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[1] Cross correlation of ambient seismic noise is known to result in time series from
which station‐station travel‐time measurements can be made. Part of the reason that these
cross‐correlation travel‐time measurements are reliable is that there exists a theoretical
framework that quantifies how these travel times depend on the features of the ambient
noise. However, corresponding theoretical results do not currently exist to describe
how the amplitudes of the cross correlation depend on such features. For example,
currently it is not possible to take a given distribution of noise sources and calculate the
cross correlation amplitudes one would expect from such a distribution. Here, we provide a
ray‐theoretical framework for calculating cross correlations. This framework differs
from previous work in that it explicitly accounts for attenuation as well as the spatial
distribution of sources and therefore can address the issue of quantifying amplitudes in
noise correlation measurements. After introducing the general framework, we apply it to
two specific problems. First, we show that we can quantify the amplitudes of coherency
measurements, and find that the decay of coherency with station‐station spacing depends
crucially on the distribution of noise sources. We suggest that researchers interested in
performing attenuation measurements from noise coherency should first determine how
the dominant sources of noise are distributed. Second, we show that we can quantify the
signal‐to‐noise ratio of noise correlations more precisely than previous work, and that
these signal‐to‐noise ratios can be estimated for given situations prior to the deployment of
seismometers. It is expected that there are applications of the theoretical framework
beyond the two specific cases considered, but these applications await future work.
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1. Introduction

[2] Shapiro and Campillo [2004] first showed that tra-
veltime measurements obtained through cross correlation of
ambient seismic noise resemble those from more traditional
source‐station measurements. Since then, the field of ambient
noise correlation has exploded, with many authors focusing
on traveltime tomography [e.g., Shapiro et al., 2005; Sabra
et al., 2005a; Yao et al., 2006; Cho et al., 2007; Lin et al.,
2008], and others focusing on temporal changes in tra-
veltimes [e.g., Brenguier et al., 2008;Meier et al., 2010]. It is
now also well recognized that these noise correlation tra-
veltimes depend on the noise source distribution in a pre-
dictable way [e.g., Lin et al., 2008; Tsai, 2009; Yao and
van der Hilst, 2009; Harmon et al., 2010; Tromp et al.,
2010], and that performing a joint inversion for structure
and noise distribution can account for the (typically small)
biases that would result from assuming a uniform noise
distribution [e.g., Yao and van der Hilst, 2009].
[3] Recently, researchers have begun to be interested in

going beyond traveltime measurements and using the ampli-

tudes of the noise correlations. For example, Prieto and
Beroza [2008] have used noise correlation amplitudes to
infer ground motions and Prieto et al. [2009] have used
coherency amplitudes to infer attenuation between station
pairs (in the period range 5–20 s). Despite the general success
of these studies at producing reasonable values of inferred
parameters, there remains some question as to how accurate
their measurements are. While traveltime measurements are
understood theoretically as described above, amplitude mea-
surements do not have a corresponding theoretical back-
ground, except when noise is equipartitioned [Snieder, 2007;
Larose et al., 2007] (a very specific case which is not satisfied
by ambient seismic noise on the Earth). A few numerical
experiments have been performed that show how ampli-
tudes are affected in very particular cases [Cupillard and
Capdeville, 2010], but no general theoretical framework
exists. For this reason, it is currently not possible to quantify
the accuracy of noise studies that rely on amplitudes. To
address this gap in the literature, we provide a ray‐theoretical
framework for understanding the amplitudes of noise corre-
lation measurements and how these amplitudes depend on
the noise source distribution (section 2). Using these results,
we then show that the way in which coherency amplitudes
decay with station‐station distance depends on the noise
source distribution in a significant way (section 3.1).
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[4] In addition to providing a theory to understand how
to interpret the amplitudes of coherency measurements,
this framework also allows us to calculate how large the
coherent ‘signals’ are compared to the ‘noise’ level pro-
duced by incoherent signals. Having a high ‘signal‐to‐noise’
ratio, SNR, in noise correlations is the first requirement on
obtaining a robust measurement from noise correlation
techniques. Knowledge of this SNR is therefore potentially
useful to researchers interested in applying noise correlation
techniques in exotic locations or in other places that are not
well characterized. We show that we can estimate the SNR
using a small number of parameters that may be approxi-
mately known, and therefore be able to determine the like-
lihood of obtaining a robust signal in certain situations prior
to deploying seismometers (section 3.2).

2. Derivations for Noise Correlation

[5] In this study, we follow the approach of Tsai [2009]
to quantify cross‐correlation amplitudes. In this approach,
it is assumed that there exists a spatial distribution of noise
sources and that the response at each station can be described
by an integral over these sources. Here, we assume a uniform
velocity medium and concentrate on understanding the role
of the noise source distribution on the cross correlation
amplitudes. It is expected that velocity heterogeneities have
effects similar to those previously documented [Tsai, 2009].
In our previous studies, only traveltime measurements were
calculated and it was therefore not necessary to explicitly
consider the effects of attenuation. In order to properly
account for attenuation, we now base our discussion on the
damped wave equation
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where t is time, c is phase velocity and a is an attenuation
coefficient. In principle, u expresses any single mode dis-
placement component (e.g., P, S, Rayleigh or Love), with
c and a interpreted accordingly. Performing a Fourier
decomposition (with time dependence e−iwt, where w is fre-
quency) for the two‐dimensional (2D) damped wave equa-
tion and allowing for potentially frequency‐dependent c ≡
c(w) and a ≡ a(w), one can compute the Green’s function as
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where Hk
(1) is a Hankel function of the first kind, r ≡ r(s, x) is

the distance from the source (s) to the receiver (x), and the
approximation holds as long as attenuation is weak (a� w/c).
We note that this 2D Green’s function should apply to (2D)
surface waves, which will be the main focus of this study.
[6] Similar expressions for the 1D and 3D versions of

the damped wave equation can easily be obtained. In fact,
asymptotically (for wr/c � 1), all three scaled Green’s
functions can be written in the time domain (for a single‐
frequency wave and arbitrary non‐unit amplitude) as

G x; t; sð Þ ¼ A sð Þ e��rr� D�1ð Þ=2 cos ! t � r
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where A is a source amplitude factor, � is a phase factor,
D is the dimensionality (either 1, 2, or 3), and we intro-
duce �(r) ≡ e−ar/r(D−1)/2. At this point, we observe that an
approximate ray‐theory solution can also be given for a
medium in which the velocity is smoothly varying, where
r is reinterpreted as the raypath length from source to
receiver, 1/c is the mean phase slowness along this path, and
a can be related to the path‐averaged quality factor Q by
a = w/(2UQ), where U is group velocity [Mitchell, 1995].
Equation (3) ignores any site amplification or focusing
effects; site amplification could be accounted for by includ-
ing an extra term S(x) multiplying the right‐hand‐side of
equation (3).
[7] For a discrete set of noise sources, the total displace-

ment response is given simply by a sum over these different
sources. On the other hand, for a continuous distribution
of noise, we can treat the source amplitude A(s) as source
density (e.g., amplitude per unit surface area or per unit
volume). In the case of equation (2) (with source amplitude
4A), then the total displacement response is given by
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where <[z] denotes the real part of z, and Jk and Yk are
Bessel functions (of order k) of the first and second kind,
respectively. Alternatively, in the case of equation (3) (with
source amplitude A as given), the response is given by

u x; tð Þ ¼
Z

G x; t; sð Þ ds

¼
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c
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[8] So far, the entire displacement field has been assumed
to be a sum of sources described by either equation (2) or
equation (3). However, there exist non‐wave sources of
seismic displacement, including local seismograph housing
effects, electromagnetic effects, and other anelastic effects
[e.g., Tsai et al., 2004; Berger et al., 2004; Zurn et al.,
2007]. These noise sources are only seen locally and do
not propagate to other stations and are therefore sources of
incoherent energy. Thus, added to either equation (4) or
equation (5) is a term AIx cos(wt + �Ix) where AIx is the
incoherent noise amplitude and �Ix is the incoherent noise
phase at the location x. Equation (4) is therefore modified
to be

u x; tð Þ ¼ <
Z

4A sð Þ G x; !; sð Þ e�i!tds

� �
þ AIx cos !t þ �Ixð Þ; ð6Þ

and equation (5) is modified to be

u x; tð Þ ¼
Z

G x; t; sð Þ dsþ AIx cos !t þ �Ixð Þ: ð7Þ

It should be noted that the incoherent term only includes
sources that do not propagate elastically. All sources that
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propagate elastically are included in the coherent term even
when the effect of these sources attenuates rapidly.
[9] Finally, as in the work of Tsai [2010], we define the

normalized cross correlation as

CT
xy tð Þ � 1

2T

Z T
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u x; �ð Þ u y; � þ tð Þ d�; ð8Þ

the limiting value as

Cxy tð Þ � lim
T!∞

CT
xy tð Þ; ð9Þ

and the ensemble cross correlation as
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T
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where each iCxy
T (t) is a different realization (i.e. the � are

random). As discussed by Tsai [2010], if the physical
system in which noise is generated is naturally attenuat-
ing, and has a quality factor QP, then an approximation
for M in terms of QP and the total correlation time T0 is
M ≈ wT0/QP = T0/Ta, where Ta ≡ QP/w is an e‐folding
attenuation time for the system. (Alternatively, QP can
be defined in terms of Ta.) We note that this definition of
cross correlation does not have additional normalization
that accounts explicitly for the total energy observed (see
section 3.1). We also note that if A changes slowly in time,
all of the equations described above remain unchanged, with
the recognition that it is a time‐averaged A that should be
used [e.g., Tsai, 2009]. Furthermore, any preprocessing of
data such as temporal normalization can be understood to
just modify the time averaging used to determine A.
[10] Substituting equation (6) or equation (7) into equation

(10) gives the most general expression for the narrowband
cross correlation under the assumptions stated above. Tsai
[2010] observed that as long as attenuation is relatively
weak and correlation times are long, then one can use the
expressions for calculating equation (9) in place of those for
equation (8). In this case, it was also previously shown that
expressions for Cxy(t) simplify considerably. In particular,
the correlation of two cosine signals is a cosine with phase
equal to the difference in phases of the original signals. For
the remainder of this work, we shall assume, as in previous
work, that these properties hold for all correlations per-
formed. As also discussed by Tsai [2010], common proces-
sing techniques cause leakage of energy from neighboring
frequencies so that the measured narrowband cross correla-
tion is actually affected by sources within a small (but non‐
negligible) range of frequencies.
[11] Unless otherwise stated, from this point onwards,

only the 2D (surface wave) case will be considered, and the
approximate version of equation (7) (withD = 2) will be used
instead of the exact version of equation (6) because it is much
more amenable to analytic simplification. Since equation (2)
approaches equation (3) asymptotically, equation (7) will
only accrue errors when r is not in the far‐field. Furthermore,
as will be shown in section 3.1.5, this error is typically rela-
tively minor, even when r is relatively small. Since the pri-
mary purpose of this current work is to show the approximate
form of amplitudes for various source distributions, and it is

not to precisely model any particular source distribution, this
error can be tolerated. We note that if precise values were
desired, numerical evaluation of equation (6) could be per-
formed (again, see section 3.1.5).

2.1. One Source With Incoherent Noise

[12] For simplicity, we first consider the case of 1 discrete
noise source (at location s1 anywhere) with incoherent noise
so that equation (7) gives

iu x; tð Þ ¼ A1� r1xð Þ cos ! t � r1x
c

� �
þ �i

h i
þ AIx cos !t þ �Ixi½ �;

ð11Þ

where iu(x, t) is the displacement in the ith realization,
Aj ≡ A(sj), rjx ≡ r(sj, x), and �i is the phase of the noise source
in the ith realization. Note that we define a noise source as
having a constant amplitude but varying phase through dif-
ferent realizations. Making use of the simplifications of Tsai
[2010] results in

2CE
xyM ¼ A2
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� �
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; ð12Þ

where �k
av is the average phase difference of theM realizations.

[13] This 1‐source form of the cross correlation is not
particularly useful by itself but later results will have similar
characteristics that are more easily understood in the 1‐source
expression. For now, we simply note that the first term of
equation (12) represents the ‘signal’ term and that the other
3 terms are “noise” terms that are not desired. Since

ffiffiffiffiffi
M

p
=ffiffiffiffiffiffiffiffiffiffiffiffi

T0=Ta
p

grows as the total correlation time (T0) increases,
we observe that the signal‐to‐noise ratio grows with time.

2.2. Two Independent Sources

[14] Next, we consider the case of 2 independent discrete
noise sources (at locations s1 and s2), without any incoherent
sources (for simplicity), so that

iu x; tð Þ ¼ A1� r1xð Þ cos ! t � r1x
c

� �
þ �1i

h i
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h i
: ð13Þ

Again making use of the simplifications of Tsai [2010]
results in
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We note that �(rsx)�(rsy) = e−a(rsx+rsy)/
ffiffiffiffiffiffiffiffiffiffi
rsxrsy

p
(for D = 2).
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[15] This very limited 2‐source form of the cross corre-
lation is already useful because it roughly approximates the
high‐frequency surface‐wave limit in which the dominant
noise sources are at the 2 stationary phase points [Snieder,
2004]. Without performing an integral over the actual dis-
tribution of noise sources, this 2‐source approximation does
not contain the p/4 phase shift (in 2D), e.g., as discussed by
Tsai [2009], and also does not provide the true amplitude
of the sources at the 2 points, but otherwise is a reason-
able approximation (see section 2.4). One interesting point
to observe is that equation (14) has attenuation terms pro-
portional to e−a(rsx+rsy). Thus, the attenuations are added
together, and not subtracted as might be expected from
Green’s function relationships that hold when sources are
distributed uniformly, e.g., as in the work of Snieder [2007].

2.3. Two Related Sources

[16] In section 2.2, it was assumed that the 2 noise sources
were independent of each other. However, in general, certain
subsets of noise sources can be dependent. For example,
noise sources that are close to each other are often excited by
the same physical processes (e.g. ocean waves) such that the
signals generated are in phase with each other rather than
being independent. Similarly, if there is a strong scatterer, the
phase of the source at the scatterer is determined by the phase
of the primary sources plus the extra time delay associated
with the scattering path. For either of these situations, we can
modify equation (13) to account for the dependence so that

iu x; tð Þ ¼ A1� r1xð Þ cos ! t � r1x
c

� �
þ �1i

h i
þ A2� r2xð Þ cos ! t � r2x

c
�Dt

� �
þ �1i

h i
; ð15Þ

where Dt is the time delay of the source at s2 relative to the
source at s1. It should be noted that Dt is a total time delay
that includes all potential sources of time lag, including path
and scattering effects.
[17] Performing the same analysis with equation (15) yields
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When s1 ≈ s2 (so that r1x ≈ r2x and Dt ≈ 0) then equation (16)
simplifies to

2CE
xyM ¼ A1 þ A2ð Þ2� r1xð Þ � r1y

� �
cos ! t � r1y � r1x

c

� �h i
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This simplified form of equation (16) will be used in later
sections to describe dependent noise sources with approxi-
mately the same source region. It should be noted that both
equations (16) and (17) differ from equations (12) and (14) in
that there is no decay of cross terms with

ffiffiffiffiffi
M

p
.

2.4. General Continuous Distribution

[18] With equations (12), (14) and (16) describing all of
the pairwise correlation possibilities, it is now relatively
straightforward to generalize to an arbitrary distribution of

noise sources. However, one must correctly account for the
various dependencies of the different sources. To simplify the
analysis, here, we make a few different assumptions. First,
we assume that non‐overlapping regions can be defined for
which sources are dependent within each region but inde-
pendent between regions. With this assumption, the integral
in equation (5) can be broken into a sum over the N discrete
regions, each of which has related sources (as described in
section 2.3). This assumption is not valid for the reflection
problem (see Appendix A) but is a reasonable approximation
for primary sources. Second, we assume that each of these
regions can be described with one effective amplitude and
cross‐correlation time delay. This can be done by performing
the integral in equation (5) separately for each of the N
regions and using the generalization of equation (16) to solve
for a region‐averaged Aj and rjx. With these assumptions,
applying equations (12), (14) and (16) pairwise results in
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� �
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j

h i

þ AIxAIyffiffiffiffiffi
M

p cos !t þ �av½ �; ð18Þ

where the �av are random. The first 2 terms arise from
applying equation (14), the last 3 terms arise from applying
equation (12), and equation (16) is used to calculate the
region‐averaged Aj and rjx.
[19] It is useful to note that in equation (18), the first term

represents all coherent arrivals and that the second term has
many more elements (N2 − N ≈ N2) compared to all of the
other incoherent terms (N elements in the third and fourth
terms and only 1 element in the fifth term). Thus, in order
for the third term to be larger than the second term, one must
have AIy > NAav�(ry

av), where Aav�(ry
av) is the average value

of Aj�(rjy); similarly, one must have AIx > NAav�(rx
av) for the

fourth term to be larger than the second; and both conditions
must hold for the fifth term to dominate the incoherent
signal. For much of this work, it will be assumed that
neither condition holds, and that the main incoherent signal
is from ‘realization noise’, the second term of equation (18).
(In section 3.2.5, however, we show that this assumption
may not always be valid.) For this case, equation (18) sim-
plifies to

2CE
xyM �

XN
j¼1

A2
j � rjx
� �

� rjy
� �

cos ! t � rjy � rjx
c

� �h i

þ Nffiffiffiffiffi
M

p A
2
� rxð Þ � ry

� �
cos !t þ �av½ �; ð19Þ

where A2 is a weighted average value of AjAk and rx is a
weighted average value of rjx (weighted by � such that
A2�(rx)�(ry) is the root mean square average of AjAk�(rjx)�(rky)).
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In this simplification, we have used the fact that a random
walk (from random �jk

av) of N2 unit steps in the complex plane
results in a total distance traveled of N units.
[20] If each of the N regions discussed above is relatively

small, then one can further simplify equation (19) so that its
first term is approximated as a spatial integral over the entire
source region instead of a sum, resulting in

2CE
xyM �

Z
s
A2
s �ðrsxÞ �ðrsyÞ cos ! t � rsy � rsx

c

� �h i
ds

þ Nffiffiffiffiffi
M

p A
2
�ðrxÞ � ry

� �
cos !t þ �av½ �; ð20Þ

where now As is a source density, as in equation (4), rather
than a source amplitude, as in equation (19). Similarly,
A2�(rx)�(ry) is now a root mean square average calculated by
integration rather than summation.

3. Application to Coherency and Signal‐to‐Noise
Ratios

[21] The results derived in section 2 have applicability to
at least two separate issues of interest. The first issue that we
discuss relates to how attenuation measurements can be
made from noise correlation studies. Previous studies,
starting with Prieto et al. [2009], have used noise correlation
measurements to infer attenuation parameters (e.g. a as a
function of w) by assuming the amplitudes of the observed
noise correlations depend on these parameters in a specific
way. In section 3.1, we show that this dependence can be
very different from the assumed one for certain distributions
of noise. In fact, only when sources are distributed uniformly
everywhere (in the 2D plane) is the assumption valid. In all
other cases examined, the dependence on attenuation para-
meters is different from that of Prieto et al. [2009].
[22] The second issue that we address is whether we can

understand how large the noise correlation signal‐to‐noise
ratio would be in a new situation of interest. The signal‐to‐
noise ratio being relatively large is a prerequisite to obtaining
a robust signal. Knowledge of this ratio is therefore poten-
tially of interest to any researcher who wants to try noise
correlation techniques in a new location or in a novel envi-
ronment. In this case, it would be useful to know the plau-
sibility of achieving a robust result prior to deploying a set of
seismometers, an operation that can potentially be quite
expensive. In section 3.2, we show that knowledge of a few
key parameters allows for the calculation of the signal‐to‐
noise ratio, and we show a few examples of this.
[23] We note that in both sections 3.1 and 3.2, we have made

a number of simplifying assumptions, such as the spatial uni-
formity of a and c. The more general case is not conceptually
more difficult and numerical results for the general case can
easily be calculated with the same framework. However, we
believe that the analytic expressionswe derive and the easewith
which one can observe the dependence on certain variables in
these expressions to be more useful to the community than a
host of numerical results (at least at this point in time). There-
fore, we make no attempt to examine more complex cases.

3.1. Attenuation Measurements From Coherency

[24] Prieto et al. [2009] recently proposed a method for
measuring attenuation using the coherency of noise. In this

work, they assume that the observed coherency is equal to the
theoretical coherency for uniform noise and no attenua-
tion multiplied by an attenuation term equal to e−aDx, where
Dx ≡ rxy is the station‐station spacing. In the framework
described here, the observed coherency is given by

Ĉ
E
xyM !ð Þ � CE

xyM !ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CE
xxM !ð Þ CE

yyM !ð Þ
q : ð21Þ

When the 3 terms on the right‐hand side of equation (21)
have the same phase, the division can be done in the time
domain; when the phases are different, the division must be
done in the frequency domain (e.g., with the Fourier trans-
form of cos[w0t − �] being [d(w − w0) + d(w + w0)] e

−i�, up to
a normalization factor). The Prieto et al. [2009] method is
then equivalent to assuming that

< Ĉ
E
xyM

h i
¼ e��rxy J0

!rxy
c

� �
; ð22Þ

and this expression should hold for every choice of w. (We
note that Aki [1957] showed that in the absence of attenuation,
an azimuthally averaged coherency is equal to J0(wrxy /c).)
Throughout this section, we take the limit M → ∞ in all
expressions, and therefore discuss only the coherent part of the
cross correlation signal, Cxy

E ≡ limM→∞ CxyM
E . For stations with

large AIx, this is not a good approximation, and there will be
additional biases that the expressions derived below do not
express. Accounting for these dependencies is beyond the
scope of this work.
[25] In the following sections, we consider five different

noise distributions. These 5 distributions are chosen as rel-
atively simple examples for which closed‐form solutions
can be determined. While true noise source distributions are
unlikely to be precisely modeled with any of these 5 dis-
tributions (all of which have some form of axial symmetry),
they provide a guideline for whether the Prieto et al. [2009]
assumption is likely to be valid or if some alternative
assumptions are likely to be better. We also note that 3 of
the 5 distributions are chosen to be azimuthally uniform
such that the known difficulties in having a non‐azimuthally
uniform source distribution can be separated from the effects
of source distance. It will be seen that although the azi-
muthally uniform source distributions result in phases that
are unbiased, the amplitudes can still decay differently than
expected of equation (22). It may also be noted that if data
is azimuthally averaged, as is done by Prieto et al. [2009],
then the source distribution is effectively averaged azimuth-
ally, and it would be most appropriate to compare results
with these azimuthally uniform distributions.
[26] In each section, we first calculate the cross correlation

Cxy
E and autocorrelation Cxx

E prior to calculating the coher-
ency Ĉxy

E . All of these results are summarized in Table 1. It
is expected that these cross correlation and autocorrelation
results may be useful beyond their use in determining
coherency. As just one example of this, in section 3.1.6, we
discuss how the results of the previous sections can be used to
understand some of the numerical experiments of Cupillard
and Capdeville [2010].
3.1.1. Uniform Distribution of Far‐Field Surface Waves
[27] The simplest, yet somewhat realistic, distribution of

noise sources is a uniform distribution of far‐field surface‐wave
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noise sources. For example, if ocean microseisms are the
primary source of noise, as may be expected for many con-
tinental seismic stations [McNamara and Buland, 2004],
and the distance to the ocean is far relative to the station‐
station distance, then this distribution may be appropriate.
In this case, As = A is constant along a large circle (with radius
R � rxy) centered halfway between the two stations and
As is zero elsewhere (see Figure 1a). For this simple case,
rsy = R + cos� · rxy/2, rsx = R − cos� · rxy/2, and rsy − rsx =
rxy cos�, where � is the azimuth of the source relative to the
station‐station line. Using these expressions, we can simplify
equation (20) to be

2CE
xy �

A2

2�

Z 2�

0

e�� rsxþrsyð Þffiffiffiffiffiffiffiffiffiffi
rsxrsy

p cos ! t � rxy cos �

c

� �� �
d�

¼ A2

2�

Z 2�

0

e�2�R=Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2xy cos

2 �

4R2

s cos ! t � rxy cos �

c

� �� �
d�

� A2

2�

Z 2�

0

e�2�R

R
cos ! t � rxycos�

c

� �� �
d�

¼ A2e�2�R

R
cos !tð Þ J0 !rxy

c

� �
: ð23Þ

Here, as elsewhere, Cxy is implicitly a function of t (unless
otherwise stated) whereas Ĉxy is implicitly a function of w.
[28] Perhaps surprisingly, despite the fact that attenuation

has been accounted for, there is no dependence of Cxy
E on the

station‐station attenuation e−arxy. The reason for this is that
the increase in attenuation due to the slightly longer source‐
station path is exactly compensated for by the decrease in
attenuation due to the slightly shorter source‐station path.
Similarly, although the dependence on the Bessel function
has been observed by many previous authors [e.g., Aki,
1957; Sanchez‐Sesma and Campillo, 2006; Tsai, 2009],
it may also be somewhat surprising that the geometrical
attenuation inherent in the Bessel function (proportional
to 1/

ffiffiffiffiffiffi
rxy

p
in the far‐field) is captured despite the fact that

far‐field sources have a geometric attenuation (e−2aR) that
is independent of the station‐station spacing. Geometric
attenuation is, nonetheless, captured because of the integral
over noise sources.

[29] Similarly calculating Cxx
E yields

2CE
xx �

A2

2�

Z 2�

0

e�2�rsx

rsx
cos !tð Þ d�

¼ A2e�2�R

2�R
cos !tð Þ

Z 2�

0

e��rxy cos �d�

1� cos � � rxy= 2Rð Þ

� A2e�2�R

R
cos !tð Þ I0 �rxy

� �
; ð24Þ

where Ik is a modified Bessel function of the first kind, of
order k. (The far‐field assumption R � rxy has been used to
simplify the integral.) The final expression for Cyy

E is iden-
tical to that for Cxx

E . Thus, the coherency as defined by
equation (21) is given by

Ĉ
E
xy ¼

1

I0 �rxy
� � J0 !rxy

c

� �
: ð25Þ

[30] The fact that I0(x) ≠ ex implies that there is a signif-
icant difference between equation (25) and equation (22)
(see Figure 2), and therefore that the Prieto et al. [2009]
assumption of equation (22) may not be appropriate. (Note
that in Prieto et al. [2009], 10−3 ] arxy ] 2, and that
asymptotically I0(x) → ex/

ffiffiffiffiffiffiffiffi
2�x

p
.) In particular, if the true

noise source distribution were close to the assumed uniform
distribution of far‐field surface waves then the attenuation
parameters solved for using the Prieto et al. [2009] method
must be reinterpreted before they can be directly com-
pared with traditional (source‐station) attenuation measure-
ments. For this case, since equation (25) decays slower than
equation (22), if one were to use equation (22) to infer a,
one would obtain smaller values than the true a, and using
these inferred values of a would result in ground motion
predictions larger than true ground motions. However, the
noise distribution chosen here may not be representative of
true distributions and in the following sections we provide
a few, perhaps more realistic, alternative examples.
3.1.2. One‐Sided Far‐Field Surface Waves
[31] In the case where noise sources are again uniformly

distributed far‐field surface‐wave sources but are now only
distributed along half of the circle (e.g. for −p/2 < � < p/2,
see Figure 1b), then again equation (20) can be solved

Table 1. Summary of the Cross Correlation, Autocorrelation, Real Part of the Coherency and Signal‐to‐Noise Ratio, SNR, for the Different
Scenarios Considereda

2Cxy
E (t) 2Cxx

E (t) <[Ĉxy
E (w)] SNR

One source A1
2�(r1x)�(r1y)cos w(t −

r1y�r1x
c ) A1

2�(r1x)
2 cos(wt) cos[

! r1y�r1xð Þ
c � ∞

Two sources A1ffiffi
2

p
A2

ffiffiffiffi
T0
Ta

q
Uniform far‐field A2e�2�R

R cos(wt)J0 (
!rxy
c ) A2e�2�R

R cos(wt)I0 (arxy) 1
I0 �rxyð ÞJ0(

!rxy
c ) F ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

�!rxy
T0
Ta

q
One‐sided far‐field A2e�2 �R

R <[eiwt · (J0 − iH0)] A2e�2�R

R cos(wt)[I0 −L0] J0ffiffiffiffiffiffiffiffiffi
I20�L20

p F

Arbitrary far‐field e�2�R

R <[eiwtSk(−i)kakJk] e�2�R

R cos(wt)Sk(−1)kakIk
P

k
�1ð Þk a2k J2kffiffiffiffiffiffiffiffiffiffiffiffiffiP

k
ak Ik

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k
�1ð Þk ak Ik

p A2
�

A
2 · F

Including near‐field
2A2

�

� e−arxy cos(wt)J0 2A
2

� cos(wt) A2
�

A
2e
−arxyJ0

A2
�

A
2e
−arxy · F

Near‐field (only) 2pA�
2cos(wt)J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2xy

4

q
2pRA2cos(wt) A2

�

A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2xy

4R2

q
·J0

A2
�

A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2xy

4R2

q
· F

Reflection GA1
2�2(r1x) cos[w(t − Dt)] GA1*

2

A1*þA2*
� �2 ffiffiffiffi

T0
Ta

q
aWhen not written explicitly, Jk and H0 are functions of wrxy/c and Ik and L0 are functions of arxy. In this table, SNR is for the case without incoherent

terms (AIx) and F is the SNR for the uniform far‐field case. See text for how SNR depends on AIx.
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in closed form for Cxy
E , Cxx

E and Cyy
E . This distribution may

be approximately appropriate (in the microseism band, ≈5 –
30 s period) for stations that are relatively far away from
any ocean, but where the coastline is much closer on
one side compared to other, as for many station pairs in
California [Prieto et al., 2009]. Using the same approach as
for equation (23), then

2CE
xy �

A2e�2�R

�R
<
Z �=2

��=2
ei! t�rxy cos �=cð Þd�

" #

¼ A2e�2�R

R
< ei!t � J0

!rxy
c

� �
� iH0

!rxy
c

� �n oh i
; ð26Þ

where H0 is a Struve function of order zero [Watson, 1952].
(Note that Struve functions are often denoted with a bold Hk

and are not equivalent to Hankel functions, Hk
(i).) Similarly,

2CE
xx �

A2e�2�R

�R
cos !tð Þ

Z �=2

��=2
e��rxy cos �d�

¼ A2e�2�R

R
cos !tð Þ I0 �rxy

� �� L0 �rxy
� �	 


; ð27Þ

2CE
yy �

A2e�2�R

�R
cos !tð Þ

Z �=2

��=2
e�rxy cos �d�

¼ A2e�2�R

R
cos !tð Þ I0 �rxy

� �þ L0 �rxy
� �	 


; ð28Þ

where L0 is a modified Struve function of order zero
[Watson, 1952]. The coherency is then given by

Ĉ
E
xy ¼

J0
!rxy
c

� �þ iH0
!rxy
c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I20 �rxy
� �� L20 �rxy

� �q : ð29Þ

Equation (29) also decays more slowly with increasing rxy
compared to equation (22) (see Figure 2). If one were to use
equation (22) to infer a in a case where this one‐sided far‐
field distribution were appropriate, again one would infer
values lower than the true values of a and predict ground
motions larger than the true ground motions.

Figure 1. Schematic distributions of noise sources. The triangles denote the stations and the gray shaded
area denotes the region of noise sources for the following cases: (a) uniform distribution of far‐field
surface waves, (b) one‐sided far‐field surface waves, (c) arbitrary non‐uniform far‐field surface waves,
(d) uniform distribution of surface waves, (e) truncated uniform distribution of near‐field surface waves,
and (f) reflection geometry (see Appendix A). See text for description of variables.

Figure 2. Comparisons of<[Ĉxy
E ]/J0(wrxy/c) for equation (22)

(blue solid), equation (25) (green dotted), equation (29) (red
dashed), and equation (44) (cyan dash‐dotted).The blue
curve is the assumption of the Prieto et al. [2009] as well as
the result of equation (38) for uniform noise everywhere (see
Figure 1d); the green curve is for uniform far‐field noise (see
Figure 1a); the red curve is for uniform one‐sided far‐field
noise (see Figure 1b); the cyan curve is for uniform near‐field
noise (withaR = 1/8) (see Figure 1e). As described in the text,
a = w/(2UQ).
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3.1.3. Arbitrary Distribution of Far‐Field Surface Waves
[32] Given an arbitrary distribution of far‐field surface

waves (see Figure 1c), we can also solve equation (20) in
closed form, in terms of a sum over Bessel functions as
in the work of Cox [1973] or Harmon et al. [2010]. Writing
the square of the azimuthal source distribution As

2(�) as a
Fourier series

A2
s �ð Þ ¼

X∞
k¼0

ak cos k�ð Þ þ bk sin k�ð Þ; ð30Þ

and substituting into equation (20) yields

2CE
xy �

1

2�R
<
Z 2�

0
A2
s e

�� rsxþrsyð Þei! t�rxy cos �=cð Þd�
� �

¼ e�2�R

2�R
< ei!t

Z 2�

0
A2
s �ð Þ e�i!rxy cos �=cd�

� �

¼ e�2�R

R
< ei!t

X
k

�ið ÞkakJk !rxy
c

� �" #
: ð31Þ

Similarly,

2CE
xx �

1

2�R

Z 2�

0
A2
s �ð Þ e�2�rsx cos !t½ � d�

¼ e�2�R

2�R
cos !tð Þ

Z 2�

0
A2
s �ð Þ e��rxy cos �d�

¼ e�2�R

R
cos !tð Þ

X
k

�1ð ÞkakIk �rxy
� � ð32Þ

2CE
yy �

e�2�R

2�R
cos !tð Þ

Z 2�

0
A2
s �ð Þ e�rxycos�d�

¼ e�2�R

R
cos !tð Þ

X
k

akIk �rxy
� �

: ð33Þ

The coherency is then

Ĉ
E
xy ¼

X
k
ikakJk

!rxy
c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k
akIk �rxy

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

�1ð ÞkakIk �rxy
� �q ; ð34Þ

and the real part of the coherency is

< Ĉ
E
xy

h i
¼

X
k

�1ð Þka2kJ2k !rxy
c

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

k
akIk �rxy

� �q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

�1ð ÞkakIk �rxy
� �q : ð35Þ

[33] It is clear from comparison that equation (35) and
equation (22) can be even more dissimilar than the previous
comparisons. In particular, for non‐uniform distributions of
noise, the dependence of the real part of the coherency on
J0(wrxy/c) is destroyed so that the differences are not rele-
gated completely to a function of arxy as they were in
sections 3.1.1 and 3.1.2. As previously noted [e.g., Tsai,
2009; Harmon et al., 2010], this non‐J0 dependence
results in biased phase velocities if not accounted for.
Focusing instead on the amplitudes, we note that the general
shape of the curves are similar since all J2k are asymptoti-
cally equal to ±J0. Unfortunately, this also means that a non‐

uniform distribution of noise can superficially look some-
what like the expected effects of attenuation, even when
attenuation does not exist. As a simple example of this, we
consider the case where a = 0, a0 = 1, a2 = −0.3, and all
other ak are zero. In this case, equation (35) gives <[Ĉxy

E � =
J0(wrxy/c) + 0.3J2(wrxy/c) (see Figure 3). This curve resem-
bles J0(wrxy/c) except that the amplitude decreases with
increasing rxy so that one could mistakenly fit this with
an attenuation model. Interestingly, if the sign on a2 were
positive, one would infer a negative attenuation. Fortu-
nately, though, both of these errors can be easily avoided by
using azimuthal averages. If an azimuthal average is done
(with all azimuths contributing equally), then the resulting
Ĉxy
E will have an equal contribution from terms with positive

and negative coefficients ak (for k > 0) and therefore will
be left only with the a0 term and the corresponding J0 term.
[34] With a ≠ 0, there will still remain a difference in the

decay of the azimuthally averaged coherency for different
distributions of noise due to the denominator of equation (35).
However, for reasonable values of wrxy/c and a, this dif-
ference is relatively small, and the decay of coherency can
be approximated with one of the curves in Figure 2. For
example, for the case just discussed with a0 = 1, a2 = −0.3,
an azimuthal average of coherency including a ≠ 0 will
result in a decay that is almost equal to 1/I0(arxy) and
is bounded by 1/[I0(arxy) + 0.3I2(arxy)] and 1/[I0(arxy) −
0.3I2(arxy)], two functions that are not too different. Simi-
larly, performing an azimuthal average on the one‐sided
distribution of section 3.1.2 would result in an azimuthally
averaged <[Ĉxy

E ] that is bounded by equation (25) and
equation (29).
3.1.4. Including Near‐Field Surface Waves
[35] The opposite end‐member case to far‐field surface‐

wave noise sources are surface‐wave noise sources that
encompass the near‐field region surrounding the stations.
Unlike the far‐field case where sources can effectively
be assumed to be distributed in an azimuthal distribution
(As is only a function of azimuth �), for this case, the full
2D distribution of sources must be accounted for so that
As ≡ A(s) = A(r, �) (see Figure 1d). This distribution of noise
may be appropriate for island stations that are well sur-
rounded by nearby oceanic microseism [McNamara and
Buland, 2004].
[36] For As = A is constant everywhere, Snieder [2007]

has shown that the cross correlation is equal to the
extended Green’s function (the sum of positive and negative
Green’s functions) divided by the local attenuation rate. In
the language used here for the 2D case, this equality can be
expressed as

2CE
xy ¼

2A2

�
e��rxy cos !tð Þ J0 !rxy

c

� �
; ð36Þ

where (as before) a is still assumed to be small. Taking x =
y yields

2CE
xx ¼ 2CE

yy ¼
2A2

�
cos !tð Þ: ð37Þ

The coherency is therefore given by

Ĉ
E
xy ¼ e��rxy J0

!rxy
c

� �
: ð38Þ
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In this special case of uniformly distributed noise sources,
equation (38) is identically equal to equation (22) and we
therefore find that the Prieto et al. [2009] assumption of
equation (22) is appropriate (see Figure 2). (A less general
result for 3D isotropic waves was also previously shown by
Roux et al. [2005].)
[37] When As varies azimuthally (but covers the entire 2D

plane), the result of Snieder [2007] can no longer be applied
directly, and we resort to calculations like the ones of pre-
vious sections. This analysis not only gives insight into how
expressions like equation (36) arise but also provide
approximate results when As varies azimuthally. As shown
in Appendix B, an approximation for Cxy

E can be made by
observing that only a relatively narrow beam of azimuths �0
contributes strongly to Cxy

E [Snieder, 2004]. With a constant
amplitude As ≡ A� within this beam (see Figure 1d), then

2CE
xy �

2A2
�

�
e��rxy cos !tð Þ J0 !rxy

c

� �
: ð39Þ

[38] On the other hand, the autocorrelation Cxx
E does not

have this beamed sensitivity, but is instead equally sensitive
to noise sources in all directions. Assuming that the aver-
age value of As

2 is given by A2, then Cxx
E is approximately

given by

2CE
xx �

2A
2
cos !tð Þ
�

; ð40Þ

and the same for Cyy
E (assuming approximately the same

azimuthal variation can be applied for both x and y). The
coherency can then easily be calculated as

Ĉ
E
xy ¼

A2
�

A
2 e

��rxy J0
!rxy
c

� �
: ð41Þ

[39] One final point worth mentioning is that the preced-
ing discussion explains why both the cross correlation and
the coherency have a dependence on e−arxy. The qualitative
reason for this is that while the cross correlation amplitude
decays with distance as e−arxy, the autocorrelation is constant
due to the sum over all sources. Thus, unlike all of the far‐
field cases discussed before, in this case the coherency is
simply a scaled version of the cross correlation, and its form
is not affected by the division described by equation (21).
3.1.5. Truncated Distribution of Near‐Field
Surface Waves
[40] In this section, we consider the same uniform distri-

bution of near‐field surface waves discussed in the previous
section except here we assume that this distribution is
truncated at a radius R that is small compared to the atten-
uation distance 1/a (see Figure 1e). Since ocean microseism
may be more strongly excited close to the coast and not as
strongly excited in deep water [Bromirski and Duennebier,
2002], this distribution of noise may be more appropriate
than that of section 3.1.4 for island stations that are well
surrounded by oceanic microseism.
[41] Since R � 1/a, attenuation is negligible and can be

ignored. As in Appendix B, we use the far‐field approxi-
mation despite having near‐field sources. After providing
this approximate solution, we compare with a numerical
calculation with the exact solution. Integrating only the
sources within the (now truncated) triangular beam, as in
Appendix B, results in

2CE
xy � A2

� cos !tð Þ J0 !rxy
c

� � Z R

rxy=2

2�r drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2xy=4

q
¼ 2�A2

� cos !tð Þ J0 !rxy
c

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2xy=4

q
; ð42Þ

and similarly,

2CE
xx ¼ A

2
cos !tð Þ

Z R

0

Z 2�

0

r d� drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2xy

4
� rrxy cos �ð Þ

s

� A
2
cos !tð Þ

Z R

0

Z 2�

0
d� dr � 2�RA

2
cos !tð Þ; ð43Þ

where the approximation rxy � R is taken to evaluate
equation (43). This approximation may be valid since the
expressions are only used for rxy < 2R (under the same
approximation, Cxy

E = 0 for R < rxy/2). The coherency is then
given by

Ĉ
E
xy �

A2
�

A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2xy

4R2

s
� J0 !rxy

c

� �
; ð44Þ

again, only for R > rxy/2 (and with Ĉxy
E = 0 for R < rxy/2).

Intuitively, one can understand the decay of coherency with
station spacing being due to the fact that there are fewer and
fewer noise sources within the 2 beams of angular size �0 as
rxy increases (but R remains fixed), whereas there are the
same number of total noise sources (contributing to Cxx

E ).
[42] The form of equation (44) is significantly different

than any of the previous expressions for coherency. In
particular, for this distribution of noise, the coherency drops

Figure 3. Comparison of <[Ĉxy
E ], for a uniform distribution

of far‐field noise sources (solid blue curve) and 2 examples of
a non‐uniform distribution of far‐field noise sources (dotted
green and dashed red curves). The 2 non‐uniform distribu-
tions are for As

2(�) = 1 ∓ 0.3cos(2�), respectively. One may
note that the green curve decays faster with rxy than the uni-
form case (blue curve) and could be misinterpreted as being
due to attenuation.

TSAI: NOISE CORRELATION AMPLITUDES B09311B09311

9 of 16



dramatically (faster than exponentially) with increasing rxy
due to the lack of sources in the stationary‐phase beams. See
Figure 2 for comparison (for this figure, a relatively large
value of aR = 1/8 is chosen). Since the decay is faster than
exponential, using equation (22) to infer a in this case
would result in values larger than the true values of a. Using
these inferred values of a, one would therefore predict
ground motions smaller than true ground motions.
[43] As noted previously, we have used the far‐field

approximation in this calculation, despite near‐field sources
existing. To test the validity of this approximation, we com-
pare the cross correlation estimated by equation (42) with
numerical calculations using the both the exact equation (2)
and the approximate equation (3). Using equation (2), the
cross correlation in this case (with a = 0) can be expressed as

CE
xy / <

Z R

0

Z 2�

0
rH 1ð Þ

0

!rþ
c

� �
H 2ð Þ

0

!r�
c

� �
e�i!td�dr

� �
; ð45Þ

where H0
(2) is a Hankel function of the second kind and

r± =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ r2xy=4	 rrxy cos �

q
, whereas using equation (3),

the cross correlation can be expressed as

CE
xy / <

Z R

0

Z 2�

0

cr

!
ffiffiffiffiffiffiffiffiffiffi
rþr�

p ei! rþ�r�ð Þ=c�t½ �d�dr
� �

: ð46Þ

The relative amplitudes of equation (42), equation (45) and
equation (46) are plotted numerically in Figure 4 for three
different choices of w/c. Numerical integration is performed
using an adaptive Gauss‐Kronrod rule along with Duffy’s
coordinate transform [Duffy, 1982] and the IMT transfor-
mation [Iri et al., 1987] as necessary. As can be seen,
equation (46) agrees extremely well with equation (45), with
errors always being less than 5%. Equation (42) is seen to be
somewhat poorer of an approximation, and the primary error
in equation (42) is therefore not due to using the far‐field
approximation but is instead due to the approximate inte-
gration. Equation (42) nevertheless provides a reasonable
first‐order understanding of how amplitudes decay in this
near‐field case (particularly when rxy /R < 1).
3.1.6. Understanding Cupillard and Capdeville [2010]
Results
[44] Cupillard and Capdeville [2010] present numerical

noise correlation experiments with 3 different distributions
of noise: one case with uniform 2D noise, one with a big
(but finite) patch of noise sources, and one with a small
patch of sources. These numerical experiments go beyond
other previous work by properly accounting for a realistic
Earth geometry and attenuation, and the amplitude results
can therefore be directly compared with the general theo-
retical framework presented here.
[45] We first observe that since whitening is equivalent to

division by the spectrum prior to cross correlation, the
results for whitening should be identical to our coherency
results, as calculated using equation (21). Thus, the calcu-
lations done in the previous sections can be used to compare
both the ‘raw’ and ‘whitened’ results of Cupillard and
Capdeville [2010]. Unfortunately, the ‘1‐bit’ results are
more difficult to describe using the present framework and
will not be discussed.

[46] The uniform 2D case is easily understood as being
analogous to the uniform 2D case discussed in section 3.1.4. In
this case, Cupillard and Capdeville [2010] observe that both
the ‘raw’ correlations and the ‘whitened’ correlations have
amplitudes that decay as expected of the Green’s function.
Within the present framework, in section 3.1.4, we have shown
that both the cross correlation and the coherency have ampli-
tudes that decay as expected for the Green’s function, thus
explaining the observations ofCupillard andCapdeville [2010].
[47] The ‘small patch’ example is also easily understood as

being analogous to the 1‐source case discussed in section 2.1
and shown in Table 1. The decay of amplitude with �(r1x)�(r1y)
is exactly that shown by Cupillard and Capdeville [2010]
to fit the observed decay of the ‘raw’ correlation. For the
‘whitened’ correlation, our coherency results suggest no
decay with station‐station spacing (see Table 1). The reason
Cupillard and Capdeville [2010] still observe a decay with
distance is that they normalize their results relative to (what
we call) Cxx

E (w) rather than
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CE
xxC

E
yy

q
. One may observe that

for a uniform distribution of noise sources, Cxx
E = Cyy

E as
shown in equation (37), but that this equality no longer holds
for non‐uniform sources. One may also note that our results
also contain the p/4 phase shift (between the cos dependence
of <[Ĉxy

E ] and the asymptotic form of J0).
[48] The ‘big patch’ example is not as easily understood,

but perhaps can be very roughly approximated using a
‘uniform but one‐sided 2D’ distribution of sources. While
this case is not explicitly considered above, the analysis in
section 3.1.4 and Appendix B suggests that in this case the real
part ofCxy

E (w) would have the same form as equation (36). The
fact that the ‘raw’ correlation has the correct total attenuation
is therefore understood. On the other hand, the coherency is
affected because (while Cxx

E remains constant) Cyy
E decreases

as the second station is moved farther from the noise sources.
In fact, just as for the ‘small patch’ example, Cyy

E decays
approximately as �ðrsy)2, where rsy is an average source‐
station distance. It is unclear if the precise form of this decay
accounts exactly for the observed mismatch for the ‘whitened’
example described by Cupillard and Capdeville [2010], but
it at least has a qualitatively similar form.
3.1.7. Summary of Section 3.1
[49] In sections 3.1.1–3.1.5, we have shown how the

coherency depends on various assumed noise source dis-
tributions. A summary of the cross correlation, autocorrela-
tion and coherency results for the different cases considered
is summarized in Table 1. We find that for all of the source
distributions considered, the amplitude dependence (beyond
the J0(wrxy/c) term) can generally be written as a function of
arxy and that this function generally decreases with increas-
ing arxy, as plotted in Figure 2. However, the functional
forms of this decay are substantially different depending on
the exact distribution of noise sources. For this reason,
without first determining which source distribution best
approximates a given situation in reality, it is not possible
to quantitatively relate coherency measurements to attenua-
tion parameters. We suggest that researchers interested in
performing attenuation measurements from noise correlation
measurements should first determine how the dominant
sources of noise are distributed. Determining this source dis-
tribution may not be easy, and is complicated by the fact that
the source distributions we discuss include any secondary
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sources such as scatterers. If scattering is significant and
scatterers are well distributed (as might be expected of many
regions), scattering would contribute to a more homogeneous
source distribution than would be expected of a given pri-
mary source distribution.
[50] In section 3.1.6, we showed that some of the num-

erical results of Cupillard and Capdeville [2010] can be
understood using the framework provided. This success-
ful agreement between the theoretical framework and the
numerical experiments strongly suggests that the results
presented here are useful as a good approximation to reality.

3.2. Signal‐to‐Noise Ratios

[51] Given the results of section 2, it is straightforward to
compute a signal‐to‐noise ratio, SNR. The ‘noise’ is simply

the sum of incoherent arrivals, and is given by the sum of all
terms in CxyM

E that are multiplied by 1/
ffiffiffiffiffi
M

p
; on the other

hand, the ‘signal’ is simply the sum of coherent arrivals, and
is given by all remaining terms not multiplied by 1/

ffiffiffiffiffi
M

p
.

The SNR is then just the ratio of the amplitude of the ‘signal’
to the amplitude of the ‘noise,’ and the requirement on
retrieving a robust signal is that SNR ^ 1. Since

ffiffiffiffiffi
M

p /ffiffiffiffiffi
T0

p
, the SNR generally increases as

ffiffiffiffiffi
T0

p
, a fact that has

been pointed out previously by a number of authors [e.g.,
Snieder, 2004; Sabra et al., 2005b]. However, this other
work has not quantified the specific dependence of the SNR
on certain key parameters or in situations where the noise
distribution is non‐uniform. In the following sections, we
provide full expressions for the SNR for a few different
noise distributions as well as the requirements in these cases
for obtaining a robust signal. While it may be difficult to
estimate which simplified case best corresponds to a given
deployment, the results presented here at least provide
guidance to the range of possible results.
3.2.1. Two Sources
[52] First, we consider the simplest (primarily pedagogi-

cal) case where there are just two noise sources. In this case,
CxyM
E is given by equation (14). As noted in section 2.2, this

very limited case already roughly approximates the case for
high‐frequency surface waves since high‐frequency surface
waves are primarily sensitive to noise sources at the 2 sta-
tionary phase points [Snieder, 2004]. In this case, it is also
assumed that there exists no other sources of observed dis-
placements beyond these two sources (including incoherent
sources). This assumption is appropriate if the vast majority
of cross correlation noise is in the form of elastic energy.
[53] Assuming that the 2 coherent terms have very dif-

ferent arrival times, then the SNR should be calculated
separately for the 2 terms. Inherent in this statement is an
assumption that one actually has a narrow band of fre-
quencies rather than a single frequency such that different
groups of arrivals can be examined separately. Taking this
assumption, then the ratio of amplitudes yields

SNR1 ¼
A2
1� r1xð Þ � r1y

� �
A1A2=

ffiffiffiffiffi
M

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 r1y
� �

�2 r2xð Þ þ �2 r2y
� �

�2 r1xð Þ
q

¼ A1� r1xð Þ � r1y
� �

A2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 r1y
� �

�2 r2xð Þ þ �2 r2y
� �

�2 r1xð Þ
q ffiffiffiffiffi

T0
Ta

r
; ð47Þ

where SNR1 is the signal‐to‐noise ratio for the first coherent
arrival, and SNR2 is the same expression with 1’s and 2’s
switched. Note that the noise amplitudes are added in a root
mean square sense. When all of the �(r) terms are equal, the
expression simplifies to

SNR1 ¼ A1ffiffiffi
2

p
A2

ffiffiffiffiffi
T0
Ta

r
: ð48Þ

[54] In this case of equation (48), the requirement for T0 to
retrieve a robust signal is that

T0 ^ 2Ta � A
2
2

A2
1

: ð49Þ

There are a few points to note about this result. First, the
total length of correlation time needed is proportional to the

Figure 4. Comparison of (normalized) Cxy
E for equation (42),

equation (45) and equation (46), for 3 different choices of w/c.
In all 3 panels, the exact result of equation (45) is plotted as
blue crosses, numerical integration of the far‐field approxi-
mation equation (46) is plotted as green circles, and the
approximate integration of equation (42) is plotted as a red
line. (a) wR/c = 1.5, (b) wR/c = 3, (c) wR/c = 6. In all cases,
there is excellent agreement between equation (45) and
equation (46) and there is rough agreement between those and
equation (42). Note that all sources are interior to the stations
when rxy/R > 2.
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attenuation time Ta. This is a general feature of all results in
this section due to the fact that M = T0/Ta is the only place
that T0 and Ta appear and that the SNR in all expressions is
proportional to

ffiffiffiffiffi
M

p
. Second, as A2/A1 → 0, T0 can be

shorter and shorter (approaching zero). This can be ratio-
nalized because in that limit, there is only one source and
hence there are no cross terms and hence there is no ‘noise.’
Finally, one may note that if A1 = A2 then T0 must be at least
twice as long as Ta to retrieve a robust signal (for both
coherent terms).The 2 is related to the 2 incoherent terms
(for N terms, the appropriate coefficient would be N2 − N
as discussed in section 2.4).
3.2.2. Far‐Field Surface Waves
[55] In calculating signal‐to‐noise ratios, it is important to

use the same units to treat both the coherent and incoherent
terms. Thus, in using equation (23), we must recognize that
the A2 in that expression is equivalent to NAj

2 if a limit of
equation (19) were used instead. Substituting equation (23)
into equation (19) with this modification then results in

2CE
xyM ¼ NA2

j

e�2�R

R
cos !tð Þ J0 !rxy

c

� �
þ Nffiffiffiffiffi

M
p A

2 e�2�R

R
cos !t þ �av½ �: ð50Þ

Here we note that if the noise distribution is uniform, then
Aj = A. On the other hand, a non‐uniform distribution of far‐
field surface‐wave noise can be approximately accounted
for by simply letting Aj ≠ A. The coherent term amplitude,
Aj, can be interpreted as the average amplitude of noise
sources within the beam pointing in the station‐station
direction, � = 0 and of angular size �0 (see equation (B2) of
Appendix B). We therefore replace Aj by A�, where A�

depends on the azimuth of the station‐station direction. On
the other hand, the incoherent term amplitude, A2, can be
interpreted as the average product of amplitudes of noise
sources in all directions, as in section 2.4. Since the
amplitude of J0(x) asymptotically decays as

ffiffiffiffiffiffiffiffiffiffi
2=�x

p
, then

SNR � A2
�

A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

�!rxy
� T0
Ta

s
; ð51Þ

where this expression is appropriate for wrxy/c � 1, and the
requirement SNR ^ 1 gives

T0 ^
�!rxy
2c

� A
4

A4
�

� Ta: ð52Þ

[56] This expression has a few key dependencies. First, it
shows that as wrxy/c increases, that T0 must increase linearly,
as long as Ta remain constant. (Note that as discussed below,
Ta may be inversely proportional to w.) The reason for this
dependency is that the beam of angular size �0 discussed in
the Appendix gets narrower as wrxy/c increases and therefore
the region of coherence gets smaller.
[57] Secondly, the dependence on A/A� to the fourth

power means that relatively small differences in the relative
average amplitudes can have a significant impact on the
requirement on T0.
[58] Finally, equation (52) depends linearly on Ta. In

order to estimate how long T0 must be, we must have an

estimate of Ta. As a reminder, Ta is the attenuation time of
the physical system that generates the noise sources and is
therefore different for different physical processes. For
example, Ta for ocean microseism would be related to the
length of time it takes for the phase of ocean waves to shift
by a significant fraction of a period. In the absence of any
real data on Ta for ocean waves, it may be reasonable to
assume that this time is longer than a single period but not
longer than a large number of periods. Making this
assumption of Ta ≈ 10Tw = 20p/w, where Tw is the period of
the wave, then now one has all the parameters needed to
estimate T0 from equation (52). Before performing this
estimate, we observe that if Ta ≈ 10Tw = 20p/w is a good
approximation, then the dependence on w drops out of the
SNR as well as the requirement on T0. Taking the example of
a uniform distribution of 10‐second ocean microseism
observed at stations separated by rxy = 50 km then c ≈ 3 km/s,
A/A� = 1, Ta ≈ 100 s, wrxy/c ≈ 10, yielding T0 ^ 27 min as a
requirement on the signal to be larger than the noise. It is
known that noise correlation measurements can be successful
on as little as a few days of data [Brenguier et al., 2008].
If the calculation just done is approximately correct, then
T0 ≈ 2 days would correspond to SNR ≈ 9, which indeed may
be a reasonable SNR for a (very) robust signal.
3.2.3. Including Near‐Field Surface Waves
[59] For this case, all noise amplitudes (As or A) are such

that As
2 or A2 have units of amplitude squared times distance

per unit area. With the same interpretation for A� as before,
equation (39) with equation (20) gives CxyM

E as

2CE
xyM � 2A2

�e
��rxy

�
cos !tð Þ J0 !rxy

c

� �

þ NA
2
l2cffiffiffiffiffi

M
p

rav
cos !t þ �av½ �; ð53Þ

where lc is a correlation length that defines the size of each
of the N regions within which sources are dependent, N is an
effective number that accounts for attenuation, and rav is an
average source‐station distance. Accounting for the Bessel
function decay as before, then

SNR � 2e��rxy rav
Nl2c�

A2
�

A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

�!rxy
� T0
Ta

s
; ð54Þ

where, as before, we have taken wrxy/c � 1. Given a total
source region of area L2, then one may estimate N ≈ L2/lc

2.
The effective source area L2 can be determined by inte-
grating the amplitude term as in section 3.1.4 so that

L2

rav
¼
Z
s

2e�2�rsx

�rsx
ds ¼

Z ∞

r¼0

Z 2�

�¼0

2re�2�rsx

�rsx
d�dr

¼
Z ∞

r¼0
4e�2�rdr ¼ 2

�
: ð55Þ

Using this expression for L2/rav, equation (54) simplifies to

SNR � e��rxy A
2
�

A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

�!rxy
� T0
Ta

s
: ð56Þ
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[60] Solving for the robust signal requirement (SNR ^ 1)
yields

T0 ^ e2�rxy
�!rxy
2c

� A
4

A4
�

� Ta: ð57Þ

In addition to the dependencies discussed in section 3.2.2,
this expression has an added dependence on arxy such that
T0 increases as the inverse square of the attenuation term
e−arxy. The reason for this dependence is that the coherent
signal (from near‐field waves) decays exponentially with
station separation but the incoherent signal (from these same
waves) does not decay. Therefore, as the station spacing
increases, one must have a longer correlation time in order
to obtain a robust signal. For the same example discussed
previously of 10‐second waves observed at rxy = 50 km,
a ≈ 2 · 10−6 m−1 [e.g., Prieto et al., 2009] so that e2arxy ≈ 1.2,
and T0 is nearly unaffected by this term. However, if rxy =
500 km, then e2arxy ≈ 7.4 and T0 would need to be a factor of
7.4 times longer to achieve the same SNR.
3.2.4. Truncated Distribution of Near‐Field
Surface Waves
[61] For a truncated distribution of near‐field surface

waves as discussed in section 3.1.5, adding the incoherent
terms to equation (42) while still allowing for A� and A to be
different results in

2CE
xyM � 2�A2

� cos !tð Þ J0 !rxy
c

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2xy=4

q

þ NA
2
l2cffiffiffiffiffi

M
p

rav
cos !t þ �av½ �; ð58Þ

where, as before, lc
2 approximately accounts for the size of

each of the N regions and rav is an average source‐station
distance. Accounting for the Bessel function decay as
before, then

SNR �
2�rav

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2xy=4

q
A2
�

Nl2cA
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

�!rxy
� T0
Ta

s
: ð59Þ

Setting N ≈ pR2/lc
2 and 1/rav = 2/R then equation (59) sim-

plifies to

SNR �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rxy

2R

� �2r
A2
�

A
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

�!rxy
� T0
Ta

s
: ð60Þ

Noting again that we have assumed R > rxy/2, then one can
solve for the requirement on R to retrieve a robust signal

R^
rxy

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �!rxy

2c � A4

A4
�

� TaT0
� �r : ð61Þ

Note that if T0 is too short then the term in parentheses in
equation (61) will be larger than 1, leaving the domain of
possibility (i.e. R > ∞). Also, it should be noted that if R is
required to be too large, then the assumption that R � 1/a
will not be satisfied and one should use a different model for
the distribution of noise sources.

3.2.5. Including Incoherent Terms
[62] So far, the entire incoherent signal has been assumed

to be a sum over products of coherent terms only so that
equation (18) can be approximated by equation (19) (i.e. all
‘noise’ is realization noise). However, it is unclear whether
the criteria AIx � NAav �(rx

av ) and AIy � NAav�(ry
av ) required

for this approximation to hold are always satisfied. For
example, some seismic stations are prone to especially large
local effects, especially in certain frequency bands [e.g.,
Tsai et al., 2004; Berger et al., 2004; Zurn et al., 2007].
Fortunately, it is straightforward to include these terms
simply by using the un‐approximated equation (18) instead
of equation (19). Doing so, for example, would modify
equation (56) to become

SNR �
e��rxyA2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c

�!rxy
� T0Ta

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A4 þ 2

�A
2 AIx þ AIy

� �2þ 4
�2 A2

IxA
2
Iy

q ; ð62Þ

where it should be noted that the units of A� and A (for this
2D case) are such that A�

2 and A2 have units of amplitude
squared times distance per unit area (i.e. A� and A have units
of m1/2) whereas AIx and AIy are absolute amplitudes (i.e.
units of m). For large enough values of AIx and AIy, SNR is
proportional to A�

2/(AIxAIy). All other expressions for SNR
could be modified in a similar fashion by including the extra
terms in equation (18) in calculating the ‘noise’ term.
[63] Finally, we observe that if coherent amplitudes (A�

and A) are relatively constant and the primary source of
variability in ambient noise levels is in the incoherent
amplitudes (AIx), then equation (62) shows that the SNR will
be inversely related to total ambient noise level. This result
is in good agreement with the results of Lin et al. [2006],
who show that noise correlation SNR is generally higher for
quiet stations and lower for high‐noise stations. The strong
dependence observed by Lin et al. [2006] suggests that the
incoherent noise amplitudes, AIx, can often be relatively
large compared with the coherent noise amplitudes. The
much larger variation in incoherent noise levels may be due
to large differences in local anelastic effects such as fluid‐
flow induced tilt and seafloor deformation [Lin et al., 2006].
3.2.6. Summary of Section 3.2
[64] In sections 3.2.1–3.2.5, we have shown how the

signal‐to‐noise ratio, SNR, depends on the assumed noise
source distribution (summarized in Table 1, including the
reflection case as discussed in Appendix C). We find that
the SNR generally increases linearly with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c !rxy
� �q

,ffiffiffiffiffiffiffiffiffiffiffiffi
T0=Ta

p
, and the square of the amplitude ratio between

coherent and incoherent terms (e.g., A�
2/A2). However, the

dependence of the SNR on rxy depends on the noise source
distribution, with no further dependence on rxy in the far‐
field case (see equation (51)), exponential decay in the
uniform case (see equation (56)), and an even faster decay in
the near‐field case (see equation (60)). These results allow
researchers to calculate whether it is likely that a particular
deployment of seismometers would potentially yield a
robust noise correlation measurement.

4. Conclusion

[65] In section 2, we have described in general terms how
the cross correlation depends on the distribution of noise
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sources in a ray‐theoretical framework. This goes beyond
previous work by including the effects of attenuation and
therefore this framework can be used to quantify how the
amplitudes of cross correlations depend on various para-
meters. In section 3, we have applied this framework to
understand how attenuation measurements can be made from
coherency (section 3.1) and to understand how one can infer
the signal‐to‐noise ratio for a given situation (section 3.2).
In section 3.1, we have shown that the decay of coherency
with station spacing depends crucially on the distribution of
noise sources. As a result, in order to make accurate atten-
uation measurements, one needs to first quantify this distri-
bution. In section 3.2, we have shown that (to first order) the
signal‐to‐noise ratio depends on a small number of para-
meters that can often be estimated. This allows researchers
to potentially estimate the robustness of a noise correla-
tion measurement prior to making the measurement. Beyond
the 2 specific accomplishments just listed, the theoretical
framework provided can also potentially be used to analyze
other features of noise correlation measurements.

Appendix A: Additional Background Noise:
Example for Reflection

[66] Since only signals that are generated from within the
same attenuation time (Ta = QP/w) add coherently, so far it
has been assumed that all of the signals of interest are of this
type. However, there are a few important cases where the
signal of interest may occur at a time lag for which most
sources contribute incoherently, e.g. when the responses are
due to sources that differ in time by more than Ta.
[67] Here, we concentrate on perhaps the simplest (and

maybe most important) example of a body‐wave reflection
response (in which case, D = 1). In this case, x ≈ y, and one
is interested in a potential signal occurring at time delay
Dt = 2Dz/c where Dz is the layer thickness and c is the
average velocity of the layer (see Figure 1f for a schematic).
Since x ≈ y, then rjy − rjx ≈ 0 so that all primary sources
(excluding, e.g., the reflection response) have their cross‐
correlation response at t ≈ 0. Now, if Dt � Ta then at a
correlation lag time of Dt all of the primary sources would
have their correlations between sources not within the same
Ta and therefore would have phases that are independent of
each other. Here, we show an example of this for a situation in
which there are 2 independent noise sources (s1 and s2) plus a
reflection response from source s1 atDt. Assuming that x ≈ y,
Dt� Ta and that the delay of interest isDt then we can write

iu x; t; t0ð Þ ¼ A1� r1xð Þ cos ! t � r1x
c

� �
þ �1i

h i
þ A2� r2xð Þ cos ! t � r2x

c

� �
þ �2i

h i
þ GA1� r1xð Þ cos ! t � r1x

c
�Dt

� �
þ �3i

h i
ðA1Þ

iu y; t; t0 þDtð Þ ¼ A1� r1y
� �

cos ! t � r1y
c

� �
þ �4i

h i
þ A2� r2y

� �
cos ! t � r2y

c

� �
þ �5i

h i
þ GA1� r1y

� �
cos ! t � r1y

c
�Dt

� �
þ �1i

h i
;

ðA2Þ

where G is a reflection coefficient, and iu(x, t, t0) represents the
response at time t within a window centered at time t0.
Importantly, one should note that the � are all different except
that�1i is shared between the direct primary source of x and the
reflected response of y. Taking x = y, then the cross correlation
response is then given by

2CE
xyM ¼ GA2

1�
2 r1xð Þ cos ! t �Dtð Þ½ �

þ 1ffiffiffiffiffi
M

p
n
A2
1�

2 r1xð Þ cos !t þ �av
1

	 
 þ G2 cos !t þ �av
2

	 
� �
þ A1A2� r1xð Þ � r2xð Þ cos ! t � r2x � r1x

c

� �
þ �av

3

h i
þ A2

2�
2 r2xð Þ cos !t þ �av

4

	 
 þ . . .
o
: ðA3Þ

Appendix B: Approximate Analysis for Azimuthal
Variability in As

[68] When As varies azimuthally (but covers the entire 2D
plane), the result of Snieder [2007] can no longer be applied
directly, and we resort to calculations like the ones of pre-
vious sections. However, in contrast to the far‐field cases
examined before, the assumption of equation (3) is only an
approximation for near‐field sources. In particular, the term
cos(x + p/4)/

ffiffiffi
x

p
is used to approximate J0(x). This

approximation makes 2 primary errors. First, it ignores a
factor of

ffiffiffiffiffiffiffiffi
2=�

p
in the asymptotic form of the Bessel func-

tion [Watson, 1952]. This error is unimportant in previous
results since including it would simply multiply all results
by a constant factor of 2/p (and not affect the form of any
expressions). The second error, which is also unimportant
for far‐field sources, is the fact that it makes use of an
asymptotic approximation that is only appropriate for x� 1,
so that equation (3) is only really appropriate when r � rxy.
Despite these known problems, we shall proceed to use
equation (3) to approximate all sources (including near‐field
source). We will therefore obtain approximations that can be
compared with the exact results of equation (36)–(38) when
As is constant. Performing this analysis not only gives
insight into how expressions like equation (36) arise but also
provide approximate results when As varies azimuthally.
[69] It is known that the primary contribution to the cross

correlation Cxy
E is from around the stationary phase points

[Snieder, 2004], and including a beam whose width depends
on wrxy/c [see, e.g., Lin et al., 2008]. The angular width of
this beam, �0, can be determined by setting the time lag
range equal to a fraction of a period (here, this fraction is
taken as 1/2, for reasons explained later)

1

2
� 2�
!

¼ rxy 1� cos �0=2ð Þ½ �
c

; ðB1Þ

so that �0 is given by

�0 ¼ 2 cos�1 1� �c

!rxy

� �
� 2 �

ffiffiffiffiffiffiffiffiffi
2�c

!rxy

s
: ðB2Þ

An approximation for the cross correlation Cxy
E can then be

made by assuming that only sources from within this tri-
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angular beam of angular size �0 contributes significantly
to Cxy

E (see Figure 1d). If we further assume that �0 ] 1 so
that rsy ≈ rsx + rxy (for positive time lag), and that As ≡ A� is
constant within this beam (which depends on the azimuth of
the station‐station direction), then one can integrate over
sources in polar coordinates giving

2jCE
xyj � A2

��0

Z ∞

rxy=2

e�2�rrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � r2xy=4

q dr

¼ A2
��0 � rxyK1 �rxy

� �
=2; ðB3Þ

where Kk(x) is a modified Bessel function of the second
kind, of order k. It is worth noting that as x→ 0, xK1(x)→ 1,
and as x → ∞, xK1(x) →

ffiffiffiffiffiffiffiffiffiffi
�x=2

p
· e−x. The decay of

amplitude with increasing rxy (and constant �0) can be
understood as being due to the decrease in the number of
sources close to the midpoint of the station‐station pair
contributing to the cross correlation response. The phasing of
Cxy
E is not yet determined, but will be discussed below.
[70] On the other hand, the autocorrelation Cxx

E does not
have this beamed sensitivity, but is instead equally sensitive
to noise sources in all directions. Assuming that both sta-
tions x and y see approximately the same azimuthal variation
and that the average value of As

2 is given by A2, then again
the integral is straightforward and results in

2CE
xx � cos !tð Þ

Z ∞

0

A2e�2�r

r
2�rdr ¼ �A2 cos !tð Þ

�
; ðB4Þ

and the same for Cyy
E .

[71] The amplitude part of the coherency can now be
given by

jĈE
xyj � �rxyK1 �rxy

� � A2
�

A2

�0
2�

¼ �rxyK1 �rxy
� � A2

�

A2

ffiffiffiffiffiffiffiffiffiffiffi
2c

�!rxy

s
: ðB5Þ

Observing that equation (B5) should have a Bessel function
dependence, as in equation (25), and that the asymptotic
form of the Bessel function is J0(x)→

ffiffiffiffiffiffiffiffiffiffi
2=�x

p
· cos(x − p/4),

we find that the fraction constant (1/2) chosen above is con-
sistent with the decay of the Bessel function so that we can
introduce the phase of Cxy

E and Ĉxy
E simply by replacing

ffiffiffiffiffiffiffiffiffiffi
2=�x

p
by cos(wt)J0(x). Performing this replacement results in

2CE
xy � �A2

�rxyK1 �rxy
� �

cos !tð Þ J0 !rxy
c

� �
ðB6Þ

Ĉ
E
xy � �rxyK1 �rxy

� � A2
�

A2 J0
!rxy
c

� �
: ðB7Þ

[72] We observe that equations (B6) and (B7) closely
resemble equations (36) and (38) when A� = A, i.e. when
there is a uniform source distribution (with one of the pri-
mary differences being the factor of 2/p as discussed ear-
lier). Thus, the approximations of equations (B6) and (B7)
are not grossly inaccurate. Moreover, they can be easily
improved by simply making the substitution arxyK1(arxy)→

e−arxy and accounting for the 2/p factor. Making these
modifications yields

2CE
xy ¼

2A2
�

�
e��rxy cos !tð Þ J0 !rxy

c

� �
ðB8Þ

Ĉ
E
xy ¼

A2
�

A2 e
��rxy J0

!rxy
c

� �
: ðB9Þ

Appendix C: Reflection Signal‐to‐Noise Ratio

[73] The signal‐to‐noise ratio can also be determined for
the body‐wave reflection case as described in Appendix A
(see Figure 1f), with CxyM

E given by equation (A3). Before
continuing, we remind the reader that this analysis only
holds when Dt � Ta. Setting A*j ≡ Aj�(rjx) then

SNR ¼ GA1*
2

A1*
2 þ G2A1*

2 þ 2A1*A2*þ A2*
2 þ G . . .ð Þ

ffiffiffiffiffi
T0
Ta

r
: ðC1Þ

One should note that G includes any losses along the 2‐way
reflection path (including potentially an additional reflection
at the free surface), and that in most cases of interest G � 1.
Making the assumption G � 1 then the requirement on G to
retrieve the reflection response is that

G^ 1þ 2A2*

A1*
þ A2*

2

A1*
2

" # ffiffiffiffiffi
Ta
T0

r
: ðC2Þ

On the Earth, A1 may be thought of as either a far‐field
body‐wave term [e.g., Gerstoft et al., 2008] or a very near‐
station source (e.g., an oscillator very close to the station),
and A2 may be thought of as the dominant surface‐wave
noise source term (see Figure 1f). In this case, then A2 � A1.
As a perhaps realistic example of retrieving a reflection
response from far‐field body waves, we take Tw = 5 s, Ta ≈
50 s, T0 ≈ 1 yr, and A2 ≈ 5A1. With these assumptions, then
we must have G ^ 0.03, i.e. a net reflection coefficient of
3%. Absolute reflection coefficients for reflectors of interest
(e.g. the Moho or other crustal reflectors) may be as high
as 10% or more [Warner, 1990], which suggests that with
long correlation times, it may be possible to retrieve
reflection responses even when local noise sources are weak
[Zhan et al., 2010]. However, in this case, the assumption
Dt � Ta may not be satisfied and so the previous calcula-
tion may underestimate the necessary G. Although we do
not explicitly discuss coda correlations, we note that reflec-
tions may be more easily obtained using coda correlations
[Tonegawa et al., 2009] compared with ambient noise due
to differences in effective noise source distributions.
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