can be greatly simplified by exploiting certain properties
of the dynamics. In particular, any given trajectory of a fully actuated system (e.g. T10
introduced in §2) can be inverted to compute the required control inputs and is feasibly as long
as the inputs are not saturated. Similarly, underactuated systems (e.g. ACS+Z and ACS±X
systems introduced in §2) can be handled by exploiting the differential flatness property of the
control system.

The proposed strategy is to reduce the dimension of the system using such properties of
the dynamics. A finite-dimensional trajectory parametrization mapping to the reduced space
will then be constructed. The optimal parametrized trajectory will then be computed through
global optimization over the reduced parameter space. The final solution will be obtained by
mapping the parameters back to the original full trajectory space of the vehicle.

3.1 Underactuated Systems

Underactuated systems cannot track any arbitrary trajectory in their full configuration space.
Instead, they can track only as many degrees of freedom simultaneously as the number of their
independent control inputs. Differential flatness is an inherent geometric property of the system
determining whether and how the remaining (unactuated) degrees of freedom can be controlled.

Differential Flatness. Intuitively, flatness means that the system admits a reduced order
representation which uniquely determines the original higher-dimensional system. Thus motion
planning and control can be performed in the reduced representation and the resulting solutions
mapped backed to the original system. Skipping much of the flatness formalism (see e.g. [37]
for an in-depth treatment) this work only considers a particular model – a spacecraft modeled
as rigid body with full attitude control and at least one thruster generating force along a line
passing through the center of mass.

The systems ACS+Z and ACS±X introduced in §2 are differentially flat in the sense that a
given trajectory in position x(t) and a one-degree of freedom of a given orientation R(t) uniquely
determines the whole state of the system s and inputs u. Intuitively, the spacecraft can execute
a given trajectory in position space only by properly orienting itself and firing its single thruster
appropriately.

Typically a rotational flat output corresponds to the angle of rotation around the thrust
axis. For instance, if the thruster is along the Z-axis then y = (x, y, z, ψ), where ψ is the yaw of
the body. Working with Euler angles though introduces singularities. Thus, instead of adopting
local coordinates as in the standard approach to flatness the proposed method determines its
attitude R to be as close as possible to a desired attitude Rd without coordinates. This is also
the approach taken in [10] in the context of backstepping control of helicopters.

The developed control strategy employs the following functions. Recall that the exponential
mapping exp : R3 → SO(3) is defined by

exp(ω) =

{
I3, if ω = 0

I3 + sin ‖ω‖
‖ω‖ ω̂ + 1−cos ‖ω‖

‖ω‖2 ω̂2, if ω 6= 0
. (12)

The right-trivialized tangent [16] map dexp:R3→L(R3,R3) is such that

∂ exp(ω) · δ · exp(ω) = ̂dexp(ω)δ (13)

7



and is defined by

dexp(ω) =

{
I3, if ω = 0

I3 +
(

1−cos ‖ω‖
‖ω‖

)
ω̂
‖ω‖ +

(
1− sin ‖ω‖

‖ω‖

)
ω̂2

‖ω‖2 , if ω 6= 0
(14)

With these definitions the procedure for generating trajectories for spacecraft with one thruster
and full attitude control is stated as follows.

Proposition 1. A spacecraft with control torques τ (s,u) = u1:3 and forces f(s,u) = u4Rei
for some unit vector ei ∈ R3 can exactly follow a desired trajectory xd : [0, T ]→ R3 and follow
as close as possible a desired attitude Rd : [0, T ]→ SO(3) if the controls u : [0, T ]→ R4 satisfy:

u1:3 = ω × Jω + Jω̇ − τext, (15)

u4 = αTRei, (16)

ω = dexp(−ρ)ρ̇+ exp(−ρ)ωd, (17)

α = mẍd − fext, b = (Rdei)×α/‖α‖, β = cos
(

(Rdei)
Tα/‖α‖

)
(18)

ρ =

{
arg min{

β b
‖b‖ ,(β−π) b

‖b‖
} ‖u1:3‖ if ‖b‖ > 0,

0, if ‖b‖ = 0,
(19)

R = Rd exp (ρ) , (20)

where R : [0, T ]→ SO(3) denotes the resulting attitude while ω̂ = RT Ṙ and ω̂d = RTd Ṙd.
Note: the notation ρ = arg min{ρ1,ρ2} ‖u1:3‖ means that ρ should be set to the one of the

two arguments which results in minimum norm of the torque inputs.

Proof. The goal is to use align and fire the thruster so that the total force acting on the body
is mẍd for all t ∈ [0, T ]. This is accomplished by setting the attitude R so that Rei is parallel
to α = mẍd − fext. This restricts two degrees of freedom of the matrix R. The remaining
one degree of freedom allows R to be chosen as close as possible to the desired Rd. This is
accomplished by computing the smallest rotation that aligns Rdei with α. This rotation is
defined by the vector ρ representing the exponential coordinates of the required transformation.
Thus it is easy to check that

Rd exp(ρ)ei = ±α,
where the ± sign depends on whether the thrust direction is flipped in order to reduce the
required aligning torque (eq. (19)). Noting that

u4Rei = (αTRei)Rei =

(
αT
±α
‖α‖

) ±α
‖α‖ = α

the total force becomes

mẍ = u4Rei + fext = α+ fext = mẍd.

The required torque is then computing by noting that

ω̂ = RT Ṙ = RT
d

dt
(Rd exp(ρ)) = RT Ṙd exp(ρ) + exp(−ρ) ̂dexp(ρ)ρ̇ exp(ρ),

using the definition (13). Using the relationships Rω̂RT = R̂ω and exp(−ρ) ̂dexp(ρ)δ exp(ρ) =
̂dexp(−ρ)δ (see e.g. [13]) this reduced to

ω = exp(−ρ)ωd + dexp(−ρ)ρ̇.

Finally, assuming full attitude control the required attitude R(t) is achieved by setting u1:3 =
ω × Jω + J d

dt
ω.
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Control bounds. Note that the resulting control law might violate imposed bounds on the
inputs. In particular, bounds on the thruster input depend on the accelerations ẍ while bounds
on the angular velocity and torques additionally depend on the higher derivatives

...
x ,

....
x (see

eq. (15) and (17)). The strategy employed in this work is to rescale the time along a given x(t)
in order to satisfy control bounds.

3.2 Fully Actuated System

Assume that the the control inputs have the form

[
τ (s,u)
f(s,u)

]
=

[
1 0
0 R

]
Bu,

where rank(B) = 6 and F = {Bu | u ∈ U} ⊂ R6 is an open set containing the origin.
In the fully-actuated case the system can follow any trajectory specified by both position

and attitude, i.e. (xd, Rd) : [0, T ]→ R3 × SO(3) as long as the required control inputs are not
saturated. It is easy to show that this can be accomplished by setting the controls to

u = (BTB)−1BT
[
ω × Jω + Jω̇ − τext

RT (ẍ− fext)

]
. (21)

If the resulting controls exceed their bounds, the trajectory can be rescaled in time, i.e. T can
be increased until u ∈ U is satisfied.

3.3 Trajectory Parametrization

Trajectories between two given boundary states s0 and sg will be uniquely generated by se-
lecting m intermediate “waypoints” through which the trajectory will smoothly pass. In the
underactuated case the waypoints are the flat configurations, i.e. position x(t) and one degree
of freedom of the attitude R(t), while in the fully actuated case the waypoints are the full pose
(x(t), R(t)). The approach is to connect waypoints with the simplest possible representation
ensuring feasible execution. Feasibility imposes certain smoothness conditions that are accom-
plished through polynomials of an appropriate order. The fully-actuated case is developed next
followed by the underactuated case which requires higher-order smoothness conditions.

3.3.1 Fully Actuated Polynomial Curves

The parametrized trajectory space for fully-actuated systems is defined by

Z = (R3 × S3)m ⊂ R7m,

with elements z = (q1, ..., qm), where qi = (xi, ri) with r ∈ S3 denoting a unit quaternion
corresponding to a given rotation matrix R. Quaternions are used for convenience since inter-
polation can be performed in the ambient vector space R7m by initially ignoring the constraints
r ∈ S3 and once the curve is constructed to project it back to Z. Performing interpolation
directly in SO(3) is more involved and is avoided to maintain efficiency.

Consider the interpolation of a trajectory between two boundary conditions (q0, q̇0) and
(qg, q̇g) that must pass through intermediate waypoints (q1, ..., qm). The boundary conditions,
the waypoints, and enforcing second order smoothness at the waypoints (i.e. continuity of q, q̇, q̈)
impose a total of 7(4 + 4m) conditions over m+ 1 segments. Thus the minimal representation
is a cubic polynomial over each segment. Denoting ∆ = T/(m + 1) and ti = i∆ the curve is
defined by

q(t) = Cib(t− i∆), when t ∈ [ti, ti+1] (22)

where b : [0,∆]→ R4 is defined by b(t) = (t3, t2, t, 1).
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Let A = [b(0) ḃ(0) b̈(0) b(∆)]−1 and E = [b(∆) ḃ(∆) b̈(∆)]. The coefficients Ci can be
found using the following recursion

C0 = [q0 q̇0 q̈0 q1]A, (23)

Ci = [Ci−1E qi+1]A, for i = 1, ...,m, (24)

assuming the equivalence qm+1 ≡ qg. The initial acceleration q̈0 is unknown and is found by
solving the linear equation

Cm+1ḃ(T ) = q̇g (25)

for q̈0 after which it is then substituted back into each matrix Ci. The unknown coefficients are
linear function of the data and can be easily precomputed for any given m. This enables instant
trajectory generation for any given boundary conditions and waypoints.

3.3.2 Underactuated Polynomial Curves

The parameters space in the underactuated case is defined by

Z = (R3 × S1)m ⊂ R5m

with elements z = (q1, ..., qm), where qi = (xi, ri) where r ∈ S1 is a unit vector. Thus similarly
to the fully-actuated case interpolation is performed in the ambient space R5m and projected
back to Z.

Similarly to the fully-actuated case boundary conditions are given in terms of q0, q̇0 and
qg, q̇g and the trajectory must pass through the intermediate spinets (q1, ..., qm). Note that it
is necessary to enforce third-order smoothness in position (i.e. continuous x, ẋ, ẍ,

...
x) since by

Proposition 1 the resulting angular velocity ω is a smooth function of
...
x . There are a total of

3(4 + 5m) position conditions over the m + 1 segments. Thus the minimal representation is a
cubic polynomial over one of the segments (e.g. the first) and a fourth-order polynomial over
all remaining m segments. The rotational degree of freedom is interpolated using a lower order
polynomial similarly to the fully-actuated case. The trajectory is expressed as

x(t) =

{
C0b(t), when t ∈ [0,∆],
Cib4(t− i∆), when t ∈ [ti, ti+1], for i = 1, ...,m,

(26)

where b4(t) = (t4, t3, t2, t, 1).
Similarly to §3.3.1 let A4 = [b(0) ḃ(0) b̈(0)

...
b (0) b(∆)]−1 and E4 = [b(∆) ḃ(∆) b̈(∆)

...
b (∆)].

The coefficients Ci can be found using the following recursion

C0 = [x0, ẋ0, ẍ0,x1]A3, (27)

C1 = [C0E3 x2]A4, (28)

Ci = [Ci−1E4 xi+1]A4, for i = 2, ...,m, (29)

Similarly to §3.3.1 the initial acceleration ẍ0 is unknown and is found by solving the linear
equation

Cm+1ḃ4(T ) = ẋg (30)

after which it is then substituted back into the polynomial coefficient matrices Ci.

3.4 Reconstruction

A trajectory represented by a parameter z ∈ Z can be mapped to a curve q(t) for all t ∈ [0, T ]
using the polynomial interpolations (22) and (26) in the fully and under-actuated cases, re-
spectively. These poses can then be mapped back to the full trajectory and control inputs

10



(s,u) : [0, T ] → S × U as described in §3.1 for the underactuated case and in §3.2 for fully-
actuated systems. Thus the infinite dimensional space of continuous trajectories has been
encoded through a low-order finite dimensional space Z. Next, global optimization will be
performed over this space to find the optimal parameter z∗ ∈ Z that will correspond to an
approximately optimal trajectory s∗ : [0, T ]→ S.

4 Motion Planning

The constrained optimal control problem (11) is solved performing global optimization over the
trajectory parameter space Z. This is accomplished through the recently proposed cross-entropy
motion planning method [15]. The method was chosen for its ability to globally explore the
solution space and converge to high-quality solutions, its simple gradient-free implementation,
and the possibility to use it in any-time fashion on-board the vehicle. The main limitation of
the method is that it cannot handle environments that are very cluttered.

The main idea is to construct a probability distribution over the trajectory space, to sample
trajectories from the distribution, evaluate their costs, and adapt the distribution so that it
becomes concentrated over high-quality trajectory space regions. The process is repeated itera-
tively until the distribution has collapsed close to a delta function near the optimum [26]. Note
that many of the sampled trajectories will violate the problem constraints (8) such as obsta-
cles. The space of allowed parametrized trajectories that satisfy these constraints is defined by
Zcon ⊂ Z and only trajectories z ∈ Zcon will be used to update the distribution.

Let Z be a random variable over Z with density p(Z; v), where v ∈ V is the density parameter.

Let nz = dim(Z). The parameter space is V = (Rnz × R(nz
2+nz)/2)K × RK with elements

v = (µ1,Σ1, ..., µK ,ΣK , w1, ..., wK) corresponding to K mixture components with means µk,
covariance matrices Σk (excluding identical elements due to the matrix symmetry) and weights
wk. A mixture of Gaussians is employed defined by

p(z; v) =

K∑

k=1

wk√
(2π)nz |Σk|

e−
1
2

(z−µk)T Σ−1
k

(z−µk), (31)

where
∑K
k=1 wk = 1. The number of mixture components K is chosen adaptively (see e.g. [8]).

Even the simple case K = 1 is sufficient for solving complex multi-extremal problems as long
as enough samples are obtained. The complete algorithm adapted to the setting of this work is
summarized below (see [15] for complete details).

Algorithm 4.1. CE Motion Planning

Initialization:

0.1 Compute the optimal trajectory reaching the goal by ignoring the constraints, i.e. z∗ =
minz∈Z J(z)

0.2 Set matrix Σ so that the region {z ∈ Z | (z − z∗)TΣ(z − z∗) < 2, 0 ≤ t ≤ T} ⊂ X covers
the reachable configuration space of interest

0.3 Choose initial samples Z1, ..., ZN from Normal(z∗,Σ); set j = 0 and γ̂0 =∞
Iteration:

1. Update distribution

v̂j = argmin
v∈V

1

|Ej |
∑

Zk∈Ej

ln p(Zk; v),

over the elite set Ej = {Zi | J(Zi) ≤ γ̂j}
2. Generate samples Z1, ..., ZN from p(·, vj)|Zcon and compute the %–th quantile γ̂j+1 = Jd%Ne

3. If j > 0 and KL(p(·, vj−1)||p(·, vj)) < ε then finish, otherwise set j = j + 1 and goto
step (1)

11
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Figure 5: Reconfiguration of the ACS+Z underactuated cubesat: a) resulting path to the goal state on the opposite
side of the larger spacecraft in the middle; b) force produced by the single thruster acting along the +Z axis; c)
translational velocities along the path; d) angular velocities along the path.

The algorithm performs very efficiently when the environment is not very complex. If the
optimal trajectory lies in a narrow passage that is very unlikely to be sampled then the algorithm
will be unlikely to find it. Such complex scenarios are handled by combining the proposed
method with standard motion planning techniques as detailed in [15].

5 Applications

Two simulated scenarios are developed next in order to test the proposed methodology–a recon-
figuration and a surface sampling tasks. In both cases two types of cubesats are employed: an
uneractuated with a single thruster and attitude control and a fully-actuated with ten thruster
configuration.

5.1 Reconfiguration

The reconfiguration task requires a cubesat to navigate around another larger spacecraft and a
few other floating cubesats and arrive optimally to a designated zero-velocity state. Figure 5
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Figure 6: Reconfiguration of the T10 fully-actuated cubesat: a) resulting path to the goal state on the appositive
side of the larger spacecraft in the middle; b) forces produced by the ten thrusters.

shows the resulting trajectory and controls for the underactuated cubesat ACS+Z (defined
in (4)).

The cost function used for ACS+Z system is

C(s,u) = |u4|+ ‖u1:3‖,

in order to encode fuel expended by the thruster but also penalize excessive torque required by
the ACS. The trajectory required ∆V = 0.089 m/s and momentum change 0.035Nms. A fixed
duration of T = 300s. was chosen a priori which resulted in forces and torques magnitudes that
can be achieved by thrusters such as in Figure 3a-c and ACS (Figure 3d). The computation
was based on trajectories with m = 4 waypoints and collisions checking was performed every
h = .5s. along the path using the PQP package. The CE optimization method was run with a
single Gaussian and N = 1000 samples. The total computation time for this scenario lasted 30
seconds and required 11 iterations.

Similarly, Figure 6 shows the resulting trajectory and controls for the fully actuated cubesat
T10 (defined in (7)). The cost function is the total fuel C(s,u) = |u| expended by all ten
thrusters over a fixed time horizon of T = 120s. Since attitude is controlled by thrusters this
maneuver can be executed in a shorter time than the ACS+Z system without violating bounds
on the inputs.

5.2 Asteroid Sampling

The second scenario is mock-up sampling maneuver on the sufrace of a small asteroid. Motivated
by recent mission such MUSES-C [17] and DAWN [22] the proposed methodology can be used to
enhance autonomy and sampling capabilities. For instance, a cubesat can be carried on-board
a larger spacecraft and dispatched to various sampling points.

Note that we only consider the near-surface navigation problem rather than the complete
asteroid trajectory transfer which can be very complex. Once the spacecraft is in a hovering
state a few meters above the surface it can perform autonomous motion planning to various
points of interest. Unlike the LEO reconfiguratione example (§5.1) the external disturbances
in this example dominated by microgravity, i.e. fext should additionally encode the asteroid
gravitational effects.
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Figure 7: Asteroid crater sampling using the ACS+Z underactuated cubesat: a) optimized path to the bottom of
crater; b) resulting force produced by the single thruster along the z-axis; c) resulting translational velocities along
the path; d) angular velocities along the path.
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iteration #1: cost=0.36 iteration #2: cost=0.26 iteration #3: cost=0.20

iteration #4: cost=0.17 iteration #5: cost=0.13 iteration #6: cost=0.11

Figure 8: Several iterations of the cross-entropy optimization method (§4) applied to the sampling scenario. The thin
trajectories correspond to samples from parametrized trajectory space Z. As the algorithm iterates the distribution
and its samples concentrate close to the optimum.

Figure 7 shows the optimized obstacle-free trajectory taking the underactuated spacecraft to
the bottom of a small crater with zero final velocity. The algorithm is setup similarly to §??. The
trajectory shown is optimized for 10 CE iterations taking a total of 45 seconds of computation
and resulted in ∆V = 0.126m/s and total moment 0.051 Nms. Figure 8 shows the first several
iterations of the stochastic optimization method. The random thin lines connect waypoints
that compose each sample Zi. Note that the actual trajectory corresponding to Zi is smooth
and feasible but is not reconstructed and drawn for efficiency. The algorithm typically requires
around ten iterations to produce a reasonable solution. It should be noted though that it is
difficult to claim how far from the optimal this solution is. The higher N and m are the higher
chance is to reach the true optimum but at an increased computational effort.

Similarly, results for the fully actuated cubesat are shown on Figure 9 with a few iterations
of the optimization shown on Figure 10. Unlike the underactuated case, the resulting motion
for the T10 system can be accomplished without much change in the spacecraft attitude. The
scenario was setup similarly to the previous example and required 60 seconds for computing the
shown trajectory.

6 Experiments

A simple testbed was developed in order to study the proposed techniques. It consists of
an air-hockey type floatation table which supports spacecraft on pucks. Engineering models
of cubesats were developed with components necessary for testing reconfiguration maneuvers.
The components include an electromagnetic docking system, a visual pose estimation (VPE)
system, a mock-up propulsion system, and a high-level computer with wireless communication.
Since at the time of developing this project no low-cost propulsion system for cubesats was
readily available we designed a system with six micro electric ducted fans that can generate
forces down to one milli-Newton. They are used to simulate either underactuated or fully-
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Figure 9: Asteroid crater sampling using the T10 fully actuated cubesat: a) optimized path to the bottom of crater;
b) close-up viewl c) resulting translational velocities along the path; d) resulting forces produced by the ten thrusters.
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iteration #1: ∆V =1.83m/s iteration #2: ∆V =1.41m/s iteration #3: ∆V =1.19m/s

iteration #4: ∆V =1.02m/s iteration #5: ∆V =0.98m/s iteration #6: ∆V =0.86m/s

Figure 10: Iterations of the CE method applied to the fully-actuated cubesat performing asteroid sampling.

Component Qty Description Weight Power
cubesat frame 1 ISIS 3U 200g n/a
power 1 8.4 NiCad battery or ClydeSpace PSU 100g n/a
electromagnets 2 custom made at Univ. of Surrey 200g 3W
camera 1 PointGrey FireFly USB 30g 1.5W
fans 6 brushless EDF 12g 0.1 - 10 W
control board 1 controls fans and magnets 20g 0.1W
high-level computer 1 Gumstix Overo 600MHz 8g 1W
comms 1 i2c, wifi+bluetooth, antennas 10g 0.9W

Figure 11: Details of the engineering cubesat model used for performing reconfiguration experiments.

actuated propulsion. The VPE system is based on instrumenting each spacecraft with a unique
configuration of bright visual markers (LEDs) and performing full six degrees of freedom pose
estimation through LED image coordinates extraction and pattern matching.

A cubesat-compatible control board was designed which interfaces to standard cubesat sub-
systems through i2c and power interfaces. The board controls the fans, the magnets, the cameras
and the visual markers (LEDs), and hosts the high-level computer. Table 11 provides more de-
tails about the engineering model.

The proposed motion planning algorithm was implemented and tested on the air table using
a mock-up obstacle environment. Figure 13 shows an example setup and a few frames along
the computed motion. Here an earlier prototype of the robotic cubesat is shown. Since the
environment was simple and the problem in 2-D the proposed algorithm can be implemented
very efficiently. It runs in real-time at 20Hz so that there is no need for additional trajectory
tracking. Figure 12 shows the assembled robotic surrogate and a few frames along a docking
motion using visual feedback from the on-board camera.
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Figure 12: a) frames along a docking motion using visual pose estimation b) a close-up view of the model
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Figure 13: a) frames along a trajectory of a cubesat engineering model that avoids obstacles and performs docking
b) the setup (top) and an output of the motion planning algorithm showing the best path to follow (thicker line)
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7 Conclusion

This work studied the trajectory planning problem for small spacecraft proximity operations.
Motivated by the limitations of current technology the proposed method considers a principled
way for computing near-optimal motions that account for underactuation, obstacle avoidance,
and orbital and rigid body dynamics. An efficient algorithm capable of computing near-optimal
solutions is constructed. It exploits the nature of dynamics to for instant trajectory genera-
tion based on reduced-order parametrization and performs stochastic optimization for globally
searching for a high-quality trajectory satisfying all given constraints. The main limitations of
the method lie in the lack of a formal procedure for selecting the optimal finite dimensional
resolution (i.e. number of waypoints) for a given scenario and in its inability to handle very
cluttered environments.

The algorithm operates in real-time on-board the experimental cubesats in a simplified 2-
D air-table setting. In the context of more complex simulated examples in 3-D, the current
implementation requires several seconds to produce high-quality solutions and tens of seconds
to converge near a (local) optimum. Through parallelization and more informed sampling it
is reasonable that the algorithm complexity can be significantly reduced to enable real-time
on-board implementation.
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Abstract
This paper is concerned with motion planning for non-linear robotic systems operating in constrained environments. A
method for computing high-quality trajectories is proposed building upon recent developments in sampling-based motion
planning and stochastic optimization. The idea is to equip sampling-based methods with a probabilistic model that serves
as a sampling distribution and to incrementally update the model during planning using data collected by the algorithm.
At the core of the approach lies the cross-entropy method for the estimation of rare-event probabilities. The cross-entropy
method is combined with recent optimal motion planning methods such as the rapidly exploring random trees (RRT∗) in
order to handle complex environments. The main goal is to provide a framework for consistent adaptive sampling that
correlates the spatial structure of trajectories and their computed costs in order to improve the performance of existing
planning methods.
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1. Introduction

Consider an agile robotic vehicle navigating in a natu-
ral environment. The vehicle motion is constrained due to
its kinematics and dynamics and due to obstacles in the
environment. The task is to compute an open-loop trajec-
tory that reaches a desired goal region optimally under the
assumption that perfect models of the robot and the envi-
ronment are available. Motion planning is a key require-
ment for autonomous systems and solving this problem is
of central importance in robotics.

In general, the problem cannot be solved in closed
form since both the dynamics and constraints can be non-
linear. Gradient-based optimization is not suitable unless a
good starting guess is chosen since the constraints impose
many local minima. In addition, constraints correspond-
ing to arbitrary obstacles can be non-smooth and require
special differentiation (Clarke et al. 1998) to guarantee
convergence. An alternative is to discretize the vehicle
state space, e.g. using a grid and generate candidate paths
by transitioning between adjacent cells. Such an approach
is computationally intractable if the state space has more
than a few dimensions and is limited to systems with very
simple dynamics, e.g. an unconstrained point mass in the
plane. This is due to the exponential (both in state dimen-
sion and planning horizon) size of the search space, also
known as the ‘curse of dimensionality’.

Since the motion planning problem is computationally
NP-complete in general (LaValle 2006) one has to resort
to approximation algorithms. Sampling-based motion plan-
ning has become an established methodology in this con-
text. The basic idea is to construct a graph structure with
nodes corresponding to states and with edges satisfying the
dynamics and constraints. In essence, the graph is regarded
as a finite approximation of the infinite set of feasible trajec-
tories. The optimal control problem is then solved approxi-
mately through graph search. The two main families of such
methods are rapidly exploring dense trees (RDT) (LaValle
2006) and probabilistic roadmaps (PRM) (Choset et al.
2005). Such sampling-based methods are probabilistically
complete, i.e. the probability of failing to find a solution,
if it exists, approaches zero at least asymptotically in the
number of iterations.

The property of sampling-based methods of interest in
this work is optimality. Standard rapidly exploring random
trees (RRT) methods can quickly explore the space but
typically provide a solution far from optimal while stan-
dard PRM methods asymptotically approach the optimal
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trajectory but at an exponentially slow rate (due to the
increased amount of vertices and edges) which in higher
dimensions becomes computationally intractable. The opti-
mal RRT (RRT∗) and optimal rapidly exploring random
graph (RRG∗) were recently proposed (Karaman and Fraz-
zoli 2011) to overcome some of these limitations while
retaining probabilistic completeness. The basic idea is to
maintain the standard RRT exploratory properties while
rewiring the structure until it satisfies local dynamic pro-
gramming conditions on the set of vertices which result in
asymptotic optimality.

The performance of sampling-based methods, regarding
optimality, can be further improved from a different view-
point. In particular, typically much effort is wasted in sam-
pling nodes from parts of the state space that are unlikely
to improve the current solution. Instead, it is possible to
sample from a probabilistic model that incrementally iden-
tifies promising regions of the state space using the costs
of trajectories that have already reached the goal. The pur-
pose of this paper is to construct a method that combines
sampling-based methods with such an adaptive sampling
approach in order to exploit the collected information about
the optimality of trajectories.

Employing adaptive or biased sampling is not new in
motion planning. Such ideas have lead to more efficient
algorithms using guided sampling to reduce the chance
of colliding edges and accelerate state space exploration
in order to find solutions more efficiently (e.g. Burns
and Brock 2005b; Hsu et al. 2006; Kalisiak and van de
Panne 2007; Li and Bekris 2010; Knepper and Mason
2011). In addition, several methods have achieved signif-
icant improvements by exploiting workspace information
(Kurniawati and Hsu 2004), learning from previous motion
planning runs (Hsu et al. 2005), or exploiting rather than
discarding colliding samples (Denny and Amato 2011). A
related viewpoint is to adaptively balance between explor-
ing the space and exploiting collected information about
collisions (Ladd and Kavraki 2005; Rickert et al. 2008). The
unifying idea behind most of these methods is the construc-
tion of a deterministic or a probabilistic model (Burns and
Brock 2005a; Zucker et al. 2008) that can be adjusted before
and during execution to improve planning performance.

At the same time, probabilistic models also serve as a
basis for stochastic optimization (Spall 2003). Among the
many flavors and applications of stochastic optimization
we mention methods based on global models incorporating
past data (e.g. Moore and Schneider (1995) and Atkeson
et al. (1997) in the context of plant optimization) or local
stochastic gradient-based algorithms (Powell 2007) which
include several recently developed methods for robotic tra-
jectory optimization among obstacles (Ratliff et al. 2009;
Theodorou et al. 2010; Kalakrishnan et al. 2011).

The idea behind the methods that we propose is to
employ stochastic optimization of probabilistic models in
the context of sampling-based planning. For this purpose
we employ the cross-entropy (CE) method (Rubinstein and

Kroese 2004; Kroese et al. 2006) originally developed for
estimation of rare-event probabilities and later employed
as a general optimization framework. The CE method is a
stochastic optimization technique that can be either local
or global depending on the chosen model and prior. It is
widely applicable and is used to solve complex combinato-
rial problems such as the minimum graph cut or the travel-
ing salesman problems. The basic idea behind applying the
CE approach to motion planning is to recursively iterate the
two steps:

1. generate samples from a distribution and compute
their costs;

2. update the distribution using a subset of ‘high-quality’
samples;

until the set of samples becomes concentrated around
the optimum, or equivalently until the distribution has
approached a delta function. The scheme is general and is
expected to converge to an optimum assuming that enough
feasible trajectories can be sampled. Yet, the exact number
of samples required for approaching a global optimum is
difficult to determine. Even though general theoretical con-
vergence of the CE method has been shown (Homem-de
Mello 2007; Margolin 2005; Costa et al. 2007; Hu et al.
2007; Hu and Hu 2009) actual rates of convergence, sam-
ple complexity, or precise performance guarantees remain
open problems.

1.1. Contributions

This work builds upon recent developments in optimal
sampling-based planning and stochastic optimization to
develop a new method aimed at producing lower cost tra-
jectories through optimally estimated adaptive sampling
distribution. From the point of view of motion planning,
one can consider the CE method as a way to optimize the
distribution for sampling vertices. From the point of view
of stochastic optimization, the motion planning component
provides feasible samples (trajectories) that are otherwise
prohibitively expensive to generate due to complex con-
straints. Thus, the proposed combined technique utilizes the
strengths of both methods to compute trajectories that have
lower costs after fewer iterations. The practical contribution
of this paper is to spell out the details of two new algorithms
combining the RRT∗ method (Karaman et al. 2011) with
the CE method for robotic trajectory optimization (Kobi-
larov 2011). The difference between the two new methods
is whether sampling occurs in the state space or in the space
of parametrized trajectories. We provide empirical results of
the performance of each approach and demonstrate marked
improvement over existing methods. The major limitations
of the approach lie in the increased computational time, the
lack of a systematic procedure for choosing the best sta-
tistical model in view of the system and environment for a
given problem, and the fact that the method is only useful in
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scenarios in which multiple trajectories to the goal can be
computed during the algorithm execution.

1.2. Organization

The motion planning problem is formulated in Section 2.
An overview of the probabilistic techniques required for
the CE method is given in Section 3.1 followed by a quick
background on optimal sampling-based methods, in par-
ticular RRT∗, in Section 3.2. The methods in Section 3.2
include a slight modification of the original version required
by the proposed approach. The CE method applied to tra-
jectory optimization is given in Section 4. The new CE
motion planning algorithms are developed in Section 5 and
illustrated with simple examples. A more detailed empiri-
cal analysis and comparisons using a double integrator in
three dimensions and a simple aerial vehicle are given in
Section 6.

2. Problem formulation

Consider a robotic vehicle with state trajectory x : [0, T]→
X controlled using actuator inputs u : [0, T] → U , where
X is the state space, U denotes the set of controls, and
T > 0 is the final time of the trajectory. The state and con-
trols at time t > 0 are denoted by x(t)∈ X and u(t)∈ U ,
respectively. The vehicle dynamics satisfies the ordinary
differential equation (ODE)

ẋ(t)= f ( x(t) , u(t)) , (1)

which is used to evolve the vehicle state forward in time. In
addition, the vehicle is subject to constraints arising from
actuator bounds and obstacles in the environment. These
constraints are expressed through the vector of inequalities

F(x(t))≥ 0, (2)

for all t ∈ [0, T]. The goal is to compute the optimal con-
trols u∗ and time T∗ driving the system from its initial state
x0 ∈ X to a given goal region Xg ⊂ X , i.e.

(u∗, T∗)= argmin
u,T

∫ T

0
C( u(t) , x(t)) dt,

subject to ẋ( t)= f ( x(t) , u(t)) ,

F( x(t))≥ 0, x(0)= x0, x(T)∈ Xg

(3)

for all t ∈ [0, T] and where C : U × X → R is a given
cost function. A typical cost function includes a time com-
ponent and a control effort component, i.e. C(u(t) , x(t))=
1+ λ‖u(t) ‖2 where λ ≥ 0 is a chosen weight.

3. Background

The proposed methodology is based on two main ingredi-
ents: the CE method and optimal sampling-based motion
planning. Therefore, we first describe the general CE
method and then a slightly modified version of RRT∗ to fit
in our framework.

3.1. Cross-entropy method

The CE method can be regarded as an importance sam-
pling solution to the problem of estimating rare events. Let
Z denote a random variable defined over a space Z . The
rare event of interest in this work is finding a parameter z
with a real-valued cost J (z) which happens to be very close
to the cost of an optimal parameter z∗. Therefore, as will
be explained below, the rare-event estimation is equivalent
to the global optimization of J (z). Our development follows
closely (Rubenstein and Kroese 2008).

3.1.1. Importance sampling Consider the estimation of the
following expression

� = Ep[H(Z) ] =
∫

H(z) p(z) dz, (4)

where H : Z → R is some non-negative performance met-
ric and p is the probability density of Z. Assume that there is
another dominating1 probability density q which is easy to
evaluate and sample from, such as a Gaussian. The integral
(4) can be expressed as

� =
∫

H(z)
p(z)

q(z)
q(z) dz = Eq

[
H(z)

p(z)

q(z)

]
. (5)

The density q is called the ‘importance density’ and can be
used to evaluate the integral using independent and identi-
cally distributed (i.i.d.) random samples Z1, . . . , ZN from q
so that

�̂ = 1

N

N∑
i=1

H(Zi)
p(Zi)

q(Zi)
(6)

is an unbiased estimator of �. An important question is then
how to select a good density q. The most natural choice is
the density that minimizes the variance of the estimator �̂,
i.e.

q∗ = arg min
q

Vq

(
H(Z)

p(Z)

q(Z)

)
,

the solution to which is

q∗(z)= H(z) p(z)

�
(7)

since Vq∗ ( �)= 0. The density q∗ is called the ‘optimal
importance sampling density’. Of course, this density is
only hypothetical and cannot be implemented in practice
since it involves the value of � which is what is being
estimated in the first place.

A natural way to find a density q that is closest to q∗ is
in the Kullback–Leibler (KL) sense, i.e. with minimum CE
distance between q∗ and q. The KL distance between any
two given distributions q and p is defined by

KL( p ‖ q)=
∫

p(z) ln p(z) dz−
∫

p(z) ln q(z) dz (8)
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and the required q solves the following optimization

min
q

KL( q∗ ‖ q) . (9)

We next consider the case when Z has a probability density
function (pdf) p( ·; v̄) belonging to some parametric family
{p( ·; v) , v ∈ V} where v̄ is the true or nominal parame-
ter. For instance, this could be a mixture of Gaussians. It
is natural to consider an importance density q from the
same family. Its optimal parameter v is found through the
parametric optimization

min
v

KL( q∗ ‖ p( ·, v) )

This is equivalent to maximizing with respect to v
∫

H(z) p(z, v̄) ln p(z, v) dz,

which is obtained using (7) and (8). In other words, the
optimal importance density parameter v∗ can be found as

v∗ = argmax
v

Ev̄[H(Z) ln p(Z, v) ]. (10)

Finally, the optimal parameter can be approximated numer-
ically by

v̂∗ = argmax
v∈V

1

N

N∑
i=1

H(Zi) ln p(Zi, v) , (11)

where Z1, . . . , Zn are i.i.d. samples from p( ·, v̄).

3.1.2. Estimation of rare-event probabilities Consider the
estimation of the probability that a parameter z ∈ Z sam-
pled from p( ·; v̄) has an associated cost J (z) smaller than a
given constant γ . It is defined as

� = Pv̄(J (Z)≤ γ )= Ev̄[I{J (Z)≤γ }], (12)

where I{·} is the indicator function. This can be computed
approximately using (6) according to

�̂ = 1

N

N∑
i=1

I{J (Zi)≤γ }
p(Zi; v̄)

p(Zi; v)
,

where Z1, . . . , ZN are i.i.d. samples from p( ·, v). In order to
determine the optimal v for this computation we can employ
(11) to obtain

v̂∗ = argmax
v∈V

1

N

N∑
i=1

I{J (Zi)≤γ } ln p(Zi, v) , (13)

where Z1, . . . , ZN are i.i.d. samples from p( ·, v̄). The prob-
lem is that when {J (Z)≤ γ } is a rare event, this approxima-
tion is meaningless because there will be almost no samples
z with J (z)≤ γ and �̂ will be incorrectly estimated as zero.

The idea behind the CE method is to employ a multi-
level approach using a sequence of parameters {vj}j≥0 and

levels {γj}j≥1. At the end the sequence converges to the
optimal v∗ which then can be used to estimate the inte-
gral �̂ correctly. The procedure starts by drawing N samples
Z1, . . . , ZN using an initial parameter v0, for instance v0 = v̄.
Let � be a small number, e.g. 10−2 ≤ � ≤ 10−1. The value
γ1 is set to the �th quantile of H(Z), i.e. γ1 is the largest real
number for which

Pv0 (H(Z)≤ γ1)= �.

The level γ1 can be computed approximately by sorting
the costs of the samples J (Z1) , . . . , J (ZN ) in an increasing
order, say J1 ≤ · · · ≤ JN , and setting γ̂1 = J	�N
. The opti-
mal parameter v1 for level γ̂1 is then estimated using (11)
by replacing γ with γ̂1.

Note that the samples with costs J1, . . . , J	�N
 will also be
the samples used to estimate v1. They form the ‘elite set’,
i.e. the �-fraction of the N samples with the best costs. The
procedure then iterates to compute the next γi and vi and
terminates when γi ≤ γ . At this point we set v = vi as
the optimal parameter corresponding to the originally given
level γ and the probability of J (Z)≤ γ is computed using
v. In summary, each iteration of the algorithm perform two
steps, starting with v0.

1. Sampling and updating of γj: Sample Z1, . . . , Zn from
p( ·, v̂i−1) and compute the �th quantile γ̂t.

2. Adaptive updating of vj: Compute v̂j such that

v̂j = argmin
v∈V

1

|Ej|
∑

Zk∈Ej

ln p(Zk ; v) , (14)

where Ej is the ‘elite’ set of samples, i.e. samples Zk

for which J (Zk)≤ γ̂j.

3.1.3. CE optimization The idea behind the CE method is
to treat the optimization of J (z) as an estimation problem of
rare-event probabilities. Define the cost function optimum
γ ∗ by

γ ∗ = min
z∈Z

J (z) .

Finding the optimal trajectory then amounts to iterating the
rare-event simulation steps defined in Section 3.1.2 until the
cost γj approaches γ ∗. Typically, after a finite number of
iterations p( ·, vj) will approach a delta distribution and all
samples Zi will become almost identical. This signifies that
the optimum has been found and z∗ is set to the sample with
lowest cost. Note that the term ‘optimal’ should be used
with caution because although the method explores the state
space globally it might still converge to a local solution if,
for instance, no samples were obtained near the true global
value.

3.2. Sampling-based motion planning

The methods developed in this paper are based on the
RRT∗/RRG∗ algorithms. The development will be restricted
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to RRT but can be analogously applied in the RRG set-
ting as well. The main point is to perform sampling which
exploits all information collected about the costs of trajec-
tories during the algorithm execution. Following Karaman
et al. (2011) we construct a RRT∗ algorithm and augment it
with a simple extension: a connection is attempted between
all newly added nodes and the goal in order to generate as
many trajectories reaching the goal region Xg as possible.
The costs of these trajectories will comprise the data used
for adaptive sampling.

Algorithm 1: T ← RRT∗( η0, Xg)

1 T ← InitializeTree( )
2 T ← InsertNode( ∅, η0, T )
3 Ng ← ∅
4 for i = 1 : N do
5 ηrand ← Sample( i, Ng)
6 ηnearest ← Nearest (T , ηrand)

7 ( xnew, unew, Tnew)← Steer (ηnearest, ηrand)

8 if ObstacleFree( xnew) then
9 Nnear ← Near (T , ηnew, |V |)

10 ηmin = ChooseParent (Nnear, ηnearest, xnew)

11 T ← InsertNode (ηmin, ηnew, T )
12 T ← Rewire (T , Nnear, ηmin, ηnew)

13 ( xg, ug, Tg)← Steer
(
ηnew, Xg

)
14 if ObstacleFree( xg) and xg( Tg)∈ Xg then
15 T ← InsertNode

(
ηnew, ηg, T

)
16 UpdateCostToGo( ηnew,Cost( xg))
17

UpdateCostToCome( ηg,CostToCome

18 ( ηnew)+Cost( xg))
19 Ng ← Ng ∪ {ηg}

20 return T

The RRT∗ algorithm. The RRT∗ algorithm maintains a
tree T of nodes. Each node η ∈ T contains a state x ∈ X
and pointers to its parent node and the set of children nodes
through the functions Parent( η) and Children( η). The
functions CostToCome( η) and CostToGo( η) maintain
the cost from the start to the node and from the node to the
goal set Xg, and are set to∞ initially. A new node ηnew is
inserted into the tree to become a child of an existing node
ηcurrent using a function InsertNode( ηcurrent, ηnew, T )
which creates an edge between the two nodes and also
updates CostToCome( ηnew). The function Steer( η1, η2)
generates an optimal trajectory x : [0, T] → X that
attempts to drive the system between the two given states x1

and x2 for time T . Complete details of the algorithm can be
found in Karaman et al. (2011) and Karaman and Frazzoli
(2011).

A simple extension. For the purposes of this work the key
points are to generate trajectories that reach the goal and

Algorithm 2: ηmin ← ChooseParent( Nnear, ηnearest,
xnew)

1 ηmin ← ηnearest

2 cmin ← CostToCome( ηnearest)+Cost( xnew)
3 for ηnear ∈ Nnear do
4 ( x′, u′, T ′)← Steer( ηnear, ηnew)
5 if ObstacleFree( x′) and x′( T ′)= ηnew then
6 c′ = CostToCome( ηnear)+Cost( x′)
7 if c′ < cmin then
8 ηmin ← ηnear

9 cmin ← c′

10 return ηmin

Algorithm 3: T ← Rewire( T , Nnear, ηmin, xnew)

1 for ηnear ∈ Nnear\{ηmin} do
2 ( x′, u′, T ′)← Steer( ηnew, ηnear)
3 if ObstacleFree( x′) and x′( T ′)= ηnear and
4 CostToCome( ηnew)+Cost( x′)<

CostToCome( ηnear) then
5 T ← Reconnect (ηnew, ηnear, T )
6 UpdateCostToCome( ηnear,CostToCome
7 ( ηnew)+Cost( x′))

8 return T

to update the cost-to-come and cost-to-go parameters while
the tree grows and rewires itself. This is accomplished by
attempting to connect every newly added node not only to
the existing tree but also to the goal region. Lines 13–18 in
Algorithm 1 were added to accomplish this. The leaf nodes
of all paths connecting to the goal are stored in a list Ng

which will be used for adaptive sampling (see Section 5)
and are passed as an argument to the function Sample
on line 5. Two new procedures UpdateCostToGo (Algo-
rithm 4) and UpdateCostToCome (Algorithm 5) are
included which are called during rewiring and every time
the goal is reached. The minimum cost of trajectories that
reach the goal and pass through a given vertex η can then
be computed by CostToCome( η)+CostToGo( η). This
value will be use used in the CE method for adaptive
sampling in Section 5.

Algorithm 4: UpdateCostToGo(η, c)

1 while CostToGo( η)> c do
2 CostToGo( η)← c
3 ( η, x)← Parent( η)
4 if η = ∅ then

return
5 c = c+ Cost( x)
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Algorithm 5: UpdateCostToCome(η, c)

1 if CostToCome(η)> c then
2 CostToCome(η)← c
3 N = Children( η)
4 foreach ηchild ∈ N do
5 UpdateCostToCome(ηchild, c+

Cost ((η, ηchild)))

4. CE trajectory optimization

We next present the CE method for robotic trajectory opti-
mization. In addition to describing the core approach (Kobi-
larov 2011) we focus on the key points of the algorithm
required for successful implementation. In addition, we
mention its shortcomings that motivate the development of
the CE RRT methods.

The CE method is suitable for non-linear and high-
dimensional systems operating in relatively uncluttered
obstacle environments such as car-like or helicopter robots
navigating among buildings or canyons. The method is
based on sampling in parametrized trajectory space; while
this has resulted in robust and efficient optimization in
various settings, it also imposes important limitations. In
particular, more complicated obstacles such as those asso-
ciated with narrow passages significantly shrink the fea-
sible regions in trajectory space and thus, in the absence
of a good prior, can render the method intractable due to
the large number of rejected samples. This is also one of
the motivations for developing the main methods in this
work (Section 5) that combining CE with optimal motion
planning.

4.1. Trajectory parametrization

A trajectory recording the controls and states over the time
interval [0, T] is denoted by the function π : [0, T]→ U ×
X , i.e. π ( t)= ( u(t) , x(t)) for all t ∈ [0, T]. A given control
curve u : [0, T] → U determines a unique state trajectory
x : [0, T] → X by evolving the dynamics from an initial
state x0 ∈ X (under standard regularity conditions on the
ODE (1)). Let τ (π ) denote the duration of a given trajectory
π . The space of all trajectories originating at point x0 and
satisfying the dynamics is denoted by

P = {π : t ∈ [0, T]→( u(t) , x(t)) | ẋ(t)= f ( x(t) , u(t)) ,

x(0)= x0, T > 0}.

Consider a finite-dimensional parametrization of trajecto-
ries in terms of vectors z ∈ Z where Z ⊂ Rnz is the
parameter space. Assume that the parametrization is given
by the function ϕ : Z → P according to

π = ϕ(z) .

The (control, state) tuples along a trajectory parametrized
by z are written as π ( t)= ϕ(z, t). In addition, it is use-
ful to define the functions ϕx(z, t) and ϕu(z, t) which extract
only the state x(t) or the control u(t), respectively, for given
parameter z and time t. The time duration of a trajectory
parametrized by z is given by τ (z). In addition, there is a
function ψ : P → Z which extracts a set of parameters
from a given trajectory, i.e. z = ψ(π ). Note that ϕ and
ψ are not necessarily the inverse of each other since there
can be many different parametrization choices yielding the
same trajectory.

The constrained parameter space Zcon ⊂ Z is the
set of parameters satisfying the boundary conditions and
constraints and is defined by

Zcon = {z ∈ Z | F(ϕx(z, t))≥ 0,ϕx(z, T)∈ Xg.}, (15)

for some T > 0 and all t ∈ [0, T]. Define the ‘cost function’
J : Z → R according to

J (z) =
∫ T

0
C(ϕ(z, t) ) dt. (16)

Problem (3) can now be solved approximately by finding T∗

and ( x∗, u∗)= ϕ(z∗) such that

z∗ = arg min
z∈Zcon

J (z) . (17)

This optimization will be solved through the CE optimiza-
tion described in Section 3.1.

The correct choice of parametrization ϕ in general is
non-trivial and depends on the problem. The basic require-
ment is to retain reachability and controllability proper-
ties of the original system. There are two general types of
parametrizations: through primitives and through a finite
number of states along the trajectory connected using a
steering method.

Primitives. One general approach is to use z =
( u1, τ1, . . . , um, τm) where each ui, for 1 ≤ i ≤ m, is a
constant control input applied for duration τi. This is an
example of a simple ‘primitive’, e.g. a motion with con-
stant control ui. Conditions for resolution completeness of
planning with such primitives have been established (Yer-
shov and LaValle 2011). Yet, many systems, for instance
with inherently unstable dynamics, cannot be directly cap-
tured in this representation and require a more complicated
type of primitives termed ‘maneuvers’ to achieve transi-
tions between simpler primitives (Frazzoli et al. 2005). In
addition, certain systems have special structural proper-
ties of the dynamics such as stable/unstable manifolds or
limit cycles that could also be abstracted through special
parameters in addition to control inputs.

States. Exact and near-optimal steering methods exist for
many robotic locomotion systems, i.e. it is possible to
compute a unique curve that satisfies given boundary con-
ditions. This can be accomplished with the help of primi-
tives, or by exploiting properties such as differential flatness
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(see e.g. Murray et al. 1995; Murray and Sastry 1993). For
such systems a trajectory can be parametrized directly as a
sequence of states, e.g. z = ( x1, . . . , xm) since the curves
between x0 and x1, x1 and x2, etc. are computed using
steering and thus the whole trajectory originating from x0,
passing through x1, . . . , xm, and reaching Xg is uniquely
determined by z.

Mixed parametrization. For certain systems steering can
be solved through inverse kinematics of a properly chosen
sequence of primitives. Thus, it is possible to employ either
primitives or states and internally reconstruct one from the
other. The helicopter example is one such system.

Examples of each of these three different representation
are given in Section 4.5. In general, there is a compli-
cated trade-off between the dimensionality of Z , its resolu-
tion completeness, optimality gap due to quantization, the
ability to handle complicated environments, and the result-
ing efficiency of the optimization. Determining provably
good parametrization requires an in-depth study beyond the
empirical evidence that we provide.

4.2. Choosing a probabilistic model

The CE method falls in the category of global optimiza-
tion method based on probabilistic models (Zhigljavsky and
Zilinskas 2008). The key point is that at every iteration it
transforms the model to shift probability mass in low-cost
regions. The underlying importance density we choose is
a Gaussian mixture model (GMM) since it is a compact
way to encode multiple trajectories across multiple homo-
topy classes. A GMM is chosen for computational conve-
nience since the CE density estimation can be performed
using well-established expectation–minimization (EM). On
the other hand, a GMM is limited since it can only capture
as many local regions in the space as the number of the com-
ponents in its mixture. Yet, a favorable property is that each
Gaussian component can be regarded as an approximation
of a local second-order model of the objective function cen-
tered at each mean (i.e. by regarding the covariance as the
inverse Hessian of the cost). This could explain its fast con-
vergence in the vicinity of a local optimum observed in our
examples (in the absence of obstacles).

In addition, the choice of Gaussian distributions is rein-
forced by the close links between the CE method and two
other families of recent stochastic optimization methods, in
particular2 covariance matrix adaptation (CMA) evolution
strategies (Igel et al. 2006) and estimation of distribution
algorithms (EDA) (Larrañaga and Lozano 2002; Pelikan
et al. 2002), as well as related ideas in earlier machine
learning literature (e.g. De Bonet et al. 1996). While CE,
CMA, and EDA can have different flavors depending on
the chosen models and parameter values, their practical
implementation is nearly identical in the single Gaussian
case.

Algorithm 6: CE motion planning.

Initialization:

0.1 Compute the optimal trajectory reaching the goal
by ignoring the constraints, i.e. z∗ = minz∈Z J (z)
such that ϕx(z∗, τ (z∗))∈ Xg

0.2 Set matrix � so that the region
{ϕx(z, t) | (z− z∗)T �(z− z∗)< 2, 0 ≤ t ≤ τ (z) }
⊂ X covers the reachable state space of interest

0.3 Choose initial samples Z1, . . . , ZN from
Normal(z∗,�); set j = 0 and γ̂0 = ∞

Iteration:

1. Update v̂j using (14) (e.g. by EM) over the elite set
Ej = {Zi | J (Zi)≤ γ̂j}

2. Generate samples Z1, . . . , ZN from p( ·, vj) |Zcon and
compute the �th quantile γ̂j+1 = J	�N


3. If j > 0 and KL( p( ·, vj−1) ||p( ·, vj) )< ε then finish,
otherwise set j = j+ 1 and goto step (1)

4.3. A parametric density algorithm

A general trajectory optimization algorithm based on the
CE method is next constructed. The parameter space
is V = ( Rnz × R(nz

2+nz)/2)K ×RK with elements v =
(μ1,�1, . . . ,μK ,�K , w1, . . . , wK) corresponding to K mix-
ture components with means μk , covariance matrices �k

(excluding identical elements due to the matrix symmetry),
and weights wk . The density is defined as

p(z; v) =
K∑

k=1

wk√
( 2π )nz |�k|

e−
1
2 (z−μk )T�−1

k (z−μk ), (18)

where
∑K

k=1 wk = 1. The number of mixture components
K can be fixed or chosen adaptively (see e.g. Figueiredo and
Jain 2002). In the absence of complex constraints even the
simplest case with K = 1 is capable of solving complex
multi-extremal problems.

The complete algorithm is summarized in Algorithm 6.
There are several important points determining the suc-

cess of the approach.

Initialization. The initial set of samples should be gener-
ated to achieve a good coverage of X . We assume that no
prior knowledge about the problem is available. Therefore,
initial sampling is achieved by ignoring the obstacles and
computing an optimal trajectory z∗ (step 0.1). A normal dis-
tribution with covariance � chosen to cover the reachable
space of interest (step 0.2) is centered at z∗ to obtain the ini-
tial sample set (step 0.3). When condition (0.2) cannot be
easily solved the covariance can be determined by trial and
error until the environment is covered.
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Parameter update. The optimal parameter update (step
(1)) is accomplished using an EM algorithm (McLach-
lan and Peel 2002) for K ≥ 2. In the case K = 1 the
components of v̂j are updated simply as

μ = 1

|Ej|
∑

Zk∈Ej

Zk , � = 1

|Ej|
∑

Zk∈Ej

(Zk − μ) (Zk − μ)T .

As the algorithm iterates, the uncertainty volume (i.e. the
determinants of the covariances �k) is shrinking towards
a delta distribution. This might happen prematurely before
reaching a good quality solution if, for instance, too few
samples were used. To prevent such degeneracy it is useful
to inject a small amount of noise with variances ν ∈ Rnz

(see Botev and Kroese 2004), i.e. by setting �k = �k +
diag(ν) for each k = 1, . . . , K.

Sampling. The sampling step (2) in Algorithm (6) is
accomplished using a standard accept–reject argument and
is given below only for convenience.

Generating Samples over Zcon

1. Compute Ak =
√
�k for all k = 1, . . . , K and set i = 1

2. Choose k ∈ {1, . . . , K} proportional to wk

3. Sample r ∼ Nnz ( 0, 1) and set Zi = μk + Akr

4. if Zi �∈ Zcon then go to line (3)

5. if i = N then finish; otherwise set i = i + 1 and goto
line (2)

Note that the only expensive operation is the square root
(using e.g. Cholesky decomposition) on line (1) but it is
performed only K times before drawing all N samples. It
is also possible to handle constrained sampling more effi-
ciently through a local search to detect the boundary of Zcon

and escape from Z\Zcon.

Termination. The algorithm ends after the change in dis-
tribution (measured by KL-divergence) between iterations
has become less than a given small constant ε. Alterna-
tively, it can be terminated if the GMM covariances have
nearly shrunk to zero (measured by their determinant).
Very irregular cost functions will prevent such convergence
and require separately monitoring decrease in the current
optimum in order to terminate.

4.4. GMMs and stochastic optimization

There is an interesting link between employing GMMs in
the CE setting and other stochastic trajectory optimization
based on fixed local ‘exploratory’ distribution. In case when
very few elite samples are available a classical GMM EM
algorithm will fail to estimate correct means and covari-
ances. The EM implementation employed in this work was
therefore augmented to avoid degeneracies by adding small
artificial noise to the estimated covariances after each iter-
ation. As a result even with few samples the algorithm

succeeds and could assign as low as a single sample per
Gaussian. In such cases the added noise serves the role of
the exploratory distribution used to perform local stochastic
variations for gradient descent at the next iteration. Another
requirement for successful EM is to initialize the compo-
nents with slightly overlapping covariance ellipsoids so that
their union covers the state space of interest.

4.5. Examples

We illustrate the CE method with three examples devel-
oped by Kobilarov (2011). The simple car (Figure 1) is
an example of parametrization using primitives with con-
stant forward and turning velocities. The resulting trajec-
tories are not constrained to reach the goal; this condition
is instead enforced by a penalty term in the cost func-
tion. In contrast, the double integrator example (Figure 2)
is based on parametrization using states along the path the
curves between which can be computed in closed form.
Finally, the helicopter example (Figure 3) illustrates a more
complex system evolving in 3D with dynamics abstracted
using a sequence of trim primitives and maneuvers. The
parametrization is computed through inverse kinematics so
that all trajectories reach the goal; the cost function is then
simply the time of flight.

The car, point mass, and helicopter scenarios take
approximately 6, 10, and 30 seconds, respectively, to pro-
duce the solutions shown using a PC with Core i7-920XM,
2.0 GHz. The computation is based on rejecting all sam-
pled trajectories that collide with obstacles. For instance,
in the helicopter example approximately 85% of all sam-
pled trajectories are rejected. Thus, the computational times
can be significantly improved through: (1) parallelized sam-
pling and parallelized collision checking, (2) constructing a
probabilistic parametrized trajectory space obstacle model
and using it to tilt the CE distribution away from obsta-
cles. Such directions are not explored in this work. Instead,
complex constraints such as obstacles will be handled by
using a sampling-based motion planning tree as a basis for
stochastic optimization, as described next.

5. CE motion planning

We next develop the CE motion planning methodology
that combines optimal sampling-based motion planning
and global stochastic optimization. These two concepts are
linked through a probabilistic model that is being itera-
tively optimized while at the same time serving as a motion
planning sampling distribution. Our particular approach uti-
lizes the RRT∗ algorithm for planning and the CE method
for adaptive sampling. The basic steps are summarized as
follows:

Algorithm overview: trajectory-cross-entropy (TCE)
motion planning

0. Expand RRT/PRM and attempt to connect to goal
region
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Fig. 1. The first four iterations of the CE algorithm 6 applied to a simple car model. The upper plots show the sampled trajectories
ϕ(Z1) , . . . ,ϕ(ZN ) and the current optimal path ϕ(z∗) (dashed). A total of m = 6 primitives were used. Iteration #1 shows the resulting
set of trajectories after the initialization steps 0.1–0.3 of the CE algorithm.
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iteration #1 iteration #2 iteration #3 iteration #4

Fig. 2. The first four iterations of the CE algorithm to a double integrator. The upper plots show the sampled trajectories
ϕ(Z1) , . . . ,ϕ( ZN ) and the current optimal path ϕ(z∗) (dashed). The lower plots visualize p( ·, v̂j) as the level sets of an induced density
over the ( x, y)-position space which encodes the lowest cost of trajectories passing through it.

iteration #1 iteration #2 iteration #5 optimalpathiteration #8

Fig. 3. Several iterations of the CE algorithm applied to the helicopter scenario. As the optimization proceeds the set of samples
concentrates in the homotopy classes with minimum trajectory cost.

1. Obtain all RRT/PRM trajectories {πi}Ni=1 reaching the
goal

2. Construct parametrized trajectories Zi = ψ(πi)
3. Update pZ using the elite subset of these parameters
4. Sample a trajectory Z ∼ pZ
5. Select one or more states X = ϕ(Z, t) for a random t

and add to RRT/PRM
6. Repeat from either (0) or (1) with some probability.

Stop on a termination condition.

The algorithm is based on a CE update of a density pZ
defined over a space of trajectory parameters z ∈ Z . This
density is then used to sample trajectories from which states

are extracted and used as RRT/PRM vertices. This can be
equivalently regarded as inducing another density on the
state space as will be explained below. A simplified version3

is also developed which bypasses trajectory parametrization
and performs density estimation and sampling directly in a
state space density pX :

Algorithm overview: state-cross-entropy (SCE) motion
planning

0. Expand RRT/PRM and attempt to connect to goal
region
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Fig. 4. A motion planning tree with nodes connected to the goal
region Xg. Elite trajectories are drawn with thicker lines. Elite
states are obtained by discretizing these trajectories, e.g. with a
constant time step, and extracting the corresponding states (drawn
as circles).

1. Obtain all RRT/PRM trajectories {πi}Ni=1 reaching the
goal

2. Discretize each trajectory πi into a set of states
3. Update pX using the elite subset of all states of

discretized trajectories
4. Sample a state X ∼ pX and add to RRT/PRM
5. Repeat from either (0) or (1) with some probability.

Stop on a termination condition.

Figure 4 shows the distinction between using elite states
and elite trajectories to update different distributions.

The two methods can be unified by regarding them as
optimizations of a special cost function J ( x) over the state
space X . To make this precise, define the subspace of tra-
jectories Pcon ⊂ P which satisfy the constraints and reach
the goal, i.e.

Pcon = {( x, u)∈ P | ∃T > 0 s.t. F( x(t))> 0

and x(T)∈ Xg for all t > 0}.
In addition, extend the cost function definition according
to J : P ∪ Z ∪ X → R giving the cost of either a tra-
jectory J (π ), a trajectory parameter J (z), or a single state
J ( x) depending on the argument. The first two were already
defined (see (3) and (16)) by

J (π )=
∫ T

0
C(π ( t)) dt and J (z)=

∫ T

0
C(ϕ(z, t)) dt,

while the new induced cost over X becomes

J ( x) = min
π∈Pcon

{J (π ) | ∃t ≥ 0 s.t.

π ( t)= x,π ( T)∈ Xg, T ≥ t},

Fig. 5. A tree constructed using the SCE-RRT∗ algorithm. Gaus-
sian mixture model ellipsoids of the currently updated density are
shown. The top graph shows the likelihood pX (restricted to the
planar Euclidean coordinates for better visualization). The peaks
identify salient state space regions the are likely to result in low
cost trajectories. These regions will be sampled at the next RRT
iteration.

i.e. the minimum cost over all trajectories that pass through
x and reach the goal region. Clearly, we have

min
x∈X

J ( x)= min
π∈Pcon

J (π )≤ min
z∈Zcon

J (z) .

From the point of view of stochastic optimization one
can regard the problem as either optimizing J ( x) using
a model pX (corresponding to the SCE algorithm) or to
optimizing J (π ) using a model pZ (corresponding to the
TCE algorithm). In both cases the data is provided using a
motion planning method such as RRT∗. The motion plan-
ning method uses a sampling density which in SCE case is
precisely the same pX , while in the TCE case is a distribu-
tion on X that is implicitly induced by pZ . We next detail
the resulting algorithms based on these ideas.

5.1. The SCE RRT∗ algorithm

The SCE method is a straightforward extension to the mod-
ified RRT∗ algorithm outlined in Section 3.2. It is imple-
mented as a special Sample function (Algorithm 7) which
has access to the set of tree nodes reaching the goal.
This function is called from the main RRT∗ routine (Algo-
rithm 1).

The function performs CE sampling with probability rce,
otherwise reverts to standard uniform sampling over the
space of interest in X , denoted by X ∼ Uniform( X ).
The function τmin( Ng) returns the smallest time among the
nodes Ng. This time is used to determine the time step h
with which trajectories reaching the goal will be quantized
to extract states for updating the sampling distribution. The
minimum required number of such states NX

min should either
result in at least 2n elite samples (where n = dim( X )) or
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Algorithm 7: X ← Sample( i, Ng)

parameters: rce–CE sampling ratio, m–path
discretization, k–GMM components

1 if rand( )< rce then
2 NX

min = max( 2n/ρ, 2nk)
3 h = τmin( Ng) /m
4 X ← SCE_Sample( Ng, h, NX

min)
5 if X �= ∅ then

return X

repeat
6 sample X ∼ Uniform( X )

until ObstacleFree( X )
7 return X

Algorithm 8: X ← SCE_Sample( Ng, h, Nmin)

1 X← ∅
2 foreach ηg ∈ Ng do
3 backtrack path π connecting η0 and ηg

4 for t = h; t < τ (π ) ; t = t + h do
5 X← {X,

(
πx(t) ,CostToCome( ηg)

)}
6 if |X| > Nmin then
7 pX ← CE_Estimate (X)

repeat
8 sample X ∼ pX

until ObstacleFree( X )
return X

else
return ∅

Algorithm 9: p∗ ← CE_Estimate
({Zi, γi}Ni=1

)
parameters: ρ—fraction of elite samples

1 γ ← Quantile(
({γi}Ni=1

)
, ρ)

2 v̂∗ ← argmax
v∈V

1

N

N∑
i=1

I{γi<γ } ln p(Zi, v)

3 return p( ·; v̂∗)

be proportional to the required number of GMM compo-
nents. Note that these are guidelines that have resulted in
good performance in practice but other choices for NX

min are
possible as well.

Once the list of states and the costs of optimal trajec-
tories passing through them have been assembled in the
set X, it is used to update the distribution using a generic
CE_Estimate routine (Algorithm 9). Note that this rou-
tine will be used for updating both distributions over X and
Z but for generality is defined on the space Z .

An illustration of the density pX and its likelihood is
given in Figure 5 for a double integrator system with

Algorithm 10: X ← Sample( i, Ng)

parameters: rce—CE sampling ratio, m—path
discretization, k—GMM component

1 if rand( )< rce then
2 NZ

min = 2mk
3 X ← TCE_Sample( Ng, NZ

min)
4 if X = ∅ then
5 NX

min = max(2n/ρ, 2nk)
6 h = τmin( Ng) /m
7 X ← SCE_Sample( Ng, h, NX

min)

8 if X �= ∅ then
return X

repeat
9 sample X ∼ Normal( X )

until ObstacleFree( X )
10 return X

bounded acceleration (Karaman et al. 2011) moving opti-
mally in a natural terrain. Further details and empirical
analysis are given in Section 6.

5.2. The TCE RRT∗ algorithm

The motivation behind the TCE method is to fully exploit
not only individual states in the state space but also corre-
lation between states along whole trajectories. Search over
parametrized trajectories has proven key in the stochastic
optimization techniques (see Sections 1 and 4.2). Yet, as
explained in Section 4 the basic CE method does not easily
extend to highly constrained settings. The proposed TCE
algorithm overcomes these issues by integrating the CE tra-
jectory optimization (Section 4) with RRT∗ for handling
complex environments.

The TCE algorithm is implemented through the Sample
(Algorithm 10) function called from the main RRT∗ routine
(Algorithm 1). If not enough data is available then the algo-
rithm reverts to SCE sampling (line 4). The parametrization
we choose is based on a finite set of states along the path
connected with optimal trajectories (as explained in Section
4.1), i.e. Z = X m and

z = ( x1, . . . , xm) ,

where m is a chosen number. The parametrization then
becomes

ϕx(z) = ( x0, x1) ( x1, x2) · · · ( xm−2, xm−1)

( xm−1, xm) , ( xm, Xg)

where ( xa, xb) is an optimal obstacle-free trajectory
between two states xa and xb computed using the Steer
command defined in Section 3.2. The function extracting
parameters from a given trajectory π = ( x, u) is then

ψ(π )= (x(h) , x(2h) , . . . , x(mh)) ,
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Algorithm 11: X ← TCE_Sample(Ng, Nmin)

1 Z← ∅
2 foreach ηg ∈ Ng do

backtrack path π connecting η0 and ηg

3 convert to parameters Z ← ψ(π )
Z← {Z,

(
Z,CostToCome( ηg)

)}
4 if |Z| < Nmin then
5 return ∅

else
6 pZ ← CE_Estimate (Z)

repeat
7 sample Z ∼ pZ
8 sample t ∼ Uniform( [0, τ (Z) ])
9 X ← ϕ(Z, t)

until ObstacleFree( X )
10 return X

where h = T/( m+ 1) and T is the shortest time among all
trajectories ending in Ng.

This representation was chosen since it naturally fits into
the RRT framework through the edge creation process. It
is also meaningful considering the L2 metric on trajectories
since

∫ T

0
‖xa( t)−xb( t) ‖2 dt ≈

m∑
i=1

‖xa( ih)−xb( ih) ‖2

= ‖za − zb‖2, (19)

which approaches equality as m→∞. This is also the type
of metric employed by parametric density estimators such
as EM. On the other hand, other metrics such as L∞ (see
e.g. Yershov and LaValle 2011) or Hausdorff (Knepper et al.
2010) distances can also be considered in a more general,
i.e. non-parametric setting.

With such a choice of parametrization the algorithm
extracts trajectories reaching the goal, converts them into
parameter vectors, and updates the distribution using their
elite subset. A new trajectory is then sampled and a state
along that trajectory is selected to join the tree as long as
the whole trajectory is free of obstacles.

The resulting density can be visualized in Figure 6. The
density pZ is difficult to display so an approximation of the
‘induced density’ pX is used, formally defined by

pX ( X ) = η · max
Z∈Zcon

{pZ (Z) | X = ϕx(Z, t)

for some 0 < t < τ (Z) }, (20)

where η > 0 is a normalizing constant. The approximate
density shown in Figure 6 was built by partitioning the sub-
space of planar Euclidean coordinates into a grid, drawing
10,000 trajectory samples from pZ , tracing the correspond-
ing trajectories and retaining the maximum likelihood value
in each traced cell. The unvisited cells are set to 0. Further

Fig. 6. An RRT∗ built using TCE sampling. The top graph visu-
alizes the likelihood pZ transformed into another likelihood pX
that encodes the cost of the optimal trajectory passing through a
given state. Although only three Gaussian mixture components in
trajectory parameter space Z were used, the induced likelihood in
state space X has a non-trivial landscape. It corresponds to salient
states that are likely to be sampled in the next iteration.

examples and empirical analysis of the algorithm will be
given in Section 6.

5.3. User parameters

The algorithm depends on several user-defined parameters
that require further investigation (Table 1). The elite frac-
tion ρ typically require minor tuning since the listed default
values have proven effective for various classes of problems
(Rubenstein and Kroese 2008). We set the CE sampling
ratio rce to 0.5 in order to balance equally between explor-
ing the space and exploiting the collected information about
trajectory costs. In the absence of enough information the
algorithm automatically reverts to exploration. This param-
eter can be optimized on-line using more sophisticated tech-
niques. Path discretization parameter m determines how
much information is extracted from each trajectory. A very
fine discretization results in redundant information that is
unnecessary and will not improve the density estimates.
On the other hand, very complicated maze-like environ-
ments would require long trajectories and more segments.
A rule of thumb is to keep track of the average number
of tree edges along paths reaching the goal and set m to
be at least as high. The optimal number of GMM compo-
nents is problem dependent and currently no general pro-
cedure is available to select k. In theory, each component
should ‘learn’ the most promising state space regions or,
respectively, trajectory homotopy classes. In practice, for
the examples studied in this work more than four compo-
nents did not improve the resulting trajectory cost. This
could also be explained through the fact that it is non-trivial
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Table 1. User-defined parameters affecting the algorithms.

Description Variable Range Default value

Elite fraction ρ [0.01, 0.1] 0.1
CE sampling ratio rce [0, 1] .5
Path discretization m > 0 8
GMM components k > 0 4

CE, cross-entropy; GMM, Gaussian mixture model.

to populate all homotopy classes of trajectories reaching the
goal even with fast exploration methods such as RRT.

5.4. Limitations

The proposed CE motion planning methods are applica-
ble to problems for which a single or multiple paths to the
goal can be computed during the algorithm execution. If
only one path was computed then the proposed approach
behaves similarly to existing local stochastic optimization
techniques. The greater the number of paths that become
available, the better the model that can be constructed
and exploited for further sampling. The GMM probabilis-
tic model was chosen for computational convenience and
due to empirical evidence as well as links to other suc-
cessful methods. Precise guidelines for selecting a repre-
sentation that optimally trades off efficiency and optimality
are still lacking. In this context, it would be also useful
to consider non-parametric representations such as locally
weighted learning techniques (Atkeson et al. 1997) due
to their incremental nature and computational efficiency,
or sparse Gaussian process (GP) classification (Rasmussen
and Williams 2005) with available formal bounds (Seeger
2003) that could be useful for establishing performance
guarantees. Another issue that could effect performance and
requires further study is the relation between the chosen
model and the environment complexity. Finally, the pro-
posed methods are useful in higher dimensions where dense
sampling is computationally intractable. In problems with
up to a few dimensions we expect that standard methods
can simply be run longer to obtain comparable results.

6. Examples

We use two simple simulated examples to test the proposed
methods. They correspond to commonly used models and
were chosen since optimal steering procedures required by
the RRT algorithms are readily available.

6.1. Double integrator

We consider a double integrator system moving in a con-
strained three-dimensional environment. This is a higher-
dimensional version of the example considered by Karaman
et al. (2011). The system has state space X = R3×R3 with
state x = ( q, v) consisting of the position q and velocity v.

(b)(a)

Fig. 7. (a) A box environment with randomly placed spheres
and computed optimal trajectories by the four methods using
5,000 samples. (b) The same trajectories with obstacles removed
for clearer view. The resulting trajectory costs are: RRT, 21.09;
RRT∗, 13.73; SCE-RRT∗, 11.39; TCE-RRT∗, 10.70. While the
random sampling seed is identical for all four methods, the opti-
mal solution computed by the three RRT∗ methods lie in different
homotopy classes. The CE computations were performed with
m = 8 for trajectory quantization and k = 4 Gaussian mixture
components.

The control space U ⊂ R3 consists of the accelerations u.
The dynamics is

q̇ = v, v̇ = u, ‖u‖ < umax,

where umax > 0 is a given scalar bound. We consider the
time-optimal planning problem, i.e. the cost defined in (3)
is

C( x, u)= 1.

The Steer( xa, xb) function computes the time-optimal tra-
jectory between the two states. A time-optimal profile of
a one-dimensional double integrator can be computed in
closed form since it consists of two intervals of constant
acceleration. To extend to multiple dimensions the time-
optimal acceleration profiles are computed for each dimen-
sion, the one with highest resulting time is retained, and the
other profiles are then recomputed under that final time con-
straint. This is accomplished directly through the solution of
quadratic equations in closed form with some bookkeeping.

We construct an environment bounded by a box in three
dimensions, populated with spheres with random centers
inside the box and random radiuses of up to half the small-
est dimension of the box. Figure 7 shows an example box
environment with dimensions 50 × 50 × 10 meters pop-
ulated with 300 spheres. The spheres can intersect and
create non-trivial concave obstacles and multiple homo-
topy classes of paths. We study the performance of four
sampling-based methods: the standard RRT (LaValle 2006);
the RRT∗ (Karaman et al. 2011); and the two adaptive
sampling methods proposed in this work abbreviated by
SCE-RRT∗ (Section 5.1) and TCE-RRT∗ (Section 5.2). The
RRT∗ algorithms were constructed using nearest neighbor
set with size |Nnear| = γ log( |T |). We set γ = 10 since in
our experiments smaller values resulted in poorer solutions
by all three RRT∗-based methods.
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)b()a(

Fig. 8. Computation details for the scenario in Figure 7: (a) resulting trajectory costs as a function of vertices; (b) computational time
taken as the number of vertices increases.

)b()a(

Fig. 9. Double integrator trajectory costs (a) and computational times (b) computed by the four algorithms: RRT, RRT∗, SCE-RRT∗,
TCE-RRT∗. Results are averaged over 20 Monte Carlo runs.

Even though the double integrator is a simple system, the
devised six-dimensional scenario cluttered with obstacles
is a challenging planning problem. As our results illus-
trate sampling-based methods including RRT∗ can greatly
benefit from an informed adaptive sampling. The pro-
posed CE sampling methods compute lower-cost solutions
quicker (see Figure 8). The required computational effort
is greater than existing methods but is offset by the abil-
ity to find more superior solutions using a smaller number
of nodes. Note that these are only empirical observations.
Establishing convergence rates and sample complexity for-
mally remains an open problem. Figure 9 provides averaged
results from multiple randomized runs.

6.2. Simple air vehicle

We employ the simple fixed wing vehicle model (Kara-
man and Frazzoli 2010) consisting of decoupled models
of the Dubins car in the plane and a double integrator in
altitude. The state space is X = SE( 2)×R2 with state
x = ( θ , x, y, z, vz). The control space is U ⊂ R2 with con-
trols u = (ω, az) such that |ω| < tan(φmax) and |az| ≤ amax,
where φmax is the maximum steering angle and amax is the
maximum altitude acceleration. The vehicle dynamics is

defined according to

θ̇ = ω, ẋ = v cos( θ ) , ẏ = v sin( θ ) , ż = vz, v̇z = az,

where v > 0 is the constant forward velocity. We are
interested in time optimal motions. Following Karaman and
Frazzoli (2010), we employ a steering procedure which ini-
tially computes decoupled optimal Dubins curves in the
plane and optimal double integrator curve in altitude. If
the double integrator curve takes less time than Dubins,
then it is recomputed using the Dubins time as a final time
constraint. Otherwise the Dubins velocities and times are
scaled to match the longer time required by the double
integrator.

Density estimation is performed in the ambient space of
X (in the SCE case) and Z (in the TCE case). For instance,
on X = SE( 2)×R2 ∼ S1 × R2 × R2, the angle θ is
regarded as a vector so that x := ( cos( θ ) , sin( θ ) , x, y, z, vz)
and the CE update is performed in R6 without internally
enforcing ( x1, x2)∈ S1. Once the estimation (i.e. using EM)
completes the estimated vectors ( x̂1, x̂2) are projected onto
the circle. This corresponds to using the von Mises distri-
bution to approximate a Gaussian on the circle. A more
generally applicable approach is to consider direct estima-
tion on SE( 2) using Lie group methods (Chirikjian 2012),
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Fig. 10. Air vehicle paths through a digital terrain, computed by the four algorithms: RRT, RRT∗, SCE-RRT∗, TCE-RRT∗ using 1,000
vertices. Only a few states are rendered along the paths for better visibility.

Fig. 11. Snapshots in time of the solution trajectories computed by the four methods. TCE-RRT∗ and SCE-RRT∗ compute a 32 second
path; the RRT∗ path lasts 37 seconds; RRT takes 47 seconds to reach the goal.

Fig. 12. Roadmaps with 1,000 vertices used to compute the trajectories shown in Figure 11.

which would be especially useful in higher dimensions, e.g.
for systems consisting of rigid bodies.

A scenario with uneven terrain depicted in Figure 10 is
used to compare the performance of the proposed adaptive
sampling methods to RRT and RRT∗. In this example we
used k = 4 Gaussian components and m = 8 discrete
trajectory states. Figure 11 shows one particular solution
to illustrate the type of paths computed by each method.
Results from 20 Monte Carlo runs are shown on Figure 13.
The CE sampling methods are able to reduce the com-
puted costs even after a few hundred iterations. Yet, as the
number of iterations increases their required computational
time becomes an order of magnitude higher than RRT and
RRT∗. This is because the number of trajectories reaching

the goal (and, hence, the accumulated information about
trajectory costs) is increasing and requires more processing.
This is a drawback of our basic CE implementation based
on a fixed quantile and iterative GMM processing. The
issue can be remedied though for instance by employing
incremental, localized, and/or sparsified models as dis-
cussed in Section 5.4.

7. Conclusion

In this paper we have proposed a methodology for improv-
ing the performance of sampling-based motion planning,
i.e. for computing trajectories with lower costs more effi-
ciently. The key point is to use a probabilistic model in
either state space and parametrized trajectory space that
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)b()a(

Fig. 13. Air vehicle trajectory cost (a) and computational times (b) using the environment depicted in Figure 10 taken by the four
algorithms: RRT, RRT∗, SCE-RRT∗, TCE-RRT∗. Results are averaged over 20 Monte Carlo runs.

is estimated based on the cost of generated paths reach-
ing the desired goal region. The CE method for stochastic
optimization is used to adapt the model towards regions
of progressively lower cost. The approach is coupled with
the optimal rapidly-exploring random tree (RRT∗) which
uses the model as a sampling distribution and at the same
time updates it with newly explored trajectories. Empiri-
cal evidence suggests that such adaptive sampling produces
lower cost solutions with fewer iterations. Future work will
evaluate model representations in view of system and envi-
ronment complexity and the resulting trade-off between
efficiency and optimality. Establishing formal convergence
guarantees and sample complexity is another important
aspect that must be addressed.

Notes

1. The density q dominates Hp when q(z)= 0 ⇒ H(z)
p(z)= 0.
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Abstract Computing globally efficient solutions is a major challenge in optimal con-
trol of nonlinear dynamical systems. This work proposes a method combining local
optimization and motion planning techniques based on exploiting inherent dynamical
systems structures, such as symmetries and invariant manifolds. Prior to the optimal
control, the dynamical system is analyzed for structural properties that can be used to
compute pieces of trajectories that are stored in a motion planning library. In the con-
text of mechanical systems, these motion planning candidates, termed primitives, are
given by relative equilibria induced by symmetries and motions on stable or unstable
manifolds of e.g. fixed points in the natural dynamics. The existence of controlled
relative equilibria is studied through Lagrangian mechanics and symmetry reduction
techniques. The proposed framework can be used to solve boundary value problems
by performing a search in the space of sequences of motion primitives connected us-
ing optimized maneuvers. The optimal sequence can be used as an admissible initial
guess for a post-optimization. The approach is illustrated by two numerical examples,
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the single and the double spherical pendula, which demonstrates its benefit compared
to standard local optimization techniques.

Keywords Lagrangian mechanics · Optimal control · Symmetries · Invariant
manifolds

Mathematics Subject Classification 37J15 · 49M37 · 70Q05

1 Introduction

This work combines classical methods from dynamical systems theory and recently
developed numerical optimal control methods. The underlying motivation is to over-
come one of the major limitations of current numerical control methods, namely the
restriction to local optimality for optimal control solutions. The basic idea of the pre-
sented approach is to exploit the inherent dynamical properties of the system under
consideration. These structures can be revealed by an analysis of the natural dynam-
ics on the one hand, and the system’s motion under the influence of specific controls
on the other hand.

Optimal Control of Dynamical Systems Optimal control theory goes back to the
work of Pontryagin on necessary optimality conditions in the last century, whereas
its roots are attributed to Bernoulli because of his work on the brachistochrone prob-
lem dating from more than 300 years ago (Sussmann and Willems 1997). To this
day, it is an important field of research, based on the question of how to force a
system into a desired behavior in an optimal way. A typical problem formulation
is as follows: which path of the system’s dynamical states, forced by an admissi-
ble control trajectory, minimizes a given cost functional? Here, the space of all ad-
missible state and control trajectories is infinite dimensional and additionally con-
strained by fixed boundary values and possibly further restrictions on the system’s
states or control input. Therefore, solving optimal control problems most often re-
lies on numerical means. The developed methods can be divided into two classes
(cf. Binder et al. 2001). Indirect methods apply the Pontryagin maximum principle
to obtain a system of necessary optimality conditions and then solve these bound-
ary value problems. In contrast, direct methods (cf. Betts 1998) begin with a dis-
cretization that transforms the optimal control problem to a nonlinear constrained
optimization problem. Nonlinear programming methods, such as SQP (sequential
quadratic programming, cf. e.g. Gill et al. 2000) can then be applied. However, typ-
ically, these are local solvers that cannot guarantee global optimality and require
good initial guesses. A number of global optimization methods (e.g. Neumaier 2004;
Zhigljavsky and Zilinskas 2008) have been developed to overcome these limitations.

This work develops a global approach that exploits special system structures re-
lated to dynamical symmetries. Preservation of such structures will also play a key
role in the numerical approximation methods that we will develop. This is related
to recent approaches in optimal control for mechanical systems that are structure
preserving, i.e. the discretization preserves the system structures, e.g. symmetry
or conserved quantities such as momenta, by using discrete variational mechanics
(cf. Marsden and West 2001; Ober-Blöbaum et al. 2011). The structure exploiting
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motion planning approach that we present provides state and control sequences that
can serve as an admissible sophisticated initial guess to a post-optimization, e.g. by
a local SQP method.

Applications of optimal control theory are numerous in many different areas of
research. Optimal control methods have been successfully applied to electric power
systems (Christensen et al. 1987) as well as to many different mechanical systems,
e.g. in aerodynamics (Naldi and Marconi 2011) and space mission design (Dellnitz
et al. 2009), in bio medicine, robotics (Leyendecker et al. 2009), and automotive
engineering (Gerdts 2005).

Motion Planning In the last decades, there has been a growing importance of
mechatronic systems as mechanical systems with embedded electronics and digital
control units. This has led to multidisciplinary research on mechatronic systems as
well, in particular regarding control issues. While classical control theory focuses on
stability and feedback or on open loop control, the influence of planning methods
from the field of artificial intelligence, i.e. discrete methods such as e.g. decision pro-
cesses (cf. LaValle 2006) give rise to new kinds of motion planning approach that
combine continuous and discrete methods. In this work, the term motion planning is
used in the sense of generating open loop trajectories for dynamical systems. This
will be accomplished by combining optimal control methods with discrete planning
techniques based on search trees. Motion planning by motion primitives fits into this
category of hybrid motion planning approaches. The idea is to solve the complex
control problem by constructing a finite sequence of simple motion termed motion
primitives. Frazzoli et al. (2005) explain that this approach can be deduced from the
intuitive way in which human pilots steer helicopters, that is, by recurrent simple
steering modes with short intermediate control maneuvers.

Following the idea of Frazzoli et al. (2005), we quantize the space of state and
control trajectories by representative small pieces of solution curves which can be
combined into various sequences. These motion primitives are stored in a motion
planning library. The problem is thus reduced to searching for the optimal sequence
out of all admissible sequences in the library which can be solved using global search
methods. Problems with state constraints such as obstacles in the environment can
be handled with the help of probabilistic roadmap methods (LaValle 2006; Choset
et al. 2005). Candidates for the motion primitives can be obtained by the inherent
dynamical properties of the system under consideration, such as motion along relative
equilibria (cf. Sect. 3.2) or motions on stable or unstable manifolds of the natural
dynamics (cf. Sect. 3.3).

Mechanical Systems and Symmetry The proposed motion planning approach is
general and can be applied to arbitrary dynamical systems. However, we focus on
optimal control of mechanical systems, because these systems exhibit well-studied
structural properties (cf. e.g. Abraham and Marsden 1987; Marsden and Ratiu 1999;
Bloch 2003; Bullo and Lewis 2004).

In geometric mechanics, mechanical systems are modeled by a variational ap-
proach. Hamilton’s least action principle is based on the Lagrangian of the system and
can be extended to systems underlying external forcing by the Lagrange–d’Alembert
principle. This leads to the well known forced Euler–Lagrange equations as the sys-
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tem’s equations of motion. Variational mechanics can be directly discretized using
discrete variations, e.g. for numerical simulation techniques or optimal control meth-
ods (e.g. Marsden and West 2001; Ober-Blöbaum et al. 2011). These so called geo-
metric integrators are of great interest, because they preserve properties of the contin-
uous system, such as symplecticity or conserved momenta induced by symmetry. In
addition, they exhibit long-time stable energy behavior. An optimal control method
for mechanical systems based on variational integrators is DMOC (Discrete Mechan-
ics and Optimal Control, cf. (Ober-Blöbaum et al. 2011)) which will be described in
Sect. 2.3.

In this work, we will study continuous symmetries that can be described by a Lie
group action. For physical systems, this means the invariance of the Lagrangian with
respect to translational or rotational motions. These properties are important in con-
trol, because a solution trajectory that has been designed for one specific situation,
e.g. a turn maneuver for a helicopter, is suitable in many other cases as well, because
it does not explicitly depend on the absolute position in space. More precisely, we
will call two pairs of state and control trajectories of a symmetric system equiva-
lent, if the states are related by a Lie group element and the pairs by a time shift,
i.e. a spatiotemporal symmetry equivalence. Continuous symmetries in mechanical
systems correspond to the conservation of momenta and to the existence of motions
that are solely induced by symmetry, i.e. relative equilibria (cf. Sect. 3.2). For Hamil-
tonian and Lagrangian systems, relative equilibria can be determined analytically
by symmetry reduction procedures (Marsden and Ratiu 1999; Marsden et al. 2000;
Marsden 1993). Whereas relative equilibria and symmetry reduction for Hamiltonian
systems have been comprehensively studied for several decades (see e.g. the text-
books of Marsden and Ratiu 1999; Marsden 1993 and for more recent work, e.g.
Bullo and Lewis 2007; Roberts et al. 2002), reduction procedures directly on La-
grangian systems have gained less attention (cf. Marsden and Scheurle 1993). Related
work studies symmetry properties of relative equilibria and design feedback control
laws directly based on a symmetry splitting of the state space (Simo et al. 1991;
Bloch et al. 2000). Families of relative equilibria in Hamiltonian systems can be nu-
merically computed by path following methods to study e.g. bifurcation phenomena
(Wulff and Schilder 2009).

There also exists an intensive research in mechanical (control) systems on Lie
groups, i.e. if the overall state space has Lie group structure (see e.g. Bullo and Lewis
2004 or Kobilarov and Marsden 2011). To avoid confusion, in our setting the con-
figuration manifold is an arbitrary manifold Q on which a Lie group G operates by
symmetry actions Φ : G × Q → Q. Typically the invariance is found only in some
coordinates, thus the remaining coordinates have to be left unchanged by the sym-
metry action. If the Lagrangian of a mechanical system does not explicitly depend
on a coordinate (but on the corresponding velocities), it is called cyclic. Reduction
of cyclic Lagrangian was considered by Routh (see e.g. Marsden and Ratiu 1999),
who called relative equilibria steady motions since they are the equilibrium points of
the reduced Euler–Lagrange equations. In Sect. 5.1 the simple spherical pendulum
is considered as an example of a cyclic Lagrangian system. In contrast, the double
spherical pendulum is not cyclic and therefore has to be addressed by the extended
Lagrangian reduction (see Marsden and Scheurle 1993 and Sects. 3.2 and 5.2).
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Invariant Manifolds in Natural Dynamics In the control of mechanical, electrical
or mechatronic systems, minimizing the energetic effort is often of particular impor-
tance. Thus it is obvious that trajectories of the natural, i.e. uncontrolled dynamics
that are free of cost, should be used whenever the planning scenario allows for it.
However, even the natural dynamics of nonlinear systems are typically quite compli-
cated such that an analysis, by analytical and / or numerical means, is necessary to
identify promising candidates for planning scenarios. In this work, we study the use
of trajectories on (un)stable manifolds of the natural dynamics for motion planning
purposes. The manifolds arise at invariant objects, in the simplest case an equilib-
rium or a periodic orbit. Near these critical objects, the manifolds are tangent to the
eigenspaces of the system’s linearization. Eigenvalues with zero real part give rise to
so called center manifolds. Conversely, if the spectrum is hyperbolic, i.e. it has no
eigenvalues on the imaginary axis, the stable and unstable invariant subspaces span
the entire state space. The stable manifold consists of all points that tend to the crit-
ical object under the system’s flow; points of the unstable manifold show the same
behavior in backward time (see any textbook on dynamical systems, e.g. Gucken-
heimer and Holmes 1983 or Abraham and Marsden 1987 for a focus on Hamiltonian
and Lagrangian systems). We will go into this in more detail in Sect. 3.3.

Since the studies of orbit structures in celestial mechanics performed in Con-
ley (1968), McGehee (1969), invariant manifolds have been exploited in this spirit
for a variety of space mission trajectories for the energy efficient transport between
different planets and their nearby orbits (see e.g. Gómez et al. 2004; Koon et al.
2001 among numerous others). This concept has been extended in such a way that
(un)stable manifolds of several different systems are used as partial orbits that are
concatenated by appropriately controlled maneuvers (see e.g. Koon et al. 2000 and
related work of these authors or Dellnitz et al. 2009).

Throughout the present work, all (uncontrolled) systems are assumed to be au-
tonomous, i.e. not explicitly time-dependent except for the control force that is a
function of time. However, in a non-autonomous setting, which arises e.g. when
studying fluid dynamics or ocean flow dynamics, organizing structures that are re-
lated to (un)stable manifolds, e.g. Lagrangian coherent structures, have been detected
(Haller 2001; Haller and Yuan 2000) and studied in a number of preceding works (see
e.g. Froyland and Padberg 2009 for a comparing description of computational tech-
niques).

Contributions This work extends recent results on motion planning for systems
with symmetries (Frazzoli et al. 2005) to include new kinds of motion primitive—
trajectories along stable or unstable manifolds of equilibria or periodic orbits. Thus,
the resulting solutions exploit the structure of the system dynamics to a higher de-
gree. On the theoretical side, the study of relative equilibria in geometric mechanics
is extended to mechanical systems with a special kind of control forces. This enables
us to identify candidates that satisfy the definition of trim primitives. In addition, ma-
neuvers which serve as transition in the motion library are designed using structure-
respecting optimal control that provably preserves symmetries and motion invariants.
We develop a numerical framework based on (un)stable manifolds, relative equilibria,
and optimized maneuvers and apply it to a nontrivial example, the double spherical
pendulum.
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The outline is as follows: In Sect. 2 a short introduction in optimal control formu-
lations, variational mechanics and the optimal control method DMOC is given. Next,
we analyze the inherent dynamical structures of mechanical systems that can be ex-
ploited for optimal control in Sect. 3, i.e. symmetry, relative equilibria and (un)stable
manifolds. In Sect. 4 it is explained in detail, how we perform the motion planning
with primitives. Numerical results for two examples, a simple and a double spherical
pendulum are presented in Sect. 5 which have been partly presented in a short version
of this work in Flaßkamp and Ober-Blöbaum (2012). Finally, Sect. 6 concludes by
pointing out several directions of further research.

2 Preliminaries

In this work, optimal control problems for complex nonlinear systems are studied
and solved by numerical methods. Here, we focus on systems that can be modeled
by Lagrangian mechanics. In this section, we briefly introduce the framework our
research is based upon.

2.1 Optimal Control

Consider a system with time-dependent state x(t) ∈ X controlled using time-
dependent actuator input u(t) ∈ U , where X is the state space and U denotes the
set of controls. The dynamics is described by the function f : X × U → T X defined
by

ẋ(t) = f
(
x(t), u(t)

)
, (1)

which is used to evolve the state forward in time. In addition, the system is subject
to constraints arising from actuator bounds and forbidden regions in the state space.
These constraints are expressed through the vector of inequalities

h
(
x(t), u(t)

) ≥ 0, (2)

for all t ∈ [0, tf], where tf > 0 is the final time of the trajectory. The goal is to compute
the optimal controls u∗ and time t∗f driving the system from its initial state x0 ∈ X to
a given goal region Xf ⊂ X, i.e.

(
u∗, t∗f

) = arg min
u,tf

∫ tf

0
C

(
x(t), u(t)

)
dt,

subject to ẋ(t) = f
(
x(t), u(t)

)
,

h
(
x(t), u(t)

) ≥ 0, x(0) = x0, x(tf) ∈ Xf

(3)

for all t ∈ [0, tf] and where C : X × U → R is a given cost function. A typi-
cal cost function includes a time component and a control effort component, e.g.
C(x(t), u(t)) = λ1 · 1 + λ2 · ‖u(t)‖2 where λ1,2 ≥ 0 are chosen weights and ‖ · ‖ is
the 2-norm. The problem (3) has no closed-form solution since both the dynamics (1)
and constraints (2) are nonlinear.
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There exist a number of different approaches for numerically solving optimal con-
trol problems, for a good overview we recommend Binder et al. (2001) and the refer-
ences therein. The solution methods can be divided into indirect and direct methods.
While indirect methods generate and then solve a boundary value problem accord-
ing to the necessary optimality conditions of the Pontryagin maximum principle (cf.
e.g. Binder et al. 2001), direct methods start with a discretization of the problem (3).
Thus one obtains a nonlinear optimization problem that can be addressed by appro-
priate state of the art techniques such as sequential quadratic programming (SQP, cf.
e.g. Gill et al. 2000). These methods require derivative information of the constraints
and the objective, which can be either approximated by finite differences, or pro-
vided by analytical expressions if at hand, or computed by algorithmic differentiation
(cf. Griewank and Walther 2008).

However, gradient-based optimization is not suitable unless a good starting guess
is chosen since typically there are many local minima. Thus, instead of solving (3)
numerically using a black box nonlinear programming tool such as SQP we reformu-
late the problem by exploiting any existing structure in the dynamics. This is accom-
plished by considering symmetries and invariant manifolds described in Sect. 3.

2.2 Variational Mechanics

An important class of dynamical systems that are rich in inherent structural proper-
ties are mechanical systems. The study of mechanical systems from the perspective
of differential geometry has a long history (cf. e.g. Abraham and Marsden 1987;
Marsden and Ratiu 1999; Marsden and West 2001). However, geometric mechanics
is an active field of research, in particular regarding optimal control problems (Bloch
2003; Bullo and Lewis 2004; Ober-Blöbaum et al. 2011). The following descriptions
are mainly taken from Flaßkamp and Ober-Blöbaum (2012).

Let Q be an n-dimensional configuration manifold with tangent bundle T Q and
cotangent bundle T ∗Q. Consider a mechanical system with time-dependent configu-
ration vector q(t) ∈ Q and velocity vector q̇(t) ∈ Tq(t)Q, t ∈ [0, tf], whose dynamical
behavior is described by the Lagrangian L : T Q → R. Typically, the Lagrangian L

consists of the difference of the kinetic and potential energy. In addition, there is
a force f : T Q × U → T ∗Q acting on the system. This force depends on a time-
dependent control parameter u(t) ∈ U ⊆ Rm that influences the system’s motion.
The equations of motion can be described via a variational principle. Define the ac-
tion map S : C2([0, tf],Q) → R as

S(q) =
∫ tf

0
L

(
q(t), q̇(t)

)
dt.

Then the Lagrange–d’Alembert principle seeks curves q ∈ C2([0, tf],Q) with fixed
initial value q(0) and fixed final value q(tf) satisfying

δ

∫ tf

0
L(q, q̇)dt +

∫ tf

0
f (q, q̇, u) · δq dt = 0 (4)
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for all variations δq ∈ TqC2([0, tf],Q), where the second integral in (4) is the virtual
work acting on the mechanical system via the force f . This yields the forced Euler–
Lagrange equations

∂L

∂q
(q, q̇) − d

dt

(
∂L

∂q̇
(q, q̇)

)
+ f (q, q̇, u) = 0. (5)

For the unforced Euler–Lagrange equations (f = 0), we denote the Lagrangian
vector field by XL and by FL : T Q × [0, tf] → T Q its flow. If we fix the time t ,
we write F t

L : T Q → T Q. In case there is external forcing acting on the system,
(5) implicitly defines a family of forced Lagrangian flows Fu

L for fixed curves u :
[0, tf] → U . The forced Lagrangian vector field is then denoted by Xu

L.

2.3 Discrete Mechanics and Optimal Control

To formulate the optimal control problem for controlled Lagrangian systems, we re-
place in Sect. 2.1 the state space X by the tangent bundle T Q by setting x(t) =
(q(t), q̇(t)) and replace the differential equation in the optimal control problem (3) by
the forced Euler–Lagrange equations (5). Recently, the direct optimal control method
DMOC (Discrete Mechanics and Optimal Control, Ober-Blöbaum et al. 2011) was
developed to numerically solve optimal control problems of Lagrangian systems and
thereby taking the special structure of mechanical systems into account. Using con-
cepts from discrete variational mechanics, DMOC is based on a direct discretization
of the Lagrange–d’Alembert principle of the mechanical system. The goal of dis-
crete variational mechanics is to derive discrete approximations of the solutions of
the forced Euler–Lagrange equations that inherit the same qualitative behavior as the
continuous solution.

The continuous optimal control problem is transformed into a finite dimensional
constrained optimization problem using a global discretization of the states and the
controls. The state space T Q is replaced by Q × Q and the discretization grid is
defined by Δt = {tk = kh | k = 0, . . . ,N}, Nh = tf, where N is a positive integer and
h is the step size. The path q : [0, tf] → Q is replaced by a discrete path qd : {tk}Nk=0 →
Q, where qk = qd(kh) is an approximation to q(kh) (Marsden and West 2001; Ober-
Blöbaum et al. 2011). Similarly, the control path u : [0, tf] → U is replaced by a
discrete one. To this end, a refined grid, Δt̃ , is generated via a set of control points
0 ≤ c1 < · · · < cs ≤ 1 and Δt̃ = {tk� = tk + c�h | k = 0, . . . ,N − 1;� = 1, . . . , s}.
The discrete control path is defined to be ud : Δt̃ → U . The intermediate control
samples uk = (uk1, . . . , uks) ∈ Us on [tk, tk+1] are defined to be the values of the
control parameters guiding the system from qk = qd(tk) to qk+1 = qd(tk+1), where
ukl = ud(tkl) for l ∈ {1, . . . , s}.

To construct a discrete version of the Lagrange–d’Alembert principle, a discrete
Lagrangian Ld : Q × Q → R is defined that approximates the action integral along
the curve segment between two adjacent points qk and qk+1 as

Ld(qk, qk+1) ≈
∫ (k+1)h

kh

L
(
q(t), q̇(t)

)
dt. (6)
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The discrete action is given by the sum of the discrete Lagrangian on each adjacent
pair Sd(qd) = ∑N−1

k=0 Ld(qk, qk+1). Similarly, the virtual work can be approximated
via

N−1∑

k=0

f −
d (qk, qk+1, uk) · δqk + f +

d (qk, qk+1, uk) · δqk+1

≈
∫ tf

0
f

(
q(t), q̇(t), u(t)

) · δq(t)dt (7)

with the left and right discrete forces f ±
d (qk, qk+1, uk) := f ±

k . Based on these dis-
crete objects, the discrete Lagrange–d’Alembert principle seeks discrete curves of
points {qk}Nk=0 satisfying

δSd +
N−1∑

k=0

f −
k · δqk + f +

k · δqk+1 = 0 (8)

for all variations δqk vanishing at the endpoints. With δq0 = δqN = 0, (8) is equiva-
lent to the discrete forced Euler–Lagrange equations

D1Ld(qk, qk+1) + D2Ld(qk−1, qk) + f −
k + f +

k−1 = 0 (9)

for each k = 1, . . . ,N − 1, where Di denotes the derivative w.r.t. the ith argument.
For given control values uk , (9) provides a time stepping scheme for the simula-
tion of the mechanical system which is called a variational integrator (cf. Mars-
den and West 2001). Since these integrators, derived in a variational way, are struc-
ture preserving, important properties of the continuous system are preserved (or
change consistently with the applied forces), such as symplecticity or momentum
maps induced by symmetries. In addition, they have an excellent long-time energy
behavior. However, rather than solving initial value problems, an optimal control
problem has to be solved, which involves the minimization of a cost functional
J (x,u) = ∫ tf

0 C(x(t), u(t))dt . Thus, in the same manner, an approximation of the
cost functional generates the discrete cost functions Cd and Jd, respectively. The re-
sulting nonlinear restricted optimization problem reads

min
qd,ud

Jd(qd, ud) = min
qd,ud

N−1∑

k=0

Cd(qk, qk+1, uk) (10)

subject to the discrete forced Euler–Lagrange equations (9) and optionally discretized
boundary and (in-)equality constraints for states and / or controls. Thus, the discrete
forced Euler–Lagrange equations serve as equality constraints for the optimization
problem which can be solved by standard optimization methods like SQP.

The approximation order of the optimal control scheme depends on the quadra-
ture rule used to approximate the relevant integrals in (6) and (7). In general, one
uses polynomial approximations to the trajectories and numerical quadrature to ap-
proximate the integrals. Then the order of the discrete Lagrangian and the discrete
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forces is given by the order of the quadrature rule in use (e.g. second order using a
midpoint rule approximation and assuming constant control parameters on each time
interval with l = 1 and c1 = 1

2 ).
In Ober-Blöbaum et al. (2011), a detailed analysis of DMOC resulting from

this discrete variational approach is given. The optimization scheme is symplectic-
momentum consistent, i.e. the symplectic structure and the momentum maps corre-
sponding to symmetry groups are consistent with the control forces for the discrete
solution independent on the step size h. Thus, the use of DMOC leads to a reasonable
approximation to the continuous solution, also for large step sizes, i.e. a small num-
ber of discretization points. In this work, DMOC will be used to compute the short
controlled maneuvers mentioned above as well for a post-optimization of the found
sequence. DMOC maneuvers combined with trims have been successfully used be-
fore in Kobilarov (2008) to build up a motion planning library for the optimal control
of an autonomous helicopter.

3 Structures in Mechanical Systems

The structure of mechanical systems is now studied in more detail. Each of the listed
properties below can be advantageously used in the motion planning approach for
optimal control problems. While symmetry exploiting methods in motion planning
using trim primitives has been already proposed in Frazzoli et al. (2005), the in-
corporation of trajectories on (un)stable manifolds in this framework came up quite
recently (Flaßkamp et al. 2010; Flaßkamp and Ober-Blöbaum 2012), motivated by
successful applications of (un)stable manifolds in space mission design (e.g. Serban
et al. 2002).

3.1 Symmetry

Symmetries are present in a variety of mechanical systems and have been exten-
sively studied and analyzed during the last years. In this section the general setting
of symmetries in mechanical systems is introduced. We mainly follow the concept of
Marsden and West (2001). For a detailed formulation and analysis of symmetries in
unforced Lagrangian systems we also refer to Marsden (1994), Marsden and Ratiu
(1999), Bloch (2003), Marsden and Scheurle (1993).

Assume a Lie group G with Lie algebra g acts on the configuration manifold Q by
a left-action Φ : G × Q → Q. For each g ∈ G we denote by Φg : Q → Q the diffeo-
morphism defined by Φg := Φ(g, ·). Let ΦT Q : G × T Q → T Q for (q, v) ∈ T Q be

the tangent lift of the action given by Φ
T Q
g (q, v) = T (Φg) · (q, v). The symmetry of

the unforced mechanical system corresponds to the invariance of the Lagrangian un-
der the group action, i.e. L ◦ Φ

T Q
g = L for all g ∈ G. One also says: the group action

is a symmetry of the Lagrangian. The presence of a symmetry leads to the notion of
equivalent trajectories in the following way.

Definition 3.1 (Equivalence of trajectories) Two trajectories π1 : t ∈ [ti,1, tf,1] �→
(q1(t), q̇1(t), u1(t)) and π2 : t ∈ [ti,2, tf,2] �→ (q2(t), q̇2(t), u2(t)) of (5) are equiva-
lent, if we have
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(i) tf,1 − ti,1 = tf,2 − ti,2 and
(ii) there exist a g ∈ G and a T ∈ R, such that (q1, q̇1)(t) = Φ

T Q
g ((q2, q̇2)(t − T ))

and u1(t) = u2(t − T ) ∀t ∈ [ti,1, tf,1].

Thus, equivalent trajectories can be constructed by a group action and a time shift
only. All equivalent trajectories can be summed up in an equivalent class. By a slight
abuse of notation, we call the equivalent class, but also its representative, a motion
primitive (cf. Frazzoli et al. 2005). The number of candidates for the motion planning
library can be immensely reduced by exploiting the system’s invariance. Only one
representative has to be stored and can then be used in different regions of the state
space by a transformation of the lifted action.

Invariance and Lagrangian Flows Since G leaves the set of solutions of the vari-
ational principle invariant, the group action commutes with the Lagrangian flow FL

(Marsden et al. 1998). Furthermore, the invariance of the Lagrangian leads to the
preservation of specific quantities by the Lagrangian flow.

For ξ ∈ g, let Φξ : R×Q → Q be the R-action given by Φξ(t, q) = Φ(exp(tξ), q).
The infinitesimal generator defined as ξQ(q) = d

dt
|t=0Φ(exp(tξ), q) is a vector field

on Q while Φ(exp(tξ), ·) : Q → Q is the corresponding flow on Q.
Assume that L(q, v) = T (q, v) − V (q), where V (q) is a G-invariant poten-

tial. G acts by isometries on the kinetic energy term, which can be written as
T (q, v) = 1

2vTM(q)v = 1
2 〈〈v, v〉〉 with mass matrix M and 〈〈·, ·〉〉 its induced inner

product. The Lagrangian momentum map for a G-invariant Lagrangian L is defined
by 〈J (q, v), ξ 〉 = 〈 ∂L

∂q̇
(q, v), ξQ(q)〉 = 〈〈v, ξQ(q)〉〉. Here, 〈·, ·〉 denotes the natural

pairing between elements of TqQ and its dual T ∗
q Q.

The symmetry of Lagrangian systems leads to preservation of the associated mo-
mentum map as stated by Noether’s theorem (see e.g. Marsden and West 2001).

Theorem 3.2 (Noether’s Theorem) Let L : T Q → R be invariant under the lift of
the action Φ : G × Q → Q as defined above, then the corresponding Lagrangian
momentum map J : T Q → g∗ is a conserved quantity for the flow, i.e. J ◦F t

L = J for
all times t .

In general, arbitrary forcing would destroy the symmetry of Lagrangian systems
since it breaks the conservation of the momentum map. However, as the forced
Noether’s theorem states, forcing that is orthogonal to the group action preserves
symmetry (Marsden and West 2001; Ober-Blöbaum et al. 2011).

Theorem 3.3 (Forced Noether’s Theorem) Let the Lagrangian L and the symmetry
action Φ be as in Theorem 3.2. Consider a force fL : T Q × U → T ∗Q such that
〈fL(q, q̇, u), ξQ(q)〉 = 0 for all (q, q̇) ∈ T Q, u(t) ∈ U ∀t and all ξ ∈ g. Then the
Lagrangian momentum map J : T Q → g∗ is preserved by the forced Lagrangian
flow, i.e. J ◦ (F u

L )t = J for all t .
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3.2 Relative Equilibria and Trim Primitives

The presence of symmetry gives rise to the existence of a special kind of trajectories,
i.e. motions that are solely generated by the symmetry action. These group orbits are
therefore called relative equilibria.

Definition 3.4 (Relative equilibrium) A point xe = (qe, ve) ∈ T Q is called a relative
equilibrium, if XL(xe) ∈ Txe(G ·xe), i.e. the Lagrangian vector field XL at xe points in
the direction of the group orbit G ·xe = {x = (q, v)|(q, v) = Φ

T Q
g (qe, ve) for g ∈ G}.

Finding relative equilibria is closely related to reduction processes, since relative
equilibria correspond to fixed points of reduced equations of motion (Marsden 1993).
Roughly speaking, the conservation of momentum maps (as stated by Noether’s the-
orem) can be used to reduce the system’s dynamic equations by constraining them
to a fixed momentum value. In the following we give a brief overview of Lagrangian
reduction techniques.

Lagrangian Reduction The symmetry reduction method for Lagrangian systems is
called the Lagrangian reduction method and can be seen as the counterpart of the
common symplectic reduction method or energy-momentum method for Hamiltonian
systems. Lagrangian reduction (cf. Marsden and Scheurle 1993) is a generalization
of the classical Routh reduction (see e.g. Bloch 2003) for cyclic variables. In the fol-
lowing, we recall some results of Marsden and Scheurle (1993) that equip us with
a method to compute relative equilibria for mechanical systems and that can be ex-
tended to Lagrangian systems with forcing.

For each q ∈ Q the locked inertia tensor I : g → g∗ is defined by 〈I(q)η, ζ 〉 =
〈〈ηQ(q), ζQ(q)〉〉 with ηQ, ζQ being the infinitesimal generators to η, ζ ∈ g. It can be
interpreted as the inertia tensor of a system which moves only in the direction of the
infinitesimal generators of the symmetry action, as e.g. a multi-body system that has
been locked to a rigid structure. The corresponding angular velocity is then given by
α(q, v) = I(q)−1J (q, v), called the mechanical connection. For each μ ∈ g∗, it leads
to the definition of a one form on Q, denoted by αμ with 〈αμ(q), v〉 = 〈μ,α(q, v)〉.
The amended potential is defined by Vμ(q) = V (q) + 1

2 〈μ, I(q)−1μ〉 (cf. Mars-
den and Scheurle 1993) and plays an important role in reduction processes. For a
given value μ ∈ g∗ of the momentum map, the Routhian Rμ : T Q → R is defined
as Rμ(q, v) = L(q, v) − 〈α(q, v),μ〉. Fixing the level set of the momentum map,
i.e. J (q, q̇) = μ it can be shown (see Marsden and Scheurle 1993 for the variational
derivation) that the original Euler–Lagrange equations are equivalent to the Euler–
Lagrange equations of the Routhian Rμ with an additional gyroscopic forcing term,
reading

d

dt

∂Rμ

∂q̇
− ∂Rμ

∂q
= q̇Tβ.

Here, β is the magnetic two form on Q, β(q) : TqQ × TqQ → R, defined by β =
dαμ, i.e. in coordinates, βij = ∂αj

∂qi − ∂αi

∂qj . (Recall that αμ is a one form on Q, so

in coordinates, αμ = αi dqi with dqi being the basis vectors for T ∗
q Q.) Based on
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a splitting of the configuration manifold into the symmetry group G and the shape
space S = Q/G, each vector (q, v) ∈ TqQ can be decomposed into its horizontal
and its vertical part, v = horqv + verqv, where verqv = [α(q, v)]Q(q) and horqv =
v−verqv. That means, the vertical part belongs to the vertical space of the connection
and consists of all points that are mapped to zero under the projection from Q to S.
These are the infinitesimal generators. The horizontal part is an element of the space
that is orthogonal to the G-orbits, given by horq = {(q, v)|J (q, v) = 0}. In Marsden
and Scheurle (1993), it is shown that for fixed level sets of J , the Routhian can be
reduced to Rμ = 1

2‖hor(q, v)‖2 − Vμ. Hence, the Euler–Lagrange equations for Rμ

can be reduced as well and the following statement can be deduced (cf. e.g. Marsden
and Scheurle 1993, Prop. 3.5):

Proposition 3.5 A point xe = (qe, ve) is a relative equilibrium if and only if qe is a
critical point of the amended potential Vμ with μ = J (qe, ve).

For control purposes it makes sense to generalize the definition of relative equilib-
ria to forced systems by allowing constant control values. We will use the terminol-
ogy of Frazzoli et al. (2005) and call them trim primitives originated from trimmed
motions.

Definition 3.6 (Trim primitives) A point xe = (qe, ve) together with some control
value ue ∈ U is called a trim primitive (or shortly a trim), if we have X

ue
L (xe) ∈

Txe(G · xe) with the forced Lagrangian vector field X
ue
L .

In other words, trims generate solutions (q(t), q̇(t)) on [0, tf] of the forced Euler–
Lagrange equations with control u(t) for a G-invariant Lagrangian L and forcing
fL, which can be written as (q, q̇)(t) = ΦT Q(exp(tξ), (qe, ve)), u(t) = ue = const.
∀t ∈ [0, tf] with ξ ∈ g and exp : g → G,ξ �→ exp(tξ) ∈ G. Trims are uniquely defined
by their initial value (q0, q̇0, u0) and the Lie algebra element ξ , which makes them
easy to store and handle in a library of motion primitives. A second benefit of trims
is that they are simply parametrized by time, i.e. their duration need not be fixed in
advance, but can be adjusted during the sequencing (cf. Frazzoli et al. 2005).

In the following we will introduce the concept of controlled potentials that pro-
vides a method to construct trim primitives based on the computation of relative
equilibria.

Controlled Potentials We augment the original potential V (q) by a parameter-
dependent term, representing potential forces, i.e. a special kind of forcing that is de-
fined by a potential (cf. Bullo and Lewis 2004). That means, we replace V : Q → R
by V u : Q → R, V u(q) = V (q) − ν(q) with ν : Q → R having the property that
∂
∂q

ν(q) = u for some control value u ∈ U , where we assume that U ⊆ Rn.
This type of control is intrinsically restricted to depend on configurations, so can-

not be used to model dissipative, i.e. velocity dependent forces. However, many ex-
amples of control forces on mechanical systems fit into this structure.

The following theorem describes how a trim primitive for a controlled Lagrangian
system can be computed by means of the concept of controlled potentials.
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Theorem 3.7 Let L = T − V be a G-invariant Lagrangian and V u(q) = V (q) −
ν(q) the augmented, G-invariant controlled potential. The critical points of the
amended controlled potential V u

μ are relative equilibria of the forced Lagrangian
vector field, Xu

L, i.e. trim primitives according to Definition 3.6.

Proof Amending the controlled potential V u leads to the amended controlled poten-
tial V u

μ = V u + 1
2 〈μ, I(q)−1μ〉 = V (q) − ν(q) + 1

2 〈μ, I(q)−1μ〉 = Vμ − ν(q). Since
we assume V u to be G-invariant, Proposition 3.5 can be applied to the modified sys-
tem given by the Lagrangian Lu = T − V u, i.e. relative equilibria are given by the
critical points of V u

μ :

∂

∂q
V u

μ = 0 ⇔ ∂

∂q

(
Vμ − ν(q)

) = 0 ⇔ ∂

∂q
Vμ = u.

In other words, if a pair (xe, ue) = ((qe, ve), ue) satisfies ∂
∂q

Vμ(qe) = ue with μ =
J (qe, ve), the definition of a relative equilibrium, XLu(xe) ∈ Txe(G · xe), is ful-
filled. The Euler–Lagrange equations of Lu read as follows: ∂

∂q
(T (q, q̇) − V u(q)) −

d
dt

∂
∂q̇

T (q, q̇) = ∂
∂q

(T (q, q̇) − V (q)) − d
dt

∂
∂q̇

T (q, q̇) + u = 0 and hence are equal to

the forced Euler–Lagrange equations for L with forcing f (q, q̇, u) = ∂
∂q

ν(q) = u.

Thus, the vector fields XLu = Xu
L coincide and therefore, X

ue
L (xe) ∈ Txe(G · xe), i.e.

(xe, ue) is a trim primitive as defined in Definition 3.6. �

Note that in Theorem 3.7 the condition that the controlled potential is G-invariant
implicitly gives restrictions on ν and thus on the control u. The forced Noether’s The-
orem 3.3 suggests candidates for trim primitives, namely all trajectories with such
controls that act orthogonal to the group action. Indeed the following corollary states
that this orthogonality condition is in fact necessary for the construction of trim prim-
itives.

Corollary 3.8 If xe = (qe, ve) with control ue is a trim primitive of a Lagrangian
system with symmetry group G and G-invariant controlled potential V ue = V (q) −
ν(q) with ∂

∂q
ν(q) = ue, it necessarily holds that ue · ξQ(qe) = 0, with · denoting

the standard scalar product. Here, ξQ is the infinitesimal generator of ξ ∈ g such
that (q, q̇)(t) = ΦT Q(exp(tξ), (qe, ve)), u(t) ≡ ue is a solution of the forced Euler–
Lagrange equations.

Proof It follows from the G-invariance of L that the original V is G-invariant, be-
cause we assume G to act by isometries and the kinetic energy is given in terms of
a metric. Then, from the G-invariance of V ue , i.e. V ue(Φ(g, q)) = V ue(q), it can be
deduced that

V
(
Φ(g,q)

) − ν
(
Φ(g,q)

) = V (q) − ν(q) ⇔ ν
(
Φ(g,q)

) − ν(q) = 0.

As g is a point in the one-parameter subgroup R � s → exp(sξ) ∈ G generated
by ξ ∈ g, we can replace g by exp(sξ), set q to the trim primitive value xe and then
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differentiate with respect to s and evaluate at s = 0:

0 = d

ds

(
ν
(
Φ

(
exp(sξ), qe

)) − ν(qe)
)
∣∣∣∣
s=0

= ∂

∂q
ν
(
Φ

(
exp(sξ), qe

)) · d

ds
Φ

(
exp(sξ), qe

)
∣∣∣
∣
s=0

= ue · ξQ(qe). �

Hence, we received a necessary condition on ue to be admissible for a trim primi-
tive that can be used to compute trim primitives in example systems.

Note that depending on the system under consideration, it is not guaranteed to
identify all trim primitives by numerically finding the zeros of the gradient of the
amended potential. However, restricting to only some of all existing trim primitives
does not make the motion planning approach fail. However, it does in fact reduce the
number of controllable states.

3.3 Invariant Manifolds in Natural Dynamics

In this section, we analyze the system’s natural dynamics, i.e. the unforced case
of e.g. a mechanical system. Nonlinear dynamical systems may exhibit compli-
cated structures, e.g. local attractors or invariant manifolds (Guckenheimer and
Holmes 1983) that separate the state space. These structures are not at all ob-
vious up to a careful and systematic analysis. However, there may be motions
of the unforced system that can be of great interest in control problems when
searching for energy efficient solutions. Stable manifolds are introduced in a num-
ber of textbooks on dynamical systems (e.g. Guckenheimer and Holmes 1983;
Katok and Hasselblatt 1995 among others or Abraham and Marsden 1987 for me-
chanical systems). The following definitions are basically taken from the latter with
a slightly different notation at some points.

Consider a vector field X on a manifold with its corresponding flow F t , e.g. a
Lagrangian vector field XL on the tangent bundle T Q with flow F t

L : T Q → T Q.
A critical element is either an equilibrium, i.e. a point x̄ ∈ T Q such that XL(x̄) = 0
and, hence, F t

L(x̄) = x̄ for all t ∈ R, or a closed orbit, i.e. the orbit of a periodic point
(F t

L(x̄) = F t+τ
L (x̄) with τ > 0 being the smallest value that satisfies this condition).

Given an equilibrium point x̄, we are interested in the eigenvalues of X′
L(x̄), i.e.

the linearization of XL at x̄, X′
L(x̄) : Tx̄(T Q) → Tx̄(T Q) defined by X′

L(x̄) · v =
d

dλ
(T Fλ

L (x̄) · v)|λ=0. In coordinates, the matrix X′
L(x̄) is given by (

∂Xi
L

∂xj )|x=x̄ . It is a
well known stability criterion that a system is asymptotically (un)stable, if all eigen-
values have strictly negative (resp. positive) real parts. In the following, we will study
the case where there are eigenvalues on both sides of the imaginary axis. A critical
point is called hyperbolic, if none of the corresponding linearization eigenvalues has
zero real part.

To investigate the dynamic behavior near closed orbits, the Poincaré map of a
transversal section S is studied. A transversal section of XL at a point x on the orbit
is a submanifold S ⊂ T Q of codimension one with x ∈ S and for all s ∈ S, XL(s)

is not contained in TsS. Then, roughly speaking, the Poincaré map of a closed or-
bit γ is a diffeomorphism Θ between neighborhoods of x in S that assigns to each
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neighboring point s ∈ S the point, where the orbit F
ρ(s)
L (s) intersects S again for the

first time. Here, ρ(s) is the corresponding return time. (For a detailed description we
refer to Abraham and Marsden 1987 or another textbook on dynamical systems.) For
a closed orbit γ of a vector field XL, the characteristic multipliers of XL at γ are the
eigenvalues of TxΘ for any Poincaré map Θ at any x ∈ γ . γ is called hyperbolic,
if none of the characteristic multipliers has modulus one. Analogous to the stability
criterion of Lyapunov for equilibria, a period orbit is asymptotically (un)stable, if the
modulus of all characteristic multipliers is less (resp. greater) than one.

Theorem 3.9 (cf. Abraham and Marsden 1987) If γ ⊂ T Q is a critical element of
XL, there exist submanifolds of T Q, i.e. local stable (W s

loc), center-stable (W cs
loc),

center (W c
loc), center-unstable (W cu

loc), and unstable (W u
loc) manifolds, respectively,

with the following properties:

(i) each submanifold is invariant under XL and contains γ ,
(ii) For x ∈ γ , Tx(W

s
loc) is the sum of the eigenspace in Tx(T Q) of the characteristic

multipliers of modulus <1 and the subspace Txγ ; Tx(W
cs
loc) (resp. Tx(W

c
loc),

Tx(W
cu
loc), Tx(W

u
loc)) is the sum of the eigenspace in Tx(T Q) of the characteristic

multipliers of modulus ≤1 (resp. =1, ≥1, >1) and the subspace Txγ .
(iii) If x ∈ W s

loc, then the ω-limit, given by ω(x) = ⋂∞
T =0 (

⋃
t≥T F t

L(x)) is equal

to γ . If x ∈ W u
loc, then the α-limit is γ , with α(x) = ⋂−∞

T =0 (
⋃

t≤T F t
L(x)).

(iv) W s
loc and W u

loc are locally unique.

Thus, all points of the local stable manifold W s
loc tend to the critical element under

the evolution. Conversely, the local unstable manifold W u
loc consists of all points in

T Q which show this behavior if time runs backwards. The dynamics on the center
manifold is subject to a further analysis (see e.g. Abraham and Marsden 1987 and the
references therein) but out of the scope for this work.

Remark 3.10 In case of a critical point, i.e. an equilibrium γ = x̄, the tangent space
is trivial, Tx̄γ = {0} and therefore, Tx̄(W

s
loc) equals the eigenspace in Tx̄(T Q) of

the characteristic multipliers of modulus <1. Further, for γ = x̄, the characteristic
multipliers have to be interpreted as the eigenvalues of Tx̄F

t
L, i.e. etμ1, . . . , etμn where

μ1, . . . ,μn are the eigenvalues of X′
L(x̄) (also called characteristic exponents). In

other words, the stable manifold W s
loc, for example, is defined by the eigenvalues that

lie in the strict left plane (Re(μi) < 0). In contrast, for γ being a closed orbit, Tx̄γ

is the subspace generated by X(x̄) that is included in all of the submanifolds defined
above.

Of special interest is the hyperbolic case, where there are no center eigenspaces.
Then the nearby orbits of γ behave qualitatively like the linear case, i.e. for a hyper-
bolic critical point, the flow nearby looks like that of the linearization at γ .

Corollary 3.11 (Global stable manifold theorem of Smale, cf. Abraham and Marsden
1987) If γ is hyperbolic, then the stable manifold, W s(γ ) = {x ∈ T Q|ω(x) ⊂ γ } and
the unstable manifold, W u(γ ) = {x ∈ T Q|α(x) ⊂ γ } are immersed submanifolds.
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Also, γ ⊂ W s(γ )∩W u(γ ) and for x ∈ γ , TxW
s(γ ) and TxW

u(γ ) generate Tx(T Q).
If ns is the number of characteristic multipliers of γ of modulus <1, and nu the
number of modulus >1, then the dimension of W s(γ ) (resp. W u(γ )) is ns (resp. nu)
if γ is a critical point, or ns + 1 (resp. nu + 1) if γ is a closed orbit.

That means, the local (un)stable manifolds defined in Theorem 3.9 can be uniquely
expanded to global manifolds by applying the flow of the vector field.

So far, we have not covered all of the structure of critical points of Lagrangian
systems. Since a regular Lagrangian system can be transformed into a Hamiltonian
system by the Legendre transformation, the eigenvalue spectrum of a critical point
can be characterized even further. It is a well known result (see e.g. Abraham and
Marsden 1987) that the linearization of a Hamiltonian system is a linear Hamilto-
nian system and therefore, if μ is an eigenvalue of X′

H (x̄), then so are μ̄,−μ,−μ̄.
Therefore, stable and unstable manifolds of a critical point always have the same
dimension and the center manifold, if existent, is even dimensional. Additionally,
for a Lagrangian that equals kinetic minus potential energy, solely the second-order

partial derivatives of the potential, i.e. ∂2

∂q2 V determine the spectral characteristics.
From the Lagrange–Dirichlet stability criterion (see e.g. Abraham and Marsden 1987;

Marsden 1993), it follows that the system is stable, if the matrix ∂2

∂q2 V evaluated at
the equilibrium is positive definite. Then the eigenvalues lie on the imaginary axis.
Otherwise, the system is unstable, because there has to be at least one eigenvalue with
positive real part giving rise to an unstable manifold.

For another extension of the preceding theory for critical points, let us assume that
the strongest stable and unstable eigenvalues, i.e. μss := minμ∈σ Re(μ) and μuu :=
maxμ∈σ Re(μ) where σ denotes the eigenvalue spectrum of the linearization at the
equilibrium x̄, are unique and real. Then we define the strong (un)stable manifolds
W ss(x̄) and W uu(x̄) as the submanifold of the (un)stable manifold that are tangent
to the eigenspace corresponding to the strongest (un)stable eigenvalues μss and μuu

(see e.g. Osinga et al. 2004).
However, in most cases it is not possible to compute these global invariant man-

ifolds analytically. For that reason, a number of numerical techniques for approxi-
mating (un)stable manifolds has been developed in the last decades (see Krauskopf
et al. 2005 for an overview of existing approaches and a comprehensive comparison
of the methods for the example of the Lorenz system). The different methods all share
the idea to successively grow the (un)stable manifold from a local neighborhood of
the equilibrium. Among these techniques is GAIO (Global Analysis of Invariant Ob-
jects), a set oriented method (cf. Dellnitz et al. 2001) that we use for our numerical
examples.

As discussed in Sect. 1, invariant manifolds have been used in many applications
in astrodynamics to generate low energy trajectories. In this setting, trajectories along
invariant manifolds provide pieces of maneuver sequences that are solutions of opti-
mal control problems in space mission design (cf. e.g. Koon et al. 2000 or Dellnitz
et al. 2006, 2009 for approaches based on set oriented computations by GAIO).
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4 Motion Planning Using Primitives

Now we go into more detail describing the computational aspects of motion planning
with primitives. First it is shown how the identified dynamical structures can be used
to generate motion primitives. The maneuver automaton is introduced to organize the
primitives in a library. Secondly, trajectory generation and the computation of motion
plans are presented.

4.1 Maneuver Automaton

A library of primitives constitutes a maneuver automaton, i.e. a finite-state machine
with states and transitions corresponding to motion primitives (cf. Frazzoli et al.
2005). In our work, the states correspond not only to trim primitives, but also to
(un)stable manifolds. The automaton’s transitions between different states correspond
to maneuvers, i.e. short motions satisfying the boundary conditions imposed by the
initial and final states that they connect.

A library is constructed by selecting a discrete set of trim primitives and trajec-
tories on (un)stable manifolds. Let Ξ denote the set of trims, chosen for instance
by uniformly gridding a bounded subspace of the Lie algebra (see Definition 3.6),
or alternatively by quantizing the space of internal (shape) variables and control in-
put. For example, the elements of Ξ can be computed by the critical points of the
controlled amended potential (cf. Sect. 3.2). It is sufficient to select and store only a
trim’s initial value α(0) := (xα(0), uα(0)), because the orbit can be constructed by the
flow, α : t ∈ [0, tf] �→ (ΦT Q(exp(tξ), xα(0)), uα) with ξ ∈ g and a constant control
uα ≡ uα(0).

Analogously, a finite set O of orbits on (un)stable manifolds, O � O : t ∈ [0, tf] �→
FL(xO, t) has to be defined with some initial value xO on the manifold. For motion
planning purposes it is advantageous to select orbits with fast dynamical transition.
Such motions correspond to trajectories on the strong (un)stable manifolds, because
these are the directions of the most contraction to (expansion from, respectively) a
critical element. Such choices are reasonable since we are interested in energy mini-
mal or time minimal solutions (cf. Sect. 2.1). Because the strong (un)stable manifolds
are one-dimensional (assuming simple strong (un)stable eigenvalues as in Osinga
et al. 2004), orbits O ∈ O can be computed by choosing a starting point xO in the
close neighborhood and evolving the uncontrolled flow for some finite time tf; in
forward time for unstable, and in backward time for stable manifolds, respectively.

A maneuver is then designed to connect pairs of trim primitives and pairs of orbits
on manifolds as well as pairs of a trim primitive and a manifold orbit. A fully con-
nected automaton graph would thus require nt(nt −1)+no(no −1)+ntno maneuvers,
where nt = dim(Ξ) and no = dim(O).

4.2 Maneuvers

We next describe the construction of maneuvers. Let the map � : X → X\G subtract
out the invariant coordinates from a given state according to the system’s symmetry
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equivalence. Each maneuver is computed through nonlinear optimization of a trajec-
tory whose start and end correspond to either a trim primitive or a manifold. This is
defined through the following procedure:

Compute: tf;x : [0, tf] → X; u : [0, tf] → U (11)

minimizing: J (x,u, tf) =
∫ tf

0

(
λ1 · 1 + λ2 · ∥∥u(t)

∥∥2)dt, (12)

subject to: dynamics equation (5) for all t ∈ [0, tf] (13)

and one of the following boundary conditions:

from trim xα to trim xβ : �
(
x(0)

) ∈ �(xα),�
(
x(tf)

) ∈ �(xβ), (14)

from trim xα to manifold Oβ : �
(
x(0)

) ∈ �(xα),�
(
x(tf)

) ∈ �(Oβ), (15)

from manifold Oα to trim xβ : �
(
x(0)

) ∈ �(Oα),�
(
x(tf)

) ∈ �(xβ), (16)

from manifold Oα to manifold Oβ : �
(
x(0)

) ∈ �(Oα),�
(
x(tf)

) ∈ �(Oβ), (17)

with λ1, λ2 ∈ R+
0 and where �(xα) should be understood as a pointwise evaluation.

In essence, the optimization is performed by not enforcing a given final group dis-
placement or by allowing a maneuver to start and end anywhere on the initial and
final manifold orbits, respectively.

Definition 4.1 (Maneuvers) A maneuver is a solution pair π := (x∗, u∗), π : t ∈
[0, tf] �→ (q∗(t), q̇∗(t), u∗(t)) to (11)–(17) that connects two automaton states, i.e.
trim primitives or (un)stable manifolds.

More generally, the boundary constraints can adapted based on the problem. For
instance, using the identity instead of � in (14)–(17), the points on the primitives
are completely fixed (including the invariant coordinates). This is important, if one
wants to control the group displacement of the maneuver (cf. Sect. 4.3). In addition,
a boundary point on a manifold orbit can either be a fixed point on the orbit, or an an-
alytic expression of the entire orbit (or an approximation of it, e.g. by splines) can be
used as a boundary constraint. As another design parameter, the weighting λ1,2 has
to be chosen to prioritize one objective over the other. Naturally in most applications,
energy efficiency is contradictory to time optimality, rendering a multiobjective opti-
mal control problem. That means that different values of λ1,2 correspond to different
optimal compromises of the concurring objectives—the so called Pareto optimal so-
lution (Ehrgott 2005) of the optimal control problem. The prioritization of objectives
leads to a scalarization of the vector valued cost functional. If this cannot or is not
desired to be done in advance, several optimal control maneuvers for the same bound-
ary conditions, but different values of λ1,2 can be computed and stored in the motion
planning library.

In our applications, the optimizations were performed offline such that all maneu-
vers are organized and saved in a library which is loaded at run-time providing instant
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look-up during planning. The continuous optimal control formulation was computa-
tionally solved through the discrete mechanics methodology DMOC (Ober-Blöbaum
et al. 2011; Marsden and West 2001; Kobilarov 2008) which is particularly suitable
for systems with nonlinear state spaces and symmetries.

The key property of motion primitives is that they can be concatenated to create
more complex motion sequences. Following Frazzoli et al. (2005), a concatenation
of two motion primitives π1 : t ∈ [0, tf,1] �→ (x1(t), u1(t)) and π2 : t ∈ [0, tf,2] �→
(x2(t), u2(t)) on the time interval [0, tf,1 + tf,2] is defined by

π1π2(t) :=
{

(x1(t), u1(t)) if t ≤ tf,1,

(ΦT Q(g12, x2(t − tf,1)), u2(t − tf,1)) otherwise,

if there exists a group element g12 such that the second motion can be shifted compat-
ibly, i.e. it holds x1(tf,1) = ΦT Q(g12, x2(0)). Furthermore, a trajectory π connecting
two trims xα and xβ by means of a motion along an (un)stable manifold orbit O ∈ O
can be regarded as an extended maneuver.

Definition 4.2 (Extended Maneuvers) Let xα , xβ (α �= β) be trims and let O ∈ O
be an (un)stable manifold orbit. Let π1 be the maneuver of duration t1 connecting
xα and O , and π2 the maneuver connecting O and xβ . Define κ : t ∈ [t1, t̃] �→
(FL(x1(t1), t),0), t̃ ≥ t1 as that piece of the trajectory on O (with zero control)
that starts at the final state of maneuver π1 with duration t̃ − t1, s.t. x2(0) =
FL(x1(t), t̃ − t1). Then an extended maneuver π is defined as

π = π1κπ2.

Recall that the dynamical system is assumed to be autonomous, so time shifts are
well defined. Controllability of the maneuver automaton is proved in Frazzoli et al.
(2005) and still holds in the same sense for our motion planning approach applied to
the trims and extended maneuvers.

4.3 Trajectory Generation

Consider the task of generating a trajectory from a given state x0 ∈ X. It is typical
to assume that this is either an equilibrium or periodic motion corresponding to a
trim primitive. Denote the primitive by α0 with initial state xα0(0). Then we have
x0 = ΦT Q(g0, xα0(0)) for some g0 ∈ G. A trim primitive can be parametrized by
its time duration, called the coasting time τ , leading to a family of trims, α(τ) : t ∈
[0, τ ] �→ (ΦT Q(exp(tξα, xα(0))), uα).

Consider a sequence of trim primitives α0, α1, . . . , αN with coasting times
τ0, τ1, . . . , τN and connecting maneuvers π0, . . . , πN−1. These maneuvers can be
either regular or extended. They form the trajectory ρ starting from x0, defined by

ρ = α0(τ0)π0α1(τ1)π1 · · ·αN(τN−1)πN−1αN(τN). (18)
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The states along ρ are expressed, for k ≥ 0, by

ρ(t) =
{

(ΦT Q(gk exp((t − tk)ξαk
), xαk

(0)), uαk
), t ∈ [tk, tk + τk],

(ΦT Q(gk exp(τkξαk
), xπk

(t ′)), uπk
(t ′)), t ∈ [tk + τk, tk+1],

(19)

where gk = g0
∏k−1

i=0 exp(τiξαi
)gπi

, tk = ∑k−1
i=0 (τi + |πi |), with duration |πi | of ma-

neuver πi , and t ′ = t − tk −τk . The group elements exp(τiξαi
) are trim displacements,

whereas gπi
are the displacements of the maneuvers πi . In addition, the total group

displacement along ρ is

gρ = gN exp(τNξαN
). (20)

4.4 Computing Motion Plans

Next, consider the task of finding a sequence of primitives driving the system from its
initial state x0 to a given final state xf ∈ Xf. Let α0 and αf denote the given boundary
trims with initial states xα0(0) and xαf(0). Then we have x0 = ΦT Q(g0, xα0(0)) and
xf = ΦT Q(gf, xαf(0)) for some group elements g0, gf ∈ G.

Computing a motion from x0 to xf amounts to finding a proper sequence of trim
primitives α0, . . . , αN ,αf, coasting times τ0, τ1, . . . , τN , τf, and connecting maneu-
vers π0, . . . , πN some of which include motions along (un)stable manifold orbits
O ∈ O. The sequence will form the trajectory ρ defined by

ρ = α0(τ0)π0α1(τ1)π1 · · ·αN(τN)πNαf(τf). (21)

The total group displacement along ρ is

gρ =
[

N∏

i=0

exp(τiξαi
)gπi

]

exp(τfξαf) (22)

and computing a motion from x0 to xf amounts to finding a motion plan ρ such that

gρ = g−1
0 gf. (23)

An optimal sequence of primitives and manifolds orbits should minimize the cost
function J (ρ). Although this is generally a complex combinatorial optimization with
nonlinear constraints, it is much easier to solve than the original optimal control prob-
lem. The first reason is that the length of the sequence of required primitives is usually
known in advance. For instance, in addition to the initial and final trim in general at
least max(n − 2,0) additional (intermediate) trims are required to exactly satisfy any
boundary conditions for an n-dimensional group G. In addition, in many cases the
condition (23) can be solved analytically by computing the required trim coasting
times using kinematic inversion.

Our implementation is based on a search tree (see Fig. 1) which expands all pos-
sible sequences of trims and manifold orbits and connecting maneuvers. The tree is
grown in depth-first manner so that each trajectory contains max(n,2) trim primi-
tives. The search space is pruned using bounds on the optimal cost that is updated
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Fig. 1 Left: An automaton with states corresponding to relative equilibria and (un)stable manifolds and
transitions corresponding to maneuvers. Right: An example of a search tree expanding paths of various
sequences of primitives. This particular tree has three trim primitives and each trajectory must end at trim
state αf. The goal is to find a sequence and the coasting times along its relative equilibria so that the group
displacement is satisfied and the total cost is minimized

Table 1 Combinations of
primitives for n = 1,2,3 dim(G) sequence # of trims # of maneuvers

(depth)

1 α0π0αf 2 1

α0π0O1π1αf 2

2 α0π0αf 2 1

α0π0O1π1αf 2

3 α0π0α1π1αf, 3 2

α0π0O1π1α1π2αf 3

α0π0α1π2O1π3αf 3

α0π0O1π1α1π2O2π3αf 4

during the algorithm operation. Thus, the number of primitives along trajectories in
the tree varies from 2n − 1 (when no manifolds are visited) to 4n − 3 (when alter-
nating between visiting trims and manifolds). For instance, for n = 3 the shortest
sequence is α0π0α1π1αf while the longest is α0π0O1π1α1π2O2π3αf. Table 1 lists
the combinations of primitives up to n = 3.

Such sequences are automatically created by the tree-expansion algorithm for a
given Lie group G. Note that we have assumed that all trims are non-equilibrium.
Boundary conditions corresponding to equilibrium states (i.e. zero velocity) are han-
dled by creating a sequence with an additional maneuver to or from a non-zero trim
primitive.

By the construction of the maneuver automaton, the sequence ρ is a dynamically
feasible solution for the optimal control problem from the initial state x0 to the final
state xf. Thus, it can be used as a good initial guess for a post-optimization, e.g. per-
formed by DMOC again. If the maneuver automaton is small, i.e. the gridding of trim
and manifold state space is rough and the number of different connecting maneuvers
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Fig. 2 Left: Model of the simple spherical pendulum with sketched motion primitives in configuration
space: trims are purely horizontal motions (ϕ̇ = 0), whereas the (un)stable manifold are vertical motions
(θ̇ = 0). Right: Optimal sequence for a scenario from trim A to trim B consisting of the trims, two con-
trolled maneuvers and a trajectory on the stable manifold in between. The blue curve is the solution of a
DMOC optimization with the sequence as initial guess (Color figure online)

is small, a post-optimization is useful to smooth out the changes between controlled
and uncontrolled pieces of the sequence trajectory. Furthermore, post-optimization
is also required if the weighing of the (concurrent) objectives has to be updated or
adjusted.

5 Numerical Examples

The simple spherical pendulum, i.e. a mass point moving in 3D constrained on a
sphere, is a popular example to study symmetries of a mechanical system (see, among
others Marsden 1993; Abraham and Marsden 1987; Bullo and Lewis 2004) and can
be also used to demonstrate our motion planning approach (cf. Flaßkamp et al. 2010).
From the application point of view, spherical pendula can be seen as idealizations of
industrial robots, for example a double spherical pendulum is a simplified two-link
manipulator. Therefore, optimal control of spherical pendula is of great importance.

5.1 The Spherical Pendulum

The pendulum consists of a point mass with mass m that is firmly connected by a
massless rod of length r to the ground. Thus, the configuration space of this two
degree of freedom system is a sphere. In coordinates, it can be described by a vertical
angle, denoted by ϕ and a horizontal angle, denoted by θ (cf. Fig. 2).

Invariance and Symmetry The Lagrangian is given by L(ϕ, θ̇ , ϕ̇) = K(ϕ, θ̇ , ϕ̇) −
V (ϕ) = 1

2mr2(ϕ̇2 + θ̇2 sin2(ϕ)) − mgr(cos(ϕ) + 1). It can be easily seen that L is
independent of θ , which is therefore called a cyclic coordinate (cf. e.g. Bloch 2003).
Thus, it follows directly from ∂L

∂θ
= 0 that the corresponding Euler–Lagrange equa-

tions simplify to ∂L

∂θ̇
= const. In other words, the system is symmetric w.r.t. rotations
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about the vertical axis and the symmetry group is G = S1, acting by addition only
in the horizontal coordinate. Therefore, the conserved quantity equals pθ = ∂L

∂θ̇
, that

is, the momentum map J = pθ = mr2 sin2(ϕ)θ̇ . The Hamiltonian as the system’s
energy is given by E(q, q̇) = K(q, q̇) + V (q). The amended potential is then given
by Vμ(q) = V (q) + 1

2 〈μ, I−1μ〉 = mgr(cos(ϕ) + 1) + 1
2μ2(mr2 sin2(ϕ))−1. Rela-

tive equilibria can be computed as critical points of Vμ and fulfill θ̇2 = − g
r·cos(ϕ)

,
i.e. they are purely horizontal rotations (ϕ̇ = 0) in the lower hemisphere. A dis-
crete set Ξ of uncontrolled trims (cf. Sect. 4.1) for ϕ ∈ { 2

3π, 3
4π, 5

6π} for exam-
ple, can be defined by the rotational velocity, i.e. the Lie group elements Ξ =
{±

√
2 g

r
,±

√√
2 g

r
,±

√
2
√

3
3

g
r
}. If we add control in ϕ-direction, the rotational ve-

locity and the height of a trim can be chosen arbitrarily with uϕ = −mgr sin(ϕ) −
mr2 sin(ϕ) cos(ϕ)θ̇2.

(Un)stable Manifolds of the Upper Equilibrium The planar pendulum exhibits a
hyperbolic equilibrium in the upper fixed point. This gives rise to one-dimensional
stable and unstable manifolds; together they form the separatrix in the well known
phase portrait of a simple pendulum. For purely vertical initial conditions (θ̇ = 0),
the spherical pendulum behaves like a planar pendulum. This, together with the hor-
izontal symmetry, explains why the stable and unstable manifold of the upper equi-
librium of the spherical pendulum are given by W u,s(x̄) = {(q, q̇) ∈ T Q | J (q, q̇) =
0,E(q, q̇) = V (x̄) = 2mgr} = {(θ,ϕ, θ̇ , ϕ̇)|θ = const., θ̇ = 0, ϕ̇2 = 2 g

r
(1−cos(ϕ))},

i.e. the manifolds of the planar pendulum with an arbitrary, but fixed horizontal angle.

Motion Planning Trim primitives are uniform rotations in horizontal planes,
whereas trajectories on the (un)stable manifolds are purely vertical motions. Choos-
ing a discretization in both angles (plus a discretization of the rotational velocity for
trim primitives in case of non-zero control) gives the motion primitives for the library
(see Fig. 2 (left) for a sketch of the motion primitives). For numerical computations,
all parameters are normalized to one. The connecting maneuvers are computed by
DMOC. Here we allow forcing in both coordinate directions and search for solu-
tions that minimize J (x,u) = ∫ tf

0 (uθ (t)
2 + uϕ(t)2)dt . As an exemplary scenario

we choose a starting point A and a final point B on trims (ϕA = 13
16π uncontrolled,

ϕB = 1
8π controlled s.t. θ̇ = −π ) and search for sequences with minimal control

effort that connect these trims with a trajectory on the stable manifold to the upper
equilibrium by maneuvers. The resulting trajectory (cf. Fig. 2 (right)) has the costs
J = 3.2211 and the final time tf = 4.3335, which is the sum of the time spent on the
trims, the fixed durations of the maneuvers and the time that the sequence stays on the
manifold orbit. The sequence is then used as an initial guess for a post-optimization
by DMOC that reduces the costs of the sequence to J = 1.3821. This is compared
to optimal solutions of naive, direct optimizations with simple linearly interpolated
initial guesses, i.e. we interpolate each coordinate between its initial and final point
on an equidistant time grid. Such an initial guess can be constructed without any
knowledge of the dynamical system, however, the resulting curve is by no means an
admissible solution. It turns out that the information about the duration of the optimal
trajectory that we obtain from the sequencing approach is important for finding en-
ergy efficient maneuvers: direct solutions for tf = 2 or tf = 12 have much higher costs
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Fig. 3 Left: Model of the double spherical pendulum. Middle: Shape of the relative equilibria without
control. Adding constant control in vertical direction also allows for trim primitives with both pendula
pointing upwards and an arbitrary jointly rotational velocity (not shown). Right: Approximation of the
stable manifold of the upper equilibrium and the strong stable manifold in black, computed by GAIO
(Color figure online)

of J = 6.3427 and J = 2.6084. For the time tf defined by the sequence, the direct so-
lutions are similar in cost and qualitative behavior compared to the sequence. In more
complicated systems, such as a double spherical pendulum, it is much harder to find
any reasonable, admissible solution without choosing a sophisticated initial guess.

5.2 The Double Spherical Pendulum

In case of a double spherical pendulum, a mixture of analytical and computational
methods have to be applied to compute the motion primitives. In the following, we
will present candidates for a motion planning library and afterwards, show numerical
results for specific optimal control scenarios.

Euler–Lagrange Equations The configuration space of two 3D pendula, idealized
as mass points m1 and m2 on massless rods, is Q = S2

l1
× S2

l2
, where S2

l1,2
denotes the

two dimensional sphere of radius l1,2. As a minimal set of coordinates, we choose
horizontal and vertical angles (q = (θ1, θ2, ϕ1, ϕ2)), such that the mass points posi-
tions are given by (cf. Fig. 3)

q1 =
⎛

⎝
x1
y1
z1

⎞

⎠ =
⎛

⎝
l1 cos(θ1) sin(ϕ1)

l1 sin(θ1) sin(ϕ1)

l1 cos(ϕ1)

⎞

⎠ ,

q2 =
⎛

⎝
x2
y2
z2

⎞

⎠ =
⎛

⎝
x1
y1
z1

⎞

⎠ +
⎛

⎝
l2 cos(θ2) sin(ϕ2)

l2 sin(θ2) sin(ϕ2)

l2 cos(ϕ2)

⎞

⎠ .

The Lagrangian as the difference of kinetic and potential energy can be written as
L(q(t), q̇(t)) = K(q(t), q̇(t)) − V (q(t)), where V (q(t)) = (m1 + m2)gl1(cos(ϕ1) +
1) + m2gl2(cos(ϕ2) + 1), and K(q(t), q̇(t)) = 1

2 q̇T (t)M(q(t))q̇(t) with the sym-
metric mass matrix M = (mij ) with m11 = (m1 + m2)l

2
1 · sin2(ϕ1), m12 = m2l1l2 ·

cos(θ1 − θ2) · sin(ϕ1) sin(ϕ2), m13 = 0, m14 = −m2l1l2 sin(θ1 − θ2) · sin(ϕ1) cos(ϕ2),
m22 = m2l

2
2 sin2(ϕ2), m23 = m2l1l2 · sin(θ1 − θ2) · cos(ϕ1) sin(ϕ2), m24 = 0, m33 =

(m1 + m2)l
2
1 , m34 = m2l1l2((cos(θ1 − θ2) · cos(ϕ1) cos(ϕ2)) sin(ϕ1) sin(ϕ2)), m44 =

m2l
2
2 .
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Hence, the Euler–Lagrange equations for the double spherical pendulum without
forcing are

d

dt

∂L

∂ϕ̇1,2
− ∂L

∂ϕ1,2
= 0,

d

dt

∂L

∂θ̇1,2
− ∂L

∂θ1,2
= 0. (24)

Symmetry and Reduction The symmetry group is G = S1, acting by rotation of
both pendula about the z-axis: Φ : G×Q → Q, Φ(g, (θ1, θ2, ϕ1, ϕ2)) = (g + θ1, g +
θ2, ϕ1, ϕ2) with tangent lift to T Q by Φ

T Q
g (q, v) = (Φ(g, q), θ̇1, θ̇2, ϕ̇1, ϕ̇2). Then

the infinitesimal generator can be determined to be ξQ(q) = (ξ, ξ,0,0)T with ξ ∈ R.
Hence, the conserved quantity is the total angular momentum about the z-axis

J (q, v) = ∂L

∂θ̇1
+ ∂L

∂θ̇2
, (25)

and the locked inertia tensor (cf. Sect. 3.2) equals

I
(
q(t)

) = (m1 + m2)l
2
1 sin2(ϕ1) + m2l

2
2 sin2(ϕ2)

+ 2m2l1l2 cos(θ1 − θ2) · sin(ϕ1) sin(ϕ2).

The mechanical connection α : T Q → g can be easily computed by α(q, v) =
I−1(q) · J (q, v), assigning to each (q, v) the angular velocity of the locked system
(cf. Marsden and Scheurle 1993). The amended potential can be computed by

Vμ

(
q(t)

) = V
(
q(t)

) + μ2

2I(q)
.

Trims Trims of the uncontrolled system, i.e. relative equilibria, are classified in
(Marsden and Scheurle 1993) in an elegant way by introducing two shape defin-
ing parameters and then computing the critical points of the amended potential (cf.
the Lagrangian reduction in Sect. 3.2). Besides the four true equilibria (each pendu-
lum either pointing straight upwards or downwards), all relative equilibria are given
by a one-parameter curve and they look similar to one of the four sketched types in
Fig. 3 (middle). According to Definition 3.6, non-zero constant control values are al-
lowed, if they do not influence the conservation of the angular momentum J (cf. (25)).
Hence, we add forcing in ϕ1- and ϕ2-direction in (24). This leads to a controlled po-
tential and we can therefore solve ∂

∂q
Vμ = −u for constant u = (0,0, uϕ1 , uϕ2)

T as
proposed by Theorem 3.7. This additionally admits trims with both pendula pointing
upwards as well as arbitrary rotating velocities in all shapes.

Manifolds For this example, we are interested in the (un)stable manifold of the up-
per equilibrium, i.e. both pendula pointing upwards (x̄ = (q̄, ˙̄q) = 08×1). In this point,
the system’s energy equals Ex̄ := V (q̄) while the angular momentum is zero. Hence
the manifolds are part of the set {x ∈ T Q | E(x) = Ex̄, J (x) = 0}. This includes in
particular the motion on (un)stable manifolds of a planar double pendulum, to which
we have restricted our computations so far. Since the manifolds are two dimensional,
we still have to choose concrete trajectories that are stored in the motion planning
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library. Here we use the strong (un)stable manifolds (cf. Sect. 4.1). In Fig. 3 (right)
the black line corresponds to the approximation of the strong stable manifold in the
stable manifold of the upper equilibrium, which has been computed with GAIO (cf.
Sect. 3.3).

Numerical Results for Motion Planning Scenarios As mentioned before, we use
the optimal control method DMOC (cf. Sect. 2.3) to compute connecting maneuvers
between trims and orbits on manifolds. For numerical computations, we choose the
following parameter values: m1 = m2 = 1 kg, l1 = l2 = 1 m, and g = 9.81 m

s2 . The

nonlinear optimization problem is solved by an SQP method (cf. Sect. 2.1) of NAG1

(Numerical Algorithms Group). To improve the accuracy of the derivatives that have
to be provided, the implementation of the DMOC method has been combined with
ADOL-C2 (Automatic Differentiation by OverLoading in C++), an automatic differ-
entiation technique, in Ober-Blöbaum and Walther (2010). For the connecting maneu-
vers, we allow an arbitrary boundary point on the specific trims (cf. (14)–(17)), i.e. the
point is fixed except for the horizontal coordinates, which have to fulfill θ1 = θ2 for
an arbitrary angle θ1. Since the double spherical pendulum is modeled in minimal co-
ordinates that are not globally valid, we are faced with singularities in our numerical
computations. If one of the pendulum’s vertical angle equals 0 or π (or multiplicities
of that), the horizontal angle becomes meaningless. The NAG algorithm is able to
perform the optimization for our scenarios. Nevertheless, to overcome this problem
in principle, a global system description by e.g. differential algebraic models could
be used in future work.

The motion planning is performed for the following scenario: the starting point is
chosen to lie on an uncontrolled trim (ϕ1 = 2.4087, ϕ2 = 2.2532), where the double
pendulum is outstretched. The final point is the upper equilibrium, i.e. both pendula
pointing upwards. We consider the fully actuated system (u = (uθ1 , uθ2 , uϕ1 , uϕ2)

T)
and choose the control effort as the cost functional, i.e.

J
(
x(t), u(t)

) =
∫ tf

0
u(t)2 dt with u(t) ∈ R4.

According to the defined scenario, a sequence of depth 2 (cf. the definition of a search
tree in Sect. 4.4) is searched for, consisting of a maneuver from the trim to the orbit
of the strong stable manifold of the upper equilibrium and then a second, very short
maneuver to bridge the gap from the orbit’s endpoint to the equilibrium itself. Fig-
ure 4 shows a resulting sequence with duration tf = 3.28 and costs J = 548.76. The
durations of the maneuvers have been fixed in advance, such that the entire duration
depends on how long the sequence stays on the manifold orbit. The dashed lines refer
to the results of a post-optimization performed by DMOC, which reduces the costs
to J = 296.51. In comparison, when DMOC is directly applied to the problem with
a simple, linearly interpolated initial guess, the retained optimal solution has much
higher costs of J = 5.85 · 103.

1www.nag.co.uk.
2https://projects.coin-or.org/ADOL-C.
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Fig. 4 Left: Sequence for an example scenario, presented in Cartesian coordinates of both pendula (solid
lines; inner pendulum red, outer pendulum blue) and resulting optimal trajectory for a post-optimization
with DMOC (dashed lines). Right: A maneuver resulting from an optimization by DMOC with simple
initial guess (Color figure online)

In this scenario, we considered sequences involving only one manifold and there-
fore restricted to the stable manifold of the upper equilibrium. However, it might be
possible that a sequence of higher depth including other manifolds as well would
even lead to further improvement. This has to be studied in future work.

6 Conclusion and Outlook

This work proposes a motion planning strategy based on motion primitives encod-
ing inherent dynamical system properties. We extend the approach of Frazzoli et al.
(2005) by including motion primitives on (un)stable manifolds of critical elements
of the uncontrolled dynamics. Such primitives are useful for finding energy efficient
solutions, experimentally confirmed by the numerical results for our example op-
timal control scenarios. We study the motion primitives induced by symmetries in
more detail, focusing on mechanical systems. Trim primitives for arbitrary mechan-
ical systems are identified using Noether’s theorem on conserved angular momenta
through a symmetry reduction process. In addition to trim primitives and orbits on
(un)stable manifolds, connecting maneuvers are computed by the optimal control
method DMOC and stored in the motion planning library. The maneuver automa-
ton of Frazzoli et al. (2005) is extended to include orbits on manifolds and finally
we develop a tree search algorithm in this new automaton for motion planning. The
application of the approach to the optimal control of a double spherical pendulum
clearly shows that optimization using initial guesses, obtained by exploiting the key
structural properties of the system, results improved solutions (w.r.t. to cost) com-
pared to standard initialization.

Future work will apply this optimal control policy to more complex systems such
as multi-body systems with holonomic (Leyendecker et al. 2009) or nonholonomic
constraints (Kobilarov et al. 2010). For example, the structural properties of a rigid
body pendulum that are revealed in Chaturvedi et al. (2011) could be used for optimal
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control scenarios as well. In higher dimensional systems it will be more challenging
to identify symmetries, i.e. Lie groups and admissible controls for trim primitives.
If the computation of (un)stable manifolds gets numerically too expensive, invari-
ant objects in a reduced system (e.g. obtained by Lagrangian reduction) could be
considered. Alternatively, one could restrict oneself to the one-dimensional strong
(un)stable manifolds.

Studying hybrid Lagrangian systems is another natural extension. A control se-
quence resulting from a motion planning procedure is already hybrid in the sense
that different types of control trajectory are concatenated. Hybrid dynamics can also
occur if different Lagrangian are valid in different regions of state space or because
of impacts, i.e. instantaneous jumps in the states. Symmetry and reduction of hybrid
Lagrangian systems has been already studied in e.g. Ames and Sastry (2006). Thus,
it is desirable and conceptually possible to extend the motion planning approach to
symmetric hybrid systems. If the motion planning library is designed to include many
admissible sequences, our tree search can be augmented with a more efficient sam-
pling strategy. A possible approach is to employ adaptive sampling used in the context
of randomized motion planning (Kobilarov 2011).

Thinking further ahead, optimal control problems of complex dynamical systems
will typically include not only one or two, but several, competing objectives. Addi-
tionally, a real world motion planning problem will include several boundary con-
straints, e.g. given by different operation points that have to be reached one after the
other. These subproblems as well as the prioritized objective may change during an
operation. For scenarios like this, a motion planning library that has been generated
offline in advance seems appropriate for an online optimization.
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Abstract
This article considers the optimal estimation of the state of a dynamic observable using a mobile sensor. The main goal is
to compute a sensor trajectory that minimizes the estimation error over a given time horizon taking into account uncertain-
ties in the observable dynamics and sensing, and respecting the constraints of the workspace. The main contribution is a
methodology for handling arbitrary dynamics, noise models, and environment constraints in a global optimization frame-
work. It is based on sequential Monte Carlo methods and sampling-based motion planning. Three variance reduction
techniques–utility sampling, shuffling, and pruning–based on importance sampling, are proposed to speed up conver-
gence. The developed framework is applied to two typical scenarios: a simple vehicle operating in a planar polygonal
obstacle environment and a simulated helicopter searching for a moving target in a 3-D terrain.
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1. Introduction

Consider a mobile sensor (a vehicle) estimating the state of
an observable (a target) with uncertain dynamics through
noisy measurements. The vehicle and target motions are
constrained due to their natural kinematics and dynam-
ics and due to obstacles in the environment. The task is
to compute an open-loop vehicle trajectory over a given
time horizon resulting in a target state estimate with low-
est uncertainty. This sort of capability is required, for
instance, for time-critical surveillance or search-and-rescue
missions.

The problem is formally defined through a hid-
den Markov model (HMM) of a stochastic process
{( Xk , Yk) }0≤k≤N where Xk denotes the hidden target state
and Yk denotes the observation at the kth time epoch.
The process evolution is studied over a horizon of N
epochs. The respective state and observation realizations
are denoted by xk ∈ X ⊂ Rnx and yk ∈ Y ⊂ Rny , where X
and Y are vector spaces. The HMM is defined by

Xk+1 = f ( Xk ,�k) , (1a)

Yk = g( Xk , Vk ;μk) , (1b)

where�k and Vk are independent and identically distributed
(i.i.d.) noise terms and μk ∈ M denotes the vehicle state1

at time k. The manifold M need not be a vector space. A
trajectory of states between two epochs i and j, where 0 ≤
i < j ≤ N , is denoted by xi:j := {xi, xi+1, . . . , xj−1, xj}.

The vehicle trajectory μ0:N is subject to dynamical
constraints, for example, arising from discretized Euler–
Lagrange equations of motion, expressed through the
equality hd : M × M → Rnd

hd(μk ,μk+1) = 0, for all 0 ≤ k < N . (2)

In addition the vehicle must avoid obstacles and is subject
to velocity and actuator bounds, jointly encoded through the
inequality constraints hc : M → Rnc

hc(μk) ≥ 0, for all 0 ≤ k ≤ N . (3)

A trajectory that satisfies the constraints (2) and (3) is
termed feasible.

The functions hd and hc are typically non-convex and
in some cases non-smooth. On the one hand, compli-
cated non-linear dynamics and obstacles induce multiple
homotopy classes of vehicle trajectories that preclude
convexity. On the other, function (2) can have singularities
(and, hence, might not be smooth everywhere) when the
dynamics is underactuated or non-holonomic (Choset et al.
2005; LaValle 2006). In addition, the distance-to-obstacle

1California Institute of Technology, Pasadena, CA, USA
2University of Southern California, Los Angeles, CA, USA

Corresponding author:
Marin Kobilarov, 2543 Wellesley Avenue, Los Angeles, California 90064,
US.
Email: marin@cds.caltech.edu



Kobilarov et al. 25

function [encoded in (3)] might not be differentiable, for
example, at sharp obstacle corners, requiring either ad hoc
smoothing or special non-smooth techniques (Clarke et al.
1998) such as generalized gradients (Choset et al. 2005).

The vehicle numerically computes the target state distri-
bution, also referred to as the filtering distribution, denoted
by πk( dx|y1:k ;μ0:k) dx := P( Xk ∈ dx|y1:k ;μ0:k) with
respect to some standard measure dx assuming the vehicle
has moved along trajectory μ0:k and obtained a sequence of
measurements y1:k .

1.1. Objective
The goal is to control the vehicle to obtain a high-quality
estimate of the target state during the future N epochs. Typ-
ically, only a subset of the target coordinates are of interest.
An appropriately chosen function ϕ : X → Rn′

x , where
n′

x ≤ nx, selects and weighs a combination of these coor-
dinates. For instance, ϕ can pick out only the position of
a moving target and ignore its velocity and heading. The
optimization problem is to compute the optimal future vehi-
cle trajectory μ∗

1:N , which minimizes the target estimate
uncertainty defined by

μ∗
1:N = arg min

μ1:N
E

[∥∥∥∥ϕ( XN ) −
∫
ϕ( x)πN ( x|Y1:N ;μ1:N ) dx

∥∥∥∥2
]

,

(4)

subject to the dynamics (2) and constraints (3). The expec-
tation in (4) is taken over all future realizations of the states
X0:N and the measurements Y1:N while πN is the posterior
density after filtering these measurements given (1).

The cost function in (4) is equivalent to the trace of the
covariance of ϕ( XN ). While it is possible to use other mea-
sures, such as entropy or the covariance determinant, this
metric is chosen since its value can be interpreted in mean-
ingful units (e.g. see Mihaylova et al. 2003a). For instance,

the special case ϕ( x) = M
1
2 x for some weighting matrix M

corresponds to a well-established tolerance-weighted error
or L-optimal design (de Geeter et al. 1998).

1.2. Simple example

These definitions can be illustrated with a simple exam-
ple of a target modeled as a unit-mass particle moving in
a plane. A vehicle with fixed constant velocity v ∈ R2

takes relative position measurements and must avoid a cir-
cular obstacle with center o ∈ R2 and radius d. In this
situation we have X = Y = M = R2 with motion
function f ( x,ω) = x +ω, observation function g( x, ν;μ) =
x − μ + ν, and vehicle dynamics and constraints given by
hd(μk ,μk+1) = μk+1 − μk − v and hc(μ) = ‖μ − o‖ − d,
respectively. The noise terms ω and ν are realizations of, for
example, white random processes. Setting ϕ( x) = x is then
equivalent to minimizing the sum of the variances of the two
planar coordinates. Therefore, if x were measured in meters
then the square root of the right-hand side of (4) is also
in meters, which is convenient for establishing meaningful
tolerances.

1.3. Related work

The optimization (4) corresponds to the optimal sensor
scheduling problem (Tremois and Le Cadre 1999; Singh
et al. 2007), which is of central importance for the target-
tracking community. It is also highly relevant to the prob-
lem of active sensing studied in robotics (Grocholsky et al.
2003; Mihaylova et al. 2003a; Thrun et al. 2005) where the
vehicle estimates its own state (Paris and Le Cadre 2002; He
et al. 2008) and in some cases refines its knowledge about
the environment (Sim and Roy 2005; Stachniss et al. 2005).

One approach is to solve the problem approximately by
discretizing the vehicle and target state spaces. Such tech-
niques, for example, based on regular grids (e.g. Chung
and Burdick 2007) or shaping functions (Lavis et al. 2008),
are too restrictive when non-trivial dynamics and sensing
are considered. They are more appropriate for higher-level
decision making. For instance, a policy search in an infor-
mation space (LaValle 2006) or a Markov decision process
(MDP)-based search [e.g. Bethke et al. (2008)] would typ-
ically be based on such representations. We emphasize that
our main interest is in high-dimensional problems domi-
nated by fast non-linear and underactuated dynamics and
sensing. In this context techniques exploiting convexity
[respectively submodularity (Krause and Guestrin 2007;
Hollinger et al. 2009)] are not suitable since such approx-
imations are either too coarse or will violate the dynam-
ics and result in solutions that the original system cannot
realistically execute.

Most existing techniques, beyond discrete methods, have
one or more of the following limitations: they are based on
models with linear or Gaussian structure; they are limited
to myopic one-step optimal decision making; or the state
space is unconstrained [i.e. no constraints of the form (3)
are considered]. Several recent works have addressed some
of these issues but not all. For instance, simulation-based
stochastic gradient optimization is proposed by Singh et al.
(2007) in order to handle arbitrary motion and sensor mod-
els. The resulting method is provably convergent and it
exploits the problem structure through control variates to
reduce variance. A related approach (Martinez-Cantin et al.
2009) aimed at on-line active sensing employs Bayesian
optimization, that is, using Gaussian process cost-function
approximation to speed up the search. Several recent works
with application to unmanned aerial vehicles (UAVs) also
address some of the listed limitations but are still restricted
to either stationary targets (Tisdale et al. 2009), one-step
planning (Cole et al. 2008; Bryson and Sukkarieh 2009;
Hoffmann and Tomlin 2010), or unconstrained scenar-
ios (Geyer 2008; Ryan 2008).

1.4. Overview of contributions and approach

The distinctive feature of this paper is the treatment of the
constraints (2) and (3) in the optimization (4). In particu-
lar, gradient-based optimization as in Paris and Le Cadre
(2002), Mihaylova et al. (2003b), and Singh et al. (2007) is
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not suitable unless a good starting guess is chosen since
the constraints impose many local minima. In addition,
special differentiation (Clarke et al. 1998) is required to
guarantee convergence due to the non-smooth nature of the
constraints.

To overcome these issues we instead employ a method-
ology based on global exploration of the solution space of
vehicle trajectories. This is achieved through a random tree
of feasible trajectories. Such a tree is constructed follow-
ing ideas from sampling-based motion planning (LaValle
2006). The key property of motion-planning trees relevant
to this paper is that the tree is guaranteed to reach asymp-
totically close to any reachable state in the state space as
the algorithm iterates. Yet, the problem (4) is more diffi-
cult than a typical motion-planning problem because the
cost is based on uncertainty that depends on the whole tra-
jectory. In essence, the problem cannot be cast as a graph
or tree search typically employed in motion planning, for
example, to solve shortest-path problems, because the cost
function (4) is not derived from a local metric and is not
additive over separate trajectory segments. Additional tools
are necessary. The solution proposed in this paper is to per-
form stochastic optimization over a solution space encoded
through a dynamically adaptive trajectory tree.

The advantage of using a tree is that it provides a compu-
tationally efficient way to encode multiple solution trajec-
tories and to propagate probability distributions recursively.
While a uniformly random tree can asymptotically reach
an optimal solution this might be an infinitely slow process
in practice. Therefore, as with most Monte Carlo meth-
ods (Rubinstein and Kroese 2008) it is essential to exploit
the problem structure in order to speed up the search. We
employ three variance-reduction techniques to guide and
accelerate the optimization:

1. The first, termed biased sampling, chooses tree nodes
based on the expected utility of improving the target
estimate in order to focus tree exploration into more
‘promising’ parts of the state space.

2. We then introduce a technique termed shuffling, which
randomly modifies the tree structure in an attempt to
lower the optimal cost. This is achieved by disconnect-
ing a subtree from its parent and connecting it to a
different part of the tree. The tree parts to be modified
are chosen probabilistically.

3. The third technique introduced in the paper, termed ran-
domized pruning, removes existing nodes probabilisti-
cally according to their performance.

While biased sampling has been widely used to
speed up regular (i.e. deterministic) motion-planning algo-
rithms (Choset et al. 2005), pruning and shuffling have not
been previously employed in the context of sampling-based
motion planning under uncertainty. These proposed meth-
ods result in a significant computational speed-up compared
to a random baseline algorithm. Yet, currently, under gen-
eral regularity conditions and no additional assumptions

Table 1. Variance-reduction techniques.

Technique Exploration Exploitation Computational
efficiency

Tree expansion
√

Biased sampling
√ √

Shuffling
√ √

Pruning
√

about the structure of the HMM (1) and constraints (2)
and (3), formally only asymptotic convergence rates (i.e.
as the number of iterations tends to infinity) are possible.
Nevertheless, there is a sound reason why the combina-
tion of these three techniques is effective. A successful
optimization methodology must address the exploration–
exploitation trade-off paradigm (see e.g. Powell 2007) and
do so with computational efficiency by dynamically adjust-
ing the search space. The proposed optimization algo-
rithm accomplishes that. In particular, the basic random
tree expansion achieves exploration of the state space. The
biased sampling and shuffling steps exploit information
known a priori and collected during the algorithm opera-
tion to focus the search on more promising parts of the state
space. Pruning is critical for maintaining a balance between
the size and quality of the search space in order to achieve
computational efficiency. These properties are summarized
in Table 1 and will be developed in detail in the paper.

1.5. Links to evolutionary computing

The resulting approach has close links to evolutionary com-
puting. In particular, biased sampling and pruning based
on an importance function correspond to selection using
the ‘fitness’ criteria employed in genetic algorithms. Shuf-
fling is related to cross-over and migration used in genetic
programming (Langdon and Poli 2001) since a shuffle gen-
erates new trajectories by combining existing segments. A
standard genetic algorithm could be used to perform the
optimization (4) but will have difficulty managing the con-
straints (2) and (3) (e.g. see Michalewicz and Schoenauer
1996). Standard techniques, such as penalty functions or
infeasible path rejection, employed in works such as Xiao
et al. (1997), Vaidyanathan et al. (2001), Hocaoglu and
Sanderson (2001), and Erinc and Carpin (2007) depend on
parametrized paths and on cost-function tuning parameters.
It is not clear how their performance scales as the environ-
ment becomes more cluttered. In contrast, sampling-based
trees are specifically developed to handle systems with
complicated dynamics and obstacle constraints. Therefore,
this paper employs a general motion tree to automatically
encode feasible candidate paths and avoid problem-specific
parameter tuning. The stochastic optimization then amounts
to dynamically adapting the tree structure so that there is
convergence to an optimal trajectory. While shuffling and
pruning might seem akin to standard genetic operation,
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Fig. 1. A scenario with a vehicle (depicted as a small helicopter) at state

μ0 ∈ M and a target with initial distribution π0 diffusing north. Both

target and vehicle avoid obstacles denoted Oi. The set of possible target

motions is approximated by L sampled trajectories X (�)
0:N for � = 1, . . . , L.

The figure shows the sampled states (particles) at the beginning k = 0,

at two intermediate times 0 ≤ k1 ≤ k2 ≤ N , and at the horizon k = N .

We wish to find the vehicle trajectory μ∗
0:N , which minimizes the expected

target state estimate uncertainty. The vehicle sensor typically has a small

field of view (FOV) relative to the environment size.

there is an important distinction–they are designed to oper-
ate over a ‘population’ encoded as a tree of trajectories
rather than as separate paths as in a standard genetic algo-
rithm. In that sense the proposed techniques are unique
and make a bridge between evolutionary algorithms and
randomized motion-planning methods.

2. An example scenario

Consider the scenario depicted in Figure 1. The vehicle and
target operate in a workspace (i.e. an environment) denoted
by W , where W = R2 or W = R3 (Latombe 1991).
The workspace contains a number of obstacles denoted by
O1, . . . , Ono ⊂ W , which the vehicle must avoid.

The vehicle state is defined as μ = ( r, v) ∈ C × Rnv

consisting of its configuration r ∈ C and velocity v ∈ Rnv . C
is the vehicle configuration space describing, for example,
the position, orientation, and joint angles of the system.
Assume that the vehicle occupies a region A( r) ⊂ W
and that the function prox( A1, A2) returns the closest
Euclidean distance between two sets A1,2 ⊂ W and is
negative if they intersect. One of the constraints defined
in (3) is to avoid obstacles, generally expressed as

h1
c( ( r, v)k ) = min

i
prox( A( rk) , Oi) , for all 0 ≤ k ≤ N .

(5)

The framework developed in the paper will be applied
to two types of vehicles. The first has a simple first-order
model and operates in a polygonal obstacle environment
[i.e. dim( W) = 2]–a setting suitable for measuring the

algorithm performance compared to an idealized scenario.
The second scenario is based on a low-flying underac-
tuated UAV operating in a mountainous terrain in 3-D
[i.e. dim( W) = 3)]. The simpler model is presented next
while the helicopter application will be developed in
Section 7.2.

2.1. A simple vehicle

Consider a point-mass vehicle moving in a plane. Its state
space is M = R2 × R2 with state μ = ( r, v) consisting of
the position r := ( rx, ry) ∈ R2 and velocity v := ( vx, vy) ∈
R2. It evolves according to the simple dynamics

rk+1 = rk + τvk , (6)

which is encoded by the function hd defined in (2). The
constant τ is the time step, that is, the sampling period, mea-
sured in seconds. The velocity vk can be directly controlled
but is bounded ‖vk‖ < vmax. For instance, in the scenario
(Figure 1) a bound of vmax = 8 m s−1 is chosen to create
a problem that can be solved optimally only by a particular
type of trajectory known in advance for a time horizon of
30 s.

2.2. Target dynamics

The target is modeled as a point mass on the ground with
position r = ( rx, ry) ∈ R2 and velocity v = ( vx, vy) ∈ R2

forming the state x = ( r, v) with X = R2 × R2.
The target dynamics is governed by a general control law

including a proportional term, such as arising from a goal
attraction, a damping term in order to constrain the target
speed, and obstacle-avoidance forcing. In addition, there
is a white-noise acceleration component � with standard
deviations σx and σy. The model is

rk+1 = rk + τvk ,

vk+1 = vk + τ
(
ωk + Kp( rg − rk) −Kdvk

+
[

0 −ko/dk

ko/dk 0

]
vk

)
,

ωk ∼ Normal( 0, diag( σ 2
x , σ 2

y ) ) ,

(7)

where τ is the time step; Kp > 0 and Kd > 0 are the
potential and dissipative matrices, respectively; ko > 0 is
an obstacle steering scalar gain; rg ∈ R2 is a constant goal
location; and dk = ‖gk‖ with gk := ro − rk , where ro is the
closest point on the obstacle set. The model (7) corresponds
to the function f defined in (1a).

Such a model is chosen in order to add realism to the tar-
get motion as if it were executing an actual navigation task.
The amount of knowledge of this task can be tuned using
the parameters. For instance, in the numerical scenarios
studied in this paper we use

Kp = diag( 0, 0.03) , Kd = diag( 0, 0.6) , rg = ( 0, 200) ,

ko = 50, if |βk| < π/2, else ko = 0,
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where βk is the angle between vk and gk . Assuming the tar-
get starts at the origin, the dynamics would drive it north,
avoiding obstacles if too close, diffusing in uncertain direc-
tions to east or west, and finally ending up and staying
around the boundary line ry = 200.

2.3. Sensor model

The vehicle is equipped with sensors, which provide the rel-
ative range and bearing to the target; hence, Y = R2. The
target is observed only if its line of sight is not obstructed
by obstacles and if it falls within the sensing distance ds

of the vehicle. This is formally expressed through the tar-
get visibility area V( r′) ⊂ W for given vehicle position
r′ =( r′

x, r′
y) ∈ R2 defined by

V( r′) := {
r ∈ W | ‖r − r′‖ < ds

and h1
c

(
( r′ + α( r − r′) , ·) ) ≥ 0, ∀α ∈ [0, 1]

}
.

In order to define the sensor function (1b) for a target with
position r = ( rx, ry) first define the perfect sensor function

g∗( ( r, v) ; ( r′, v′) ) =
[ ‖r − r′‖

arctan( ( ry − r′
y) , ( rx − r′

x) )

]
.

(8)

This function is only valid if the target reading originated
from its visibility region. In addition, there is a small prob-
ability Pf ∈ [0, 1] of a false reading uniformly distributed
over the visibility region. The actual sensor function is then
given by

g( ( r, v) ; ( r′, v′) , V )

=

⎧⎪⎨⎪⎩
g∗( ( r, v) ; ( r′, v′) ) +‖r−r′‖

ds
V , r ∈ V( r′)

∅, r �∈ V( r′)

}
if uf ≥ Pf

g∗( ( rf , v) ; ( r′, v′) ) , rf ∼ U (V( r′) ) if uf < Pf ,
(9)

with noise V := ( Vd , Vb) ∼ Normal( 0, diag( σ 2
d , σ 2

b ) )
where σd and σb define the range and bearing standard
deviations, respectively, and uf is a uniform sample from
[0, 1].

2.4. Cost function

Finally, the vehicle is interested in minimizing the uncer-
tainty in the target position estimate. This is encoded by
simply setting

ϕ( x) = ( rx, ry) ∈ R2

when performing the optimization (4).

3. Problem formulation

An alternative way to express the HMM (1) is through the
known densities

X0 ∼ π0, (10a)

Xk ∼ p( ·|Xk−1) , k > 0 (10b)

Yk ∼ q( ·|Xk ;μk) , k > 0 (10c)

where π0 is the initial distribution. Note that the expecta-
tion operator E [·] used throughout the paper is applied with
respect to these densities, unless noted otherwise. The filter-
ing density employed in the computation of the cost (4) is
then expressed recursively (e.g. Robert and Casella 2004)
according to

πk( x|y1:k ;μ1:k)

= q( yk|x;μk)
∫

p( x|x′)πk−1( x′|y1:k−1;μ1:k−1) dx′∫
q( yk|x;μk)

∫
p( x|x′)πk−1( x′|y1:k−1;μ1:k−1) dx′dx

.

(11)

In addition, the tree optimization algorithm will require the
definition of the prediction density at time k + i, for i > 0,
after receiving measurements only during the first k epochs.
It is denoted πk+i|k and defined by

πk+i|k( x|y1:k ;μ1:k) =
∫

p( x|x′)πk+i−1|k( x′|y1:k ;μ1:k) dx′,

(12)

with πk|k ≡ πk . The estimate of ϕ( XN ) after collecting
a sequence of measurements y1:k obtained from a vehicle
trajectory μ1:k is denoted �N |k : Yk × Mk → Rn′

x and
defined by

�N |k( y1:k ;μ1:k) := E[ϕ( XN ) | y1:k ;μ1:k]

=
∫
ϕ( xN )πN |k( x|y1:k ;μ1:k) dx. (13)

The objective function in (4) or, equivalently, the
expected uncertainty cost at time N given a vehicle trajec-
tory μ0:k , for k ≤ N , is denoted by JN |k : Mk → R and
defined as

JN |k(μ1:k) = E
[‖ϕ( XN ) −�N |k( Y1:k ;μ1:k) ‖2

]
=
∫

‖ϕ( xN ) −�N |k( y1:k ;μ1:k) ‖2

p( x0:N , y1:k |μ1:k) dx0:N dy1:k .

(14)

The expectation over states and measurements in (14) is
taken with respect to the density p( x0:N , y1:k |μ1:k), which,
for Markov models in the form (10), can be decomposed
[see e.g. Robert and Casella (2004)] as

p( x0:N , y1:k |μ1:k) = π0( x0)
N∏

i=1

p( xi|xi−1)
k∏

i=1

q( yi|xi;μi) .

(15)

The cost of a complete trajectory μ1:N is denoted for
brevity by J := JN |N . The goal (4) is then expressed in short
as

μ∗
1:N = arg min

μ1:N
J (μ1:N ) , (16)

subject to the dynamics and constraints.
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4. Sampling-based approximation

The filtering densities (11) and (12) generally cannot be
computed in closed form since they are based on non-linear
or non-Gaussian models. Therefore, following Singh et al.
(2007), we employ a particle-based approximation using L
delta distributions, placed at state samples X (j)

k ∈ X with

positive weight functions w(j)
k : Yk × Mk → R+, that is

πk( x|y1:k ;μ1:k) ≈ π̂k( x|y1:k ;μ1:k)

:=
L∑

j=1

w(j)
k ( y1:k ;μ1:k) δ

X
(j)
k

( x) , (17)

where δy denotes the Dirac delta mass at point y.
A simple way to construct such a representation is to

sample L independent trajectory realizations {X (j)
0:k}L

j=1 using
the prior (10a) and target motion model (10b) and to com-
pute the weights, for given measurements y1:k obtained at
vehicle states μ1:k , according to

w̄(j)
k ( y1:k ;μ1:k) :=

k∏
i=1

q( yi|X (j)
i ;μi) , (18)

w(j)
k = w̄(j)

k∑L
�=1 w̄(�)

k

, (19)

so that the weights are normalized, that is,
∑L

j=1 w(j)
k = 1.

This is equivalent to a sequential importance sam-
pling (SIS) scheme with importance distribution
π0( x0)�k

i=1p( xi|xi−1). Note that while more sophisti-
cated sampling methods have been developed, for example,
that additionally account for measurements to reduce
variance (Doucet et al. 2001; Robert and Casella 2004),
this paper follows the basic choice for simplicity. Figure 1
depicts a subset of possible evolutions of such particles in
the helicopter search scenario.

With this representation it is straightforward to show
that (12) is approximated simply according to

πk+i|k( x|y1:k ;μ1:k) ≈ π̂k+i|k( x|y1:k ;μ1:k)

:=
L∑

j=1

w(j)
k ( y1:k ;μ1:k) δ

X
(j)
k+i

( x) . (20)

The estimate (13) is then approximated by

�N |k( y1:k ;μ1:k) ≈ �̂N |k( y1:k ;μ1:k)

:=
L∑

j=1

ϕ( X (j)
N ) π̂N |k( X (j)

N |y1:k ;μ1:k) . (21)

Note that updating the cost along a vehicle trajectory has
computational complexity O( L2) per time step. Yet, due to
particle independence the computation can be parallelized
using special hardware up to a factor of O( L) and sped up
significantly.

As the time N increases the approximation (21) degrades
since the probability mass becomes concentrated in a
decreasing number of particles (Robert and Casella 2004).
A standard remedy is to include a resampling step (Doucet
et al. 2001) to redistribute the samples equalizing the
weights. While it is possible to perform sequential impor-
tance resampling (SIR) in the proposed framework it is
avoided for computational reasons specific to the tree struc-
ture employed for uncertainty propagation. The drawback
is that the method is limited to small time horizons, such
as N < 30. The distinct advantage though is that the sim-
pler SIS scheme permits a computationally efficient update
of the density (17) and estimate (21) during optimization.
The idea (described in detail in the following sections) is
that SIS can be implemented as a simple and fast parallel
weights rescaling in a dynamically changing tree of vehicle
trajectories that explores the solution space.

Finally, the error JN |k is approximated through impor-
tance sampling of the integrand in (14), that is by drawing(

X (�)
0:N , Y (�)

1:k

)
from p( x0:N , y1:k |μ1:k). It is natural to use the

i.i.d. state particles X (�)
0:N already sampled for the approx-

imation of the density (17). Measurement sequences Y (�)
1:k

are then sampled by drawing Y (�)
i ∼ q( ·|X (�)

i ;μi) for all
i = 1, . . . , k. As long as the densities (10) can be directly
sampled from, which is valid for common models used in
robotics (e.g. Thrun et al. 2005), then the approximation
simplifies to the Monte Carlo or the stochastic counterpart,
that is

JN |k(μ1:k) ≈ ĴN |k(μ1:k)

:= 1

L

L∑
�=1

∥∥∥ϕ (X (�)
N

)
− �̂N |k

(
Y (�)

1:k ;μ1:k

)∥∥∥2
,

(22)

with Ĵ := ĴN |N denoting the approximate cost of a whole
trajectory μ1:N . The global optimization algorithms devel-
oped in this paper will be based on the approximate esti-
mate (21) and cost (22), that is, they will solve

μ̂∗
0:N = arg min

μ0:N
Ĵ (μ0:N ) . (23)

In this sense only an approximate solution will be obtained.
Yet, by the law of large numbers (Del Moral 2004) μ̂∗

0:N will
approach the true solution μ∗

0:N by increasing the number of
simulations L.

5. Random tree optimization

The nature of the constraints (2) and (3) renders gradient-
based methods unsuitable for solving (23). An alternative
is to discretize the vehicle state space M, for example,
using a grid and generating candidate paths by transition-
ing between adjacent cells. Such an approach is generally
limited to a few dimensions, such as dim( M) ≤ 3, and to
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Fig. 2. A tree-expansion step implemented by Expand (Section 5.1): (a) a node ηb is sampled; (b) it is then connected to a randomly chosen node

ηa ∈ T .

systems with very simple dynamics, for example an uncon-
strained point mass in the plane. This is due to the exponen-
tial (both in state dimension and trajectory epochs) size of
the search space, also known as the curse of dimensionality.

In this paper we also employ a tree-based search but
unlike a standard discrete search, the nodes of the tree
are sampled from the original continuous space M and
the edges correspond to trajectories satisfying any given
dynamics (2) and general constraints (3). Our approach
is based on a recent methodology under active develop-
ment in the robotics community known as sampling-based
motion planning, which includes the rapidly exploring ran-
dom tree (RRT) (LaValle 2006) and the probabilistic road
map (PRM) (Choset et al. 2005). Unlike these motion-
planning algorithms, the trees employed in this paper are
not expanded based on a ‘distance’ metric between nodes.
Instead, the connections are made probabilistically, nodes
and edges can be added, swapped, or deleted during the
algorithm operation. This section considers the basic tree
expansion that explores the state space, while Section 6
introduces the variance-reduction techniques that complete
the overall approach.

5.1. Tree expansion

The set of nodes is denoted by N := N × M × RL×L ×
R+ × N. Each node is defined by the tuple

η = ( k,μ, W , Ĵ , ρ) ∈ N ,

consisting of the epoch index 0 ≤ k ≤ N ; the vehicle
state μ; the particle weights matrix W , which gives a con-
venient way to compute the density π̂ ; the target state esti-
mate uncertainty cost Ĵ ≥ 0; and the tree parent index ρ.
Nodes and their subelements are indexed by superscripts,
that is, ηa has state μa and its parent node is ηρ

a
. The

root of the tree that contains the starting vehicle state is
denoted η0 =( 0,μ0, W 0, Ĵ0, ·), where the matrix elements
W 0
�j = 1/L for all �, j = 1, . . . , L. A trajectory between

two nodes, ηa and ηb, is denoted μa→b and a state at time k
along this trajectory is denoted μa→b

k where ka ≤ k ≤ kb.

A tree T ⊂ N is a set of nodes connected by feasible tra-
jectories. The tree structure guarantees that there is a unique
trajectory leading from the root to each node ηa ∈ N , which
is denoted μ0→a.. An overview of the elements comprising
each node is given in Table 2. Their exact computation is
detailed next.

A tree is constructed by assuming that a local controller
is available (LaValle 2006) that attempts to drive the vehi-
cle between two given nodes ηa and ηb. For instance, if
the states μa and μb were close enough and no obstacles
between them were present then a trajectory μa→b would be
produced, otherwise the connection fails. Such a controller
is abstractly represented by the function Connect, that is

Connect( ηa, ηb) ⇒
{
μa→b, if path found
∅, otherwise.

(24)

The tree is constructed by sampling and connecting
nodes. Assume that a function Sample is available, which
returns a new node, that is

ηb = Sample( ) . (25)

The default choice is to sample (state, time) pairs (μ, k)
uniformly from M × {1, . . . , N} and discard samples that
violate the constraints (3), for example, which lie inside
obstacles. Next define the set T →b ⊂ T of all existing tree
nodes for which a feasible trajectory to the newly sampled
node can be found, that is

T →b = {η ∈ T | Connect( η, ηb) �= ∅}.

One of these nodes denoted ηa ∈ T →b is selected uniformly
at random to become the parent of ηb linked with trajectory
μa→b, that is ρb = a. Figure 2 illustrates the construction.

After a new node ηb is added to the tree, the target fil-
tering density π̂ (20) is propagated along the newly added
trajectory segment μa→b for all sampled target paths X (�)

ka:kb

by simulating measurements

Y (�)
k ∼ q( ·|X (�)

k ;μa→b
k ) , for k = ka, . . . , kb, (26)
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Table 2. Description of the elements of a node ηb =( kb,μb, Wb, cb, Ĵ b, ρb) ∈ T .

Variable Type Element description

kb integer ≥ 0 time epoch index
μb dim(M) ×1 vector vehicle state at node

Wb L×L matrix weights Wb
�j := w

(j)
kb ( Y

(�)
1:kb ;μ0→b), for �, j = 1, . . . , L

Ĵb scalar > 0 uncertainty cost Ĵ b := ĴN |kb (μ0→b)

ρb integer ≥ 0 parent-node index

for all � = 1, . . . , L. A row in the matrix W b, that is,
W b
� for any 1 ≤ � ≤ L, corresponds to the resulting

weights for each measurement sequence, that is W b
�j :=

w(j)
kb ( Y (�)

kb ;μ0→b), where w(j)
kb is defined in (18). The weights

are computed incrementally using the parent weights W a
�j

through

W̄ b
�j = W a

�j · U�j, where U�j :=
kb∏

k=ka

q( Y (�)
k |X (j)

k ;μa→b
k ) ,

(27a)

W b
�j = W̄ b

�j∑L
j=1 W̄ b

�j

. (27b)

The error (22) of the complete trajectory μ0→b, denoted by
Ĵ b, is

Ĵ b := ĴN |kb(μ0→b) =
L∑
�=1

∥∥∥∥∥∥ϕ( X (�)
N ) −

L∑
j=1

W b
�jϕ( X (j)

N )

∥∥∥∥∥∥
2

.

(28)

Note again that Ĵ b represents the uncertainty measure at the
end of the time horizon N but only based on measurements
collected along μ0→b, that is, up to time kb. If Ĵ b < Ĵ∗,
where Ĵ b is computed using (28) and Ĵ∗ is the current best
cost, then the current best node is reset, that is, η∗ = ηb.
The updated optimal vehicle trajectory can be backtracked
from ηb to the root η0.

Let s ∼ U( S) denote uniform sampling of an element s
from a finite set S. The complete tree-expansion algorithm
can now be summarized as

Expand
1. ηb = Sample( )
2. ηa ∼ U( T →b)
3. μa→b = Connect( ηa, ηb)
4. T = T ∪ {ηb}; ρb = a
5. compute W b and Ĵ b using (27) and (28)
6. if Ĵ b < Ĵ∗ then η∗ = ηb

The expansion is repeated n−1 times in order to produce
a tree with n nodes. Initially, the tree contains only the root,
that is, T = {η0}, and η∗ = η0.

5.1.1. Computational saving It is important to stress that
the computation (28) is accomplished through an incre-
mental propagation of the filtering density weights along
the newly added trajectory μa→b from parent ηa to child
node ηb rather than the complete trajectory μ0→b. This is
the advantage of using a tree rather than a naive enumer-
ation of vehicle trajectories in order to explore the solu-
tion space Mk . For instance, assume that the tree were
a complete binary tree with n nodes and, hence, with
depth d = log( n + 1) −1. Then it encodes n/2 different
trajectories since each leaf can be backtracked to gener-
ate a unique trajectory μ0:N . If each edge lasts on aver-
age N/d time epochs then the density computation (27)
must be performed n

d N times for the tree compared to
n
2 N times if the n/2 trajectories were enumerated. In other
words, the tree provides an O( log( n) ) saving factor on
average.

5.2. Example: simple vehicle

Consider a simple vehicle with dynamics (6). Since there is
no bound on accelerations a trajectory between two nodes is
simply a line segment with constant velocity. The function
Connect introduced in Section 5.1 takes the form:

Connect( ηa, ηb)
1. if kb = ∞,

2. kb = ka +
⌈

‖rb−ra‖
τvmax

⌉
3. v = rb−ra

τ (kb−ka)

4. for k = ka : kb

5. rk = ra + k−ka

kb−ka ( rb − ra); μa→b
k =( rk , v)

6. if h1
c(μa→b

k )< 0 return ∅
7. return μa→b

It begins by checking whether the trajectory to be com-
puted must have a fixed final time kb. When the final time
epoch kb is set to ∞ (line 1) then any kb such that ka < kb ≤
N is allowed. This occurs when ηb is a uniform sample2 in
which case the trajectory μa→b is generated using the max-
imum permitted velocity vmax and kb is set to the resulting
time (line 2). The constant velocity along the trajectory is
computed in line 3. The points along the trajectory are then
linearly interpolated (line 5). If the trajectory intersects any
obstacles then the connection fails (line 6).
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√
Ĵ∗ = 52.3 m

√
Ĵ∗ = 71.2 m

√
Ĵ∗ = 66.2 m

(a) Random tree (RND) (b) Tree with local metric d (RRT) (c) Tree with cost-to-come metric d̄ (iPRM)

Fig. 3. Three types of search trees used to explore the vehicle trajectory space corresponding to the scenario in Section 2. The vehicle has simple

dynamics and a circular sensing radius shown as a disk at its starting state. A subset of the target paths X (1:L)
0:N are shown diffusing from the bottom right

to the top of the environment. The trees are: (a) a random tree (RND) constructed using Expand (Section 5.1); (b) a rapidly exploring random tree (RRT)

using the nearest-neighbor metric d (29); (c) an incremental tree-based probabilistic road map (iPRM) expanded based on the cost-to-come distance

d̄ (30). Each tree has 500 nodes. While the optimal (i.e. with minimum target position variance) trajectories of all trees are quite different (shown as

thicker lines), they all yield very similar costs Ĵ∗. It is evident that these solutions are of poor quality since the square root of the variance is large (i.e.

> 52.3 m) relative to the environment size (200 × 200 m).

The optimal estimation algorithm is tested in a polygonal
obstacle environment mimicking the scenario in Section 2.
A tree built after calling Expand 500 times is shown in
Figure 3(a). It takes a few milliseconds of computation to
generate such a tree. In practice, a tree will contain tens
of thousands of vertices. Figure 4 shows a few frames of
the resulting motion along an optimal trajectory obtained
by a denser tree with 10,000 nodes which took 5 s to com-
pute. More detailed computational studies are performed in
Section 7.

5.3. Other expansion methods

There are alternative methods of constructing an explo-
ration tree. For instance, instead of connecting nodes at ran-
dom, a newly sampled node can be connected to an existing
node in the tree based on some deterministic criteria. Classi-
cal planning trees such as an RRT employ nearest-neighbor
connections. Nearest should be understood with respect to
a predefined pseudo-distance metric d : N × N → R.3

Typical metrics include the Euclidean distance d( ηa, ηb) =
‖μb − μa‖ (assuming M is a vector space) or the time of
travel between nodes

d( ηa, ηb) = kb − ka. (29)

Using such a local cost d has the advantage of quickly
exploring the state space. It also has a major drawback:
the cumulative cost of a path (e.g. its length or total time)
can significantly deviate from an existing shortest path.
More intuitively, even though the tree would approximate
all states in the domain, most of the paths will be jagged
and circuitous. For instance, Figure 3(b) shows such a tree
computed for a scenario mimicking the setup of Figure 1.

This can be remedied by considering the cost-to-come c
defined by

cb = ca + d( ηa, ηb) ,

with the cost of the root c0 = 0. The nearest neighbor is
then chosen according to a modified distance d̄ defined by

d̄( ηa, ηb) = ca + d( ηa, ηb) . (30)

A tree based on d̄ will contain ‘straighter’ trajectories, see
Figure 3(c), which take a minimum time to reach the reach-
able points in the state space. Such a tree is termed an
incremental probabilistic road map (iPRM) to distinguish it
from the standard RRT. These issues are discussed in Fraz-
zoli et al. (2002) who propose a general motion-planning
algorithm based on a combined metric of d and d̄.

More formally, the nearest existing node ηa ∈ T to a
sampled node ηb is given by

ηa = arg min
η∈T →b

d( η, ηb) . (31)

Such nearest-neighbor expansion is achieved by replacing
line 2 in routine Expand with (31).

While the RRT and iPRM are standard choices for
motion-planning problems, as we will show they are not a
good option when optimizing uncertainty-based cost func-
tions, that is, solving (4). The issue is that the cost J of a
path cannot be expressed as a summation over the costs of
its individual edges. In that respect, the random algorithm
RND turns out to be more effective.

5.4. Probabilistic completeness

Under certain assumptions a random tree can reach asymp-
totically close to any state that is reachable. Recall the
following lemma adapted to the settings of this paper:
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t = 0 s t = 6 s t = 12 s

t = 18 s t = 24 s t = 30 s

Fig. 4. The optimal vehicle path computed using algorithm Expand (Section 5.1) with L = 100 particles, time horizon T = 30 s, and time step

τ = 250 ms. The consecutive frames show the evolution of the sampled target trajectories X (1:L)
0:N and the vehicle trajectory μ∗

0:N . The computed cost is√
Ĵ∗ = 43.9 m.

Lemma 5.1. (See e.g. Ladd and Kavraki 2004.) After
selecting n nodes, the probability of failing to find a path
from the root η0 to a uniformly sampled node ηa ∈ N
reduces exponentially in n. More formally,

P( � ∃μ0→a)< �( 1 − c)n ,

for some constants �, c ∈( 0, 1).

The main assumption in Lemma (5.1) is that each node
can be connected to a sufficiently large number of other
nodes using the Connect routine. The collection of these
nodes is called the reachable set and its size depends on
the constraints (2) and (3), for example, it shrinks if a vehi-
cle is slow or if the number of obstacles in the environment
increases. The intuition behind Lemma (5.1) then is that,
as long as every node has large enough reachable space
(the volume of which is proportional to c) and, under the
assumption that the path has a finite length (related to the
constant �), then adding more nodes would exponentially
increase the probability of finding the path. The precise
technical conditions that render Lemma (5.1) applicable to
the scenario of this paper are developed in Hsu et al. (2002)
and Frazzoli et al. (2002).

6. Variance-reduction techniques

The advantage of constructing the exploration tree
described in Section 5 is that it asymptotically reaches

arbitrarily close to any state in the state space M assum-
ing that it is bounded. To guarantee that formally (as
described in Section 5.4) the tree is constructed using
uniform node sampling and random connection of new
nodes. Note that the expansion is agnostic to the uncer-
tainty cost Ĵ along trajectories that we actually seek to min-
imize. This is problematic because it might take infinitely
long to explore a reasonable fraction of trajectories with
low Ĵ . Therefore, in the spirit of Monte Carlo optimiza-
tion based on importance sampling (Rubinstein and Kroese
2008) as well as genetic computation, we propose three
techniques that retain the probabilistic completeness of ran-
dom trees but at the same time drastically speed up the
optimization.

6.1. Utility sampling of nodes

The difficulty of optimization in a complicated high-
dimensional landscape can in practice be alleviated by
incorporating problem-specific knowledge. For instance,
the set of nodes considered during randomized motion plan-
ning can be chosen in a biased way, for example, pro-
portional to some utility function known to reduce the
trajectory cost (see e.g. Burns and Brock 2005).

This paper employs a similar approach dictated by the
fact that an optimal vehicle trajectory μ∗

0:N , that is, with
lowest uncertainty cost J , is likely to pass close to states
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with a high observation likelihood. Thus, a sample μsample
k

is chosen so that

μ
sample
k = arg max

μ
q( Y �k |X �

k ;μ) , (32)

where ( X (�)
k , Y (�)

k ) is a single particle selected by sampling
� uniformly from {1, . . . , L}. The optimal state μ in (32) is
usually straightforward to compute. For instance, the opti-
mal vehicle position in the example scenario from Section
2 will coincide (on average) with the target position at X �

k ,

so according to (32) one can simply set μsample
k = X �

k .
It is also possible to sample μ by minimizing the joint

likelihood over all particles. Since this results in a com-
plex multimodal optimization subject to sensor visibility
constraints [such as (9)] we choose to use the simplest
form (32) as it does not add extra complexity to the overall
algorithm.

The function Sample introduced in Section 5.1 is speci-
fied as follows. It samples a state μ in two ways: 1) based
on the utility (32) and 2) uniformly in the space M. It
selects the former with probability PU , otherwise it selects
the latter at every tree expansion. The routine is summarized
as

Sample
1. with probability PU ,
2. k ∼ U( {0, . . . , N}); � ∼ U( {1, . . . , L})
3. μ = arg maxμ′ q( Y �k |X �

k ;μ′), where Y �k ∼ q( ·|X �
k ;μ′)

4. otherwise
5. k = ∞
6. μ ∼ U( M)
7. repeat Sample if hc(μ)< 0
8. return η =( k,μ, . . . )

A sampled node is accepted as long as it satisfies the con-
straints (line 7). A utility node is sampled by choosing
its time epoch k (line 2) while a uniform node has time
k = ∞ (line 5). This is related to the way the function Con-
nect( ηa, ηb) links two nodes ηa and ηb. Whenever kb = ∞,
Connect is allowed to produce a trajectory μa→b with any
final time kb ≤ N that it chooses. In such cases Connect is
typically designed to compute a time-optimal trajectory so
that kb is minimized. In contrast, when kb is set to a spe-
cific value (line 2) then Connect produces a trajectory that
arrives at μb at time epoch kb exactly.

6.2. Tree shuffling

Shuffling is the process of probabilistically selecting a
branch of the tree, detaching it from its parent and attaching
it to another branch. The first step is to choose a node ηa at
random. Then nr other existing nodes are selected from the
tree according to a ‘fitness’ function. Each of these nodes,
denoted ηb ∈ T \{ηa ∪η0}, are then disconnected from their
current parents ηρ

b
and connected to ηa instead, as long

as this switch lowers the resulting uncertainty cost of the
subtree attached at ηb (see Figure 6).
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Fig. 5. Two importance density functions q̄T used to sample nodes dur-

ing shuffling (with J∗
max = 400). The function with the ‘fatter’ tail [defined

by (33)] is the proper choice to guarantee exploration of the state space.

The fitness density over a given set T is denoted qT :
T → [0, 1] and defined by

qT ( ηb) = q̄T ( ηb)∑
η∈T q̄T ( η)

, where q̄T ( ηb) = e
−
√

Ĵb

J∗
max , (33)

where J∗
max is a constant denoting the upper bound of an

acceptable optimal cost that the algorithm is expected to
yield. Sampling from the fitness function biases the selec-
tion of more capable nodes but without completely disre-
garding nodes with lower performance. This is achieved by
a distribution with a fat tail as shown in Figure 5.

Let the subtree rooted at ηb be denoted T b ⊂ T . Define
the combined trajectory connecting node ηa to node ηb and
node ηb to node ηc, denoted μa→b→c, by

μa→b→c := μa→b ∪ μb→c.

More precisely, a shuffle, that is, a parent switch ρb = a,
occurs in two cases (see also Figure 6). The obvious case
is when the current optimal uncertainty cost Ĵ∗ can be
improved by a trajectory μ0→a→b→c in the modified tree.
The second case is heuristic: a switch occurs only if the cost
can be lowered on average across all nodes in the subtree.
These conditions are expressed as

if

⎧⎪⎨⎪⎩
minηc∈T b ĴN |kc (μ0→a→b→c)< Ĵ∗

or∑
ηc∈T b

(
ĴN |kc (μ0→a→b→c) −Ĵ c

)
< 0

⎫⎪⎬⎪⎭ then ρb = a.

(34)

Note that Ĵ c in (34) should be understood as the
present cost in the unmodified tree, that is, Ĵ c :=
ĴN |kc(μ0→ρb→b→c).

6.2.1. Computational savings The step (34) requires the
computation of the uncertainty cost of all trajectories
μ0→a→b→c obtained from the original μ0→ρb→b→c by
replacing the segment μρ

b→b with μa→b. Since all trajecto-
ries in the subtree at ηb are affected this could be an expen-
sive operation. In addition, it seemingly requires that the
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Fig. 6. A tree shuffling iteration: (a) a node ηa ∈ T has been chosen at random; another node ηb ∈ T is then selected with probability inversely

proportional to its current uncertainty cost Ĵ b; (b) ηb is disconnected from its parent ηρ
b

and connected to ηa after checking that the uncertainty cost of

the newly formed trajectory μ0→a→b→c either improves the global optimum J∗ or on average improves the costs in the subtree T b [see (34)].

densities (27) at node ηa be re-propagated along the com-
plete and potentially long new trajectory segment μa→b→c.
In the SIS framework though it is not necessary to perform
the whole propagation. In particular, only the incremental
weight update Uij along the new segment μa→b must be
computed [using (27)] and then the weights at all subtree
nodes ηc ∈ T b are updated directly through the simple
weight rescaling formula

W̄ij(μ
0→a→b→c) = W c

ij

W a
ij

W b
ij

Uij, (35)

where the weights W a
ij are the existing weights at node

ηa, respectively b and c. After computing the unnormal-
ized weights (35) the cost ĴN |kc (μ0→a→b→c) used in the
shuffling (34) is computed through (27b) and (28).

In summary, a shuffling step computes the incremental
weight update along μa→b and simply rescales the existing
weights at all affected child nodes T b. It is summarized as

Shuffle
1. choose ηa from T at random
2. for i = 1 : nr

3. sample ηb ∼ qT ( ·)
4. execute (34)
5. if Ĵ c < Ĵ∗ then η∗ = ηc

The number of nodes to be tried for a parent switch, nr,
during the shuffling step, can be constant but it is more rea-
sonable to increase it as the tree becomes denser. Hence, the
default choice used is nr = log( dim( T ) ).

6.3. Randomized pruning

Shuffling, Section 6.2, dynamically rebuilds the tree by
removing and adding edges. A complementary operation
can be considered, which dynamically adds and removes
nodes based on their accumulated performance.

Denote the set of leaf nodes in a tree by LT ⊂ T , that is,

LT := {ηa ∈ T | � ∃b s.t. ρb = a}.

Nodes are removed sequentially from the ‘bottom’ of the
tree, starting with leaf nodes. The procedure is summarized
as

Prune
1. for i = 1, . . . , np

2. L′ = LT \{η∗, η0}
3. η ∼ 1 − qL′ ( ·)
4. T = T \{η}
The probability of choosing nodes for pruning is inversely
proportional to their fitness density (line 3). Empirically, as
shown in Section 7, pruning is an effective strategy [again
in the spirit of importance (re)sampling] for obtaining
improved solutions more quickly. Yet, the optimal choice
for a number of nodes to be pruned np at every iteration is
difficult to determine. In our tests we prune a small fraction
of the total nodes n, that is, np = n/5.

6.4. Rate of convergence

The success of the proposed algorithm depends on two key
issues–whether it converges to an optimum and the rate
at which it converges. A basic requirement is to obtain
asymptotic convergence, that is, to reach the optimum as
the number of algorithm iterations tends to infinity.

The random expansion algorithm (RND) (Section 5.1)
samples points and connects them uniformly at random.
This is equivalent to generating random trajectories cov-
ering the search space. The motion-planning approach
ensures that the tree trajectories satisfy the dynamics and
constraints. In principle, the algorithm will find a trajectory
close to the optimum as the number of iterations increases.
Yet, this might be an infinitely slow process in practice, a
fact also confirmed by simulations in Section 7.

Utility-based importance sampling (Section 6.1) can pro-
vide a good solution more quickly by biasing trajectories
to pass through more promising parts of the state space.
Further work is necessary to establish non-asymptotic con-
vergence rates by assuming a particular problem structure
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and regularity conditions. Currently, the advantage of this
proposed technique is observed empirically for specific
problems.

The idea of shuffling (Section 6.2) is to approximate an
optimum not by generating completely new trajectories (as
RND does) but instead by executing local modifications to
the existing tree structure. Assume that the optimal trajec-
tory, which the algorithm aims to compute, consists of m+1
nodes η0, η̄1, . . . , η̄m. As the number of sampled nodes in
the tree T increases there will be m nodes η̂i ∈ T approach-
ing asymptotically close to each of the unknown optimal
nodes η̄i, i = 1, . . . , m. The problem is that there is a very
small probability that all η̂i will in fact be connected by a
physical path contained in the tree, that is a path which itself
is approaching the optimal path. The purpose of shuffling is
then to remove and add edges in an attempt to discover this
path.

Shuffling becomes less effective as the number of nodes
increases since the number of pairs of old and new sub-
tree parents to be tested for shuffling grows quadratically.
The purpose of pruning (Section 6.3) is, then, to remove
less promising nodes in order to reduce the search space.
In essence, the size of the solution space depends on the
number of nodes and on the edges connecting these nodes.
Shuffling allows control over the set of edges while sam-
pling and pruning dynamically control the set of nodes.
Empirical studies of the convergence rates are studied next.

7. Numerical tests

Numerical studies based on the simple vehicle are presented
first followed by a more complex helicopter search example.

7.1. Simple vehicle

The methods were tested through multiple simulation runs
in the simulated scenario defined in Section 2 with the
tree node connection defined in Section 5.2. Four algo-
rithms were developed and analyzed in order to compare
the proposed baseline algorithm and variance-reduction
techniques. The algorithms are:

• RND: baseline random expansion algorithm (Section
5.1)

• RND+UTIL: RND augmented with utility-based sam-
pling (Section 6.1)

• RND+UTIL+SHUFFLE: with the addition of a shuf-
fling step (Section 6.2)

• RND+UTIL+SHUFFLE+PRUNE: the final algorithm
including pruning (Section 6.3).

Figure 7 shows the resulting averaged results of the
performance of each algorithm, including a comparison
with a standard RRT expansion. For completeness, more
detailed plots are also given in Figure 9. The simula-
tions shows that a random search tree (RND) is better
than a standard motion-planning tree for obtaining con-
vergence to an optimal trajectory. Yet convergence is very
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Fig. 7. Comparison of several tree-search algorithms. The y-axis plots

the square root of the total variance
√

Ĵ∗, which can be interpreted as

the combined error for the two-position coordinates. A standard RRT

algorithm is not suitable for optimal planning since it quickly converges

to and remains at a low-quality solution. The algorithm RND converges

asymptotically but the rate decreases with computation time. Utility-based

sampling (RND+UTIL) speeds up convergence but not drastically. The

final complete algorithm, including shuffling and pruning, provides the

best performance providing an acceptable error below 25 m.

Table 3. Parameters for the complete algorithm RND+UTIL+
SHUFFLE+PRUNE

Parameter Description Default

ni # of nodes to be added at iteration i
[i.e. dim(T ) =∑ ni] 10

PU utility-sampling probability .5
nr # of nodes checked for shuffling

at iteration i log( dim(T ) )
np # of nodes to be pruned

at iteration i dim(T ) /5

slow. This is remedied by the combination of the pro-
posed variance-reduction techniques. The complete algo-
rithm RND+UTIL+SHUFFLE+PRUNE computes a solu-
tion with an acceptable performance within the allotted
computation time of 60 s. Several snapshots of the dynamic
tree and the resulting optimal trajectory as the algorithm
progresses are shown in Figure 8. Note that all reported
results are based on a global open-loop optimization with
simulated future measurements rather than in a receding
horizon fashion.

Finally, it should be noted that the complete algorithm
requires several parameters, which must be selected in
advance. These are listed in Table 3.

The optimal values of these parameters are difficult to
determine and might vary as the optimization runs. This
is a problem that requires further study. The recommended
default values are chosen to provide a balance between the
baseline random tree that explores the state space and the
variance-reduction steps to focus and speed up the search.
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Fig. 8. Several frames showing the current tree and optimal trajectory computed by algorithm RND+UTIL+SHUFFLE+PRUNE at different

computation times.

7.2. A helicopter search scenario

Consider a small autonomous helicopter as depicted in
Figure 10 operating in a 3-D terrain. The vehicle is mod-
eled as a single underactuated rigid body with position
r ∈ R3 and orientation R ∈ SO( 3) where SO( 3) denotes
the space of right-handed coordinate frames described by
three orthogonal vectors (i.e. by a 3 × 3 orthogonal matrix
with positive determinant). Its body-fixed angular and linear
velocities are denoted by ω ∈ R3 and v ∈ R3, respec-
tively. The vehicle has mass m and principal moments of
rotational inertia J1, J2, J3 forming the inertia tensor J =
diag( J1, J2, J3).

The vehicle is controlled through a collective uc (lift pro-
duced by the main rotor) and a yaw uψ (force produced by
the rear rotor), while the direction of the lift is controlled by
tilting the main blades forward or backward through a pitch
γp and sideways through a roll γr. The four control inputs
then consist of the two forces u =( uc, uψ ) and the two
shape variables γ =( γp, γr). The state space of the vehicle
is M = SO( 3) ×R3×R6×R2 withμ =( ( R, p) , (ω, v) , γ ).

The equations of motion are[
Ṙ
ṙ

]
=
[

R ω̂
R v

]
, (36)[

J ω̇
mv̇

]
=
[

Jω × ω

mv × ω + RT ( 0, 0, −9.81 m)

]
+ F( γ ) u,

(37)

where the map ·̂ : R3 → so( 3) is defined by

ω̂ =
⎡⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤⎦ ,

while the control matrix is defined as

F( γ ) =

⎡⎢⎢⎢⎢⎢⎢⎣
dt sin γr 0

dt sin γp cos γr 0
0 dr

sin γp cos γr 0
− sin γr −1

cos γp cos γr 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The local motion-planning method corresponding to
Connect is based on sequencing the precomputed motion

primitives that satisfy the dynamics, (36) and (37). This
is accomplished using a maneuver automaton described
in Appendix B. In essence, the set of primitives abstracts
away the complex dynamics and reduces the edge creation
problem to an optimization in the discrete set of primi-
tives and the space of translations and planar rotations—
SE( 2) ×R1. A trajectory consisting of a given sequence of
a minimum number of primitives can then be computed
instantly in closed form through inverse kinematics. Fig-
ure 10(b) shows an example of such a sequence of prim-
itives connected in order to exactly solve the boundary-
value problem. The terrain is represented using a digital
elevation map loaded from a file. Collision checking and
avoidance is performed using the Proximity Query Pack-
age (PQP) (Gottschalk et al. 1996), which computes the
closest distance between arbitrary polyhedra and is used to
implement the function prox defined in (5).

The algorithm is tested using a scenario similar to that in
Section 2, now extended to 3-D. The helicopter is not per-
mitted to fly above obstacles. Figure 11 shows the resulting
helicopter trajectory [see also the video in Extension 1 (Sec-
tion A)], a view of the constructed road map, and a close-up
along the optimal path within the road map.

8. Conclusion

This paper deals with optimal estimation for systems with
non-linear dynamics subject to non-convex constraints. The
approach is based on a random enumeration of trajecto-
ries generated from a tree that compactly approximates the
reachable space and efficiently propagates probability dis-
tributions through recursion. The randomly sampled tree
nodes approach any reachable state with exponentially (for
the number of iterations) high probability and, therefore,
encode a versatile road map of solution trajectories. Yet,
without assuming any special structure known a priori, ran-
dom search alone does not result in an efficient algorithm
due to the high dimensionality of the problem. This issue
is alleviated through variance-reduction techniques similar
to importance sampling for stochastic optimization and to
cross-over in evolutionary algorithms. While these meth-
ods show a marked improvement in solution quality and
run-time efficiency, no formal non-asymptotic convergence
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Fig. 9. Monte Carlo analysis of the the proposed techniques applied to the scenario in Section 2. The performance metrics are the resulting optimal

uncertainty cost
√

Ĵ∗ (which can be regarded roughly as the standard deviation of the distance to the true value) and the corresponding number of tree

nodes. These two metrics are expressed in terms of the required computation time (shown on the x-axis). The left plots show all 100 Monte Carlo runs

while the right plots shows the averaged results.



Kobilarov et al. 39

(a) (b)

Fig. 10. (a) Simplified helicopter model used in our tests. (b) Exam-

ple of a computed sequence of four maneuvers and three trim primitives,

connecting two zero-velocity states in the corners of the workspace and

avoiding an obstacle in the center. The trim velocities satisfy the invari-

ance conditions defined in Section B.1 while the maneuvers are computed

as outlined in Section B.2.

rates have been established. A possible future direction is
to address this issue by assuming certain regularity condi-
tions on the models involved. A related direction is to com-
bine the proposed approach with the cross-entropy (CE)
optimization method (Rubinstein and Kroese 2004; Celeste
et al. 2007), which is designed to explicitly identify struc-
ture in the solution space by maintaining and optimally
adapting an importance sampling distribution. Guiding the
random tree expansion through a CE-type method would
provide a consistent exploration–exploitation approach [for
initial developments see Kobilarov (2011)] that optimally
accounts for the sampled data during optimization. Finally,
even though formally fast convergence rates are absent in
our general setting, this paper provides a simple particle-
based algorithm applicable to general types of dynamics
and uncertainty models, which is easy to implement and
performs well in practice.

Notes

1. A state denotes both the configuration and velocity of the
vehicle (i.e. ‘vehicle state’) or the target (i.e. ‘target state’);
when used simply as ‘state’ its meaning will be clear from the
context.

2. A uniform sample is sampled uniformly over the state
space; additional sampling choices will be given in
Section 6.1.

3. d is not required to be a true distance metric, i.e. it does
not need to be symmetric or necessarily satisfy the triangle
inequality (LaValle 2006).
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(a) (b)

(c)

Fig. 11. The algorithm applied to the helicopter example described in

Section 7.2 showing (a) the optimal helicopter trajectory; (b) the con-

structed road map and sensor footprint along a path; and (c) the close-up

view along an edge of the road map.
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Appendices

A. Index to multimedia extensions

The multimedia extensions to this article are at: http://
www.ijrr.org.

Extension Type Description

1 Video Helicopter Search
Scenario

B. Helicopter primitives

The local motion-planning method is based on comput-
ing a sequence of motion primitives that exactly satisfy the
boundary conditions, that is, one that exactly reaches a sam-
pled node. The symmetry in the system dynamics allows us
to employ a maneuver automaton to produce sequences of
continuously parametrizable motions (trim primitives) con-
nected with maneuvers. This general framework, developed
by Frazzoli et al. (2005), is suitable for systems such as
UAVs or ground robots if one ignores pose-dependent exter-
nal forces, such as varying wind or ground friction that is a
function of position.

Let the vehicle rotation be described by its roll φ, pitch θ ,
and yaw ψ . Denote the linear velocity by v =( vx, vy, vz) ∈
R3, and the angular velocity by ω =(ωx,ωy,ωz) ∈ R3.
Denote the whole configuration by g ∈ SE( 3), the whole
velocity by ξb ∈ se( 3), where SE( 3) and se( 3) denote
the Euclidean group (translations and rotations) and its
set of body-fixed velocities, respectively. The elements are
defined by

g =
[

R r
0 1

]
, ξb =

[
ω̂ v
0 0

]
. (38)

By defining the map I = diag( J1, J2, J3, m, m, m) the
dynamics can be expressed in more general form as

Iξ̇b = ad∗
ξb

I ξb + fu + Ad∗
g fext,

where fu is the control force, corresponding to F( γ ) u
in (37), while fext =( 0, 0, 0, 0, 0, −9.81 m) ∈ se( 3)∗ is
the gravity force. Since gravity is the only configuration-
dependent term in the dynamics and is invariant for trans-
lations and rotations about the z-axis, then the dynamics
symmetry group can be set as G = SE( 2) ×R.

The motion-planning problem is solved in closed form
through inverse kinematics of a minimal number of prim-
itives. A total of five is employed when moving between
non-equilibrium states and an extra maneuver is added
to connect from/to an equilibrium (zero velocity) state.
Our particular design for the trims and maneuvers used is
described next. An example sequence is shown in Figure 10.

B.1. Trim primitives

Denote the transformation corresponding to roll and pitch
only by g(φ, θ ) ∈ SE( 3) \G. The G-symmetry corresponds

to velocity ξ ∈ se( 2) ×R, which corresponds to the velocity
vector ( 0, 0,ωz, vx, vy, vz), for which ξb = Adg(φ,θ )−1 ξ is a
relative equilibrium for the whole system on SE( 3), that is,
ξ̇b = 0 and g( t) = g( 0) exp( tξb). This velocity is obtained
by satisfying this invariance condition, or equivalently

ad∗
ξb

I ξb + fu + Ad∗
g(φ,θ ) fext = 0 (39)

since fext is G-invariant.
Condition (39) can be simplified if one assumes that the

moments of rotational inertia around the y- and z-axes are
identical. In this case the invariance conditions simplify to:

θ = 0, uy = 0, γp = 0, γr = 0,

φ = arctan( −wzvx/9.81) ,

uc = m( cosφ 9.81 − wzvx sinφ) .

(40)

In order to design trim primitives, one can pick desired
velocities (ωz, vx, vy, vz) and use (40) to compute the
required constant roll, pitch, and control inputs for motion
along that trim. Since control inputs and shape variables
have bounds, equations (40) can also be inverted to compute
the maximum sustainable trim velocities.

B.2. Maneuvers

Maneuvers are computed to connect two trim motions. The
parameters of a trim primitive are its roll, pitch, velocities,
and shape variables. Let the map π : X → X\G sub-
tract out the invariant coordinates from a given state. Then
given two trims, the first one ending with state x1 and the
second one starting with state x2, we compute a maneuver
trajectory x using the following optimization procedure:

Compute: T ; x : [0, T] → X ; u : [0, T] → U

minimizing: J ( x, u, T) =
∫ T

0
1 + λ‖u( t) ‖2dt

subject to: π ( x( 0) ) = x1,π ( x( T) ) = x2,

dynamics equations (36) and (37)

for all t ∈ [0, T].

The parameter λ controls the importance of minimizing the
control effort. An alternative strategy is to fix T in the above
formulation and to search for the minimal T yielding a fea-
sible control–effort optimal problem. We calculate this by
using a binary search for T over the real line by solving a
fixed-T optimal control problem in each iteration.

The continuous optimal control formulation is compu-
tationally solved through the discrete mechanics method-
ology (Marsden and West 2001), which is particularly
suitable for systems with non-linear state spaces and sym-
metries. A geometric structure preserving the optimizer,
developed by (Kobilarov 2008, Section 2.7), is used to per-
form the computations. The computations are performed
off-line with the resulting optimal maneuvers assembled in
a library offering an instant look-up during run-time.
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Discrete Geometric Optimal Control on Lie Groups
Marin Kobilarov and Jerrold E. Marsden

Abstract—We consider the optimal control of mechanical
systems on Lie groups and develop numerical methods which
exploit the structure of the state space and preserve the system
motion invariants. Our approach is based on a coordinate-free
variational discretization of the dynamics leading to structure-
preserving discrete equations of motion. We construct necessary
conditions for optimal trajectories corresponding to discrete
geodesics of a higher order system and develop numerical
methods for their computation. The resulting algorithms are
simple to implement and converge to a solution in very few
iterations. A general software implementation is provided and
applied to two example systems: an underactuated boat and a
satellite with thrusters.

I. INTRODUCTION

We consider the optimal control of mechanical systems
evolving on a finite dimensional Lie group. Our primary
motivation is the control of autonomous vehicles modeled as
rigid bodies. The goal is to actuate the system to move from
its current state to a desired state in an optimal way, e.g. with
minimum control effort or time.

The standard way to solve such problems is to first derive
the continuous nonlinear equations of motion, for example
using a variational principle such as Lagrange-d’Alembert.
Two general methods, termed direct and indirect, are then
available to compute a minimum-cost trajectory [1]. In the
direct method, the differential equations are discretized (or
represented using a finite set of parameters) and enforced as al-
gebraic constraints in a nonlinear optimization program. Such
a formulation is then computationally solved using a pack-
age such as sequential quadratic programming. The indirect
method is to derive necessary conditions for optimality, i.e.
using Pontryagin-maximum principle by formulating another
variational problem based on the original continuous equations
and cost function. The necessary conditions are expressed
through the evolution of additional adjoint variables satisfying
a set of ordinary differential and transversality equations.
These equations are then discretized and solved iteratively, e.g.
using Newton’s method, in order to compute an approximate
numerical solution.

The framework proposed in this work uses a different
computational strategy. It employs the theory of discrete
mechanics based on a discrete variational formulation. In
particular, we employ a discrete Lagrange-d’Alembert (DLA)
variational principle yielding a set of discrete trajectories that
approximately satisfy the dynamics and that respect the state
space structure. Among these trajectories we find the extremal
one without any further discretization or approximation. This

Marin Kobilarov and Jerrold Marsden are with the Department of Control
and Dynamical Systems, California Institute of Technology, Pasadena, CA,
91125 USA (e-mail: marin@cds.caltech.edu, marsden@cds.caltech.edu).
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is achieved by formulating a higher order variational problem
to be solved through a repeated application of the DLA
principle to obtain the optimal control trajectory. Such a
construction enables the preservation of important properties
of the mechanical system–group structure, momentum, and
symplectic structure–and results in algorithms with provable
accuracy and stability.

Our approach is designed for accurate and numerically sta-
ble computation and is especially suited for nonlinear systems
that require iterative optimal control solvers. We construct a
general optimization framework for systems on Lie groups
and demonstrate its application to rigid body motion groups
as well as to any real matrix subgroup. Finally, in addition to
developing a computational control theory for Lie groups, we
spell out the details necessary for a practical implementation.

The Lagrangian Mechanical System

We consider mechanical systems evolving on an n-
dimensional Lie group G. The fundamental property of Lie
groups is that each tangent vector on the manifold can be
generated by translating a unique tangent vector at the iden-
tity using the group operation. More formally, each vector
ġ ∈ TgG at configuration g ∈ G corresponds to a unique
vector ξ ∈ g through ġ = gξ, where g := TeG denotes the
Lie algebra and e ∈ G is the group identity.

In view of this structure the dynamics can be derived
through the reduced Lagrangian ` : G × g → R defined
by `(g, ξ) = L(g, gξ) where L : TG → R is the standard
Lagrangian. As we will show working with the reduced state
(g, ξ) has important implications for constructing numerical
optimization schemes.

In this work we employ general Lagrangians of the form

`(g, ξ) = K(ξ)− V (g), (1)

where K : g → R and V : G → R are given kinetic and
potential energy functions. The kinetic energy Hessian ∂2ξK
is assumed non-singular over the control problem domain.

The system is actuated using a control force f(t) ∈ g∗

defined in the body reference frame1. We will begin our
development with fully actuated systems, i.e. such that f can
act in any direction of the linear space g∗. We will then
consider underactuated systems with control parameters, i.e.
systems such that f =

∑c
i=1 f

i(φ)ui, where f i ∈ g∗ define
the allowed control directions (covectors) which depend on
the controllable parameters φ ∈ M ⊂ Rm. Here, u ∈ U ⊂ Rc
denotes the control inputs. The control input set U and the
control shape space M are bounded vector spaces. The reader

1In the Lagrangian setting a force is an element of the Lie algebra dual
g∗, i.e. a one-form 〈f, ·〉 that pairs with velocity vectors to produce the total
work

∫ T
0 〈f, ξ〉dt done by the force along a path between g(0) and g(T ).
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can also consult e.g. [2], [3], [4] regarding standard notation
as well as more formal introduction to Lie groups and robot
dynamics.

The Optimization problem

The system is required to move from a fixed initial state
(g(0), ξ(0)) to a fixed final state (g(T ), ξ(T )) during a time
interval [0, T ]. The problem is to find the optimal control u∗ =
argminu J(u, T ) where the cost function J is defined by

J(u, T ) =
1

2

∫ T

0

‖u(t)‖2dt, (2)

subject to the dynamics and boundary state conditions.

Related work

Our approach is based on recently developed structure-
preserving numerical integration and optimal control methods.
While standard optimization methods are based on shooting,
multiple shooting, or collocation techniques, recent work on
Discrete Mechanics and Optimal Control (DMOC) [5] em-
ploys variational integrators [6], [7] that are derived from the
discretization of variational principles such as Hamilton’s prin-
ciple for conservative systems or the Lagrange-D’Alembert
principle for dissipative systems. Momentum preservation and
symplecticity are automatically enforced, avoiding numerical
issues (like numerical dissipation) that generic algorithms
often possess.

Structure preservation plays an especially important role
for systems on manifolds such as Lie groups which has led
to a number of geometric integration methods for ordinary
differential equations [8]. Symplectic-momentum integrators
on Lie groups [9], [10] are a particular class of such methods
that were combined with ideas developed in the context of
Lie group methods [11] to construct more general and higher
order integrators on Lie groups [12], [13], [14].

The optimal control problem considered in this work has a
rich history both in the analytical exploration of its interesting
geometric structure as well as in its numerical treatment. In
particular, finding trajectories extremizing an action similar
to (2) can be equivalently stated as computing geodesics
for a higher-order system known as Riemannian cubics [15].
Riemannian cubics are generalizations of straight lines on a
manifold for which, roughly speaking, the higher-order system
velocity corresponds to the acceleration of the original system.
When the manifold is a Lie group, such cubics can be reduced
by symmetry to Lie quadratics (since the resulting curves are
quadratic in the Lie algebra, while the cubics are cubic in
the manifold tangent bundle). General optimality conditions
as well as insightful geometric invariants have been derived
(e.g. [15], [16], [17]) with particular attention to rigid body
rotation problems on SO(3) while other works [18], [19],
[20] have focused on a more practically computable approach
applicable to SE(3).

Note that such works focused on the deriving optimality
conditions of the two-state boundary value problem in the
standard continuous setting. In contrast, we focus on develop-
ing numerical algorithms for computing high-quality solutions.

Existing numerical implementations were mainly restricted to
simple systems, e.g. ones possessing bi-invariant metrics or
fully actuated ones.

Necessary conditions resulting from (Pontryagin’s) opti-
mality principle have been derived for simple mechanical
systems [4] and for systems on Lie groups [21]. Our work
reformulates these problems through a discrete geometric
framework in order to directly obtain an algorithm for comput-
ing optimal solutions with provable numerical properties. Our
approach, partially documented in [22], is based on necessary
conditions formulated in a manner similar to [23], [24] which
study optimal control of rigid bodies. The main difference is
that our framework is applicable to any Lie group (not just
the Euclidean groups) and offers greater flexibility by allowing
different numerical parametrizations as well as underactuation.
This generality is accomplished through the formulation of
discrete necessary conditions in the spirit of the Riemannian
cubics [15] employed in the continuous setting. In essence,
optimal trajectories are derived as discrete geodesics of a
higher-order action. Following this approach, the numerical
formulation requires only the very basic ingredients–the La-
grangian, group structure, control basis, and external forces–
and can automatically obtain a solution. Thus, both the regular
and higher-order problems are solved using the same general
discrete variational approach leading to structure-preserving
dynamics and symplectic necessary conditions. Our approach
is also linked to the symplectic derivation of optimal control
studied in [25] to address the more generic case of an explicit
discrete control system evolving in a vector space.

Finally, we point out that group structure and symme-
tries play an important role in robotic dynamics and motion
control [26]. Variational integrators have been used in an
interesting way [27] to derive the dynamics of complex multi-
body systems through recursive differentiation rather than
explicitly computing equations of motion. Various control
methods have been developed, e.g. [28], [29], to numeri-
cally compute optimal trajectories for systems such as the
snakeboard or the robotic eel. In relation to such methods,
our proposed approach is unique since it builds on a unified
discrete variational framework for both deriving the dynamics
as well as computing the optimal controls. Note that while
this work deals with systems evolving on Lie groups, it
can be extended to multi-body systems with nonholonomic
constraints following the construction proposed in [30].

Contributions
This paper provides a simple numerical recipe for com-

puting optimal controls driving a mechanical system between
two given boundary conditions on pose and velocity. The
framework is general and can automatically generate opti-
mal trajectories for any system on a given Lie group by
providing its Lagrangian, group structure, and description of
acting forces. There are several practical benefits over existing
standard methods:
• the algorithm does not require choosing coordinates and

avoids issues with expensive chart switching that cause
sudden jumps or singularities, e.g. due to gimbal lock,
that prevent convergence in iterative optimization;
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• the optimization is based on minimum reduced dimension
and does not require Lagrange multipliers enforcing, e.g.
matrix orthogonality constraints or quaternion unit norms;

• the discrete mechanics approach guarantees symplectic
structure and momentum preservation as well as energy
approximation which is close to the true energy. The
combination of these factors leads to an accurate and
numerically robust approximation of the dynamics and
optimality conditions as a function of the time step
(formal and numerical comparisons to standard methods
can be found in [7], [31], [14], [32], [30], [27]);

• predictable computation even at lower resolutions allows
increased run-time efficiency.

Since the dynamics are nonlinear, an optimal solution gen-
erally does not exist in closed-form and must be computed
using iterative root-finding. Numerical tests show that our
proposed iterative scheme converges to a solution in surpris-
ingly few iterations irrespective of the chosen resolution, even
when applied to an underactuated system with external non-
conservative forces.

Outline.

After a quick review of regular variational integrators in §II,
we present in §III a formal, general treatment of the discrete
variational principle used to formulate the numerical optimal
control problem for systems on Lie groups. We then present
the resulting optimal control algorithms first for fully actuated
systems (§IV) and then for underactuated systems with con-
trol parameters (§V). The explicit expressions necessary for
implementation are given in §VI for any system on the groups
SE(2), SO(3), or SE(3), as well as on any general real matrix
subgroup. Specific cases of a boat and a satellite are detailed
as concrete examples in §VII. We also point out issues related
to controllability in the underactuated case and on numerical
implementation in §VIII.

II. BACKGROUND ON VARIATIONAL INTEGRATORS

A mechanical integrator advances a dynamical system for-
ward in time. Such numerical algorithms are typically con-
structed by directly discretizing the differential equations that
describe the trajectory of the system, resulting in an update
rule to compute the next state in time. In contrast, variational
integrators [7] are based on the idea that the update rule for
a discrete mechanical system (i.e., the time stepping scheme)
should be derived directly from a variational principle rather
than from the resulting differential equations. This concept of
using a unifying principle from which the equations of motion
follow (typically through the calculus of variations [33])
has been favored for decades in physics. Chief among the
variational principles of mechanics is Hamilton’s principle
which states that the path q(t) (with endpoint q(t0) and q(t1))
taken by a mechanical system extremizes the action integral∫ t1
t0
L(q, q̇)dt, i.e., the state variables (q, q̇) evolve such that

the time integral of the Lagrangian L of the system (equal to
the kinetic minus potential energy) is extremized. A number
of properties of the Lagrangian have direct consequences on
the mechanical system. For instance, a symmetry of the system

(i.e., a transformation that preserves the Lagrangian) leads to
a momentum preservation.

Although this variational approach may seem more mathe-
matically motivated than numerically relevant, integrators that
respect variational properties exhibit improved numerics and
remedy many practical issues in physically based simula-
tion and animation. First, variational integrators automatically
preserve (linear and angular) momenta exactly (because of
the invariance of the Lagrangian with respect to translation
and rotation) while providing good energy conservation over
exponentially long simulation times for non-dissipative sys-
tems. Second, arbitrarily accurate integrators can be obtained
through a simple change of quadrature rules. Finally, they
preserve the symplectic structure of the system, resulting in
a much-improved treatment of damping that is essentially
independent of time step [31].

Practically speaking, variational integrators based on Hamil-
ton’s principle first approximate the time integral of the con-
tinuous Lagrangian by a quadrature rule. This is accomplished
using a “discrete Lagrangian,” which is a function of two
consecutive states qk and qk+1 (corresponding to time tk and
tk+1, respectively):

Ld(qk, qk+1) ≈
∫ tk+1

tk

L(q(t), q̇(t))dt.

One can now formulate a discrete principle over the whole
path {q0, ..., qN} defined by the successive position at times
tk = kh. This discrete principle requires that

δ

N−1∑

k=0

Ld(qk, qk+1) = 0,

where variations are taken with respect to each position qk
along the path. Thus, if we use Di to denote the partial
derivative w.r.t the ith variable, we must have

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) = 0

for every three consecutive positions qk−1, qk, qk+1 of the
mechanical system. This equation thus defines an integration
scheme which computes qk+1 using the two previous positions
qk and qk−1.

Simple Example: Consider a continuous, typical La-
grangian of the form L(q, q̇) = 1

2 q̇
TMq̇ − V (q) (V be-

ing a potential function) and define the discrete Lagrangian
Ld(qk, qk+1) =hL

(
qk+ 1

2
, (qk+1 − qk)/h

)
, using the notation

qk+ 1
2

:= (qk + qk+1)/2. The resulting update equation is:

M
qk+1 − 2qk + qk−1

h2
= −1

2
(∇V (qk− 1

2
) +∇V (qk+ 1

2
)),

which is a discrete analog of Newton’s law Mq̈ = −∇V (q).
This example can be easily generalized by replacing qk+1/2

by qk+α = (1 − α) qk + α qk+1 as the quadrature point used
to approximate the discrete Lagrangian, leading to variants
of the update equation. For controlled (i.e., non conservative)
systems, forces can be added using a discrete version of
Lagrange-d’Alembert principle in a similar manner [34].
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III. DISCRETE MECHANICS ON LIE GROUPS

Variational integration on Lie groups requires additional
development since a Lie group is a nonlinear space with
special structure. We first recall the standard variational prin-
ciple for mechanical systems on Lie groups and state the
resulting differential equations of motion. A discrete structure-
preserving dynamics update scheme is then constructed. It will
serve as a basis for developing the proposed optimal control
algorithms.

A. The Continuous Setting

The state trajectory is formally defined as (g, ξ) : [0, T ]→
G× g while the control force takes the form f : [0, T ]→ g∗.
In most practical cases one can regard g as a matrix, ξ as
a column vector, and f as a row vector which “pairs” with
velocities through a product 〈·, ·〉 such as the standard dot
product. The Lagrange-d’Alembert principle requires that

δ

∫ T

0

[K(ξ)− V (g)] dt+

∫ T

0

〈f, g−1δg〉 = 0, (3)

where ξ = g−1ġ. The curve ξ(t) describes the body-fixed ve-
locity determined from the dynamics of the system. Variations
of the velocity ξ and the configuration g are related through

δξ = η̇ + adξ η, for η = g−1δg ∈ g,

where the Lie bracket operator for matrix groups ad : g×g→g
is defined by

adξ η = ξη − ηξ,
for given ξ, η ∈ g. The continuous equations of motion become
(see e.g. [35], [4])

µ̇− ad∗ξ µ = −g∗∂gV (g) + f, (4a)

µ = ∂ξK(ξ), (4b)
ġ = gξ. (4c)

These equations2 are called the controlled Euler-Poincaré
equations and µ ∈ g∗ denotes the system momentum. Given
initial conditions, the momentum µ evolves according to (4a).
The velocity ξ can be computed in terms of µ using (4b)
since ∂2ξK is non-singular allowing the inversion of ∂ξK. The
configuration then evolves according to (4c).

B. Trajectory Discretization

A trajectory is represented numerically using a set of N+1
equally spaced in time points denoted g0:N := {g0, ..., gN},
where gk ≈ g(kh) ∈ G and h = T/N denotes the time-
step. The section between each pair of points gk and gk+1

is interpolated by a short curve that must lie on the manifold
(Fig. 1). The simplest way to construct such a curve is through
a map τ : τ : g → G and Lie algebra element ξk ∈ g such
that ξk = τ−1(g−1k gk+1)/h. The map is defined as follows.

Definition III.1. The retraction map τ : g → G is a C2-
diffeomorphism around the origin such that τ(0) = e. It is used
to express small discrete changes in the group configuration
through unique Lie algebra elements.

2ad∗ξ µ is defined by 〈ad∗ξ µ, η〉 = 〈µ, adξ η〉, for some η ∈ g.

Thus, if ξk were regarded as an average velocity between
gk and gk+1 then τ is an approximation to the integral flow of
the dynamics. The important point, from a numerical point of
view, is that the difference g−1k gk+1 ∈ G, which is an element
of a nonlinear space, can now be represented uniquely by the
vector ξk in order to enable unconstrained optimization in the
linear space g for optimal control purposes.

G

gk−1

gk

gk+1

ξk = τ−1(g−1
k gk+1)/hg

e

ξk

ξk−1

τ

τ

Fig. 1. A trajectory (solid) on the Lie group G discretized using a sequence of
arcs (dashed) represented by Lie algebra vectors ξk ∈ g through the retraction
map τ .

Next, we define the following operators related to τ .

Definition III.2. [11], [14] Given a map τ : g→ G, its right-
trivialized tangent dτ ξ : g → g and its inverse dτ−1ξ : g → g
are such that, for a some g = τ(ξ) ∈ G and η ∈ g, the
following holds

∂ξτ(ξ) · η = dτ ξ ·η · τ(ξ), (5)

∂ξτ
−1(g) · η = dτ−1ξ · (η · τ(−ξ)) . (6)

Note that it can be shown by differentiating the expression
τ−1(τ(ξ)) = ξ that

dτ−1ξ · dτξ · η = η,

to confirm that these linear maps are indeed the inverse of
each other.

Intuitively, after the derivative in the direction η is taken,
i.e. ∂ξτ(ξ) · η, the resulting vector (at point τ(ξ)) is translated
back to the origin using right-multiplication by τ(−ξ) [14].
In practice, as will be shown, these maps are easily derived
as n× n matrices. Finally, we require the tangent maps to be
nonsingular over the optimization domain, defined next.

Definition III.3. The optimization domain Dτ ⊂ g is a
connected open set containing the origin e ∈ g such that dτhξ
(and dτ−1hξ ) are non-singular for every ξ ∈ Dτ .

The numerical algorithms proposed in the paper are re-
stricted to operate over Dτ , i.e. the time-step h and velocities
ξk are chosen to satisfy hξk ∈ Dτ for all k = 0, ..., N − 1.

Retraction Map (τ ) Choices: a)
The exponential map
exp : g → G, defined by
exp(ξ) = γ(1), with γ : R → G
is the integral curve through the
identity of the vector field asso-
ciated with ξ ∈ g (hence, with
γ̇(0) = ξ). The right-trivialized derivative of the map exp
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and its inverse are defined as

dexpx y =

∞∑

j=0

1

(j + 1)!
adjx y, (7a)

dexp−1x y =
∞∑

j=0

Bj
j!

adjx y, (7b)

where Bj are the Bernoulli numbers. Typically, these ex-
pressions are truncated in order to achieve a desired order
of accuracy. The first few Bernoulli numbers are B0 = 1,
B1 = −1/2, B2 = 1/6, B3 = 0 (see [8]).

b) The Cayley map cay : g → G is defined by cay(ξ) =
(I−ξ/2)−1(I +ξ/2) and is valid for a general class for
quadratic groups that include the groups of interest in the
paper. Based on this simple form, the derivative maps become
([8], §IV.8.3)

dcayx y =
(
e− x

2

)−1
y
(
e+

x

2

)−1
, (8a)

dcay−1x y =
(
e− x

2

)
y
(
e+

x

2

)
. (8b)

The third choice is to use canonical coordinates of the second
kind (ccsk) [8] which are based on the exponential map and
are not considered in this paper.

C. Discrete Variational Formulation

With a discrete trajectory in place we follow the approach
taken in [10], [9] in order to construct a structure-preserving
(i.e. group, momentum, and symplectic) integrator of the dy-
namics. We make a simple extension to include potential and
control forces through a trapezoidal quadrature approximation.
In particular, the action in (3) is approximated along each
discrete segment between points gk and gk+1 through
∫ (k+1)h

kh

[K(ξ)−V (g)]dt≈h
[
K(ξk)− V (gk)+V (gk+1)

2

]
, (9a)

∫ (k+1)h

kh

〈f, g−1δg〉≈ h
2

[
〈fk, g−1k δgk〉+〈fk+1, g−1k+1δgk+1〉

]
. (9b)

Variations of Lie algebra elements are related to variations
on the group through the following expression which may be
obtained through differentiation and application of (6),

δξk = δτ−1(g−1k gk+1)/h = dτ−1hξk(−ηk + Adτ(hξk) ηk+1)/h,

where ηk = g−1k δgk. The operator Adg : g → g can be
regarded as a change of basis with respect to the argument
g ∈ G (see [3], [35]) and is defined by

Adg ξ = gξg−1.

The discrete variational principle which will form the basis
for our discrete optimal control framework can now be stated.
The following result is a straightforward extension from [10],
[9]. The only difference is that we consider Lagrangians of
the form (1) and employ a trapezoidal discretization:

Proposition 1. A mechanical system on Lie group G with
kinetic energy K, potential energy V , subject to forces f ,
satisfies the following equivalent conditions:

1. The discrete reduced Lagrange-d’Alembert principle holds

δ

N−1∑

k=0

[
K(ξk)− V (gk) + V (gk+1)

2

]

+
N−1∑

k=0

1

2

[
〈fk, g−1k δgk〉+ 〈fk+1, g

−1
k+1δgk+1〉

]
= 0,

(10)

where ξk = τ−1(g−1k gk+1)/h.
2. The discrete reduced Euler-Poincaré equations of motion

hold

µk −Ad∗τ(hξk−1)
µk−1 = h (−g∗k∂gV (gk) + fk) , (11a)

µk = (dτ−1hξk)∗∂ξK(ξk), (11b)

gk+1 = gkτ(hξk). (11c)

Equations (11) can be considered as a discrete approx-
imation to (4). The discrete Euler-Poincaré equation (11a)
corresponds to (4a). Eq. (11b) is the discrete Legendre trans-
form corresponding to (4b), while (11c) is the discrete
reconstruction analogous to (4c). These equations can be used
to compute the next velocity and group elements ξk, and gk+1,
respectively, given the previous elements ξk−1 and gk. Fig. 2
gives a more geometric explanation of the update (11a).

(dτ−1
hξk−1

)∗

∂ξK(ξk−1)

(dτ−1
hξk

)∗
µk−1

µk

Ad∗τ(hξk−1)
µk−1Ad∗τ(hξk−1)

hfk

gk
gk−1

gk+1

∂ξK(ξk)

move to next

point by change

of basis
move to point at
start of segment

Fig. 2. The discrete covariant version of the Euler-Poincaré equation µ̇ −
ad∗ξ µ = f , where µ = ∂ξK(ξ). The discrete momentum µk at point k
is obtained using the right trivialized tangent (dτ−1

hξk
)∗ which brings the

derivative ∂ξK(ξk) to the body-fixed basis at gk . The momentum evolution
is then expressed through the difference of µk−1 and µk , i.e. by transforming
µk−1 in that same basis at gk through the Ad∗ map where proper vector
subtraction can be applied. The resulting change is caused by forces hfk (the
effects of potential V are omitted for clarity). Note that all vectors shown are
elements of g∗ and are shown above the group configuration only to illustrate
the basis with respect to which they are defined.

Boundary Conditions: While the discrete configurations
gk and forces fk approximate their continuous counterparts
at times t = kh, we still have not established the exact
relationship between the discrete and continuous momenta,
µk and µ(t) = ∂ξK(ξ(t)), respectively. This is particularly
important for properly enforcing boundary conditions that
are given in terms of continuous quantities. The following
equations (12a) and (12b) relate the momenta at the initial
and final times t = 0 and t = T and are used to transform
between the continuous and discrete representation:

µ0 − ∂ξK(ξ(0)) =
h

2
(g∗0∂gV (g0) + f0) , (12a)

∂ξK(ξ(T ))−Ad∗τ(hξN−1)µN−1 =
h

2
(g∗N∂gV(gN )+fN ) . (12b)

These equations can also be regarded as structure-preserving
velocity boundary conditions for given fixed velocities ξ(0)
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and ξ(T ). They follow from properly enforcing energy balance
at the boundaries, achieved by adding the momentum change
term 〈µ(T ), g−1N δgN 〉 − 〈µ(0), g−10 δg0〉 to the discrete action
in the principle (10).

The exact form of (11) and (12) depends on the choice of
τ . It is important to point out that this choice will influence
the computational efficiency of the optimization framework
when the equalities above are enforced as constraints. We have
specified two basic choices, τ = exp (7a) and τ = cay (8a)
for their ease of implementation and run-time efficiency.

D. Preservation Properties

One of the main benefits of employing the variational
numerical framework lies in its preservation properties, sum-
marized by the following theorems.

Theorem III.4. [9] The discrete flow (11) preserves the
discrete symplectic form, expressed in coordinates as

ω` =
∂2`(gk, τ

−1(g−1k gk+1)/h)

∂gik∂g
j
k+1

dgik ∧ dgjk+1,

where ∧ is the standard wedge product between differential
forms [35]. The symplectic form can also be written as the
differential of the canonical one-form θ` with ω` = dθ` where

θ` · δgk =

〈
− 1

h
µk − g∗k∂gV(gk), g−1k δgk

〉
.

The symplectic form is physically related to the phase space
structure. Its preservation during integration, for instance,
signifies that a volume of initial conditions would not be spu-
riously inflated or deflated due to numerical approximations.
Volume preservation means that the orbits of the dynamics will
have a predictable character and no artificial damping normally
employed by Runge-Kutta methods is needed to stabilize the
system [7].

Theorem III.5. [9], [14] The discrete dynamics (11) pre-
serves the momentum. In particular, in the absence of potential
and non-conservative forces, the update scheme preserves the
discrete spatial momentum map J : G× g→ g,

J(gk, ξk) · v = Ad∗
g−1
k
µk · v,

for any v ∈ g; or equivalently J(ga, ξa) = J(gb, ξb), for any
time indices a, b.

Practically speaking, whenever the continuous system pre-
serves momentum, so does the discrete. Any change in the
momentum then exactly reflects the work done by non-
conservative forces. Such a momentum-symplectic scheme
also exhibits long-term stable energy behavior close to the true
system energy [7]. Another property carried over to continuous
case is time-scaling.

Remark 1. Order of Accuracy. The order of accuracy of the
dynamics update depends on the accuracy of the Lagrangian
approximation. Since the trapezoidal approximations (9a) and
(9b) are second-order accurate then it can be shown (see
[7]) that the discrete equations (11) are also of second order
accuracy. The trapezoidal rule was chosen since it provides

the simplest second-order scheme. Higher-order methods by
proper choice of the Lagrangian, termed symplectic Runge-
Kutta (see [8], [12], [14]), are possible but not considered in
this work.

Remark 2. Time-scaling preservation. The trajectory g0:N ,
ξ0:N−1 with time-step h satisfies the discrete dynamics (11)
subject to forces f0:N if and only if the trajectory g0:N ,
{ξ0/s, ..., ξN−1/s} with time-step h′ = sh, subject to forces
{f0/s2, ..., fN/s2} satisfies the discrete dynamics, for a given
scalar s > 0.

Finally, the group structure is exactly preserved since the
trajectory g0:N is reconstructed from the discrete velocity
ξ0:N−1 using the map τ which by definition maps to the
group (11c). This avoids issues with dissipation and numerical
drift associated with reprojection used in other methods,
e.g. in methods based on matrix orthogonality constraints or
quaternions.

IV. FULLY ACTUATED SYSTEMS

We first develop the simplest case with a mechanical kinetic
energy

K(ξ) =
1

2
〈Iξ, ξ〉,

with full unconstrained actuation, without potential or external
forces and without any velocity constraints. The map I : g→
g∗ is called the inertia tensor and is assumed full rank. Since
there is full control over f the control effort cost function (2)
can be expressed as J(f) =

∫
1
2‖f(t)‖2dt. It is approximated

through trapezoidal quadrature, analogously to (10), using the
summation

J(f) ≈
N−1∑

k=0

h

4

(
‖fk‖2 + ‖fk+1‖2

)
. (13)

The optimal control problem for the system (11) with given
fixed initial and final states (g(0), ξ(0)) and (g(T ), ξ(T ))
respectively can be stated as

Compute: ξ0:N−1, f0:N

minimizing
N−1∑

k=0

h

4

(
‖fk‖2 + ‖fk+1‖2

)

subject to:




µ0 − I ξ(0) = (h/2)f0,

µk −Ad∗τ(hξk−1)
µk−1 = hfk, k = 1, ..., N − 1,

I ξ(T )−Ad∗τ(hξN−1) µN−1 = (h/2)fN ,

µk = (dτ−1hξk)∗ I ξk,
g0 = g(0),

gk+1 = gkτ(hξk), k = 0, ..., N − 1,

τ−1(g−1N g(T )) = 0.

(14)

The constraints follow directly from the discrete mechan-
ics (11), boundary conditions (12), and by noting that ∂ξK =
Iξ. The last equation ensures that the difference between the
given and reconstructed configurations is zero.
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A. Optimality Conditions

Trajectories satisfying the constrained nonlinear optimiza-
tion problem (14) are computed through the derivation of
optimality conditions stated in the following proposition.

Proposition 2. The trajectory of a discrete mechanical sys-
tem on a Lie group G with algebra g and Lagrangian
`(ξ) = 1

2 〈I ξ, ξ〉 with fixed initial and final configurations and
velocities (g(0), ξ(0)) ∈ G × g and (g(T ), ξ(T )) ∈ G × g
minimizes the total control effort only if the discrete body-
fixed velocity curve ξ0:N−1 satisfies the following conditions:

Necessary Conditions for Optimality

νk −Ad∗τ(hξk−1)
νk−1 = 0, k = 1, ..., N − 1 (15a)

τ−1(τ(hξ0) · · · τ(hξN−1) · (g(0)−1g(T ))−1) = 0, (15b)
where:

νk=(dτ−1hξk)∗∂ξK(λ0:N ,k)(ξk), (15c)

K(λ0:N,k)(ξk)=〈(dτ−1hξk)
∗Iξk, λk−Adτ(hξk)λk+1〉/h, (15d)

λ[0 =2 (µ0−I ξ(0)) /h, (15e)

λ[k=
(
µk−Ad∗τ(hξk−1)

µk−1
)
/h, k=1, ..., N−1 (15f)

λ[N =2
(
I ξ(T )−Ad∗τ(hξN−1) µN−1

)
/h, (15g)

µk=(dτ−1hξk)∗ Iξk. (15h)

Note: The proposition defines Nn equations (15a)-(15b) in
the Nn unknowns ξ0, ..., ξN−1. A solution can be found using
nonlinear root finding.

Proof: Define the discrete action S according to

S(ξ0:N−1, f0:N , λ0:N )

= 〈µ0 − Iξ(0)− hf0/2, λ0〉

+

N−1∑

k=1

〈µk −Ad∗τ(hξk−1)
µk−1 − hfk, λk〉

+ 〈Iξ(T )−Ad∗τ(hξN−1) µN−1 − hfN/2, λN 〉

+
N−1∑

k=0

h

4

(
‖fk‖2 + ‖fk+1‖2

)

, (16)

where µk = (dτ−1hξk)∗ Iξk should be regarded as a function of
ξk. Taking variations δS with respect to fk and λk we obtain3

λ[k = fk = (µk −Ad∗τ(hξk−1)
µk−1)/h.

Next, freeze the adjoint trajectory λ0:N and define the func-
tions K(λ0:N ,k) : g→ R, for k = 0, ..., N − 1 by

K(λ0:N ,k)(ξ) = 〈(dτ−1hξ )∗ Iξ, λk −Adτ(hξ) λk+1〉/h. (17)

The ξ-dependent discrete action along fixed λ0:N can be
rewritten as

Sλ0:N
(ξ0:N−1) = h

N−1∑

k=0

K(λ0:N ,k)(ξk).

3The superscript operators [ : g → g∗ (flat) and ] : g∗ → g (sharp)
are used to convert between vector fields and their duals (one-forms). Under
identification g ∼ Rn, [ can simply be regarded as converting a column vector
into a row vector, and ] as the opposite operation [35].

For less cluttered notation the shorthand expression

K(ξk) := K(λ0:N ,k)(ξk), (18)

will also be employed since the index k in K(λ0:N ,k) becomes
clear from the argument ξk. The point is that λ in (17) should
be regarded as fixed, i.e. not dependent on ξ. The optimality
conditions can now be regarded as a set of equations satisfying
the dynamics of another higher order discrete Hamiltonian
system with discrete Lagrangian L = K through
δSλ0:N

(ξ0:N−1) = 0 ⇐⇒ νk −Ad∗τ(hξk−1)
νk−1 = 0, (19)

where νk = (dτ−1hξk)∗∂ξK(ξk) ∈ g∗ is a momentum-like
quantity for the system with Lagrangian L. The relation (19)
is nothing but the discrete Euler-Poincaré equation of this
new system and was obtained in the same way the standard
dynamics update (11a) followed from the principle (10). This
key insight leads directly to a convenient numerical scheme
for computing the optimal controls.

The final configuration gN is computed by reconstructing
the curve from the velocities ξ0:N−1 and the boundary condi-
tion gN = g(T ) is enforced through the relation (15b) without
the need to optimize over any of the configurations gk.

We point out the resulting formulation does not require
optimizing over additional Lagrange multiplier variables. It
has the minimum possible problem dimension and avoids
convergence and instability issues due to improper multiplier
initialization.

B. Implementing the Necessary Conditions.

An optimal trajectory is computed as the root of equa-
tions (15a)-(15b). Their exact form depends on the momentum
expression (15c) which can be computed numerically using
finite differences, e.g. using:

〈νk, η〉 (20)

≈ 1

2ε

[
K(λ0:N ,k)(ξk+εdτ−1hξkη)−K(λ0:N ,k)(ξk−ε dτ−1hξkη)

]
,

along basis elements η ∈ g with a small ε > 0. In other
words, the components of νk with respect to a chosen Lie
algebra basis {ei} are computed according to νik = 〈νk, ei〉
for any Lie group G.

Alternatively, the momentum can be expressed in closed
form by differentiating the kinetic energy K to obtain
〈νk, η〉
= 〈(∂ξdτ−1hξk ·dτ

−1
hξk

η)∗ I ξk,∆λk〉
+ 〈(dτ−1hξk)

∗ I(dτ−1hξk)∆λk + h ad∗Adτ(hξk)λk+1
µk, η〉,

(21)

where ∆λk = λk−Adτ(hξk) λk+1. Expression (21) is derived
using straightforward differentiation (one can also consult [22]
for more details) and using A.1. One can choose to implement
the necessary conditions using either (20) or (21).

V. UNDERACTUATED SYSTEMS WITH CONTROL
PARAMETERS

We next extend the system dynamics to include non-trivial
actuation and position dependent forces. Assume that the con-
trol forces are applied along body-fixed directions defined by
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the control covectors {f1(φ), ..., f c(φ)}, c ≤ n, f i : M→ g∗

which depend on control parameters φ : [0, T ] → M. These
extra parameters can be regarded as the shape variables of the
control basis, i.e. parameters that do not affect the inertial
properties of the systems but which determine the control
directions. Assume that the system is controlled using control
input u : [0, T ] → U applied with respect to the basis
{f i(φ)}. In addition, assume that the system is subject to
configuration-dependent forces collectively represented by the
function fconf : G → g∗ and dissipative velocity-dependent
forces fvel : g → g∗. For instance, forces arising from the
potential V take the form fconf(g) = −g∗∂gV (g). while simple
viscous resistance or linear drag forces can be expressed as
fvel(ξ) = −Dξ, where D is damping positive definite map.

The total force acting in the body frame can then be
expressed as the sum of the control and external forces
according to

f(g, ξ) =
c∑

i=1

uif i(φ) + fconf(g) + fvel(ξ).

In this problem the control effort to be minimized is expressed
as
∫ T
0

1
2‖u(t)‖2dt.

Dissipative Force discretization: In our framework
velocity-dependent forces fvel(ξk) are defined over the k-
th segment, and have no clear meaning over a particular
point. The contribution of such forces at a particular point
can be specified by assuming the following virtual work
approximation

∫ (k+1)h

kh

fvel(ξ) ·η(t)≈ h
2
〈(dτ−1hξk)

∗fvel(ξk), ηk+Adτ(hξN)ηk+1〉,

where η = g−1δg denotes the usual Lie group variations. Such
discretization is motivated by the way variations contribute to
Hamilton’s principle discretization (10)

δ

(∫ (k+1)h

kh

`(ξ)dt

)
·η≈h〈(dτ−1hξk)

∗∂ξ`(ξk),−ηk+Adτ(hξN)ηk+1〉,

where the left and right variations are averaged instead of
subtracted. Fig. 2 also helps explain how vectors defined along
a segment transform to its start and end points.

The necessary conditions for an optimal trajectory are
defined in the following proposition (which extends Prop. 2).

Proposition 3. A discrete mechanical system with kinetic en-
ergy K(ξ) and control input directions f i(φ) subject to config-
uration and dissipative forces fconf(g) and fvel(ξ), respectively,
moves with minimum control effort between fixed initial and
final states (g(0), ξ(0)) ∈ G× g, ((g(T ), ξ(T )) ∈ G× g, only
if the discrete velocity curve ξ0:N−1, control parameters φ0:N ,
and adjoint variables λ0:N satisfy the following conditions:

Necessary Conditions for Optimality

νk−Ad∗τ(hξk−1)
νk−1 =−hg∗k∂g〈fconf(gk),λk〉,

k = 1, ..., N−1
(22a)

τ−1(g−1N g(T )) = 0, (22b)

µ0−I ξ(0) = (h/2)f+0 , (22c)

µk−Ad∗τ(hξk−1)
µk−1 =(h/2)(f−k +f+k ), k=1, ..., N−1 (22d)

I ξ(T )−Ad∗τ(hξN−1) µN−1 =(h/2)f−N , (22e)
c∑

i=1

uik
(
∂φf

i(φk)]
)
λk = 0, k = 0, ..., N (22f)

where νk ∈ g∗, f±k ∈ g∗, uk ∈ U are defined by

νk = (dτ−1hξk)∗∂ξKλ0:N ,k(ξk), (22g)

Kλ0:N ,k(ξk) = 〈(dτ−1hξk)∗Iξk, λk −Adτ(hξk) λk+1〉/h

− 1

2
〈(dτ−1hξk)∗fvel(ξk), λk+Adτ(hξk)λk+1〉,

f−k =
c∑

i=1

uikf
i(φk) + fconf(gk) + (dτ−1−hξk−1

)∗fvel(ξk−1),

f+k =
c∑

i=1

uikf
i(φk) + fconf(gk) + (dτ−1hξk)∗fvel(ξk),

uik = 〈f i(φk), λk〉, (22h)
g0 = g(0), (22i)
gk+1 = gkτ(hξk), (22j)

Note: The proposition defines (Nn+ (N + 1)n+ (N + 1)m)
equations (22a)-(22f) in the (Nn + (N + 1)n + (N + 1)m)
unknowns (ξ0:N−1, λ0:N , φ0:N ). A solution can be found using
standard nonlinear root finding. When the control basis is con-
stant (i.e. m = 0) then the optimization is over (ξ0:N−1, λ0:N )
only; f i(φk) should be replaced with f i and (22f) is omitted.

Proof: Define the discrete action S similarly to (16)
according to

S(ξ0:N−1, u0:N , φ0:N , λ0:N ) =

〈µ0 − Iξ(0)− (h/2)f+0 , λ0〉

+
N−1∑

k=1

〈µk−Ad∗τ(hξk−1)
µk−1−(h/2)(f−k +f+k ), λk〉

+ 〈Iξ(T )−Ad∗τ(hξN−1) µN−1−(h/2)f−N , λN 〉

+
N−1∑

k=0

h

4

(
‖uk‖2 + ‖uk+1‖2

)
,

(23)

where we used the shorthand notation

f−k =

c∑

i=1

uikf
i(φk) + fconf(gk) + (dτ−1−hξk−1

)∗fvel(ξk−1),

f+k =
c∑

i=1

uikf
i(φk) + fconf(gk) + (dτ−1hξk)∗fvel(ξk).

Analogously to the fully actuated case (17), keep the
multiplier trajectory λ0:N frozen and define the function
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K(λ0:N ,k) : g→ R by

K(λ0:N ,k)(ξ) =〈(dτ−1hξ )∗Iξ, λk −Adτ(hξ) λk+1〉/h

− 1

2
〈(dτ−1hξ)∗fvel(ξ), λk+Adτ(hξ)λk+1〉.

(24)

In addition, define the function V(λ0:N ,k) : G→ R by

V(λ0:N ,k)(g) = 〈fconf(g), λk〉.
Similarly to (18) assume that following shorthand notation

K(ξk) := K(λ0:N ,k)(ξk), V(gk) := V(λ0:N ,k)(gk).

As the naming suggests, K and V play the role of kinetic and
potential energies for the higher order system whose dynamics
will determine the optimality conditions. The ξ-dependent part
of the action (23) can be expressed, along fixed λ0:N , by

Sλ0:N
(ξ0:K)=h

N−1∑

k=0

(
K(ξk)− 1

2
[V(gk) +V(gk+1)]

)
. (25)

Note that the action (23) was expressed in terms of each
K(ξk) (24) by combining all terms in S containing ξk and
using the identity

(dτ−1−hξk)∗fvel(ξk) = Ad∗τ(hξk)(dτ
−1
hξk

)∗fvel(ξk)

which follows from A.3.
After extremizing this action, it immediately follows from

the general discrete Lagrange-d’Alembert principle (Prop. 1)
that

νk −Ad∗τ(hξk−1)
νk−1 = −hg∗k∂gV(gk), (26)

where νk = (dτ−1hξk)∗∂ξK(ξk) ∈ g∗ is a momentum-like quan-
tity for the higher-order system with Lagrangian L = K − V .
In summary, the relation (22a) follows from applying the
variational equations (10) to the action Sλ0:N

.
Eqs. (22c)-(22e) enforce the dynamics after taking varia-

tions δλk, i.e.

δλ0 ⇒ µ0−I ξ(0) = (h/2)f+0 ,

δλk ⇒ µk−Ad∗τ(hξk−1)
µk−1 =(h/2)(f−k +f+k ),

δλN ⇒ I ξ(T )−Ad∗τ(hξN−1) µN−1 =(h/2)f−N .

Variations of the parameters φk result in

δφk ⇒
〈

c∑

i=1

uik∂φf
i(φk), λk

〉
= 0, for k = 0, ..., N,

which can be rewritten as the relation (22f). In the special
case when the control input basis elements f i are constant, the
relation (22f) vanishes. Variations with respect to the controls
δuk result in

δuik ⇒ −〈f i(φk), λk〉+ uik = 0, for k = 0, ..., N,

from which the controls uk can be computed in terms of the
multipliers (included as condition (22h)). Since the controls
u0:N can be computed internally it is not necessary to include
them as part of the optimization variables in Prop. 3.

The remaining equations are identical to the ones derived in
Prop. 2. Note that the optimization is not performed over the
configurations gk, since they can be internally reconstructed
according to (22i)-(22j).

Vector-matrix Form.: The term on the right hand side
of (22a) can be better understood under the identification g ∼
Rn by treating g as a matrix and all other variables as column
vectors. In this case g∗∂g〈fconf(g), λ〉 = gT (∂gfconf(g))Tλ.
Similarly, the expression in (22f) should be understood as(
∂φf

i(φ)]
)
λ = ∂φf

i(φ)Tλ.
Example: constant force field.: The force (22a) has a

closed form whenever the external force is constant in the
global frame, i.e. when it can be written as fconf(g) =
Ad∗g fconst. Typical examples of such forces are gravity (on
the surface of the Earth) or a simple model of wind blowing
in a constant direction. Using A.1 the expression becomes

g∗∂g〈fconf(g), λ〉 = − ad∗λ Ad∗g fconst = − ad∗λ fconf(g).

Corollary 1. The optimality conditions in Prop. 2 and 3
preserve the higher order discrete symplectic form ωL = dθL
where the canonical one-form θL is given by

θL · δgk =

〈
− 1

h
νk − g∗k∂gV(gk), g−1k δgk

〉
.

The claim follows directly from Thm. III.4.

Controllability Issues

In the fully actuated case §IV, gradient-based methods
are always guaranteed to find a (local) optimum since the
constraints are linearly independent. This is not the case with
underactuation since controllability is generally not guaran-
teed. In the discrete setting, lack of controllability appears
as a singularity of the optimality conditions which obstructs
iterative optimization. This is an issue with any numerical
method for solving optimal optimal control problems for
constrained systems. In that respect our proposed approach
is no better than any other standard nonlinear programming
technique. Yet, there appears to be an interesting connection
between the standard, i.e. continuous, controllability and its
counterpart in our proposed discrete setting. This link is briefly
explored next with further development left for future work.

A standard way to define controllability for the type of
systems considered in this paper is through the symmetric
product, denoted 〈· : ·〉 : g× g→ g and defined by

〈ξ : η〉 = −I−1
(
ad∗ξ Iη + ad∗η Iξ

)
.

In the continuous setting, iterated symmetric products of the
input vector fields bi = I−1f i determine which velocities
can be reached while iterated Lie brackets of these reachable
velocities determine which configurations are achievable. In
particular, exact controllability tests are directly computable
assuming the system starts and ends with zero velocity [36].
A similar general claim can be made regarding our discrete
setting for N → ∞ since the discrete dynamics approaches
the continuous one. However, such a claim is not useful in
practice since a realistically implementable algorithm is based
on a small N .

In that respect, there is an interesting link between the
standard continuous and the required discrete controllability
conditions. More specifically, the discrete dynamics (22d) can
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be expressed (after setting τ = exp and ignoring external
forces) as
∞∑

i=0

Bi
i!2i

(
〈ξk :i ξk〉 − (−1)i〈ξk−1 :i ξk−1〉

)
= huib

i (27)

where 〈ξ :i ξ〉 denotes taking the product using the first
argument recursively i times. In addition, the reconstruction
condition (22b) can be expressed through the Baker-Campbell-
Hausdorff formula [4] as

τ−1(τ(hξ0)· · ·τ(hξN−1))=h
N−1∑

k=0

ξk+
h2

2

N−1∑

i,j=0

[ξi, ξj ]+hot, (28)

where “hot” denotes higher-order terms of iterated Lie brack-
ets. Note that if the closure under Lie algebra bracket operation
[·, ·], denoted Lie(ξ0:N−1), spans all possible directions of
motions then (28) ensures that any final configuration g(T )
can be reached from any starting configuration g(0). This
corresponds exactly to the continuous controllability condition
requiring that the Lie algebra closure of achievable velocities
has full rank [4]. Note that this similarity applies in the context
of kinematic systems since the discrete composition of flows
in (28) can be regarded as a curve generated by a kinematically
reduced continuous system.

It would be interesting to define more precisely the notion
of discrete controllability through (27) and (28). This will
enable the algorithm to determine not only whether a state is
reachable but also an appropriate number of discrete segments
N required to reach it. As a rule of thumb, any practical
implementation should have N ≥ 2 + n, where n = dim(G),
to account for the two boundary conditions on velocities and
to provide at least n discrete flows.

VI. APPLICATIONS TO MATRIX GROUPS

We now specify the operators required to implement Prop. 2
and Prop. 3 for typical rigid body motion groups and general
real matrix subgroups. While we have given more than one
general choice for τ , for computational efficiency we rec-
ommend the Cayley map since it is simple and does not
involve trigonometric functions. In addition, it is suitable
for iterative integration and optimization problems since its
derivatives do not have any singularities that might otherwise
cause difficulties for gradient-based methods.

A. SO(3)

The group of rigid body rotations is represented by 3-by-3
matrices with orthonormal column vectors corresponding to
the axes of a right-handed frame attached at the body. Define
the map ·̂ : R3 → so(3) by

ω̂ =




0 −w3 w3

w3 0 −w1

−w2 w1 0


 . (29)

A Lie algebra basis for SO(3) can be constructed as
{ê1, ê2, ê3}, êi ∈ so(3) where {e1, e2, e3} is the standard
basis for R3. Elements ξ ∈ so(3) can be identified with the
vector ω ∈ R3 through ξ = ωαêα, or ξ = ω̂. Under such

identification the Lie bracket coincides with the standard cross
product, i.e. adω̂ ρ̂ = ω × ρ, for some ρ ∈ R3. Using this
identification we have

cay(ω̂) = I3 +
4

4 + ‖ω‖2
(
ω̂ +

ω̂2

2

)
. (30)

The linear maps dτ ξ and dτ−1ξ are expressed as the 3 × 3
matrices

dcayω=
2

4+‖ω‖2 (2I3+ω̂) , dcay−1ω =I3−
ω̂

2
+
ωωT

4
. (31)

We point out that with the choice τ = cay the optimization
domain is not restricted, i.e. Dcay = g since the maps (31)
are non-singular for any ξ ∈ g. This is not the case for the
exponential map for which Dexp = {ξ ∈ g | ‖ξ‖ < 2π/h}
since the exponential map derivative is singular whenever the
norm of its argument is a multiple of 2π [8], and the origin
requires special handling.

B. SE(2)

The coordinates of SE(2) are (θ, x, y) with matrix repre-
sentation g ∈ SE(2) given by:

g =




cos θ − sin θ x
sin θ cos θ y

0 0 1


 . (32)

Using the isomorphic map ·̂ : R3 → se(2) given by:

v̂ =




0 −v1 v2

v1 0 v3

0 0 0


 for v =



v1

v2

v3


 ∈ R3,

{ê1, ê2, ê3} can be used as a basis for se(2), where {e1, e2, e3}
is the standard basis of R3.

The map τ : se(2)→ SE(2) is given by

cay(v̂)=




1
4+(v1)2

[
(v1)2−4 −4v1 −2v1v3+4v2

4v1 (v1)2−4 2v1v2+4v3

]

0 0 1


 ,

while the map [dτ−1ξ ] becomes the 3x3 matrix:

[dcay−1v̂ ] = I3 −
1

2
[adv] +

1

4

[
v1 · v 03×2

]
, (33)

where

[adv] =




0 0 0
v3 0 −v1
−v2 v1 0


 .

C. SE(3)

We make the identification SE(3) ≈ SO(3) × R3 using
elements R ∈ SO(3) and x ∈ R3 through

g =

[
R x
0 1

]
, g−1 =

[
RT −RTx
0 1

]
.

Elements of the Lie algebra ξ ∈ se(3) are identified with
body-fixed angular and linear velocities denoted ω ∈ R3 and
v ∈ R3, respectively, through

ξ =

[
ω̂ v
0 0

]
,
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where the map ·̂ : R3 → so(3) is defined in (29).
Using this identification we have

τ(ξ) =

[
τ(hω̂k) hdτhωk vk

0 1

]
,

where τ : so(3) → SO(3) is given by (30) and dτω : R3 →
R3 by (31).

The matrix representation of the right-trivialized tangent
inverse dτ−1(ω,v) : R3 × R3 → R3 × R3 becomes

[dcay−1(ω,v)] =

[
I3 − 1

2 ω̂ + 1
4ωω

T 03

− 1
2

(
I3 − 1

2 ω̂
)
v̂ I3 − 1

2 ω̂

]
. (34)

D. General matrix subgroups

The Lie algebra of a matrix Lie group coincides with the
one-parameter subgroup generators of the group. Assume that
we are given a k-dimensional Lie subalgebra denoted g ⊂
gl(n,R). It is isomorphic to the space of generators of a unique
connected k-dimensional matrix subgroup G ⊂ GL(n,R).
Therefore, a subalgebra g determines the subgroup G in a
one-to-one fashion:

g ⊂ gl(n,R)⇐⇒ G ⊂ GL(n,R).

The two ingredients necessary to convert the necessary condi-
tions in Prop. (2) into algebraic equalities are: a choice of basis
for g; and an appropriate choice of inner product (metric).

Assume that the Lie algebra basis elements are {Eα}kα=1,
Eα ∈ g, i.e. that every element ξ ∈ g can be written as ξ =
ξαEα. Define the following inner product for any ξ, η ∈ g

〈〈ξ, η〉〉 = tr(BξT η),

where B is an n × n matrix such that 〈〈Eα, Eβ〉〉 = δβα and
tr is the matrix trace. Correspondingly, a pairing between any
µ ∈ g∗ and ξ ∈ g can be defined by

〈µ, ξ〉 = tr(Bµξ),

since the dual basis for g∗ is {[Eα]T }kα=1 in matrix form.
Example: If g = so(3) then setting B =

diag(1/2, 1/2, 1/2) yields the standard inner product under
the identification so(3 ∼ R3, i.e. 〈µ, ξ〉 = µαξ

α.
Example: If g = se(3) with basis then setting B =

diag(1/2, 1/2, 1/2, 1) the pairing yields the standard inner
product if we identify se(3) with R3 × R3.

Kinetic Energy-Type Metric: After having defined a met-
ric pairing, a kinetic energy operator I can be be expressed
as

〈I(ξ), η〉 = tr(BIdξ
T η),

for some symmetric matrix Id ∈ GL(n,R).
Example: Consider a rigid body on SO(3) with moments

of inertia J1, J2, J3 and Lagrangian `(ξ) = 1
2Jiξ

2
i where the

ξi are the velocity components in the Lie algebra basis defined
in §VI-A. The matrix Id must have the form

Id = diag(−J1+J2+J3,−J2+J1+J3,−J3+J1+J2)

Example: Consider a rigid body on SE(3) with princi-
pal moments of inertia J1, J2, J3, mass m, and Lagrangian
`(ω, v) = 1

2

(
Jiω

2
i +mvT v

)
, where (ω, v) ∈ (R3 × R3) ∼

se(3) are the body-fixed angular and linear velocities using
the identification defined in §VI-C. The Lagrangian in this
case can be equivalently expressed as `(ξ) = 1

2 tr(BIdξ
T ξ),

where ξ ∈ se(3) and

Id = diag(−J1+J2+J3,−J2+J1+J3,−J3+J1+J2,m).

With these definitions the optimality conditions in Prop. 2
can be implemented for any given linear group by choosing
B, Id and setting the inner product to the matrix trace. For
numerical efficiency though, it is always preferable to employ
an identification with a vector space where a standard dot
product is used.

VII. EXAMPLES

v

v⊥

ω

c

damping

wind
thrust

z

x

y

thrusters firing

sensor

Fig. 3. Planar boat (left) controlled with two thrusters, and subject to
hydrodynamic damping and wind forces. Model of a satellite (right) with
16 thrusters and a ranging sensor with limited field-of-view.

A. Planar Boat

Consider a planar boat model (Fig. 3). The configuration
space of the system is the group G = SE(2) with coordinates
q = (θ, x, y) denoting orientation and position with respect
to a fixed global frame. The body-fixed velocity ξ ∈ se(2) is
defined by

ξ := (ω, v, v⊥),

where ω is the angular velocity (yaw), v is the forward velocity
(surge), and v⊥ is the sideways velocity (sway). The inertia
operator can be written in matrix form as [I] = diag(J,m,m),
where J is the moment of inertia around the vertical axis and
m is the mass. The system is actuated with thrust produced by
two fixed propellers placed at the rear of the boat at distance
±c from the long axis of the boat producing forces ur and ul,
respectively. The control vector fields corresponding to these
inputs are

f1 = (c, 1, 0), f2 = (−c, 1, 0).

The boat is subject to simple linear damping, commonly
employed to model drag at low velocity, encoded as

fvel(ξ) = −Dξ,
where D is a positive definite matrix, and to constant (e.g.
from west) wind force fwind ∈ g∗ which results in the body-
frame force

fconf (g) = Ad∗g fwind.
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The discrete mechanics and necessary conditions for optimal-
ity are implemented using Prop. (3) by replacing the retraction
map τ and its tangents with the corresponding functions
defined in §VI-B. The results of three typical scenarios are
given next using the parameters J = .5, m = 1 kg, c = .2 m.,
D = diag(−.5,−.5,−5):

i) A basic case without wind, fwind = (0, 0, 0). Fig. 4 shows
the resulting optimal velocities, controls, and path.
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Fig. 4. A computed optimal trajectory between configurations q(T ) =
(0, 0, 0) and q(T ) = (π/2, 5, 5) with zero velocities at the boundaries with
T = 10 sec. Thruster control and simple linear damping model were used.
The resulting velocities are plotted in a), controls in b), and path in c). The
computation converged after six Newton iterations of the optimality conditions
(Prop. (3)).

ii) Optimal motion subject to fwind = (0,−.1,−.1) (Fig. 5).
Wind in direction opposite to the motion results in higher
cost and straighter trajectory.
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Fig. 5. The same scenario as in Fig. 4 with added configuration-dependent
external force. The resulting velocities are plotted in (a), controls in (b),
and path in (c). The optimization terminates successfully after nine Newton
iterations.

iii) Singular motion (parallel-parking) (Fig. 6). This test illus-
trates the ability of the algorithm to handle two typical
difficulties in optimization. The first is the ability to jump
out of singularities and the second is the ability to produce
non-smooth optimal trajectories containing cusp points.
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Fig. 6. A more challenging motion between q(0) = (0, 0, 0) and q(T ) =
(0, 0, 2) with zero velocities mimicking a parallel parking maneuver. The
resulting velocities are plotted in (a), controls in (b), and path in (c). The
algorithm can naturally compute trajectories with cusps and converges after
7 Newton iterations.

The above tests were repeated for 100 different boundary
conditions chosen randomly within a 10x10 m. box and
arbitrary orientations. Solutions with resolutions from N = 6

to N = 96 discrete segments were included in order to
study the algorithm efficiency and robustness. Fig. 7 shows
the resulting Newton iterations as a function of the time-
step resolution. The algorithm is evaluated in terms of the
number of iterations required for convergence and the CPU
computation times (on a standard PC using C++ code). Note
that our implementation is very basic, i.e. it uses finite differ-
ences and no information about Jacobian sparsity. The rate
at which the discrete solutions approach the true optimum
as a function of the resolution is also considered. Fig. 8
shows that the rate is close to quadratic which is consistent
with the second-order accuracy of the variational method (see
§III-D) used to formulate the optimal control problem. The
true optimal trajectory in Fig. 8 is computed using very high
resolution (N=256) and with various initial conditions in order
to guarantee that it is indeed the global optimum.
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Fig. 7. Number of iterations required to achieve algorithm convergence as
a function of the trajectory resolution N shown in (a). The corresponding
computation times are shown in (b). The results are averaged over 100 Monte
Carlo runs with random boundary conditions.
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Fig. 8. Illustration of the rate at which discrete optimal trajectories
approach the true optimal trajectory. Plot a) shows three discrete trajectories of
increasing resolution – even at smallest possible resolution N=6 the solution
trajectory is qualitatively correct. Plot b) shows the actual convergence rate to
the true optimum. The measure is the averaged distance between trajectories
in position space as a function of resolution. The rate is close to quadratic,
i.e. the graph is bounded by two curves decaying with exponents 1.5 and 2.1.

Optimality: In general it is not possible to claim that
any of the solution trajectories are globally optimal. Yet, it is
interesting to point out that through the coarse initialization
and resolution upsampling (described in §VIII) all computed
trajectories were indeed globally optimal (based on com-
parisons with 100 other randomly chosen initial trajectories
ξ0:N−1 to seed the iterative solver).

B. Satellite with Thrusters
Consider a satellite (Fig. 3) modeled as a rigid body with

configuration space G = SE(3) describing its orientation and
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position (defined in §VI-C). The system has mass m and
principal moments of inertia J1, J2, J3 forming the inertia
tensor I = diag(J1, J2, J3,m,m,m).

The craft is controlled with forces produced by 16 thrusters
placed at distance r from the craft central axis. The total force
f can be expressed in terms of the controls u ∈ R16 in matrix-
vector form as f = Fu, where the constant matrix F with
columns corresponding to the input vector fields f i has the
form

F:=




0 0 0 0 r 0 −r 0 0 0 0 0 −r 0 r 0
r 0 −r 0 0 0 0 0 −r 0 r 0 0 0 0 0
0 −r 0 r 0 −r 0 r 0 −r 0 r 0 −r 0 r
0 0 0 0 0 −1 0 1 0 0 0 0 0 1 0 −1
0 −1 0 1 0 0 0 0 0 1 0 −1 0 0 0 0
−1 0 1 0 −1 0 1 0 −1 0 1 0 −1 0 1 0



.

The optimal control algorithm is implemented using Prop. 3
based on the Cayley map and its derivatives on SE(3) defined
in §VI-C. Fig. 9 shows a typical control scenario. The resulting
motion is visualized in Fig. 10.
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Fig. 9. A computed optimal path between the origin and configuration
q(T ) = (π/2, 5, 5) with zero velocities at the boundaries with T = 10
sec. The resulting angular velocities, linear velocities, and control curves of
the 16 thrusters are plotted in a), b), and c), respectively. The computation
converged after nine Newton iterations of the optimality conditions (Prop. (3)).

VIII. NUMERICAL IMPLEMENTATION

Software Package: The presented algorithms along with
a library with all Lie group operations used in the paper are
implemented and assembled as a Matlab package available at

http://www.cds.caltech.edu/∼marin/index.php?n=lieopt

Fig. 10. An optimal trajectory between two given zero-velocity states of the
satellite. Thruster outputs are rendered as small red cones emanating from the
four boxes around the spacecraft.

It can be applied to new models by specifying their group
structure (currently supporting SE(2), SO(3), and SE(3)), in-
ertial properties, control vector fields, and external forces. The
example results from §VII are included for easier reference.

Trajectory Initialization and Resolution: Since there is
no established strategy for selecting an optimal resolution
N , our approach is to start the optimal control computation
with some minimum N0, e.g. enough to satisfy the dynamics.
The resolution is then increased by upsampling the trajectory
(resulting in N = 2N0 segments) and re-optimizing the new
finer trajectory. The process can be repeated as many times
as necessary to achieve a desired resolution. Interestingly,
Fig. 7 shows that such an approach effectively makes the
number of required Newton iterations independent and even
decreasing as N increases. In our numerical tests we do not
include exact CPU run-times taken which can vary based on
implementation but instead analyze the number of iterations
required for convergence. In practice, for a reasonable N , the
whole process can be implemented in near real-time (e.g. using
optimized C-code instead of Matlab).

Singularities: In the underactuated case there are a small
set of states which result in singularities of the optimal-
ity conditions (Prop. 3). For instance, Fig. 6 illustrates a
parallel parking task for which ∆g = τ−1(g(0)−1g(T )) is
perpendicular to the control directions f . A trajectory ξ0:N−1
such that ξk is parallel to ∆g for all k will render the
optimality conditions singular. A standard Newton step in this
case will fail. The easiest way to overcome this situation,
implemented in our system, is to detect the singularity and
perturb the trajectory as simply as ξk = ξk + ε randn(n) for
one or more k and a small variation, e.g. ε = 10−3. This
approach is a simplification of the procedure used by more
sophisticated homotopy-continuation methods to detect and
handle bifurcations [37] (in our case the split is because the
parallel displacement can be achieved equally well by either
first moving forward and then backwards, or vice versa).

Real Vehicle Implementation: The run-time efficiency
results obtained in §VII suggest that the proposed algorithm
is suitable for real-time maneuver control of vehicles such as
the boat shown on Figure 3. In particular, Figure 7 shows
that a reasonably accurate trajectory (e.g. one with N = 24
segments as depicted on Figure 8) can be computed in less
than 50 milliseconds with basic unoptimized C++ code. In
addition, the expected number of iterations and CPU time are
very predictable and the algorithms never failed to converge in
the performed 100 random runs. Ultimately, the method can
be used to optimally drive a vehicle from its current state to a
given state (g(T ), ξ(T )) in a given time T . Once the algorithm
computes the discrete control sequence u0:N , the continuous
curve u is reconstructed using linear interpolation. The vehicle
is then controlled using actuator inputs u(t) at time t ∈ [0, T ].
The process can be repeated if the vehicle deviates from its
path due to uncertainties.

IX. CONCLUSION

This paper shows how recent developments in the theory
of discrete mechanics and Lie group methods can be used to
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construct numerical optimal control algorithms with certain
desirable features. Preservation of key motion properties leads
to robust dynamics approximation. In addition, a singularity-
free structure-respecting choice of trajectory representation
avoids numerical instability during iterative optimization.

Practically speaking, the message of our approach is that
a reliable numerical optimization of vehicle motions on Lie
groups (such as a robot modeled as a rigid body) can be
accomplished by selecting a coordinate-free and singularity-
free trajectory parametrization providing high accuracy and
stability at low resolution and complexity. There are existing
standard methods which address some of the raised issues. Our
approach is to circumvent any numerical problems through a
proper design of a general discrete variational framework.

It is necessary to study the precise effect of the discretization
resolution N on the optimality of the algorithm and to explore
the notion of discrete controllability. Future work will address
such issues and attempt to apply tools from standard nonlin-
ear controllability to provide formal numerical convergence
guarantees in the underactuated case.

APPENDIX A
TANGENT MAP IDENTITIES

The following identities supplement the derivations in the
paper.

Lemma A.1 (see [35]). Let g ∈ G, λ ∈ g, and δf denote
the variation of a function f with respect to its parameters.
Assuming λ is constant, the following identity holds

δ (Adg λ) = −Adg[λ, g
−1δg],

where [·, ·] : g × g → g denotes the Lie bracket operation or
equivalently [ξ, η] ≡ adξ η, for given η, ξ ∈ g.

Lemma A.2. The following identity holds

∂ξ
(
Adτ(ξ) λ

)
= −[Adτ(ξ) λ, dτ ξ]

Proof: By Lemma A.1

∂ξ
(
Adτ(ξ) η

)
= −Adτ(ξ)[λ, τ(−ξ)δτ(ξ)]

= −[Adτ(ξ) λ, δτ(ξ) · τ(−ξ)]
= −[Adτ(ξ) η,dτ ξ],

obtained from the tangent definition (5) and using the fact that
Adg[λ, η] = [Adg λ,Adg η] (see [35]).

Lemma A.3 (see [14]). The following identities holds

dτ ξ η = Adτ(ξ) dτ−ξ η, (dτ−1ξ )η = dτ−1−ξ
(
Adτ(−ξ) η

)
.

ACKNOWLEDGEMENT

We thank L. Noakes and D. M. de Diego for interesting
discussions on closely related topics, and M. Desbrun, G.
Johnson, and the paper reviewers for their useful feedback
regarding this paper.

REFERENCES

[1] J. Betts, “Survey of numerical methods for trajectory optimization,”
Journal of Guidance, Control, and Dynamics, vol. 21, no. 2, pp. 193–
207, 1998.

[2] J. M. Selig, Geometrical Foundations of Robotics. World Scientific
Pub Co Inc, 2000.

[3] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation. CRC, 1994.

[4] F. Bullo and A. Lewis, Geometric Control of Mechanical Systems.
Springer, 2004.

[5] O. Junge, J. Marsden, and S. Ober-Blöbaum, “Discrete mechanics and
optimal control,” in Proccedings of the 16th IFAC World Congress, 2005.

[6] J. Moser and A. P. Veselov, “Discrete versions of some classical
integrable systems and factorization of matrix polynomials,” Comm.
Math. Phys., vol. 139, no. 2, pp. 217–243, 1991.

[7] J. Marsden and M. West, “Discrete mechanics and variational integra-
tors,” Acta Numerica, vol. 10, pp. 357–514, 2001.

[8] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical Integration,
ser. Springer Series in Computational Mathematics. Springer-Verlag,
2006, no. 31.

[9] J. E. Marsden, S. Pekarsky, and S. Shkoller, “Discrete euler-poincare
and Lie-poisson equations,” Nonlinearity, vol. 12, p. 16471662, 1999.

[10] A. I. Bobenko and Y. B. Suris, “Discrete lagrangian reduction, discrete
euler-poincare equations, and semidirect products,” Letters in Mathe-
matical Physics, vol. 49, p. 79, 1999.

[11] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, “Lie group
methods,” Acta Numerica, vol. 9, pp. 215–365, 2000.

[12] M. Leok, “Foundations of computational geometric mechanics,” Ph.D.
dissertation, California Institute of Technology, 2004.

[13] P. Krysl and L. Endres, “Explicit newmark/verlet algorithm for time
integration of the rotational dynamics of rigid bodies,” International
Journal for Numerical Methods in Engineering, 2005.

[14] N. Bou-Rabee and J. Marsden, “Hamilton-pontryagin integrators on Lie
groups,” Foundations of Computational Mathematics, vol. 9, pp. 197–
219, 2009.

[15] L. Noakes, “Null cubics and Lie quadratics,” Journal of Mathematical
Physics, vol. 44, no. 3, pp. 1436–1448, 2003.

[16] M. Camarinha, F. S. Leite, and P. Crouch, “On the geometry of Rie-
mannian cubic polynomials,” Differential Geometry and its Applications,
no. 15, pp. 107–135, 2001.

[17] R. Giambo, F. Giannoni, and P. Piccionez, “Optimal control on Rieman-
nian manifolds by interpolation,” Math. Control Signals System, vol. 16,
pp. 278–296, 2003.

[18] M. Zefran, V. Kumar, and C. B. Croke, “On the generation of smooth
three-dimensional rigid body motions,” IEEE Transactions On Robotics
And Automation, vol. 14, no. 4, pp. 576–589, 1998.

[19] C. Altafini, “Reduction by group symmetry of second order variational
problems on a semidirect product of Lie groups with positive definite
Riemannian metric,” ESAIM: Control, Optimisation and Calculus of
Variations, vol. 10, pp. 526–548, 2004.

[20] R. V. Iyer, R. Holsapple, and D. Doman, “Optimal control problems on
parallelizable riemannian manifolds: Theory and applications,” ESAIM:
Control, Optimisation and Calculus of Variations, vol. 12, pp. 1–11,
2006.

[21] A. Bloch, Nonholonomic Mechanics and Control. Springer, 2003.
[22] M. Kobilarov, Discrete Geometric Motion Control of Autonomous Vehi-

cles. PhD thesis, University of Southern California, 2008.
[23] T. Lee, N. McClamroch, and M. Leok, “Optimal control of a rigid body

using geometrically exact computations on SE(3),” in Proc. IEEE Conf.
on Decision and Control, 2006.

[24] A. M. Bloch, I. I. Hussein, M. Leok, and A. K. Sanyal, “Geometric
structure-preserving optimal control of a rigid body,” Journal of Dy-
namical and Control Systems, vol. 15, no. 3, pp. 307–330, 2009.

[25] M. de Leon, D. M. de Diego, and A. Santamaria Merino, “Geometric
numerical integration of nonholonomic systems and optimal control
problems,” European Journal of Control, vol. 10, pp. 520–526, 2004.

[26] J. Ostrowski, “Computing reduced equations for robotic systems with
constraints and symmetries,” IEEE Transactions on Robotics and Au-
tomation, pp. 111–123, 1999.

[27] E. Johnson and T. Murphey, “Scalable variational integrators for con-
strained mechanical systems in generalized coordinates,” IEEE Trans-
actions on Robotics, vol. 25, no. 6, pp. 1249 – 1261, 2009.

[28] J. P. Ostrowski, J. P. Desai, and V. Kumar, “Optimal gait selection
for nonholonomic locomotion systems,” The International Journal of
Robotics Research, vol. 19, no. 3, pp. 225–237, 2000.



15

[29] J. Cortés, S. Martinez, J. P. Ostrowski, and K. A. McIsaac, “Optimal
gaits for dynamic robotic locomotion,” The International Journal of
Robotics Research, vol. 20, no. 9, pp. 707–728, 2001.

[30] M. Kobilarov, J. E. Marsden, and G. S. Sukhatme, “Geometric dis-
cretization of nonholonomic systems with symmetries,” Discrete and
Continuous Dynamical Systems - Series S (DCDS-S), vol. 3, no. 1, pp.
61 – 84, 2010.

[31] L. Kharevych, Weiwei, Y. Tong, E. Kanso, J. Marsden, P. Schroder,
and M. Desbrun, “Geometric, variational integrators for computer an-
imation,” in Eurographics/ACM SIGGRAPH Symposium on Computer
Animation, 2006, pp. 1–9.

[32] M. Kobilarov, K. Crane, and M. Desbrun, “Lie group integrators for
animation and control of vehicles,” ACM Trans. Graph., vol. 28, no. 2,
pp. 1–14, 2009.

[33] C. Lanczos, Variational Principles of Mechanics. University of Toronto
Press, 1949.

[34] A. Stern and M. Desbrun, “Discrete geometric mechanics for variational
time integrators,” in ACM SIGGRAPH Course Notes: Discrete Differen-
tial Geometry, 2006, pp. 75–80.

[35] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry.
Springer, 1999.

[36] F. Bullo, N. Leonard, and A. Lewis, “Controllability and motion
algorithms for underactuated lagrangian systems on Lie groups,” IEEE
Transactions on Automatic Control, vol. 45, no. 8, pp. 1437 – 1454,
2000.

[37] E. Allgower and K. Georg, Introduction to Numerical Continuation
Methods. SIAM Wiley and Sons, 2003.

Marin B. Kobilarov is a post-doctoral fellow in
Control and Dynamical Systems at Caltech and is
affiliated with the Keck Institute for Space Studies.
His research focuses on computational control meth-
ods that exploit the geometric structure of nonlinear
dynamics. He develops autonomous vehicles with
applications in robotics and aerospace.

Jerrold E. Marsden is a professor of Control
and Dynamical Systems at Caltech. He has done
extensive research in the area of geometric me-
chanics, with applications to rigid body systems,
fluid mechanics, elasticity theory, plasma physics,
as well as to general field theory. His work in dy-
namical systems and control theory emphasizes how
it relates to mechanical systems and systems with
symmetry, along with concrete application areas of
dynamical systems and optimal control, including
Lagrangian Coherent Structures (LCS), space sys-

tems, and structured integration methods. He is one of the original founders
in the early 1970’s of reduction theory for mechanical systems with symmetry,
which remains an active and much studied area of research today.


