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Our fundamental understanding of the interior of the Earth comes from seismology, geodesy,

geochemistry, geomagnetism, geothermal studies, and petrology. For the Earth, measurements in those

disciplines of geophysics have revealed the basic internal layering of the Earth, its dynamical regime, its

thermal structure, its gross compositional stratification, as well as significant lateral variations in these

quantities. Planetary interiors not only record evidence of conditions of planetary accretion and

differentiation, they exert significant control on surface environments.

We present recent advances in possible in-situ investigations of the interior of Mars, experiments

and strategies that can provide unique and critical information about the fundamental processes of

terrestrial planet formation and evolution. Such investigations applied on Mars have been ranked as a

high priority in virtually every set of European, US and international high-level planetary science

recommendations for the past 30 years. New seismological methods and approaches based on the

cross-correlation of seismic noise by two seismic stations/landers on the surface of Mars and on joint

seismic/orbiter detection of meteorite impacts, as well as the improvement of the performance of Very

Broad-Band (VBB) seismometers have made it possible to secure a rich scientific return with only two

simultaneously recording stations. In parallel, use of interferometric methods based on two Earth–Mars

radio links simultaneously from landers tracked from Earth has increased the precision of radio science

experiments by one order of magnitude. Magnetometer and heat flow measurements will complement

seismic and geodetic data in order to obtain the best information on the interior of Mars.
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In addition to studying the present structure and dynamics of Mars, these measurements will

provide important constraints for the astrobiology of Mars by helping to understand why Mars failed to

sustain a magnetic field, by helping to understand the planet’s climate evolution, and by providing a

limit for the energy available to the chemoautotrophic biosphere through a measurement of the surface

heat flow. The landers of the mission will also provide meteorological stations to monitor the climate

and obtain new measurements in the atmospheric boundary layer.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Why study Mars?

By studying other planets, we seek to understand the pro-
cesses that govern planetary evolution and discover the factors
that have led to the unique evolution of Earth. Why is Earth the
only planet with surface liquid oceans, plate tectonics, and
abundant life? Mars is presently on the edge of the habitable
zone, but may have been much more hospitable early in its
history. Recent surveys of Mars suggest that the formation of
rocks in the presence of abundant water was largely confined to
the earliest geologic epoch, the Noachian age (prior to 3.8 Ga)
(Poulet et al., 2005). This early period of Martian history was
extremely dynamic, witnessing planetary differentiation, forma-
tion of the core, an active dynamo, the formation of the bulk of
the crust and the establishment of the major geologic divisions
(Solomon et al., 2005). Formation of the crust and associated
volcanism released volatiles from the interior into the atmo-
sphere (Greeley, 1987; Phillips et al., 2001; Gillmann et al., 2009),
causing conditions responsible for the formation of the familiar
signs of liquid water on the surface of Mars, from the abundant
channels, phyllosilicate formations and carbonate deposits to
sulfate-rich layered outcrops (Poulet et al., 2005; Clark et al.,
2005; Bridges et al., 2001; Ehlmann et al., 2008; Morris et al.,
2010).

1.2. Why study the geophysics of Mars?

Studying the geophysics of Mars, focusing on interior pro-
cesses and early evolution, provides essential constraints for
models of the thermal, geochemical, and geologic evolution of
Mars and for the correct use of the constraints from SNC
meteorites (considered to be Martian rocks, based on a close
match between the composition of gases included and the atmo-
sphere of Mars, often used in the literature to constrain the
Martian mantle composition; e.g., Wänke and Dreibus, 1988;
Hauck and Phillips, 2002) and any future samples from Mars.

Our fundamental understanding of the interior of the Earth
(and of the Moon) comes from geophysics, geodesy, geochemis-
try, and petrology. For geophysics, seismology, geodesy, and heat
flow measurements have revealed the basic internal layering of
the Earth, its thermal structure, its gross compositional stratifica-
tion, as well as lateral variations in these quantities. For example,
seismological observations effectively constrained both the shal-
low and deep structure of the Earth at the beginning of the 20th
century, when seismic data enabled the discovery of the crust–
mantle interface (Mohorovičić, 1910) and measurement of the
outer core radius (Oldham, 1906), with a 10 km accuracy
(Gutenberg, 1913). Soon afterwards, tidal measurements revealed
the liquid state of the outer core (Jeffreys, 1926), and the inner
core was seismically detected in 1936 (Lehmann, 1936). A similar
sequence has been followed for the Moon with the Apollo seismic
and geodetic data, with the crust determination from artificial
and natural impacts (e.g., Toksöz, 1974; Toksöz et al., 1972;
Chenet et al., 2006) to mantle structure (Nakamura, 1983; Khan
and Mosegaard, 2002; Lognonné et al., 2003; Gagnepain-Beyneix
et al., 2006) and more recently to the determination of the core
size and state with tidal measurement (Williams et al., 1996,
2001) and modern seismic processing (Weber et al., 2011; Garcia
et al., 2011). Subsequently, with the development of seismic
networks on the Earth, seismology has mapped the structure of
core–mantle boundary, density and phase changes in the mantle,
three-dimensional velocity anomalies in the mantle related to
sub-solidus convection, and lateral variations in lithospheric
structure. Additionally, seismic information places constraints
on Earth’s interior temperature distribution and on the boundary
conditions at the top and bottom of the outer core, which govern
the mechanisms of geodynamo operation (e.g., Aubert et al.,
2008). Thus physical properties inferred from seismic data are used
in almost any modeling of the Earth’s thermal and volatile evolution,
including the exchange of volatiles among different reservoirs
(McGovern and Schubert, 1989; van Keken and Ballentine, 1999;
Franck and Bounama, 1997, 2000; Schubert et al., 2001; Guest and
Smrekar, 2007; Smrekar and Guest, 2007), and their impact on the
long term habitability of the planet.

The main difference between the Earth and Mars is that the
latter still preserves many billion year old crustal and potentially
mantle structures on a planetary spatial scale (e.g., the heavily
cratered southern hemisphere of Mars), while the ocean floor that
covers about two-thirds of the Earth’s surface is younger than 250
million years, due to plate tectonics and associated recycling of
the Earth’s lithosphere. Martian meteorite compositions indicate
melting source regions with different compositions that have
persisted since the earliest evolution of the planet (Jones, 1986;
Borg et al., 1997, 2002). Further, much of the Martian crust dates
to the first half billion years of solar system history (Frey et al.,
2002; Frey, 2006a, 2006b). Measurements of the interior are likely
to detect mantle inhomogeneities that still reflect differentiation
and early planetary formation processes, making Mars an ideal
subject for geophysical investigations aimed at understanding
planetary accretion and early evolution.

Subsequent to initial differentiation, Mars and the Earth
diverged in their evolution. Earth’s thermal engine has transferred
heat to the surface largely by lithospheric recycling over much of
its history, but on Mars there is no evidence in the available
record that this process ever occurred (e.g., Pruis and Tanaka,
1995; Sleep and Tanaka, 1995). Over the past �4 billion years,
giant hotspots (Tharsis and Elysium) have played a significant role
in the tectonic, thermal and volatile evolution of the planet, and
are possibly related to an early core dynamo (Johnson and
Phillips, 2005), which may, in turn, have been crucial for shielding
Mars’ early atmosphere from solar wind erosion (Kallio and
Janhunen, 2001, 2002; Fang et al., 2010a, 2010b; Lammer et al.,
2008, 2009). Furthermore, these volcanic complexes released
massive amounts of volatiles to the Martian atmosphere, which
possibly led to clement conditions at times and provided tem-
porary habitable environments (Phillips et al., 2001).

Geophysical studies will provide important constraints for the
astrobiology of Mars by helping to understand why Mars failed to
maintain a global magnetic field, why Mars has undergone such
dramatic changes in climate over its history, and by providing a
limit for the energy available to the chemoautotrophic biosphere
through a measurement of the heat flow.
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Planetary interiors not only record evidence of conditions of
planetary accretion and differentiation, they exert significant
control on surface environments. The structure of a planetary
interior and its dynamics control heat transfer within a planet
through advected mantle material, heat conducted through the
lithosphere, and volcanism. Volcanism in particular controls the
timing of volatile release, and influences the availability of water
and carbon.

Crust: The crust of a planet is generally thought to form
initially through fractionation of an early magma ocean, with
later addition through partial melting of the mantle and resulting
volcanism. Thus the volume (thickness) and structure (layering
and lateral variations) of the crust, along with the composition of
the mantle, places strong constraints on the depth and evolution
of the putative Martian magma ocean and, by extension, plane-
tary magma oceans in general (Elkins-Tanton et al., 2003, 2005a).
Currently we do not know the volume of Mars’ crust to within a
factor of two (Wieczorek and Zuber, 2004). Orbital data allows the
calculation of relative variations in crustal thickness (Neumann
et al., 2004), but these models require many assumptions, in
particular a tie point to allow conversion of these relative
variations to absolute values (such as an assumed mean thick-
ness) and densities of the crust and mantle.

Mantle: Mantle dynamics plays a key role in shaping the
geology of the surface through volcanism and tectonics (Van
Thienen et al., 2007). The radius of Mars’ core has implications
for possible mantle convection scenarios and in particular for the
presence of a perovskite phase transition at the bottom of the
mantle, which enables global plume-like features to exist and
persist over time (Harder and Christensen, 1995; Breuer and
Spohn, 2006; Spohn et al., 1998). Such strong, long-standing
mantle plumes arising from the core–mantle boundary may
explain the long-term volcanic activity in the Tharsis area, but
their existence during the last billion years is uncertain. An
alternative for Tharsis volcanism is that thermal insulation by
locally thickened crust, which has a lower thermal conductivity
and is enriched in radioactive elements, leads to a significant
temperature increase in the upper mantle sufficient to generate
partial melt (Schumacher and Breuer, 2006). We note that the
tidal Q of Mars is �80 (Smith and Born, 1976; Bills et al., 2005;
Lainey et al., 2007; Jacobson, 2010), substantially less than that of
the Earth’s mantle (�200–280), meaning that Mars is surprisingly
dissipative.

Core: Knowledge of the core state and size is crucial for
understanding a planet’s history, and the thermal evolution of a
terrestrial planet is determined by the dynamics of its mantle and
core. The possibility of magnetic field generation in a liquid core is
dependent on the planet’s ability to develop convection in the
core that has the appropriate motions to generate magnetic fields
and that is sufficiently vigorous to overcome ohmic dissipation. In
particular, a core dynamo depends on the heat flow at the core–
mantle boundary, a high thermal gradient in the liquid core, or
latent heat and/or light elements released during the growth of a
solid inner core (Longhi et al., 1992; Dehant et al., 2007; 2009;
Breuer et al., 2007). The state of the core depends on the
percentage of light elements in the core and on the core
temperature, which is related to the heat transport in the mantle
(Stevenson, 2001; Breuer and Spohn, 2003, 2006; Schumacher
and Breuer, 2006; Dehant et al., 2009). Thus the present size (and
state) of the core has important implications for our under-
standing of the evolution and current state of Mars (Breuer
et al., 1997; Stevenson, 2001; Spohn et al., 2001a; Van Thienen
et al., 2006, 2007; Dehant et al., 2007, 2009, 2011). However, the
value of the core radius is currently uncertain to at least 715%
(Rivoldini et al., 2011) and it is unclear whether it is liquid or if it
hosts a solid inner core (Yoder et al., 2003). While the indications
from Phobos Q (Lognonné and Mosser, 1993; Zharkov and
Gudkova, 1997) and measurements of Love number from recent
Mars satellite geodesy (Konopliv et al., 2006, 2011; Marty et al.,
2009) are consistent with a core that is at least partially liquid,
direct detection from seismic reflected phases is necessary to
confirm this result. Based on the expected mantle attenuation, the
low Q determined from the secular evolution of the orbit of
Phobos (Bills et al., 2007) strongly supports a liquid core as well
(Lognonné and Mosser, 1993). Core structure, in particular its size
and the possible existence of an inner core, plays a central role in
determining the history and strength of any planetary magnetic
field (Mocquet et al., 2011).

1.3. What kind of instruments can help geophysical studies?

The payload required to provide answers to these questions
has already been identified in several previous studies in Europe
and USA focused on network missions to Mars. The instruments
identified to meet these geophysical objectives are the following
(the short names of the experiments used in this paper are given
in parentheses):
�
 Seismometer (SEIS),

�
 Heat flow probe (HP3, for Heat Flow and Physical Properties

Package),

�
 Radio-science Geodesy Experiment (RISE, for Rotation and

Interior Structure Experiment),

�
 Magnetometer (MAG).

The suite of instruments listed above should be complemented
by an atmospheric sensor Package (ATM) and a stereo panoramic
imaging system (SPCAM, for Stereo Panoramic Camera), which are
necessary to support the deployment of the geophysical payload
and its complete analysis, including geological context of the
landing site and meteorological decorrelation of seismic data (e.g.,
Beauduin et al., 1996). Additional science objectives of these two
instruments are not addressed in this paper. As the geophysical
instruments require long-term measurements, and as atmo-
spheric studies benefit from measurements over at least a full
seasonal cycle, a mission operational lifetime of at least one
Martian year (687 days) is needed.

Mars Geophysical Network projects have received repeated
recommendation by the International Mars Exploration Working
Group (IMEWG) and have been fully endorsed by the worldwide
scientific community on many occasions. These landers would
probe the interior of the planet through seismic monitoring,
magnetic sounding, heat flow measurements, and measurements
of its rotational dynamics. They would study the global circula-
tion and regional dynamics of the atmosphere and through
imaging would reveal the geology of a host of new places on
the surface. The enthusiasm for this endeavor has been mani-
fested in a number of mission studies including Mars Environ-
mental Survey (MESUR) (Solomon et al., 1991; Hubbard et al.,
1993; Squyres, 1995), MarsNet (Chicarro et al., 1991; 1993), and
InterMarsnet (Chicarro et al., 1994; Banerdt et al., 1996). At the
beginning of the 21st century the goal was close to being realized
with the NetLander mission (Lognonné et al., 1998; Harri et al.,
1999; Counil et al., 2001; Marsal et al., 2002; Dehant et al., 2004),
which was sponsored by a broad consortium of nations in Europe
and America. Unfortunately, budget difficulties and programmatic
conflicts at CNES and NASA resulted in its cancellation. A new
attempt was proposed for the ExoMars mission platform, the GEP,
the Geophysical Package (Lognonné, 2005; Ulamec et al., 2007).
However, for resource allocation reasons, the GEP has not been
selected to be part of the future ExoMars dual-mission. Thus 15
years after the failure of Mars 96, no recovery of that mission



Table 1
List of science objectives.

� Determine the size, composition and physical state of the core.

� Determine the mineralogy, porosity and thickness of the crust from

geophysical parameters (seismic velocities, thermal and electrical

conductivity).

� Determine the mineralogy of the mantle from geophysical parameters

(seismic velocities, density, thermal and electrical conductivity).

� Determine the thermal state of the interior and constrain the distribution of

radiogenic elements with depth.

� Measure the rate and distribution of internal seismic activity.

� Measure the rate of impacts on the surface.

� Constrain the knowledge of a possible inner core.
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geophysical science or geophysical network mission of any sort
has been implemented for flight (Linkin et al., 1998).

However, the scientific priorities for understanding the origin,
evolution, environment and habitat of Mars remain and geophysical
landers are clearly required to make the measurements necessary to
address these questions. A large group of scientists in Europe, North
America and Asia remain committed to goal of deploying an
International Geoscience Observatory on Mars, whose data would
be available to the world science community. For example, in order
to propel forward the geophysical investigation of Mars and provide
constraints on internal structure and tectonic activity, US scientists,
with partners in Europe, Canada and Japan, have recently proposed a
Discovery mission (the GEophysical Monitoring Station (GEMS)
mission), comprising a geophysical station that would serve as a
one-lander network precursor (Banerdt et al., 2010). This mission
was selected in May of 2011 (along with two other missions) for a
Phase A study, and will be subject to a competitive down-selection
for final approval in mid-2012.

A promising development is that NASA and ESA are co-aligned in
their interests for the exploration of Mars over the next decade (i.e.,
a Trace Gas Orbiter Mission, landed rovers, and network mission
concepts) and beyond (sample return). The US Decadal Survey
(2011) recommended recently a Mars program ‘‘taking the first
critical steps toward returning carefully selected samples from the
surface of Mars’’, and endorsed the value of Mars interior science.
Within the ESA possible next missions, there is the possibility to
have, in 2020–2022 timeframe, a geophysical mission performing,
for the first time, an in-situ investigation of the interior of a truly
Earth-like planet other than our own. Such a mission provides
unique and critical information about the fundamental processes of
terrestrial planet formation and evolution. This investigation has
been ranked as a high priority in virtually every set of US and
international high-level planetary science recommendations for the
past 30 years (e.g., COMPLEX (COMmittee on Planetary and Lunar
EXploration), 1978, 1994, 2003; Space Studies Board, 1988, 2006;
Decadal Survey, 2003; NOSSE (New Opportunities in Solar System
Exploration: An Evaluation of the New Frontiers Announcement of
Opportunity), 2008; MEPAG (Mars Exploration Program Analysis
Group), 2008). In particular, such a mission would begin the
geophysical exploration of the Martian interior using seismic and
thermal measurements and rotational dynamics, providing informa-
tion about the initial accretion of the planet, the formation and
differentiation of its core and crust, and the subsequent evolution of
the interior.

As has been documented in many places (e.g., NetSAG (Mars
Network Science Analysis Group), 2010), multiple landers making
simultaneous measurements (a network) are required to fully
address the objectives for understanding terrestrial planet inter-
iors. However, a pair of (or more) geophysical stations is still
valuable as measurements constraining the structure and pro-
cesses of the deep interior of another planet are virtually
nonexistent. In addition, these two stations might be supplemen-
ted by other additional stations in subsequent missions from
Europe, US, Japan, or China, such as the GEMS mission above.
Even with only two landers, a geophysical mission provides
groundbreaking measurements resulting in a significant leap in
our understanding of a wide range of previously unexplored
areas, as it will be demonstrated in this paper. Science performed
with a single geophysical station will also provide key constraints
on the crustal and subsurface context (e.g., heat flow, porosity
profile, water profile, crustal thickness). The application of
sophisticated, state-of-the-art, single-station analysis techniques
to high-quality broad-band seismic data for instance allows the
extraction of planetary parameters such as crustal thickness, core
state, and seismic activity level (results that can be derived from
‘‘guaranteed’’ non-traditional signals such as meteorite impacts,
Phobos tide, and atmospheric interaction with the surface). A
seismic network would allow studying the geographic distribu-
tion of seismicity and identifying active areas, source processes,
spatial variations of the interior structure, and would generally
increase resolution and reduce ambiguities.

Future Sample Return mission from a given location will
benefit enormously from the prior deployment of a geophysical
station at that site providing a full local contextual understanding
(geophysical, geological, hydrological, surface, atmospheric) for
the returned samples.
2. Science context

2.1. Main science questions

The science goals of geophysics of Mars are stated as follows:
1.
 Understand the formation and evolution of terrestrial planets
through investigation of interior structure and processes of Mars.
2.
 Determine the present level of tectonic activity and impact
flux on Mars.

From these high level goals, a fundamental set of baseline
science objectives (Table 1) can be derived.

To accomplish these objectives, a tightly focused payload has
been identified consisting of several payload elements. These
instruments are a seismometer (e.g., the Seismic Experiment for
Interior Structure—SEIS, Lognonné et al., 2000), a magnetometer
(e.g., the MAGnetic measurements instrument—MAG, Menvielle
et al., 2000), a heat flow probe (e.g., the Heat Flow and Physical
Properties Package—HP3, Spohn et al., 2001b), and a precision radio
tracking geodesy experiment (e.g., the Rotation and Interior Struc-
ture Experiment—RISE, Dehant et al., 2009, 2011). The landers will
also have atmospheric sensors to measure the meteorological
parameters such as temperature, pressure and wind, providing
information necessary for interpreting the seismic observations as
well as providing constraints for general circulation models (GCMs).
Additional payload elements may be included to support these
investigations, such as a deployment arm and a camera.

The above-listed goals and objectives flow directly from
numerous planetary science planning documents, as for example,
the US Decadal Survey (2003). The International Academy of
Astronautics (IAA) Planetary Study Group Report lists the expan-
sion of the human horizon in space (human exploration, Astro-
nauts to Mars) and the search for extraterrestrial life as primary
goals of Exploration. This report lists Sample Return and Network
Missions as mandatory. The IAA ‘Heads of Space Agencies’ summit
declaration of November 2010 has acknowledged this report as
part of a high priority effort to work together to achieve the next
leap in understanding of our Solar System.
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2.2. State of the art in the research field

2.2.1. Early history of Mars

The thermal and chemical evolution of Mars during its earliest
history, when it was most geologically active, is poorly con-
strained. Mars displays a striking hemispherical dichotomy in
both topography and crustal thickness that separates the heavily
cratered southern highlands from the smooth northern lowlands.
There are numerous hypotheses for how the dichotomy formed.
Formation by an oblique giant impact is currently favored
(Andrews-Hanna et al., 2008), although endogenic models such
as plate tectonics (Sleep, 1994; Breuer and Spohn, 2003; Lenardic
et al., 2004) and degree one mantle convection (Wise et al., 1979a,
1979b; Zhong and Zuber, 2001) cannot be ruled out with current
information. Mantle overturn is also thought to lead to substan-
tial re-melting in the deepest mantle, which may have influenced
early Martian processes such as the development of the crustal
dichotomy (Debaille et al., 2009). The existence of crustal rem-
nant magnetization on Mars (Connerney et al., 1999) indicates
that a dynamo operated for a substantial time early in Martian
history, but the timing, duration, and driving mechanism are
unknown. Hypotheses include inner core formation (Stevenson,
2001), an early hot core (Breuer and Spohn, 2003; Williams and
Nimmo, 2004) and plate tectonics (Breuer and Spohn, 2003;
Nimmo and Stevenson, 2001).

The three leading models for the thermal evolution of Mars are
stagnant lid convection (Hauck and Phillips, 2002), early plate
tectonics followed by stagnant lid convection (Breuer and Spohn,
2003; Lenardic et al., 2004; Nimmo and Stevenson, 2001; Spohn
et al., 2001a), and global mantle overturn (Elkins-Tanton et al.,
2003, 2005a; Parmentier and Zuber, 2007; Zaranek and
Parmentier, 2004). Each model has different predictions for the
evolution of interior heat flux with time and its current state
(Fig. 1), the period of dynamo activity (Nimmo and Stevenson,
2001; Hauck and Phillips, 2002; Elkins-Tanton et al., 2005b), and
the timing of formation and thickness of the crust (Hauck and
Phillips, 2002). Unraveling the story of crustal formation and early
convection requires investigating the major aspects of crustal
structure that reflect the processes that formed it: crustal thick-
ness, large-scale layering, and the global topographic dichotomy,
the feature that, along with the Tharsis rise, dominates Martian
tectonic and convective history.

2.2.2. Crustal thickness

Crustal thickness is a sensitive indicator of the thermal and
dynamic evolution of a planet. For example, plate tectonics,
stagnant lid, and mantle overturn models predict thin, medium,
and thick crust, respectively. Predictions for crustal thickness
Fig. 1. Left: Spatial variability of the surface heat flux expected from variations of the l

Spatial variability of the surface heat flux if a stable mantle plume is active underneath

thermal evolution model of Morschhauser et al. (2011).
from parameterized convection models (Hauck and Phillips, 2002;
Morschhauser et al., 2011) range from 10 s to 100 s of km for
plausible variables. Nominal models give thicknesses of �60 km,
which is �75% emplaced at 4.0 Ga. Predicted thicknesses are a
very strong function of the water content of the mantle and the
initial mantle temperature. Although plate tectonics is not expli-
citly included in the models by Hauck and Phillips (2002), a range
of mantle temperatures that encompasses the reduced mantle
temperature predicted by plate tectonics is considered. The effect
is to significantly reduce the amount of crust produced. Models of
crustal formation via global overturn are most consistent with
average crustal thicknesses of �100 km (Elkins-Tanton et al.,
2005a).

Gravity and topography data provide some constraints on the
Martian crustal thickness. But without seismic data, there is a
factor of 2–3 uncertainty in the estimate due to differences in
assumptions and methods. Using the Bouguer gravity and assum-
ing a non-zero crustal thickness at Hellas gives an average crustal
thickness of 445 km (Neumann et al., 2004), whereas gravity/
topography ratio analysis suggests 57724 km, localized admit-
tance suggests a value around 50 km, and topographic relaxation
gives an upper bound of 115 km (see Wieczorek and Zuber, 2004).
Estimates of moment of inertia (MOI) and core density starting
from a plausible mantle mineralogy and an Fe–FeS liquid core
have been used to place an upper limit of 260 km on the crustal
thickness (Kavner et al., 2001; Rivoldini et al., 2011).

2.2.3. Core size and composition

The size of the core has major consequences for internal
structure and planetary evolution. For example, for a cold mantle
(temperatures below 2000 K) a large core makes a perovskite-
bearing lower mantle impossible, due to insufficient pressure at
the base of the mantle. The endothermic phase transition spinel-
to-perovskite has a strong effect on mantle convection. The
presence of such a phase change could explain the formation of
Tharsis during Mars’ early history from a single-plume convection
pattern (Harder and Christensen, 1996; Van Thienen et al., 2005).
The size and composition of the core are also important in the
history of the magnetic dynamo, which in turn has important
consequences for the retention of the atmosphere and the
possible habitability of the surface early in Mars’ history.

When the temperature (cold or warm mantle) and the miner-
alogy of the mantle is fixed, the moment of inertia is a strong
constraint on the core size, density and temperature, and mantle
mineralogy, with weaker constraints on the crustal thickness and
the sulfur concentration in the core (Sohl et al., 2005). An example
of the range of possible core sizes for a range of plausible core and
mantle compositions is shown in Fig. 2.
ocal crustal thickness and the local abundance of heat producing elements. Right:

Tharsis. Figure similar to Fig. 6 in Grott and Breuer (2010), but using the nominal



Fig. 2. (a) Core radius rcmb vs. normalized average moment of inertia (MOI) and (b) sulfur ratio XS vs. core radius rcmb for different mantle compositions and end-member

cold and hot mantle temperatures. Open circles and boxes are for hot mantle temperature end-member, filled boxes and circles are for cold mantle temperature end-

member. Mantle mineralogies are those of Dreibus and Wänke (1985) (DW85) and of Sanloup et al. (1999) (EH70). For each of the two mineralogical models circles are for

smallest MOI-compatible crust density rc and thinnest crust thickness d, boxes are for largest and thickest. rcmb is chosen such that core sulfur weight fraction is XSr22%.

wMg is the magnesium number of the mantle.
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The only ‘‘direct’’ observations of the interior are those of the
gravity field and polar MOI from spacecraft radio tracking (Smith
et al., 1993; Folkner et al., 1997; Konopliv et al., 2006, 2011;
Marty et al., 2009). These observations are the main existing
constraints for interior models. Without additional constraints for
mantle mineralogy (e.g., from SNCs) or for the core composition
(e.g., the percentage of light elements in the core), the core radius
estimate ranges from 1300 to 2200 km. The relative enrichments
of iron in the Martian mantle and sulfur in its core with respect to
the Earth’s depend strongly on the initial composition and
differentiation history of the planet. Theoretical calculations of
planetary thermal evolution that incorporate these models and
fulfill the measured polar MOI lead to outer core radius values
ranging from 1600 to 1850 km (Schubert and Spohn, 1990;
Schubert et al., 1990, 1993; Mocquet et al., 1996; Sohl and
Spohn, 1997; Folkner et al., 1997; Zharkov and Gudkova, 2000;
Verhoeven et al., 2005; Mocquet et al., 2011; Rivoldini et al.,
2011). Additional constraints from orbital observation of the tidal
Love number k2 reduce further the range of values. The latest k2

value and its uncertainties (Konopliv et al., 2011) provide a range
(at 1s) of core radii between 1750 and 1950 km (Rivoldini et al.,
2011) (see Fig. 3).

Analyses of the measured tidal effect on spacecraft orbits
suggests that at least the outer portion of the Martian core is
liquid (Yoder et al., 2003; Balmino et al., 2006; Konopliv et al.,
2006, 2011; Marty et al., 2009). However its interpretation in
terms of the existence or not of an inner core is on the edge of the
present capabilities from orbit, and requires independent con-
firmation using surface-based measurements.

2.2.4. Magnetic field

There is currently no global planetary magnetic field at Mars of
intrinsic origin, but the discovery of intense local magnetic
anomalies in the heavily cratered southern hemisphere terrain



Fig. 3. The tidal Love number k2, when combined with MOI measurements, provides strong constraints on core radius. Plot shows core size versus k2 for all possible mantle

and core mineralogies and for both hot (red) and cold (blue) mantles (similar to Rivoldini et al., 2011); recent k2 ranges (Marty et al., 2009; Konopliv et al., 2011) are shown

in gray (values of k2 with 1s) and in light-gray (values of k2 with 3s). The two insets show as well the results for models with an inner core. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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by the Mars Global Surveyor (MGS) Magnetometer investigation
revealed evidence for magnetized crust, and by inference an
ancient global magnetic field (i.e., a past core dynamo) (Acuña
et al., 1998, 1999, 2001; Cloutier et al., 1999; Brain et al., 2003;
Vennerstrøm et al., 2003; Johnson and Phillips, 2005; Quesnel
et al., 2007; Kletetschka et al., 2009). With in situ magnetic field
measurements we cannot distinguish the details of the mechan-
isms by which the rocks were magnetized (e.g., thermal versus
chemical versus detrital magnetizations), but we could set con-
straints on the volume and depth of the magnetized material and
the magnetization intensity.

The magnetic field is a sum of contributions from various
sources, most notably the crustal remanent magnetization, elec-
tric currents in the plasma environment, and electric currents
induced in the Martian crust and upper mantle. To understand the
signal from internally induced currents, we can use electromag-
netic sounding. The depth of penetration of an electromagnetic
wave in a conductive medium depends on both the period of the
studied phenomenon and the electrical resistivity of the medium:
the longer the period and the higher the resistivity, the greater
the depth of penetration (skin depth). Thus higher frequencies
spectrum enable one to probe the uppermost kilometers of the
crust, and lower frequencies enable one to probe the mantle
down to a few hundred kilometers (Menvielle et al., 1996, 2000;
Mocquet and Menvielle, 2000; Grimm, 2002; Langlais and
Quesnel, 2008; Langlais et al., 2004, 2009, 2010).

The electrical resistivity of geological materials varies greatly
with temperature and the percentage of conductive fluids (molten
rocks, water rich fluids) within the solid matrix. For non-hydrated
rocks, the resistivity remains very high for temperatures up to
1200 1C or even 1800 1C in some cases. It is generally on the order
of, or greater than a few tens of thousands of O m. Molten rocks
have low resistivities (1–0.1 O m) and in the presence of partial
melting, the effective resistivity falls sharply by several orders of
magnitude at constant temperature. Electromagnetic sounding
with low frequency the magnetic variations will allow probing
the electric structure of the Martian mantle, and thus provide
information on its thermal structure and mineralogy.

The electrical conductivity profile obtained by the inversion of
magnetic data will complement the seismic model of the crust
and upper mantle in order to better constrain the composition,
which can then be used to compute elastic properties and density
profiles inside Mars (Olsen, 1999; Tarits, 2001, 2002; Langlais and
Purucker, 2007).

2.2.5. Heat flow

The average heat lost from a planetary surface reflects, at the
most basic level, its bulk composition in terms of its content of
radiogenic elements and thus provides a key constraint on the
composition of the material from which the planet formed.

Current estimates of paleo heat flow on Mars are derived from
estimates of elastic lithosphere thickness, interior evolution mod-
els, models of the decay of radiogenic elements, and simple plate
cooling models (McGovern et al., 2002, 2004; Montesi and Zuber,
2004; Neumann et al., 2004; Belleguic et al., 2005; Hoogenboom
and Smrekar, 2006; Breuer and Spohn, 2006; Grott, 2009; Grott
and Breuer, 2008a, 2008b, 2010; Morschhauser et al., 2011).
However, large uncertainties are associated with all of the above
approaches and many estimates are based on lithospheric thick-
ness estimates at volcanoes, which may not be representative of
the bulk of the planet.

Following accretion, heat flow has been estimated to be high,
of the order of 100 mW/m2, but dropped quickly to �15–50 mW/
m2 during the later evolution (McGovern et al., 2002, 2004).
Simple plate cooling models predict present day heat flow in the
range of 5–15 mW/m2 and serve as a lower limit to the plausible
heat flow values expected for a chondritic Mars. Stagnant lid
models predict somewhat higher values of 20–25 mW/m2 (Hauck
and Phillips, 2002; Grott and Breuer, 2009).

Loading of the lithosphere by the polar caps is generally
assumed to be relatively recent and these regions have the only
well-determined surface deflections for which the present day
elastic thicknesses (Te) have been estimated (Johnson et al., 2000;
Phillips et al., 2008). The obtained values of Te4300 km indicate
that heat flow at the north pole is reduced with respect to
chondritic composition models (Wänke and Dreibus, 1994), with
Te4300 km corresponding to surface heat flows below
13 mW m�2 (Grott and Breuer, 2010, also compare Fig. 1). This
implies that Mars either has a bulk composition which is sub-
chondritic in heat producing elements, or that the surface heat
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flow is spatially heterogeneous and heat is transported through
volcanically active regions like Tharsis instead (Grott and Breuer,
2009, 2010; Kiefer and Li, 2009). If an active plume underneath
Tharsis does indeed exist, heat flow in this region would be
expected to be elevated with values reaching 25–50 mW/m2

(Grott and Breuer, 2010). Expected regional variations of surface
heat flow are shown in Fig. 1.

2.2.6. Mars meteorology

Martian global atmospheric circulation is characterized by a
dynamical regime similar to that of the Earth, since both planets
are fast rotators (Leovy, 2001; Zurek and Martin, 1993). At
solstices, the Hadley cell presents an ascending branch in the
summer hemisphere and a descending branch in the winter
hemisphere. Close to the equinoxes, two Hadley cells ascend from
the equatorial region transporting heat towards both northern
and southern mid-latitudes.

Martian circulation is modulated and modified by several
kinds of atmospheric wave. Among these waves, the diurnal or
semi-diurnal thermal tides, which are excited by the diurnal cycle
of solar heating and propagate upwards with increasing ampli-
tude, are of particular importance. The tidal waves are thought to
be the primary phenomena controlling the dynamics above
altitudes of 50 km. The traveling planetary waves observed at
high and mid-latitudes in winter are of primary interest since
they affect the dust and condensable species transport; they may
also explain the zonal asymmetry observed in dust loading and
water vapor abundance.

The general circulation is intimately related to the cycles of
H2O, CO2 and dust. Indeed it influences the surface fluxes of dust
and condensable species, their transport around the planet, and
the heat advection over the Polar Regions. In turn, the presence of
dust and clouds affects the energy balance of the atmosphere, and
thus the thermal structure and atmospheric dynamics. Dust is the
major atmospheric heating agent, whereas water ice particles also
affect the planetary radiation budget through infrared cooling.

The observation of Martian weather by several surface stations
will expand the existing very limited information on surface
climate and circulation (based primarily on the two Viking Land-
ers) to a much more comprehensive basis. Consistent time series
of measurements of pressure, temperature, and wind will provide
important new information on planetary scale circulation sys-
tems, on local and regional flows, and on the planetary boundary
layer, and will provide key constraints on models of the response
of the Martian atmosphere to variations in atmospheric mass,
orbital parameters, and dust loading. Time series measurements
can delineate diurnal and seasonal variations, as well as irregular
variations related to storm systems on scales ranging from dust
devils to global dust storms. Through the use of covariance
analysis, time series from surface stations can be used to infer
scale dependent properties of circulations at scales well below
that of the station spacing. A limited number of stations deployed
with care concerning their relative locations can be much more
valuable, therefore, than the number of stations alone would
suggest. Surface station measurements are also needed to define
the vertical fluxes of momentum, heat, and water vapor in the
surface boundary layer. These are critical forcing factors for the
general circulation and water cycle.

Surface wind measurements have been performed by the
Viking landers, Pathfinder, and Phoenix, although precise mea-
surements of wind speed to date are still only available from the
Viking Landers as Pathfinder and Phoenix were only equipped
with relatively crude ‘tell-tale’ wind vanes (Gunnlaugsson et al.,
2008; Holstein-Rathlou et al., 2010). Currently, wind patterns are
generally derived from the temperature field using the thermal
gradient wind approximation or more sophisticated techniques
such as data assimilation (e.g., Lewis et al., 2007). However, such
techniques suffer from inaccuracies on Mars because of the near-
surface winds driven by the strong diurnal cycle, the large
amplitude of the waves above 40 km and the difficulty of
accounting for complex wave-mean interactions. Earth-based
single-dish and interferometric millimetric observations have
demonstrated the feasibility of tracking the Doppler shift of CO-
lines to measure high-altitude winds. There are only a few such
measurements, but they suggest that retrograde winds dominate
around 60-km-altitude at almost all latitudes, even during equi-
nox (Moreno et al., 2009). This strongly disagrees with thermal
wind estimates based on MGS/TES data as well as with theoretical
GCM predictions and urgently needs verification and with the
report of prograde winds at high southern latitudes (Sonnabend
et al., 2006).
3. Science objectives

3.1. Internal structure

3.1.1. Crustal thickness

The crustal thickness predictions of plate tectonics and stag-
nant lid models overlap somewhat given the wide range of
parameters (initial mantle temperature, timing of initiation of
plate tectonics, etc.). SEIS will provide absolute tie-points for
crustal thickness that, when combined with heat flow measure-
ments from HP3, allows discrimination among models of crustal
formation.

3.1.2. Mantle transition phases

For the Earth, it is known that olivine–spinel and spinel–
perovskite transitions occur in the mantle. For Mars, it may be
that a spinel–perovskite transition also occurs. Recent calcula-
tions suggest that these phase transitions may have important
implications for the convection flow field in the mantle. SEIS will
provide the depths of phase transitions that, when combined with
heat flow measurements from HP3 and core dimension measure-
ments from RISE, allows discrimination among models of internal
dynamics and the thermal evolution.

3.1.3. Core state and dimension

The factor of 10 improvement in core size determination
provided by RISE from nutations (Dehant et al., 2009, 2011)
reduces uncertainty in core size from 500 km (with no geochem-
ical assumptions) to 50 km (or less, with additional constraints
from SEIS), providing much tighter constraints on heat flow from
the core (via constraints on the global temperature profile), core
composition, and thermal evolution models for the core and
mantle.

3.2. Mineralogy

At the coarsest scale the core is an iron rich alloy, the mantle
consists of silicate rock, and the crust consists mainly of basaltic
rock. Density increases within these layers mostly as a conse-
quence of compression in response to the increasing pressure and
of denser materials in the deep Earth, but there may also be
mineralogical boundaries. SEIS will provide an averaged profile of
seismic velocities that, when combined with induced magnetic
field measurements from MAG and core dimension measure-
ments from RISE, allows determination of the temperature and
composition of Mars’ interior, along with the density and elec-
trical conductivity. These in turn provide constraints on the
mineralogy inside Mars. These measurements will allow
the determination of the depth of material discontinuities, the
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seismic velocities and attenuation, the density and the electrical
conductivity. For the first time, interior models of Mars constrain-
ing the mineralogy, temperature, and physical state (including
positions of the interfaces) of the planet can be derived from this
future rich data set.

3.3. Interior thermal structure

The details of planetary thermal evolution and internal con-
vection are governed by the amount of heat acquired during
accretion, the abundance of radioactive isotopes, the degree of
differentiation, and the nature of convective processes, as
explained above. The surface heat flow is an important parameter
that provides insight into the internal heat budget and dynamics.
This can be measured with temperature sensors at different
depths in the Martian soil. HP3 can constrain the heat flow to
within 10%.

Together with measurements of the thermo-physical proper-
ties of the soil, the long term monitoring of the temperature–
depth profile from HP3 will allow the determination of the surface
planetary heat flow.

The outermost, rheologically stiff, layer of the planet (or
lithosphere) has a base which is a defined by an isotherm or by
a constant value of the homologous temperature (the ratio of
temperature and melting temperature).

The temperature gradient in the lithosphere is significantly
steeper than the gradients in most of the underlying mantle and
the core as a consequence of the dominance of conductive heat
transfer. In the sub-lithosphere mantle, heat is transferred by sub-
solidus convection and the temperature follows the adiabatic
gradient through most of the sub-lithosphere mantle. Super-
adiabatic gradients in the sub-lithosphere mantle occur in ther-
mal boundary layers at the bottom and top of the mantle and in
regions of phase transformation. The mantle consists of a mixture
of minerals and is separated into distinct pressure and tempera-
ture dependent mineralogies and phase change boundaries. SEIS
will provide averaged profiles of seismic velocities that, when
combined with heat flow measurements from HP3, with magnetic
field measurements, and with core dimension measurements
from RISE, allow for a determination of the thermal structure.

3.4. Geological activity

SEIS will determine the seismicity of and impact frequency on
Mars and HP3 will produce the first measurement of the thermal
state of the subsurface. These provide a fundamental measure of
the geologic vitality of the planet and a direct measure of the
current cratering rate, and point to regions for more intensive
study by orbital or landed instruments. The level of seismicity
gives a measure of the contemporary level of tectonic and perhaps
volcanic activity, both in terms of intensity and geographic
distribution. Current estimates of seismicity depend on thermal
calculations (Phillips et al., 1990) or extrapolation of historical
faulting (Golombek et al., 1992; Knapmeyer et al., 2006). Thus the
measurement of seismicity, regardless of the actual number of
events detected, provides fundamental information about the
dynamics of Mars.

The distribution of quake epicenters may be highly non-uni-
form, as it reflects the current state of stress of the crust. The
observed population of faults on Mars (Anderson et al., 2001,
2008; Knapmeyer et al., 2006) exhibits globally distributed
compressional strain, with the notable exception of the Thesis
rise where plume-driven volcanism and extension dominate.
Based on crater counts, it has been suggested (e.g., Lucchitta,
1987; Neukum et al., 2004) that the Tharsis and Elysium volca-
noes might still be active today. Ongoing volcanic and perhaps
uplift activity will result in seismic activity concentrated in the
Tharsis and Elysium rises. However, even the simplistic assump-
tions that the existing faults constitute zones of weakness where
thermoelastic stress is released predominantly and that quakes
are equally likely on all of these faults, result in a concentration of
seismicity in the Tharsis region (Knapmeyer et al., 2006). Obser-
vation of a local seismicity level exceeding that predicted by this
hypothesis, or observation of events with the specific character-
istics of volcanic tremor, would thus confirm the existence of
volcanic or dynamically driven tectonic activity on Mars today.

The unique characteristics of impact seismograms, character-
ized by a relatively low cutoff frequency compared to quakes
(Lognonné et al., 2009; Gudkova et al., 2011) allow them to be
distinguished from endogenic events (marsquakes). These seis-
mograms can thus provide a direct measure of the current rate of
impacts.

The thermal state of the planet is a key determinant for all
endogenic geologic processes. Volcanism and tectonic deforma-
tion derive their driving energy directly from the heat engine of
the interior. The thermal gradient also determines the thickness
of the elastic lithosphere and the depth of partial melting, which
controls magma generation. An estimate of the interior heat flow
from using the HP3 data eliminates a major uncertainty in
predicting the depth of the liquid water stability zone on Mars.

3.5. Implications of improved constraints on early evolution

3.5.1. Dynamo and remanent crustal magnetization

A better determination of core size, density, temperature and
mineralogy leads to improved understanding of core history. For
example, current MOI estimates indicate that at least part of the
core is liquid (Yoder et al., 2003; Balmino et al., 2006; Konopliv
et al., 2006, 2011; Marty et al., 2009; Smith et al., 2009), but do
not eliminate the hypothesis that rapid solidification of most of
the core lead to dynamo shut down (Stevenson, 2001). This would
only happen if the mantle is cold and the fraction of light
elements very small, which is unlikely. Tighter bounds on the
MOI and rotation and orientation observation will help refute this
hypothesis. SEIS measurements, heat flow measurements from
HP3, magnetic field measurements from MAG, and improved core
dimension measurements from RISE, could thus provide con-
straints on the early dynamo.

Tighter constraints on heat flow through time are important
for understanding the vertical distribution of crustal magnetiza-
tion. The very high depth-integrated magnetization values
inferred from the magnetic anomalies imply much higher levels
of magnetization than is typical of terrestrial rocks, very thick
layers of magnetized crust, or both (Arkani-Hamed, 2004;
Langlais et al., 2004). Some studies suggest magnetization extend-
ing deep into the crust (50–70 km) (Frawley and Taylor, 2004),
while others find good agreement with shallower magnetized
bodies (Dunlop and Arkani-Hamed, 2005). For typical Curie
temperatures of �500 1C, these results are puzzling, given that
the dynamo is thought to have been active early, when heat flow
must have been high.
3.5.2. Habitability and water

Early Mars had higher heat flow and at least transient periods
of liquid water, including standing water on the surface. This was
likely the most hospitable time period on Mars (Solomon et al.,
2005), with heat flow providing an abundant potential energy
source for biological processes. Little is known about the history
of water at that time. Water in the shallow crust may have been a
result of outgassing due to crustal formation (Hauck and Phillips,
2002; Morschhauser et al., 2011), magmatism (Jakosky and
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Phillips, 2001), or simply higher heat flow (Postawko and Fanale,
1993). Additionally, water may have been stabilized by the
presence of a magnetic field that prevented solar wind removal
of hydrogen from the upper atmosphere. Thus early thermal
evolution is key to understanding the role of water in Mars’
geologically, and possibly biologically, most active time period.
SEIS measurements, heat flow measurements from HP3, and
magnetic field measurements from MAG, thus provide constraints
on the existence of liquid water at the surface in the past and in
the sub-surface of Mars at present. The present-day heat flow also
constrains the depth of the cryosphere and the region where
liquid water might currently be present.

3.6. Implications for meteorology

Meteorology measurements (temperature, pressure, wind,
humidity) provide constraints on the existence of liquid water
at the surface and in the sub-surface of Mars both at present and
in the past. The signature of most meteorological phenomena can
be analyzed in the temperature structure and from direct mea-
surements of wind and surface pressure. The general circulation
can be constrained from temperature and pressure measurements
of sufficient precision and frequency, especially if such measure-
ments can be correlated with simultaneous measurements at
more than one location.

Individual lander measurements of wind and temperature are
especially useful for characterizing the planetary boundary layer,
which is a critical region of the atmosphere that determines the
exchange of heat, momentum, moisture, dust and chemical
constituents between surface and atmosphere. Lander data are
very important for this region of the atmosphere, particularly if
such measurements have sufficient precision and time resolution
to infer turbulent fluxes of momentum and heat. There have been
relatively few measurements made on Mars of such quality so far,
yet the Martian planetary boundary layer exhibits a more
extreme range of conditions than found on Earth. So simple
extrapolations of terrestrial parameterizations of boundary layer
transport are not well verified at the present time, especially
under conditions of strongly stable or unstable stratification.

Dust storms (regional or global) observed in concert with
lower atmospheric measurements (temperatures and winds), will
expand our understanding not only of the lower and middle
atmosphere but also of the global thermospheric responses and
associated radiative/dynamical processes operating on short time
scales.

3.7. Seismology

SEIS is the critical instrument for delineating the deep interior
structure of Mars, including the thickness and structure of the
crust, the composition and structure of the mantle and the core.
The power of seismology derives from the amount of information
contained in a seismic signal. The ground vibrations detected by a
seismometer reflect the characteristics of the original source, the
geometry of the path taken from the source to the receiver (and
thus the structure of the planet) and the physical properties of the
material through which it has passed.

We can classify seismic analysis techniques into two types: the
first does not require knowledge of the source location and the
other is source location dependent. The first type of analysis can
therefore be performed on measurements from a single station,
while the other needs multiple landers, typically a network of
three or more stations.

Traditional source location analysis (often associated with a
network approach) is based on arrival times of body waves
acquired by a widely distributed network of stations. Locating a
quake requires therefore at least four seismic travel times (for
determining its 3-D location and time), while the location of
surface impacts associated with meteorites requires three seismic
travel times. By using this method with the measurement of P and
S wave arrival times only, the retrieval of structure information
requires the third station for quakes and the second station for
surface impacts. For both cases the detection of secondary phases
or surface waves, while providing additional constraints on the
structure, does not significantly change the capacity to locate
sources. Azimuth data (i.e. the measurement of the initial ground
vibration direction with a three-axis seismometer) significantly
improve the three- and two-station cases, as they enable two
stations to locate the epicenter (assuming spherically symmetric
interior structure), leaving the arrival time information available
for the determination of the depth, time and radial velocity. These
azimuth data are however sensitive to lateral variations and to
seismic noise and require at minimum a carefully installed three-
axis instrument.

Over the past few decades however a wide variety of analysis
techniques have been developed to extract information about the
properties of the Earth’s interior and seismic sources themselves
using the data acquired from only one or two seismometers. In
addition, such configurations can return interior seismic information:
(i)
 For seismic source with known location, e.g., impact craters
located by orbital imaging and artificial impacts. If the impact
time is known, both the P and S arrival time can be used on
any seismometer, while differential travel times can be used
when the time is not known.
(ii)
 For large quakes generating signals at long distances or for
globally distributed seismic sources generating continuous
seismic background. In these two cases, auto-correlation
(with one station) and cross-correlation (with two stations)
provide the free oscillation frequencies, the surface wave
phase/group velocities, or the surface wave Greens function,
any of which can be directly inverted for interior models.
In the following sections we outline several specific approaches
to determine the seismicity, crustal structure and deep interior
structure using data from one or two seismic stations. The science
return of a network mission with many stations has been covered
in previous publications (see references above).
3.7.1. Mars’ seismicity

The distribution of seismic activity is determined by monitor-
ing the teleseismic body wave frequency band (�0.1–2.5 Hz) for
seismic events. The efficiency of detection will be mainly related
to the quality of the instrument and installation and to the
frequency bandwidth of the records. The approximate epicentral
distances of seismic events are derived from the differential P–S
arrival time on the vertical record. At the beginning of the
mission, the location error is �10% (reflecting the range of
a-priori estimates of Mars velocity models). The refinement of
heat flow and crustal thickness (from HP3 and SEIS, respectively)
will produce better constraints on the upper mantle temperature.
When added to SNC constraints on upper mantle mineralogy,
significant improvements will be possible in the a priori bounds
of event locations and, consequently, in upper mantle seismic
velocities.

The lack of detection of seismicity by the Viking experiment is
consistent with an upper estimate of Martian activity comparable
to the Earth’s intraplate activity (Anderson et al., 1977; Goins and
Lazarewicz, 1979) with a total moment release midway between
the Earth and Moon (Golombek et al., 1992). Theoretical esti-
mates from thermoelastic cooling (Phillips et al., 2001) and
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estimates of seismic moment release from observed surface faults
(Golombek et al., 1992) predict a level of activity within this
bound but still �100 times greater than the observed shallow
moonquake activity (as would be expected for the more geologi-
cally active Mars). This level would provide �50 quakes of
seismic moment Z1015 N m (a globally detectable quake,
roughly equivalent to terrestrial magnitude mb¼4) per (Earth)
year (Gutenberg, 1945a, 1945b). There should be �5 times more
quakes for each unit decrease in moment magnitude (or a factor
of 30 decrease in seismic moment) (Knapmeyer et al., 2006).

Meteorite impacts provide an additional source of seismic
events for analysis (e.g., Davis, 1993). On the Moon, impacts
constitute �20% of all observed events, and a similarly large
number are expected for Mars: for the same impactor mass,
although the atmospheric entry velocity is two times smaller
(with possible further atmospheric deceleration for the smallest
events), the frequency of impacts is 2–4 times larger. The Apollo
14 seismometer detected about 100 events per year generating
ground velocity larger than 10�9 m/s and 10 per year with ground
velocity larger than 10�8 m/s (Lognonné and Johnson, 2007), well
within the detection capabilities of SEIS (see below). These
provide a ‘‘guaranteed’’ set of seismic events independent of the
level of tectonic activity. Fig. 4 shows a simulation of the expected
distribution of impacts during one Martian year. The ablation of
the meteorites by the atmosphere is integrated using the method
of Lognonné and Johnson (2007) and the distribution of impacts is
calculated by the method of Le Feuvre and Wieczorek (2008,
2011) and Lognonné et al. (2009). These results show that a few
10 s of impacts equivalent or larger to the Lunar Excursion
Module (LEM) impact on the Moon will be detected per Martian
year and might potentially be located if high-resolution cameras
are contemporaneous operational on orbiting Mars spacecraft.
Smaller impacts can be detected and located with meter-resolu-
tion instruments, and in total, modeling suggests that the number
of impacts detectable on Mars by a seismometer with a sensitivity
Fig. 4. Simulation of impacts during one Martian year at a given distance from a station

where m is the final impact mass and v is the impact velocity. The value of the lunar se

given by arrows on the seismic impulse axis (see Lognonné et al., 2009, for details and

recorded at Apollo 12 station (epicentral distance of 1750 km) is shown at the top and

than Apollo Lunar Module impulses will generate craters of about 5 m in diameter, wh
better than the expected seismic noise level (�10�9 m/s2 at
0.5 Hz, see below), should be a few hundred per year (Davis,
1993; Lognonné and Johnson, 2007). Initial processing of the SEIS
data could provide an approximate azimuth and range for such
events. These approximate locations can be used to target the
resulting new craters on the surface with high-resolution orbital
imaging. If these fresh craters are found, the seismograms will
then be constrained in terms of epicentral distance, and P–S
differential travel times can be used for seismic inversions of the
crust and upper mantle structure.

3.7.2. Signal to noise expectations

With the lack of seismic data, only an estimate of the signal to
noise ratio can be made. With no ocean (the major source of
terrestrial noise between 0.07 and 0.14 Hz, with amplitudes
typically greater than �10�8 m/s2), we expect relatively low
seismic noise. Estimates for the ground accelerations produced
by local wind pressure fluctuation have amplitudes of the order of
10�9 m/s2 in the range of 0.1–0.01 Hz with wind speed of the
order of 4 m/s (Lognonné and Mosser, 1993). Moreover, terrestrial
tests have shown that the direct effects of wind on a seismometer
can be decreased to similar levels when protected by a light
windshield (Lognonné et al., 1996) and decorrelated from atmo-
spheric data (e.g., Beauduin et al., 1996; Montagner et al., 1998).

The transmission properties of Mars are obviously unknown.
However, we can estimate these properties by analogy with the
Earth, tempered by experience from Apollo measurements on the
Moon. The greatest uncertainties are in attenuation (Q) and
scattering. Seismic Q can be extrapolated from the observed tidal
Q (Smith and Born, 1976; Lainey et al., 2007) or calculated for
modeled mantle compositions and temperatures. Diffusive scat-
tering dominates seismic records from the Moon (Toksöz et al.,
1974), and significantly reduces the ability to detect seismic
phases. However, strong scattering is not likely to be a factor on
Mars as very low intrinsic attenuation, thought to be possible
. The amplitude of the impacts is the seismic impulse, roughly proportional to mv,

ismic impulses from Saturn V upper stage and Lunar Module artificial impacts are

values). The seismogram corresponding to the impact of Apollo 17 Lunar Module

indicated by the filled circle on the Distance-Seismic impulse plot. Impacts larger

ich could be easily detected from orbit.
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only under extreme low-volatile conditions in hard vacuum, is
required. It should be noted that the effects of both Q and
scattering are less pronounced at the lower frequencies
(o�0.1 Hz) enabled by modern VBB (very-broad-band) seism-
ometer technology.

These estimates have been used to compute the expected
amplitudes of body waves (Mocquet, 1999) and surface waves
(Lognonné et al., 1996) and are summarized in Fig. 5. The
calculations suggest that P and S waves from a quake of
1015 N m can be detected globally with SNR45 for a sensitivity
of 10�9 m/s2, while surface waves at 0.01 Hz will be similarly
detectable for moment larger than 1017 N m.

From the inferred level of activity and well-understood parti-
tioning of energy as a function of frequency in seismic signals, the
required sensitivity of a Mars seismometer can be derived. This
sensitivity can be formally represented as an equivalent noise
floor, with dimensions of m/s2/Hz1/2. In order to take full
advantage of the techniques given the expected seismic environ-
ment, the required performance of a seismometer should be no
worse than 10�9 m/s2/Hz1/2 in the frequency range 0.1–1 Hz, and
if possible comparable to the performance of the Apollo seism-
ometer (�10�11 m/s2/Hz1/2) in order to extract all available
seismic information.

3.7.3. Single station body wave processing

3.7.3.1. Source azimuth and distance. The polarization of the initial
P arrival gives the direction to the source of the P wave. This is
measured using the horizontal components, yielding an error of
o101 in azimuth for conservative projected levels of horizontal
component noise, resulting in a �15% uncertainty in transverse
location similar to the radial uncertainty from P–S analysis. Thus
events can be roughly localized within a �100 km uncertainty at
distances of 1000 km. With the distance and location known
approximately, the spatial distribution and magnitude of
Fig. 5. Expected seismic signal strength on Mars for various sizes of events, compared

instruments (black lines, LP is the long-period instrument and SP the short-period instru

bandwidth (roughly f720%f). Body wave signal amplitudes are extrapolated from Mocq

different color for several seismic moments, all for an epicentral distance of 601. Surfa

forcing (see Lognonné et al., 1998; Lognonné and Johnson, 2007). All amplitudes are tho

the expected amplitude of the cross-correlated signal from two stations is given. Units

referred to the web version of this article.)
seismicity (from amplitude and the approximate distance) can
be determined. This is a fundamental parameter of the seismic
environment of a planet.

3.7.3.2. Mantle and core reflectors. As noted above, the joint
determination of P and S arrival times provides estimates of
epicentral distance to about 15%, and RISE reduces the uncertainty
in core radius to 20–50 km. With these constraints on the ray paths
we can use the refined interior structure models with synthetic
seismogram analysis to identify later-arriving phases (Fig. 6) The
additional differential measurements of arrival times, such as PcP–P,
PcS–S and ScS–S, as well as comparison of their relative amplitudes
to P, provide additional constraints on the seismic velocities and
attenuation in the deep mantle of Mars. These constraints help
refine the core size estimate and place bounds on lower mantle
discontinuities. Amplitude measurements of these phases as a
function of frequency can also provide the first measurements of
attenuation in the deep mantle, a key parameter for the
optimization of any future seismic network mission.

3.7.3.3. Crustal thickness determination. Estimates of the crustal
thickness are possible using the receiver function method. When
a P or S wave strikes a discontinuity in a planet, it generates
reflected and transmitted waves of both P and S. Because of this,
waves from distant earthquakes passing through a layered
medium such as the crust or upper mantle can generate
complicated seismograms containing many echoes. Such
seismograms can be processed to generate simplified
waveforms called receiver functions (Phinney, 1964; Langston,
1979). These can be inverted to yield the variation of shear
velocity with depth, and they are particularly sensitive to strong
velocity discontinuities. By back-projecting the receiver functions
into the interior, the depths and even lateral variations of distinct
boundaries such as the Moho can be reconstructed (e.g.,
to the noise floor of the Apollo seismometers. Noise levels are those of the Apollo

ment) and are, for each frequency f, defined as the rms amplitude for a 1/6 decade

uet (1999) for two bandwidths, 0.1–1 Hz and 0.5–2.5 Hz, and are represented by a

ce wave amplitudes are determined for a 3 mHz seismic hum due to atmospheric

se recorded by a single station, except the 3 mHz seismic hum amplitude, for which

of seismic moment are N m. (For interpretation of the figure legend, the reader is



Fig. 6. (a) This synthetic seismogram section depicting recorded ground velocity

(color coded) as function of epicentral distance (horizontal) and time (vertical) ,

shows the wealth of later arrivals (‘‘phases’’) from different ray paths that can be

used by SEIS to constrain mantle and core structure. Blue shades denote

amplitudes relative to those at the epicenter, red lines are ray theoretical arrival

times. Computed for model A of Sohl and Spohn (1997) with an additional 300 km

inner core and a source depth of 10 km. (b) Example ray paths of the phases

shown in (a). Blue segments denote P wave propagation, red segments S wave

propagation. Computed for the same Mars model as (a). (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)
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Knapmeyer and Harjes, 2000). Crustal thickness and Poisson’s
ratio of the crust can be determined independent of the velocity
structure determination (Zhu and Kanamori, 2000), yielding an
anchor for gravity-based crustal thickness mapping. Receiver
functions are a powerful tool for studying the depths to the
crust–mantle boundary or to other layering within the crust, and
are computed from single seismograms without requiring source
location or time. This method has been widely used on the Earth
and was successfully applied to the Moon (Vinnik et al., 2001).

3.7.4. Surface wave processing

3.7.4.1. Surface wave dispersion. Surface waves are low-frequency
seismic waves that propagate in the crust and upper mantle and
owe their existence to the presence of the free surface. By sampling
the crust and upper-mantle, surface waves are an important source
of information. The depths to which surface waves are sensitive
depend on frequency, with low-frequency waves ‘‘feeling’’ to greater
depths and therefore propagating at higher speeds. This results in
dispersion, with low-frequency waves arriving earlier than higher
frequencies. The details of the relation between frequency and group
velocity are directly relatable to subsurface structure and provide
moreover information on lateral crustal variations (e.g., Larmat et al.,
2008). They are extremely sensitive to the crustal thickness, as
shown by Fig. 7, and variations Z10% are typical for crustal
variations of 20 km. The sensitivity to the upper mantle is also
important, as the group velocity of surface waves (or the differential
group velocity between the fundamental and the overtones) varies
by 5–10% for models with different iron content (Mocquet et al.,
1996).

In order to obtain velocity from arrival time, an estimate of the
distance from the source is necessary. This can be obtained from
the P–S arrival time difference or more precisely from the R1–R2
difference (R1 is the direct Rayleigh wave arrival, whereas R2 is
the arrival of the wave propagating around the planet in the
opposite direction).

3.7.5. Normal modes

For a pair of seismometers, the most effective techniques for
studying deep structure use normal mode frequencies, which do
not require knowledge of the source location. Normal mode
spectral peaks from 5 to 20 mHz (the frequency range sensitive
to mantle structure) should be identifiable for a detection noise
level of 10�9 m/s2/Hz1/2 (Lognonné et al., 1996; Lognonné and
Johnson, 2007). This can be accomplished by seismogram analysis
of a large quake of moment Z1018 N m (equivalent mb�6; Fig. 8).
The likelihood of such a quake occurring during a restricted
mission lifetime such as one Martian year is estimated to be
Fig. 7. The dispersion of Rayleigh waves is extremely sensitive to crustal thick-

ness. Model B of Sohl and Spohn (1997) is used for crustal velocity and density.



Fig. 8. The detectability of normal modes for large quakes is shown in this plot of

the synthetic acceleration amplitude spectrum for a quake with a seismic moment

of 1018 N m (Lognonné and Johnson, 2007). The black and red lines show the SEIS

expected and required sensitivity, respectively.

Fig. 9. Snapshot of the acceleration field from a Martian GCM. Note the effects of

an atmospheric front in the southern hemisphere (indicated by arrows), providing

a highly localized excitation, and of the global-scale pressure field associated with

daily variations (reprinted from Lognonné and Johnson, 2007).
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low (Golombek et al., 1992, Knapmeyer et al., 2006), but one can
get the same results at frequencies higher than about 10 mHz, by
stacking multiple quakes with an equivalent cumulative moment
(for instance ten equivalent mb¼5 earthquakes).

Similar techniques can be applied to the background noise
generated globally by atmospheric dynamics (Kobayashi and
Nishida, 1998a, 1998b), the so-called seismic ‘‘hum’’. Calculations
based on excitation by turbulence in the boundary layer that do
not take into account resonance effects, non-turbulent wind and
pressure variations associated with atmospheric circulation
(Tanimoto, 1999, 2001) yield amplitudes for Mars �0.1 nanogal,
a factor of 2–3 smaller than on Earth.

A more precise estimate of excitation takes into account
atmospheric pressure variations and winds (Lognonné and
Johnson, 2007). The relative contributions of the oceans and
atmosphere are still debated for the Earth, but on Mars this
hum is generated by a dynamic coupling of the normal modes
with the atmospheric circulation. This coupling occurs with
measurable amplitudes at angular order r10, at much lower
frequencies than on the Earth (�29). Thus the coupling coeffi-
cient is comparable to that on Earth at angular orders of about 10
and typically a factor 10 smaller for angular orders greater than
20 (as a consequence of the smaller atmospheric density)
(Lognonné and Johnson, 2007). But the generally lower coupling
on Mars is offset somewhat by the significantly larger tempera-
ture fluctuations and winds.

Global circulation models (Forget et al., 1999) can be used with
these coupling coefficients to produce an estimate of the contin-
uous excitation of normal modes (Fig. 9). Significant excitations
are observed, including atmospheric fronts in the southern hemi-
sphere. Such models can be integrated over time to provide mode
amplitudes, and result in amplitudes 5–10 times smaller than
observed on Earth. These estimates are likely a lower bound, as
turbulence is not included. In addition, the fact that Martian
circulation is more coherent than the Earth’s on a daily scale
provides the possibility of increasing the SNR by long-duration
stacking. When combined with a GCM, joint measurements of
pressure variations and seismic hum can provide unique insight
into the dynamic coupling between the atmosphere and the
surface of a planet devoid of oceans. These observations in turn
enable a better understanding of hum generation on the Earth.

3.7.6. Phobos tides

The size of the Martian core can be constrained through
measurements by SEIS of the solid tide induced by Phobos, which
gives a combination of the Love numbers h2 and k2 (Lognonné and
Mosser, 1993; Van Hoolst et al., 2003). The Phobos tides, which
produce a ground acceleration signal of order 0.5�10�8 m/s2, are
sub-diurnal with typical periods shorter than 6 h (Van Hoolst
et al., 2003). They are thus below the primary seismic frequency
range and provide a unique link between high frequency (seismic)
and ultra-low frequency (geodetic) observations of Mars’ interior.
The SEIS measurement is essentially limited by the temperature
noise (�0.5 K rms in a bandwidth of 1 mHz around the Phobos
orbital frequency [Van Hoolst et al., 2003]). Insulation and tem-
perature decorrelation post-processing can reduce the effective
noise by a factor of 100–250, leading to a final noise of about
10�10 m/s2 rms after one Mars year of stacking. This noise
amplitude results in a core radius determination error of o60 km.

3.8. Geodesy

RISE uses the intrinsic precision of the Deep Space Antennas
(NASA Deep Space Network - DSN or ESA TRACKing
station—ESTRACK) and the spacecraft communications system
to derive key information about the deepest structure of the
mantle and core. The RISE investigation infers interior structure
from its effect on variations in the orientation of Mars’ rotation
axis with respect to inertial space. The precession, nutation, and
polar motion of Mars result from the interaction of the interior
mass distribution with the gravity of the Sun and the angular
momentum of the atmosphere. RISE provides improved estimates
of these motions by analyzing the radio link from the lander with
the spacecraft and/or the Earth. The projected improvements (e.g.,
a factor of 10 in precession) over existing measurements from
Viking, MPF, and the MGS-Mars Odyssey-Mars Reconnaissance
Orbiter (MRO) orbiters result from the increased total time span
between Viking and a future lander mission, the longer contig-
uous time span (1 Mars year vs. 90 sols for MPF) and better
tracking accuracy (particularly with respect to Viking).

Precision tracking of the Martian surface is performed through
radio links between stations on the Earth and the lander on Mars.
The experiment uses the X-band or Ka-band communications
transponder to obtain periodic two-way Doppler and ranging
measurements from the radio link. Additional interferometry
measurements using the two radio links together can further
increase the precision on the measurements. These measure-
ments accumulated over a long period of time can be used to
obtain Mars’ rotation behavior (precession, nutations, and length
of day (LOD) variations). Precession (long-term changes in the
rotational orientation) and nutations (periodic changes in the
rotational orientation) as well as polar motion (motion of the
planet’s surface with respect to its rotation axis) are measured
and used to obtain information about Mars’ interior. At the same
time, measurement of variations in Mars’ rotation rate reveals
variations of the MOI due to seasonal mass transfer between the
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atmosphere and polar caps (Cazenave and Balmino, 1981; Chao
and Rubincam, 1990; Yoder and Standish, 1997; Folkner et al.,
1997; Defraigne et al., 2000; Dehant et al., 2006, 2009, 2011; Van
den Acker et al., 2002; Sanchez et al., 2004; Karatekin et al., 2005,
2006a, 2006b; Zuber et al., 2007).

The geophysical requirements on tracking are derived from
technical analysis (Asmar et al., 2005; Iess et al., 2003, 2009;
Tortora et al., 2002, 2004) and detailed numerical simulations of
science parameter extraction. In order to provide the tracking
precision necessary for the RISE investigation, the lander must
transpond the carrier signal from Earth with an end-to-end
stability, usually represented by the Allan Standard Deviation, of
at least 10�13 over a 1000 s integration time, equivalent to
�0.1 mm/s, over time scales of 60 s with equivalent isotropic
radiated power greater than 6 W. The lander must be tracked for
at least 60 min per week for no less than 12 months. The DSN or
the ESTRACK antennas can be used to transmit and receive the
X-band (or Ka-band) carrier signal and measure the Doppler shift.
Further, use of signals from two landers enables interferometric
measurements and results in a further increase in the precision of
the radioscience measurements and thus of the geophysical
parameters.

3.8.1. Precession and nutations

Precession measurements (from RISE), together with measure-
ments of the nutations (from RISE) and tides (from SEIS), improve
the determination of the MOI of the whole planet and thus the
radius of the core. For a specific interior composition or range of
possible compositions, the core radius is expected to be deter-
mined with a precision of a few tens of km (compared to 7200
km currently). A precise measurement of variations in the spin
axis also enables an independent (and more precise) determina-
tion of the size of the core via core resonances in nutation
amplitudes. The amplification of this resonance depends on the
size, moments of inertia (MOI) of the core and the planet, and
flattening of the core. For a large core, the amplification can be
very large, ensuring the detection of the free core nutation and
determination of the core MOI (Dehant et al., 2000a, 2000b;
Defraigne et al., 2003).

A large inner core can also have a measurable effect on
nutations. Due to the existence of another resonance (the free
inner core nutation), there would be amplification in the prograde
band of the nutation frequencies, which would result in the
cancellation of the largest prograde semi-annual liquid core
nutation (Defraigne et al., 2003; Van Hoolst et al., 2000a, 2000b;
Dehant et al., 2003). Failure to detect the amplification of the
semi-annual nutation together with the confirmation of a liquid
outer core from the retrograde nutation band or from k2 would be
strong evidence for a large solid inner core.

3.8.2. Polar motion

Polar motion is the motion of the planet with respect to its
rotation axis or equivalently the motion of the mean rotation axis
with respect to the figure axis in a frame tied to Mars. It is induced
by atmospheric motion and is related to the angular momentum
exchange between the atmosphere and the solid planet as for the
LOD variations. A full quarter of the atmosphere is involved in the
CO2 sublimation/condensation cycle between the polar caps. The
components of polar motion are thus dominantly at seasonal
timescales. Additionally, as the rotation axis is not necessarily
coincident with the figure axis, there might be a wobble of Mars.
This is the so-called Chandler Wobble, which is at a period of about
200 days (Van Hoolst et al., 2000a, 2000b). As the atmosphere
behavior is not purely harmonic and noise may arise, the Chandler
Wobble contribution to polar motion might be at the level of a few
meters, depending on the dissipation within the planet (Q).
The observation of polar motion from radio links between a
lander at the surface of Mars and the Earth is only possible for
landers at high latitudes; the contributions to the Doppler shift
from an equatorial lander are too small to be observable (see Le
Maistre et al., 2010), except for interferometry methods.
3.8.3. Length-of-day

The rate of Mars’ rotation around its axis is not uniform due to
angular momentum exchange between the solid planet and the
atmosphere. There is a variation in the LOD which is, at the
seasonal timescale, due to the sublimation and condensation
process of CO2 already mentioned. A lander at the surface of
Mars on the equator undergoes a huge excursion of its position
with respect to a constant rotation of up to 15 m peak to peak
over a Martian year.

This phenomenon can be computed from a GCM. The angular
momentum is transferred to the solid planet by three kinds of
coupling mechanisms: (1) the pressure torque related to the
atmospheric pressure on the topography, (2) the gravitational
torque related to the mass anomalies inside Mars and in the
atmosphere, and (3) the friction torque related to the wind
friction on the Martian surface (see Karatekin et al., 2011). The
angular momentum of the atmosphere consists of two parts: the
mass term related to the rigid rotation of the atmosphere with
the solid Mars, directly involving the surface pressure all over the
surface; and the motion term related to the relative angular
momentum of the atmosphere, directly involving winds.

Present day GCMs allow computation of the seasonal changes
induced in the rotation of Mars as well as in the low-degree
gravity coefficients. But there are still unexplained differences
between the computations and the observations. Additionally,
inter-seasonal variability is expected in the time variation of the
low-degree gravity coefficients due to dust storm contributions,
which is not perfectly in agreement between observations and
model simulations from GCMs.

3.9. Heat flow measurements

HP3 will perform thermal measurements in the shallow sub-
surface that uniquely constrain the surface planetary heat flow.
The technique used to measure Martian heat flow (q) uses Four-
ier’s law, q¼d(DT/Dz), where DT/Dz is the vertical thermal
gradient and d is the thermal conductivity. Thus the heat flow
determination requires measurements of both the thermal gra-
dient and the thermal conductivity at the same location. These
measurements should be taken at a depth where the diurnal and
preferably also the annual thermal cycles are attenuated. How-
ever, shallower measurements are admissible if they span the
period of at least one complete annual cycle (Grott et al., 2007).

Long term climate-related surface temperature variations (e.g.,
Christensen et al., 2003; Mustard et al., 2001; Kreslavsky and
Head, 2002; Head et al., 2003; Helbert et al., 2005) could
potentially disturb near-subsurface temperatures. However, the
effects from changes of the Martian spin/orbit parameters have
been modeled by Grott et al. (2007) and were found to have
relatively minor effects on surface heat flow at low latitudes, with
maximum perturbations being smaller than 15% for periods
applicable to the Martian obliquity cycle (Laskar et al., 2004).
Furthermore, this signal can be modeled with some confidence
and is minimized by choosing a near-equatorial landing site
(Mellon and Jakosky, 1992).

Although heat flow on Mars is unlikely to produce the large
difference measured between continents and ocean basins on
Earth, some geographical variations depending on such factors as
the enrichment of radioactive elements and crustal thickness are
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expected (Grott and Breuer, 2010). Measurements of the surface
heat flow in three to four geologically representative regions (e.g.,
the northern lowlands, southern highlands, Tharsis, and Hellas)
will provide firm constraints on the average heat loss from the
planet.

Other considerations which need to be taken into account
include the possibility of active mantle plumes underneath the
Tharsis and Elysium volcanic provinces. Crater counts suggest
that some areas of Tharsis may have been volcanically active
within the last tens of millions of years and if plumes indeed exist
underneath these regions, heat flow would be expected to be
elevated there. A plume signature would be clearly visible in even
a single surface heat flow measurement, as heat flow is expected
to be elevated by a factor of two with respect to the background
chondritic model in the presence of active plumes (Grott and
Breuer, 2010).

It will not be necessary to conduct heat flow measurements
simultaneously, and these measurements therefore do not require
a network to be operating. The measurements made by one or
two landers could thus constitute a baseline and provide an
important first sample of the surface heat flow, which can be
built upon by subsequent lander missions.

For a present day heat flux of approximately 20 mW/m2 and a
thermal conductivity of 0.025 W/mK, the expected thermal gra-
dient is �0.8 K/m. Thus for a reliable determination of the thermal
gradient (�5%), we require that the accuracy of the individual
temperature measurements over a 2-m depth interval (see below)
should be better than 0.05 K. The observed temperature profile
need not be vertical as long as the relative depth of the tempera-
ture sensors is known to within 2 cm (Spohn et al., 2010).

Orbital thermal inertia measurements provide an estimate of
the thermal properties of the upper few cm of the regolith
(Christensen et al., 2003), and for the low rock abundance areas
of interest for a future lander mission the thermal inertia is
expected to be of order 250 J/m2 s1/2 K. This translates to a
diffusivity at the surface of 0.05 mm2/s, or a skin depth of 4 cm
for the diurnal and 3 m for the annual wave. HP3 is designed to
reach depths of 3–5 m in order to get below the penetration depth
of the annual wave, but even if the full deployment depth is not
reached, annual perturbations can be modeled and removed if
measurements are taken over the period of at least a full Martian
year (Grott et al., 2007).

Other thermal perturbations which need to be taken into
account include shadows cast by the lander and airbags (Grott,
2009), and these perturbations can be minimized by deploying
the heat flow probe 1–3 m away from the shadow source.
Additionally, shadowing can be modeled if measurements are
extended over the period of a full Martian year (Grott, 2009),
relaxing the requirements on instrument deployment.

During mole action, regolith at the tip at the mole is radially
displaced, resulting in soil compaction and an associated increase
of the thermal conductivity as the added pressure increases the
contact area between grains. For Apollo, regolith compaction was
identified as the most likely cause for raised thermal conductivity
values (Grott et al., 2010), but the amount of soil compaction is
expected to be considerably less using the mole system on Mars,
because no borestem maintaining overpressure after mole pas-
sage will be used. Furthermore, the reduced role of grain contact
area on thermal conductivity due to the atmosphere and the
lower relative density of the Martian soil will act to reduce the
influence of soil compaction caused by the passage of the mole.

3.10. Magnetism measurements (orbiter and landers)

Magnetic field measurements have never been performed at
the Martian surface. Such measurements would thus provide the
first characterization of the magnetic field and magnetic activity
at the surface of Mars. In addition, it is a primary objective to
provide information on the internal structure by electromagnetic
sounding, and, if possible, to measure the secular variation of the
magnetic field. Surface magnetometers deployed from landers
could provide a substantial contribution to crustal induced field
investigations by performing measurements over a long period
of time.

During MGS aerobraking, measurements were made down to
an altitude of about 100 km, revealing large amplitude, small scale
crustal magnetic anomalies, dominantly over the southern hemi-
sphere, indicative of remanent magnetization. These low altitude
data were completed by higher altitude measurements, at about
400-km, until November 2006 when MGS ceased operation. This
low altitude magnetic survey is unfortunately very sparse,
although these are likely the most valuable measurements. On
Earth there are crustal field structures of scale much smaller than
O(100) km wavelengths resolvable by MGS. For example the
horizontal scale length associated with seafloor spreading and a
reversing dynamo is of the order of 10 km, and that of most other
structural features and mineral deposits is smaller. Resolving
structures of such a spatial scale is well beyond the reach of
orbiting spacecraft, but magnetic measurements made during the
decent phase of the landers would really complement MGS
existing measurements, especially if the landing target was near
a magnetic anomaly. It would then be possible to:
�
 Determine quantitative limits on the depth, volume and
magnetization intensity for the crustal magnetic anomalies
measured during the MGS aerobraking phase.

�
 Determine a possible correlation between the obtained high-

resolution magnetic anomaly features and surface geology and
geophysical properties.

�
 Test existing models for crustal formation and alteration.

�
 Support interpretation of surface mineralogy data obtained by

other in-situ and remote sensing instruments.

Even a single point measurement performed by a lander after
descent would to some extent contribute to these objectives.

Synergy with possible magnetic measurements from an orbiter
will benefit both the crustal field mapping and the electromag-
netic sounding of the crust and mantle:
�
 The ground-based data will help separate spatial and time
variations observed from orbit.

�
 Through the ground-based data, specifically ‘‘magnetically

quiet’’ periods can be singled out for investigation for crustal
fields, as is customary for the Earth.

�
 Complementary orbiter measurements will help characterize

the geometry of the signal from inducing currents at the
surface, data which is necessary for electromagnetic sounding.

Measurements performed from orbit or from magnetometers
even far from magnetic anomalies will provide the temporal and
seasonal characteristics of the magnetic induced field and will
probe the interior of Mars by allowing the determination of
impedance and the conductivity profiles of the planet in synergy
with the lander measurements.

3.11. Meteorology

Meteorology measurements provide present constraints on
GCMs for better understanding the CO2, water and dust cycles.
The observation of Martian weather at surface locations will
greatly enhance the limited information currently available on
Mars’ climate and circulation which, for surface measurements,
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is still based primarily on the two Viking landers. Consistent time
series measurements of pressure, temperature, and wind will
provide important new information on planetary scale circulation
systems, on local and regional flows, and on the planetary
boundary layer. This information will place constraints on models
of the response of the Martian atmosphere to variations in
atmospheric mass, orbital parameters, and dust loading. Time
series measurements can delineate diurnal and seasonal varia-
tions, as well as irregular variations related to storm systems on
scales ranging from dust devils to global dust storms. Time series
measurements from surface stations can be used to infer scale-
dependent properties of circulations at scales well below that of
the station spacing. Surface station measurements are also
needed to define the vertical fluxes of momentum, heat, and
water vapor in the surface boundary layer. These are critical
forcing factors for the general circulation and water cycle.

Surface pressure should ideally bemeasured with an accuracy
of 3 Pa on a typical mean surface pressure of 610 Pa. Variations on
a roughly daily timescale can reach up to 30 Pa just due to
traveling weather systems. Shorter timescale variations from dust
devils may exceed that. Seasonal changes are of order 200 Pa. A
future lander mission will record all of these phenomena
throughout the diurnal cycle and for a full Mars year to reveal
the traveling weather systems, the thermal tides, the seasonal
trends and possibly even catch some dust devils. Time-averaged
air temperatures just above the lander should be recorded with a
precision of 0.1 K and an absolute accuracy of 71 K. These
measurements can be used to understand the effects of Martian
weather systems, including large-scale dust storms. Near-surface
wind speed should bemeasured just above the lander deck with
an accuracy of at least 0.1 m/s or better. Even if direction is not
measured, wind speed alone provides a critical indicator of dust
lifting, and hence the connections between the pressure and
temperature signals, and the associated winds can help increase
our understanding of dust storms on Mars. Correlating the winds
with pressure and temperature yields information about the
nature of the weather systems themselves (e.g., Barnes 1980,
1981).

As discussed in Section 2.2.6 winds have not been observed on
Mars by any spacecraft other than the Viking landers, Pathfinder
and Phoenix, and wind speed was only measured with reasonable
accuracy from the Viking Landers. Until now wind patterns have
been mostly derived from the temperature field using the thermal
gradient wind approximation or via more sophisticated techni-
ques such as data assimilation. But these techniques are only as
good as the thermal data used as input, which are mainly derived
from remote sensing measurements that suffer from limited
coverage and vertical resolution, especially close to the ground.
The uncertainty introduced by these remote measurements
suggests that major findings in atmospheric dynamics may be
best obtained by simultaneous 3-D measurements of temperature
and wind from orbit, although some surface information is really
needed to tie down the recovery of wind and surface pressure.
The value of surface station measurements will therefore be
greatly enhanced if made in conjunction with orbiter measure-
ments of the 3-D temperature and wind distributions, completed
by dust and water vapor distributions.

Lander measurements can be used to characterize the dis-
tribution of dust in the atmosphere, search for and characterize
atmospheric clouds, and search for and characterize dust devils.
Images of the sky near the sun provide a direct measurement of
atmospheric dust scattering, and the acquisition of images at
different times of day can provide information about the vertical
dust distribution. Direct measurements of the sky brightness also
provide a better understanding of the diffuse illumination condi-
tions at the landing site, important for interpreting surface
texture. Cloud images provide detailed information about their
morphology, and time-lapse images yield information about
cloud formation and evolution during the day.

Far-field surveys can provide direct imaging of dust devils at
the local landing site. Time-lapse images of these dust devils
provide information about their formation, evolution, speed, and
duration. This information is used to calculate dust devil volume
and density, key parameters for modeling global atmospheric
dust loading and parameterizing dust lifting processes in GCMs.

Lander missions with seismometers onboard will be equipped
with atmospheric pressure, air temperature and wind speed
sensors for seismic noise decorrelation, which is crucial for the
interpretation of seismic data. This relatively simple but valuable
meteorological package can provide critical data to further our
understanding of the meteorological processes acting near the
surface of Mars as well as for planning future surface operations
at Mars. While we have basic near-surface results from four
locations on Mars (at Viking, MPF, MER and Phoenix landing
sites), Martian meteorological phenomena are still not fully
understood. With the breadth of regional environmental condi-
tions on Mars, a new lander mission provides a key addition to
this body of meteorological data.

Meteorological measurements during EDL provide important
input for Mars meteorology as well. Accelerometers on such a
lander provide crucial atmospheric structure data for designing
future vehicles that will transit Mars’ atmosphere. Improved
measurements of the density structure at altitudes above 50 km
are needed for reliable predictions of aerobraking and aerocapture
maneuvers. Profiles of density, pressure, and temperature
between the thermosphere and the surface were made by Viking,
MPF, MER and Phoenix (Schofield et al., 1997; Seiff and Kirk,
1977; Magalh~aes et al., 1999; Withers, 2009), and in situ mea-
surements of the upper atmosphere were derived from aerobrak-
ing deceleration measurements of MGS (Bougher et al., 1999) and
MRO. But profiles at different seasons, solar time and geographic
location are needed.
3.12. Geology

The surface geology investigation characterizes the geology of
the future landing sites, and provides ‘‘ground truth’’ for orbital
remote sensing data.

Stereo panoramic imaging provides the basic data set used to
establish the broad geologic evolution of the local region and tie
these observations with orbital remote sensing data during the
landing site selection process (e.g., Christensen and Moore, 1992;
Golombek et al., 2008). Imaging at the Viking, Mars Pathfinder
(MPF), Mars Exploration Rovers (MER), and Phoenix sites estab-
lished the general geologic setting, identified the geologic materi-
als present, and quantified their areal coverage. These images
allowed the classification of different soil types at the sites, the
areal coverage and size-frequency distribution of rocks and out-
crop, the types and amount of eolian materials, and the morphol-
ogy of craters, all of which can be used to better understand the
evolution of the landscape.

Previous in-situ measurements of the rock abundance, types
and coverage of soils (and their physical properties), thermal
inertia, albedo, and topographic slope have all agreed with orbital
remote sensing estimates and show that the materials at the
landing sites can be used as ‘‘ground truth’’ for the materials that
make up most of the equatorial and mid-latitude regions of Mars.
By understanding the materials that make up the landing sites,
the sites can be also be used as ‘‘ground truth’’ for orbital remote
sensing data of Mars and thus aid in future landing site selection
(Golombek et al., 2008).
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4. Conclusions

The pioneering measurements provided by a geophysical
lander mission will be interpreted using a broad array of sophis-
ticated analysis techniques that take full advantage of the rich-
ness of these fundamental geophysical data sets, and of their
synergetic use. Geophysical questions can still be addressed while
using a single station. Nevertheless, more landers provide an
enormous increase in the scientific yield. In particular, there is a
significant step in considering at least two stations.

Concerning orbiter results, Mars Global Surveyor, Mars Odys-
sey, Mars Express, and Mars Reconnaissance Orbiter have com-
pletely revamped our understanding of the Mars’ geological
evolution, in conjunction with the ground truth provided by the
Mars Exploration Rovers and the Phoenix mission. Major
advances have been made, such as discovering water-ice below
the surface, mapping of the various types of ice in the polar
regions, establishing the history of water abundance on the
surface of Mars in view of the minerals formed at different
epochs, the presence of methane in the atmosphere, mid-latitude
auroras above crustal magnetic fields, and much younger time-
scales for volcanism and glacial processes. Indeed, the potential
presence of methane suggests that either volcanism or biological
processes could currently be active on Mars.

Much remains to be done in several key areas. Some major
objectives for investigations at Mars relate to the structure of
Mars’ interior and the escape of the atmosphere and its response
to solar activity (including the escape of neutral species, for which
no data currently exist). Our knowledge of Mars’ atmospheric
dynamics also remains low, particularly in regards to coupled
low-middle-high atmosphere circulation, the water cycle, chemi-
cal cycles and role of electricity. The link between magnetic and
mineralogical signatures and the history of the atmosphere
provides an additional and ongoing opportunity for investigation.
The NASA MAVEN spacecraft (due for launch in 2013) and the
ExoMars Trace Gas Orbiter (due for launch in 2016) address some
of these questions, emphasizing aeronomy and trace gas mea-
surements, respectively. The emphasis for the NASA Mars Science
Laboratory (MSL, due for launch in 2011) and for the combined
ESA-NASA ExoMars/MAX-C Rover is the search for indicators of
life and habitability. A single geophysical station in the time
frame 2016–2018, either as a stand-alone mission (Banerdt et al.,
2010; Elkins-Tanton et al., 2011) and/or added on to the Mars
2018 Sky-crane mission (Braun et al., 2011) followed by a multi-
ple lander mission in the time frame 2020–2022, will be unique in
addressing fundamental global questions, which can only be
answered by landers. This will moreover provide opportunities
for synergy between Europe and the US (obviously a first step in
this direction has been done for the ExoMars and Trace Gas
Orbiter missions), possibly with other countries (Japan, China, or
Russia, etc.).
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Chenet, H., Lognonné, P., Wieczorek, M., Mizutani, H., 2006. Lateral variations of
lunar crustal thickness from the Apollo seismic data set. Earth and Planetary
Science Letters 243, 1–14. doi:10.1016/j.epsl.2005.12.017.

Chicarro, A.F., Coradini, M., Fulchignoni, M., Liede, I., Lognonné, P., Knudsen, J.M.,
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ary reference Moon model. Physics of the Earth and Planetary Interiors 188 (1),
96–113. doi:10.1016/j.pepi.2011.06.015.
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Karatekin, Ö., Van Hoolst, T., Tastet, J., de Viron, O., Dehant, V., 2006b. The effects of
seasonal mass redistribution and interior structure on length-of-day variations
of Mars. Advances in Space Research 38 (4), 561–828 doi:JASR-D-04-01301R1.

Karatekin, Ö., de Viron, O., Lambert, S., Rosenblatt, P., Dehant, V., Van Hoolst, T., Le
Maistre, S., 2011. Atmospheric angular momentum variations of Earth, Mars
and Venus at seasonal time scales. Planetary and Space Science 59, 923–933.

Kavner, A., Duffy, T.S., Shen, G., 2001. Phase stability and density of FeS at high
pressures and temperatures: implications for the interior structure of Mars.
Earth and Planetary Science Letters 185 (1-2), 25–33. doi:10.1016/S0012-
821X(00)00356-3.

Khan, A., Mosegaard, K., 2002. An inquiry into the lunar interior: a nonlinear
inversion of the Apollo lunar seismic data. Journal of Geophysical Research
(Planets) 107(E6), CiteID: 5036. doi:10.1029/2001JE001658.

Kiefer, W.S., Li, Q., 2009. Mantle convection controls the observed lateral variations
in lithospheric thickness on present day Mars. Geophysical Research Letters
36, L18203. doi:10.1029/2009GL039827.

Kletetschka, G., Lillis, R., Ness, N.F., Acuña, M.H., Connerney, J.E.P., Wasilewski, P.J.,
2009. Magnetic zones of Mars: deformation-controlled origin of magnetic
anomalies. Meteoritics & Planetary Science 44 (1), 131–140. doi:10.1111/
j.1945-5100.2009.tb00723.x.

Knapmeyer, M., Harjes, H.P., 2000. Imaging crustal discontinuities and the down-
going slab beneath western crete. Geophysical Journal International 143 (1),
1–21.
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Interior structure of terrestrial planets. I. Modeling Mars’ mantle and its
electromagnetic, geodetic and seismic properties. Journal of Geophysical
Research 110 (E4), E04009. doi:10.1029/2004JE002271.

Vinnik, L., Chenet, H., Gagnepain-Beyneix, J., Lognonné, P., 2001. First seismic
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of the Lunar Core. Science, 331 (6015), 309. doi:10.1126/science.1199375.

Wieczorek, M.A., Zuber, M.T., 2004. Thickness of the Martian crust: improved
constraints from geoid-to-topography ratios. Journal of Geophysical Research
109 (E1). doi:10.1029/2003JE002153, CiteID: E01009.

Williams, J.G., Newhall, X.X., Dickey, J.O., 1996. Lunar moments, tides, orientation,
and coordinate frames. Planetary and Space Science 44, 1077–1080.

Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T., Dickey, J.O., 2001. Lunar
rotational dissipation in solid body and molten core. Journal of Geophysical
Research (Planets) 106, 27933–27968.

Williams, J.-P., Nimmo, F., 2004. Thermal evolution of the Martian core: implica-
tions for an early dynamo. Geology 32, 97–100.

Wise, D.U., Golombek, M.P., McGill, G.E., 1979a. Tectonic evolution of Mars. Journal
of Geophysical Research 84, 7934–7939. doi:10.1029/JB084iB14p07934.

Wise, D.U., Golombek, M.P., McGill, G.E., 1979b. Tharsis Province of
Mars—Geologic sequence, geometry, and a deformation mechanism. Icarus
38, 456–472. doi:10.1016/0019-1035(79)90200-8.

Withers, P., 2009. A review of observed variability in the dayside ionosphere of
Mars. Advances in Space Research 44 (3), 277–307. doi:10.1016/j.asr.2009.
04.027.

Yoder, C.F., Standish, E.M., 1997. Martian moment of inertia from Viking lander
range data. Journal of Geophysical Research 102 (E2), 4065–4080.

Yoder, C.F., Konopliv, A.S., Yuan, D.N., Standish, E.M., Folkner, W.M., 2003. Fluid
core size of Mars from detection of the solar tide. Science 300 (5617), 299–303.

Zaranek, S.E., Parmentier, E.M., 2004. Convective instability of a fluid with
temperature-dependent viscosity cooled from above. Earth and Planetary
Science Letters 224, 371–386.

Zharkov, V.N., Gudkova, T.V., 2000. Interior structure models, Fe/Si ratio and
parameters of figure for Mars. Physics of the Earth and Planetary Interiors 117
(1–4), 407–420. doi:10.1016/S0031-9201(99)00110-7.

Zhong, S., Zuber, M.T., 2001. Degree-1 mantle convection and the crustal
dichotomy on Mars. Earth and Planetary Science Letters 189 (1–2), 75–84.
doi:10.1016/S0012-821X(01)00345-4.

Zuber, M., Lemoine, F., Smith, D., Konopliv, A., Smrekar, S., Asmar, S., 2007. The
Mars Reconnaissance Orbiter radio science gravity investigation. Journal of
Geophysical Research 112 (E5). doi:10.1029/2006JE002833, CiteID: E05S07.

Zurek, R.W., Martin, L.J., 1993. Interannual variability of planet-encircling dust
storms on Mars. Journal of Geophysical Research 98 (E2), 3247–3259.
doi:10.1029/92JE02936.

Zharkov, V.N., Gudkova, T.V., 1997. On the dissipative factor of the Martian
Interiors. Planetary and Space Science 45, 401–407.

Zhu, L., Kanamori, H., 2000. Moho depth variation in southern California from
teleseismic receiver functions. Journal of Geophysical Research 105, 2969–2980.

dx.doi.org/10.1029/2000JE001539
dx.doi.org/10.1016/S0019-1035(2)00045-2
dx.doi.org/10.1029/1999JB900003
dx.doi.org/10.1016/j.icarus.2006.06.008
dx.doi.org/10.1016/j.icarus.2006.06.008
dx.doi.org/10.1029/2003GL016883
dx.doi.org/10.1029/2004JE002271
dx.doi.org/10.1029/2001GL012859
dx.doi.org/10.1029/2003JE002153
dx.doi.org/10.1029/JB084iB14p07934
dx.doi.org/10.1016/0019-1035(79)90200-8
dx.doi.org/10.1016/j.asr.2009.04.027
dx.doi.org/10.1016/j.asr.2009.04.027
dx.doi.org/10.1016/S0031-9201(99)00110-7
dx.doi.org/10.1016/S0012-821X(01)00345-4
dx.doi.org/10.1029/2006JE002833
dx.doi.org/10.1016/j.pepi.2011.06.015

	Future Mars geophysical observatories for understanding its internal structure, rotation, and evolution
	Introduction
	Why study Mars?
	Why study the geophysics of Mars?
	What kind of instruments can help geophysical studies?

	Science context
	Main science questions
	State of the art in the research field
	Early history of Mars
	Crustal thickness
	Core size and composition
	Magnetic field
	Heat flow
	Mars meteorology


	Science objectives
	Internal structure
	Crustal thickness
	Mantle transition phases
	Core state and dimension

	Mineralogy
	Interior thermal structure
	Geological activity
	Implications of improved constraints on early evolution
	Dynamo and remanent crustal magnetization
	Habitability and water

	Implications for meteorology
	Seismology
	Mars’ seismicity
	Signal to noise expectations
	Single station body wave processing
	Source azimuth and distance
	Mantle and core reflectors
	Crustal thickness determination

	Surface wave processing
	Surface wave dispersion

	Normal modes
	Phobos tides

	Geodesy
	Precession and nutations
	Polar motion
	Length-of-day

	Heat flow measurements
	Magnetism measurements (orbiter and landers)
	Meteorology
	Geology

	Conclusions
	Acknowledgments
	References




