Introduction

VACNTs (vertically aligned carbon nanotubes) —

e unique hierarchical structure resulting in
e mechanical properties that combine the
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Compressmn of VACNT micro-pillars
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e \What governs the energy absorption mechanism

in VACNTs and their amazing recovery

e How do these properties change under different
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In-situ cyclic compression tests showing three distinct regimes;
elastic, plateau, and densification

loading and boundary conditions in VACNTs Elasic ﬁ
Plateau
—~ 600 600 | | | | | I I I I I
VAC NT g rOWth n(_\3 - | - © n 01000 nm/s {4 } Post-densification, € > 0.65 -
: : : - = 500 1tcycle i - Q 500} 100 nm/s { -
e Photolithography - Photoresist application 0 I I | 010 nmis -
- UV Exposure VACNT pillars s 3 %[ e ] 2400F 1T 7
- | 5 ge) i ]
- developing - I = 3001 e ) 2800 1t -
e E-beam evaporation LN SN N 5 200 ? 1 200} 1 L : 1
S QOQPO - > i @::::%““é——-— R
- catalyst Ti (30nm) /Al (10 nm)/Fe (3 nm) 2 100] 0% 1 8.0 . e 2l = 1000 s :
= c — ¢ nm/s
e Photoresist removal O'; c ] 2 [rogensieaton. £<065 ] [Lefomms
. - 0 0.2 0.4 0.6 08 1 1 2 3 4 5 1 2 3 4 5
® .
CVD CNT growth - Pressure: 750 mbar My Stran oy 26 nomber Cye number

- Temp: 750 C
- Carbon source gas: Ac
e Multiwall CNT, dia 8.8£2nm, density ~80

e Changes in unloading modulus at varying maximum strains show
etylene3 a stiffer response at faster rates and
mg/cm® ¢ 3 20-30 % drop after 5 load-unload cycles
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Tests at slower displacement rates show more pronounced
buckling signatures and lesser recovery.
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e VACNTs show higher
recovery at faster rates
e and in the pre-
densification regime.
Their recoverability
decreases progressively
beyond densification
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Cycle number

to compression

ehowever, the VACNTSs in indentation show very
poor recovery and loss coefficient after the burst
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e \When VACNT micro-pillars were allowed similar amounts of time for
the reconfiguration to occur, they show similar % recovery.

e Thus it is the time spent by the VACNTs under high strains,
rather than the loading history, that determines the permanence of
their deformation.
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e VACNTs show relatively high values of loss coefficient (energy
dissipaption) under compression — comparable to polymeric foams.

e Similar to the trends of modulus and %recovery, the loss coefficient
also increases at faster rates.

Compressmn vs. Indentation
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e VACNTs show distinct modes of deformation in different
boundary conditions — shear under indentation, and
buckling in compression. During indentation the VACNT
film reaches its critical shear stress before it can buckle.

e Shearing under indentation results in (<5%) recovery,
compared to compression (> 95%).

e VACNT recovery in compression is strain rate dependent -

Buckle formation in the VACNT film is strongly higher Sota igh at faster_ rates | il | .
influenced by the constraints imposed by the stiff e Thus utility of VACNTSs In protective applications with high
substrate. Thus, indentations on a thin 25 ym energy dissipation requirements depends on the applied
VACNT film result in additional localized folds to strain rate as well as on the loading/boundary conditions.

continuously form along the VACNT film-height,
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