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Abstract

The velocity of glaciers is important for many aspects in glaciology. Mass

accumulated in the accumulation area is transported down to the ablation

area by deformation and sliding due to the gravitational force, and hence gla-

cier velocity is connected to the mass balance of glaciers. It also contributes

directly to the mass balance of calving glaciers because it is an important

control of the ice discharge rate for such glaciers. Changing glacier velocities

is an indicator of instable glaciers, and monitoring velocity over time can

make people aware of possible hazards that may arise from instable glaciers.

The movement of glaciers is also important for transporting material and for

eroding the landscape.

The focus of this thesis is to further develop image matching within glaci-

ology. In image matching, images from two different times are compared us-

ing correlation techniques to derive glacier displacement over the time period.

Most studies have concentrated on using image matching to derive glacier

velocities instead of developing this method further. To be able to derive the

densest possible velocity grids for all glaciers in the world, image matching

methods over glacier surfaces have to be explored further.

So far all images that have been used to derive velocity in glaciology have

been high or medium spatial resolution images. Low resolution images cover

large sections in one image, and this makes them suited for investigating the

velocity of large areas such as Antarctic ice shelves. We derive velocities for

Antarctic ice shelves using MODIS images with a spatial resolution of 250m

to test whether these images are suited for deriving ice shelf velocity. Because

the accuracy is about one fourth of a pixel, and it is possible to use images
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acquired several years apart due to the low surface transformation, MODIS

images are well suited for deriving velocity of Antarctic ice shelves and also

to monitor their changes over time.

We found when comparing different image matching methods over dif-

ferent glacier surfaces that the most commonly used method, normalized

cross-correlation, generally performs worse compared to orientation correla-

tion and the matching part of the program COSI-Corr. The only situation

where normalized cross-correlation outperforms the two other methods are

on narrow glaciers where small window sizes are needed. COSI-Corr per-

forms best overall, but orientation correlation performs almost as well. In

addition orientation correlation is the only method that manages to match

striped Landsat images after the failure of the Scan Line Corrector. Both

orientation correlation and COSI-Corr are considered to be methods well

suited for global glacier velocity mapping. Normalized cross-correlation can

supplement these two methods on narrow glaciers.

The effort that has been put into developing image matching in glaciology

since the start of this study, both in this study and in other studies, makes

it possible to derive glacier velocities over large regions, and only computer

processing time hinders automatic matching of glacier velocities worldwide.

Global glacier velocities can give valuable insights. We show in this thesis

that it can give information about how glaciers respond to climate change.

Glacier velocity of five regions of the world with negative mass balance is

derived, and in all regions the general glacier speed is decreasing over the

last decades. In addition global glacier velocities can be used to understand

glacier dynamics, and predict glacier hazards. It can be tested against gla-

cier inventory parameters, and it can be used to estimate erosion rates and

transport times.



Acknowledgements

First of all I have to thank my supervisor Andreas Kääb for all his help with

this thesis. In addition to supervising my work with great enthusiasm, he has

passed on a number of good scientific ideas to me which this thesis is based

on. Andreas, Bernd Etzelmüller and the project “Monitoring Earth surface

changes from space” by Keck Institute for Space Studies have sent me off to

attend conferences and courses in numerous places of the world and this has

made these three years very memorable. Cecilie Rolstad Denby has been my

co-supervisor during this period. She was also my primary supervisor during

the work with my master thesis, and she has taught me many things that

this PhD thesis has benefited from.

This thesis is a part of the “Precise analysis of mass movements through

correlation of repeat images” (CORRIA) project which is funded through

the Research Council of Norway. In addition to Andreas Kääb also Misganu

Debella-Gilo and Jonas Karstensen have been part of this research group. I

am very grateful to them for interesting discussions and constructive feedback

on my work. The study has also been supported by the ESA Glaciers_CCI

project, International Center for Geohazards, the ESA GlobGlacier project

and the NRF IPY Glaciodyn project.

USGS and NSIDC have provided the images used in this study. These

two institutions provide access to processed satellite images at no charge,

which I highly appreciate. Without their processing, the outcomes of this

thesis would have taken much longer to obtain, and without their open access

attitude it would have been much more expensive. Glacier outlines have

been downloaded from the GLIMS database, and also the free access to this

v



database is much appreciated.

Finally, a big thank you to all the people who support me and make my life

a fun experience. This includes colleagues at the Department of Geosciences,

friends everywhere, parents in Hemsedal and my husband Stian. With all of

you in my life it is so easy to rest my head and forget about science for a

while.



Contents

Abstract iii

Acknowledgements v

1 Introduction 1

2 Remote sensing of glacier velocity 5

2.1 Image matching . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 DInSAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Optical image matching 9

3.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Different matching methods . . . . . . . . . . . . . . . . . . . 18

3.4 Subpixel measurements . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Sources of error . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 Comparison to groundbased measurements . . . . . . . . . . . 30

4 Summary of articles 33

4.1 Article I: Monitoring ice shelf velocities from repeat MODIS

and Landsat data - a method study on the Larsen C ice shelf,

Antarctic Peninsula, and 10 other ice shelves around Antarctica 33

4.2 Article II: Evaluation of different existing image matching

methods for deriving glacier surface displacements globally

from optical satellite images . . . . . . . . . . . . . . . . . . . 35

vii



4.3 Article III: Worldwide widespread decadal-scale decrease of

glacier speed revealed using repeat optical satellite images . . 36

5 Conclusions and perspectives 39

References 42

6 Peer-reviewed articles 55

6.1 Article I: Haug1, T., A. Kääb and P. Skvarca, 2010. Monitor-

ing ice shelf velocities from repeat MODIS and Landsat data

- a method study on the Larsen C ice shelf, Antarctic Penin-

sula, and 10 other ice shelves around Antarctica, Cryosphere,

4(2), 161-178 . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2 Article II: Heid, T. and A. Kääb, in press. Evaluation of

different existing image matching methods for deriving glacier

surface displacements globally from optical satellite images,

Remote Sensing of Environment . . . . . . . . . . . . . . . . . 81

6.3 Article III: Heid, T. and A. Kääb, 2011. Worldwide wide-

spread decadal-scale decrease of glacier speed revealed using

repeat optical satellite images, Cryosphere Discussions, 5, 3025-

3051 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

1last name changed to Heid



1

Introduction

The mass transport of snow and ice is a key characteristic for glaciers. The

mass surplus accumulated in the accumulation area of glaciers is transported

down to the ablation area due to the gravitational force. Glacier velocities are

therefore strongly connected with the mass balance of glaciers, and the mass

flux through a cross section of a glacier equals the mass balance upglacier

when the glacier is in balance (Paterson, 1994). The kinematic boundary

condition for glaciers can be expressed as

b =
∂zs

∂t
+ vs

x

∂zs

∂x
+ vs

y

∂zs

∂y
− vs

z (1.1)

where b is the mass balance of the surface, zs is the surface elevation, ∂zs

∂t

is the change in surface elevation with time, vs
x and vs

y are the two hori-

zontal velocity components in the x and y direction, ∂zs

∂x
and ∂zs

∂y
are the two

components of the surface slope, and vs
z is the vertical velocity at the surface.

Glaciers move by deformation of ice, sliding at the base and/or deforma-

tion of underlying till. The vertical velocity gradient within the glacier due

to ice deformation is given by

∂U

∂z
= 2A(ρgh tan α)n (1.2)

where U is the velocity, z is the vertical axis, A is a constant that depends on

temperature, crystal fabric and impurity content, g is the acceleration due

to gravity, h is the vertical position within the glacier, α is the slope of the
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2 1. INTRODUCTION

glacier surface and n is a constant normally set to 3 in glaciological studies.

Eq. 1.2 is given using sine instead of tangent in earlier versions. This is

true for parallel sided ice when h is measured perpendicular to the surface

and bed slope, whereas the new version allows for any glacier bed geometry

(Hooke, 2005; van der Veen and Payne, 2004; Benn and Evans, 2010). By

measuring the surface velocity and calculating the velocity gradient based on

the above equation it is possible to calculate the mass flux through a cross

section for glaciers where all the movement is caused by deformation. This

can then be compared to mass balance measurements to determine whether

the glacier is in balance or not (Hagen et al., 2006).

Glacier velocity is also an important control of the ice discharge rate

for calving glaciers. Rignot and Kanagaratnam (2006) showed that the ice

discharge on Greenland doubled from 1996 to 2005 because of glacier accel-

eration. They also stated that the acceleration in the east was probably due

to climate warming. Zwally et al. (2002) suggested that water from surface

melting on the Greenland Ice Sheet quickly reaches the glacier bed and lub-

ricates it so that glaciers accelerate. They also argued that ice sheets can

respond rapidly to climate change because of this effect. However, Murray

et al. (2010) argued that the acceleration of southeastern Greenland glaciers

during early 2000s was due to changed ocean currents and not increased sur-

face melting. Reduced instead of increased glacier runoff allowed warm water

currents to enter the fjords.

Glacier velocities can also give valuable insight in the stability of glaciers.

Seven ice shelves on the Antarctic Peninsula have retreated dramatically or

completely disintegrated over the last decades (Cook and Vaughan, 2010).

Several of the ice shelves that disintegrated accelerated before they collapsed.

Both Larsen A (Bindschadler et al., 1994; Rack et al., 1999) and Larsen B

(Skvarca et al., 1999; Rott et al., 2002; Skvarca et al., 2004; Vieli et al., 2006)

increased their velocity by approximately 10–15% in the years prior to their

disintegration. Therefore, monitoring changes in ice shelf dynamics can give

an early warning of instabilities.

The movement of glaciers can in some cases be a threat to humans. Rivers

being dammed by surging or advancing glaciers is one example of such haz-

2



3

ards (Hewitt, 1969; Espizua and Bengochea, 1990). Monitoring glacier flow

can detect areas with instabilities and focus more research to such areas. By

monitoring instable areas it could be possible to predict catastrophes and

evacuate people before they take place.

Glacier velocities can be measured using both in situ and remote sensing

techniques. The velocities of a glacier at any surface point consists of different

components that are expressed through the kinematic boundary condition

(Eq. 1.1). The different terms are shown in Fig. 1.1. When using in situ

techniques, stakes are drilled down into the ice, and using either a total

station or static GPS, all components of Equation 1.1 can be measured.

Using remote sensing techniques, it is not possible to measure vs
z .

Figure 1.1: The different terms in the kinematic boundary condition. From:

Kääb (2005).

Even though it is not possible to measure vs
z using remote sensing, such

techniques are well suited for measuring the other terms, both due to the size

and the remoteness of many glaciers and ice caps. There are two techniques

that have been applied for this purpose so far, image matching and differential

interferometric synthetic aperture radar (DInSAR). Both methods will be

described in Chapter 2. The two methods complement each other because

3



4 1. INTRODUCTION

they work over different time spans in glaciological studies. Image matching

works over time spans of weeks to years, whereas DInSAR works over time

spans of days to weeks.

Both optical images, radar images and detailed digital elevation models

(DEMs) can be used for deriving glacier velocities using image matching.

The different images and DEMs can be matched using the same methods,

but since they have different characteristics image matching of the three types

should be studied separately. In this thesis, the focus is on optical images

because of the many sensors producing optical images, the large archive of

historical optical images, and because glacier inventories are usually based

on optical images.

Developing optical image matching techniques for glaciers has received

little attention within the glaciological community. Usually glaciologists have

focused on one matching method, and there has been little or no comparison

of different matching methods. Glaciologists have also focused on images

with medium to high spatial resolution, whereas low resolution images have

received little attention in this context, in spite of their good coverage both

spatially and temporally. Thus there is a need to further develop optical im-

age matching of glaciers. By automatic image matching and post-processing

of the results it is possible to derive global velocity measurements, which may

open for new understandings within glacier dynamics.

The objectives of this thesis are summarized as follows:

• Prove that it is possible to use optical images with low spatial resolution

in glaciological velocity studies.

• Compare different image matching methods to find the best performing

method(s).

• Develop image matching in glaciology towards full automation so that

it is possible to derive glacier velocities globally.

• Demonstrate that deriving glacier dynamics globally can give valuable

insights about glacier dynamics.
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2

Remote sensing of glacier velocity

Glacier velocities can be measured using two different remote sensing tech-

niques, image matching and DInSAR. Because these techniques work on

different time scales and have different strengths and shortcomings, they

complement each other in glaciological studies. The techniques are described

in the following sections.

2.1 Image matching

It is possible to derive glacier displacements using optical images, radar im-

ages and also using detailed DEMs treated as images. The methods have

different strengths and shortcomings, and which image type to use depends

on the situation. In all three cases the purpose is to identify the same features

in two images from different times so that velocity can be derived.

Optical images have existed for a long time, both as terrestrial images,

aerial images and satellite images. There are many optical satellite sensors,

and these have generated and still generate a large number of optical data

with various spatial resolution. Hence data access is easy using optical images

and many of the images are available at no cost. However, optical satellite

images of glaciers can only be used if they are obtained during cloud free

daylight conditions, and this is a major limitation when using such images.

Especially in maritime areas it can be difficult to obtain cloud free images,
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6 2. REMOTE SENSING OF GLACIER VELOCITY

and the polar night limits the method to be used only during summer in

polar regions. Images also have to contain visual contrast, and this limits the

method to mainly be used in the ablation area. Optical image matching as

a tool to derive glacier displacement will be discussed thoroughly in Chapter

3.

Radar images are images from active sensors, and hence these are not

dependent on daylight. Radar signals also penetrate clouds, which makes it

possible to obtain images also during cloudy conditions. However, they do

not extend as far back in time as optical images, and there are not as many

sensors providing radar images as there are sensors providing optical images.

They also have different spatial resolution in the azimuth and range direc-

tions. One image consists of both an amplitude part and a phase part, and

image matching of radar images can be done using the complex image, called

“speckle tracking”, using only the amplitudes, called “intensity tracking”, or

using the coherence, called “coherence tracking”. Matching of the complex

image gives a higher accuracy of the measurements. However, in order to

match using also the phase there has to be coherence between the images

and coherence is easily lost, especially in the shear zone of glaciers. Image

matching of radar images has been frequently used to derive glacier displace-

ments (e.g. Michel and Rignot, 1999; Joughin, 2002; Strozzi et al., 2002;

Luckman et al., 2003, 2007; de Lange et al., 2007; Quincey et al., 2009a,b;

Giles et al., 2009).

For DEMs to be accurate enough to be used to derive glacier displace-

ments, they have to be derived using laser scanning and not traditional pho-

togrammetry. Laser scanning is an active method. Here the time it takes

from the light is transmitted until it comes back, reflected by the surface, is

measured. The limitation for laser scanning is wet areas and clouds, because

the laser beam is absorbed by water. Currently only terrestrial and airborne

laser scanners can create the dense and accurate DEMs needed for matching

to derive glacier displacements. This method is therefore the least common

method used to derive glacier velocities, but it has been used in a few gla-

ciological studies (e.g. Abdalati and Krabill, 1999; Rees and Arnold, 2007;

Schwalbe and Maas, 2009).
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2.2. DINSAR 7

The time interval between the different images depends on the method.

For speckle tracking the radar phase coherence has to be preserved, and

therefore the time interval has to be shorter using this method than using

the other methods. In the other methods only the glacier features have to be

preserved, and these are preserved longer than the radar phase coherence.

2.2 DInSAR

The phase difference between two SAR images acquired from different posi-

tions is a function of elevation and displacement in the line of sight direction.

It is possible, by differencing SAR interferograms, to be left with only dis-

placement. This differencing can be done in different ways depending on

the availability of data. An already existing DEM can be used to create a

synthetic interferogram containing only the elevation, and then subtract this

from the real interferogram. Alternatively 3 or 4 passes can be combined

to two interferograms, and these two can be differenced to contain only the

displacement.

The accuracy of DInSAR is generally better than the accuracy of image

matching, but the phase has to be coherent between the two acquisitions.

This limits the time period over which the displacements can be measured to

days, or in some cases up to a month. DInSAR can be used in glacier areas

that have no visual contrast because it is not dependent on real physical

features, but only on the phase difference. This is an important advantage

over image matching. However, DInSAR can only derive displacement in the

line of sight.

DInSAR has been used in many glacier studies (e.g. Rignot and Ma-

cAyeal, 1998; Joughin, 2002; Luckman et al., 2007; Joughin et al., 2010),

especially to measure the displacements of the two ice sheets. It is often used

in combination with image matching because the two methods compliment

each other. Rott (2009) provides an overview of the use of InSAR within

earth sciences.

7
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3

Optical image matching

3.1 Basic concepts

The process of correlating two or more images containing the same image ob-

jects is called image matching. This method is used in several different fields

besides deriving the velocity of glaciers. Examples of these are photogram-

metry, image mosaicking, map updating, face detection, change detection,

video coding, tectonics and monitoring of tumor growth. However, different

fields often use different names for image matching based on the purpose of

the matching. Image registration, motion estimation, particle tracking and

optical flow are all words that are used and that essentially mean the same

as image matching. Brown (1992) and Zitova and Flusser (2003) provide

overviews of image matching.

When the purpose of image matching is to derive glacier velocities, it is

important that the time span between the images is long enough to detect

significant displacements, but short enough so that the objects are still re-

cognizable. The length of this time span can vary with the velocities of the

glaciers, the resolution of the images, the accuracy of the matching method,

the amount of surface melt and the strain rates. The longer the time span is,

the larger the displacement is compared to the accuracy of the match, but

the chance of having too large surface transformation to get a correct match

increases. It is the shortest distance that is measured, and this will in cases

9



10 3. OPTICAL IMAGE MATCHING

with a curved path be different from the real distance traveled. This effect

increases when the time span and the displacement increases. Time spans

used in glaciological studies range from weeks, for example for matching of

15m spatial resolution images over outlet glaciers in Greenland (Heid and

Kääb, in press), to a decade for matching of for example 250 m spatial resol-

ution images over Antarctic ice shelves (Haug et al., 2010). Typically, yearly

velocities are derived, but it is also possible to derive seasonal velocities in

areas where the velocity is high (Fig. 3.1), or if the spatial resolution of the

images used is high.

Figure 3.1: Seasonal speed changes in 2001 at Jakobshavn Glacier, western

Greenland as points with error bars. This shows that it is possible to observe

significant seasonal speed changes using Landsat images in areas with high

speeds. (Heid, unpublished.)

Until the 1980s, image matching was done by manually inspecting the

images and identifying the same objects in the images from two different

times (Brecher, 1985; Lucchitta and Ferguson, 1986; Orheim and Lucchitta,

1987) (Fig. 3.2). This work was very time consuming and there were no

possibilities for obtaining subpixel measurements. Bindschadler and Scam-

bos (1991) and Scambos et al. (1992) were the first to do image matching

automatically on glaciers. They used image matching algorithms based on

10



3.1. BASIC CONCEPTS 11

normalized cross-correlation (NCC) and the work of Bernstein (1983). They

found that doing this automatically was not just less time consuming, but it

was also more accurate than doing it manually. After this first demonstra-

tion, different image matching methods have been applied in glaciological

studies.

Figure 3.2: Velocity measurements from Byrd Glacier, Antarctica, derived

manually using Landsat images. From: Lucchitta and Ferguson (1986).

Image matching methods can be either area-based or feature-based. Area-

based methods operate directly on image quantities like brightness or phase.

Feature-based methods on the other hand match features that are extracted

from the images in a pre-processing step. Such features can be crevasses,

stones or other differences in digital numbers (DN).

Image matching methods can also be divided into spatial domain and

frequency domain methods. Methods operating in the spatial domain operate

11



12 3. OPTICAL IMAGE MATCHING

directly in the image space on the intensity values. Here, a small reference

template from the first image is searched for in a larger part of the second

image. Frequency domain methods benefit from the fact that convolution

in the spatial domain equals multiplication in the Fourier domain. This is

called the convolution theorem (McClellan et al., 2003). Convolution between

two images equals correlation if the intensity values of one of the images

are rotated 180o around its center point. When using frequency domain

methods the matching itself works differently compared to matching in the

spatial domain. Instead of searching for a template of the first image in

a larger section of the second image, two equally large areas of the two

images are chosen and these are multiplied in the frequency domain to get

the displacement.

The size of the windows to be correlated is important in glaciological

studies. The window size has to be large enough to ensure that texture and

not noise is matched. For small window sizes it is difficult to distinguish

between texture and noise. But it is also important that the window size is

small enough to avoid much deformation within the window. The optimal

window size varies from glacier to glacier depending on glacier characterist-

ics like visual contrast and the amount of deformation within the window.

Debella-Gilo and Kääb (in review) created an adaptive algorithm that auto-

matically determines the window size depending on the texture to noise ratio

in the images. The optimal window size also depends on whether spatial or

frequency domain methods are being used. Frequency domain methods gen-

erally require larger window sizes than spatial domain methods. This is

because frequency domain methods are less accurate at small window sizes

as a consequence of Heisenberg’s uncertainty principle.

Which spatial resolution that is wanted on the images to correlate de-

pends on the situation. Commonly, studies aim at images with highest pos-

sible spatial resolution, but this is not the best choice in every situation.

Higher spatial resolution images cover in general smaller areas. Therefore

such images are less likely to cover stable ground that can be used to core-

gistrate the images. This is particularly an issue for the large ice caps, ice

sheets and ice shelves of the world. In such cases, even low resolution images,

12



3.2. PRE-PROCESSING 13

like MODIS images with a spatial resolution of 250m, can be used to derive

velocities (Haug et al., 2010). Landsat images are available with both 15m

and 30m spatial resolution after 1999. Because of a higher noise level for

Landsat images with 15 m spatial resolution compared to Landsat images

with 30 m spatial resolution (Haug et al., 2010) (Fig. 3.3), it can in some

areas with low visual contrast be better to use the 30 m images (Heid and

Kääb, in press). The difference between displacements derived using 15m

spatial resolution and 30 m spatial resolution is shown in Fig. 3.4.

Figure 3.3: Landsat 15m spatial resolution (left) and Landsat 30m spatial

resolution (right) over an area of Larsen C where the visual contrast is low.

The larger differences in digital numbers of the 15m image most likely shows

the higher noise level instead of real texture. Digital numbers vary between

30 and 34 for the 30 m images whereas they vary between 28 and 37 for the

15m images. Because the variation is greater for the 15m image but around

the same values, this indicates that the variation is due to noise. (Heid,

unpublished.)

3.2 Pre-processing

Images used for deriving displacements have to be orthorectified before they

are matched, or alternatively the displacements obtained when matching ori-

ginal images that are not orthorectified have to be rectified. This requires

that the position of the camera, the look direction of the camera, the lens

distortion and the ground topography is known. The quality of the orthorec-

13



14 3. OPTICAL IMAGE MATCHING

Figure 3.4: Difference between displacements obtained using 30 m and 15 m

spatial resolution in Karakoram. Yellow indicates that the displacement is

within the 1σ method uncertainty (5m). From: Heid and Kääb (in press).

tification limits the accuracy of the displacement field. Incorrect values of

camera position, look direction, lens distortion and atmospheric effects give

horizontal shifts in the orthoimages that can be erroneously identified as dis-

placement. Similarly, vertical errors in digital elevation models (DEMs) used

to orthorectify the images translate to horizontal shifts in the orthorectified

images (Kääb, 2005) (Fig. 3.5).

Before the matching is conducted the images may be processed to en-

hance wanted features and depress unwanted features. Scambos et al. (1992)

first low-pass filtered the images to remove the variations in DN not connec-

ted to topography and matched these low-pass filtered images to coregister

the images. Afterwards they high-pass filtered the images to remove the

variations in DN connected to topography and matched these to get the dis-

14



3.2. PRE-PROCESSING 15

Figure 3.5: DEM errors translate to horizontal errors when images are or-

thorectified. From: Kääb (2005).

placements. Scambos et al. (1992) also used the first principal component of

different visible and near-infrared bands to obtain images with enhanced ice

topography, scan-line destriping and gaussian contrast stretching before the

matching was conducted.

It is also possible to enhance differences in digital numbers in a prepro-

cessing step. One way of doing this is called orientation correlation (OC)

(Fitch et al., 2002). Taking f as the image at time t = 1 and g as the image

at time t = 2, the orientation images fo and go are created from

fo(x, y) = sgn(
∂f(x, y)

∂x
+ i

∂f(x, y)

∂y
) (3.1)

go(x, y) = sgn(
∂g(x, y)

∂x
+ i

∂g(x, y)

∂y
) (3.2)

where sgn(x) =

{
0 if |x| = 0
x
|x|

otherwise
(3.3)

where sgn is the signum function and i is the complex imaginary unit. The

15



16 3. OPTICAL IMAGE MATCHING

new images fo and go are complex and hence consist of one real and one

imaginary part, where the intensity differences in the x direction represent

the real matrix and the intensity differences in the y direction represent

the imaginary matrix. These orientation images can then be matched using

frequency domain methods. OC is an efficient method when it comes to

deriving ice shelf velocities (Haug et al., 2010) (Fig. 3.6). Heid and Kääb (in

press) showed that the method performs very well in glaciological studies. OC

also manages to match Landsat images that have black stripes after a failure

of the scan-line corrector (SLC-off) (Fig. 3.7). This is because homogeneous

areas get zero values when orientation images are created and therefore these

areas are neglected in the matching process.

Figure 3.6: Velocity measurements of the Larsen C ice shelf, Antarctic Pen-

insula, derived using orientation correlation. From: Haug et al. (2010).

16



3.2. PRE-PROCESSING 17

Figure 3.7: Matching of striped Landsat images after a failure of the Scan

Line Corrector using normalized cross-correlation (left), orientation correl-

ation (middle) and the matching method from COSI-Corr (right). Only

orientation correlation manages to match the striped area. From: Heid and

Kääb (in press).

Interest operators can be used to avoid matching areas with too little

contrast to obtain a correct match. Förstner and Gülch (1987) developed

a method which was mainly meant to extract features in images. However,

this method can also be used to select optimal windows for image matching.

Schmid et al. (1998) compared different interest operators, and found that

a method based on auto-correlation performed best. The adaptive window

size algorithm of Debella-Gilo and Kääb (in review) does not only choose the

window size depending on the texture to noise ratio in the images, but it also

excludes windows with too little texture to noise ratio when an upper win-

dow size is reached. However, the amount of texture needed for a matching

method to obtain a correct match depends on the matching method. There-

fore, the texture to noise ratio at which matching should not be done has to

be tuned depending on the matching method.

When large displacements are expected it can be beneficial to align the

images according to the expected displacements before the matching is con-

ducted. This is beneficial both for spatial domain methods and for frequency

domain methods, but in different ways. For spatial domain methods the

search area can be reduced when aligning according to expected displace-

17



18 3. OPTICAL IMAGE MATCHING

ment is done. This reduces the computing time and increases the likelihood

of getting a correct match. For frequency domain methods it is not possible

to derive displacements larger than half the window size due to the quadrant

ambiguity problem. To be able to derive large displacements without in-

creasing the window size, it is necessary to align the images according to the

expected displacement if the expected displacement is larger than half of the

wanted window size. In cases where the glaciers flow in different directions

and manual aligning is not wanted, it is possible to align images automat-

ically. Matching can first be done using large window sizes. The derived

displacements can then be used to align the images, and matching can be

done a second time using the wanted final window size (Heid and Kääb, in

press). This procedure is best suited for frequency domain methods.

3.3 Different matching methods

There are different mathematical ways to find the best correlation between

two images. The most common methods are described below.

Normalized cross-correlation

Normalized cross-correlation (NCC) is a matching method that is very often

used when studying glacier velocities due to its simplicity. The first image is

taken as the reference image, and a window of this image is searched for in

the second image, or the search image. The cross-correlation surface CC is

given by

CC(i, j) =

∑
k,l(s(i + k, j + l) − μs)(r(k, l) − μr)√∑

k,l (s(i + k, j + l) − μs)2
∑

k,l(r(k, l) − μr)2

(3.4)

where (i, j) indicates the position in the search area, (k, l) the position in the

reference area, r the pixel value of the reference chip, s the pixel value of the

search chip, μr the average pixel value of the reference chip and μs the average

pixel value of the search chip. The peak of the cross-correlation surface

indicates the displacement between the images. Fig. 3.8 shows the work

18
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flow in the NCC method. This cross-correlation is normalized, which has

two effects. Firstly, images with different illumination can be compared, and

secondly, the correlation coefficient from different attempts can be compared.

Because this method operates in the spatial domain, the process is time

consuming compared to processes that operate in the frequency domain using

Fast Fourier Transform (FFT).

Figure 3.8: The work flow of the NCC method. From: Kääb (2005).

NCC was the first method that was used for deriving glacier velocities,

and this was done by Bindschadler and Scambos (1991) and Scambos et al.

(1992) based on the work of Bernstein (1983). They developed a program

called IMCORR, which has been used in a number of studies deriving glacier

velocities (e.g. Skvarca et al., 2003; Berthier et al., 2003; Bindschadler et al.,

1996; Dowdeswell and Benham, 2003; Copland et al., 2009). In IMCORR

some of the terms in Eq. 3.4 are solved using Fast Fourier Transform (FFT) to

19



20 3. OPTICAL IMAGE MATCHING

speed up the calculations. Other studies have also used NCC to derive glacier

and rock glacier velocities (e.g. Whillans and Tseng, 1995; Kääb and Vollmer,

2000; Evans, 2000; Kääb, 2002; Kaufmann and Ladstädter, 2003; Berthier et

al., 2005; Kääb, 2005; Kääb et al., 2005; Debella-Gilo and Kääb, 2011; Huang

and Li, 2011). Heid and Kääb (in press) found that NCC generally performs

worse on glaciers compared to other methods, but the strength of spatial

domain methods like NCC is that they require smaller window sizes than

frequency domain methods to produce measurements. Hence, for smaller

glaciers, this method can be the best choice.

NCC can be easily dominated by strong differences in DNs in a window

(Heid and Kääb, in press). For glacierized areas strong differences in DN

are very common due to for example black rocks on white snow. If rocks

move with the ice this can generate correct matches in situations that would

otherwise be difficult to match, but if the rock rolls on the glacier instead

of moving with the ice this can generate mismatches. Also thin clouds and

crevasses that are snow-filled in one image and without snow in the other

image will generate mismatches for this method.

Cross-correlation operated in the frequency domain

Cross-correlation can be computed in the frequency domain (hereafter ab-

breviated CCF) by multiplying the Fast Fourier Transform (FFT) of one

image and the complex conjugated FFT of the second image (the convolu-

tion theorem) (McClellan et al., 2003). This is the same as computing the

cross-correlation in the spatial domain. However, the normalization cannot

easily be transformed to the frequency domain. In the CCF method, only the

cross-correlation is computed, so that this method does not normalize. This

implies that a different illumination in the two images can give a mismatch,

and also that a wrong match can be chosen if the illumination varies within

the section to be matched. In this approach the CC is given by

CC(i, j) = IFFT (F (u, v)G∗(u, v)) (3.5)
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where F (u, v) is the FFT of the matching window from the image at time

t = 1, G(u, v) is the FFT of the matching window from the image at time

t = 2, ∗ denotes the complex conjugated and IFFT is the Inverse Fast Fourier

Transform.

Since this method does not contain any kind of normalization, it has never

been used in glaciological studies alone. But together with pre-processing

steps that normalize, it can be a valuable method (Rolstad et al., 1997;

Heid and Kääb, in press). In combination with OC it performs very well in

glaciological studies, although not as good as COSI-Corr (Heid and Kääb,

in press). This method uses the entire matching window to derive a match

because it uses phase differences at all frequencies to derive the displacement.

It is therefore insensitive to phase differences constrained to a few frequencies,

which can be generated for instance if a rock rolls on the glacier. However, in

areas with much deformation this method can experience problems since the

different frequencies have different phase differences. Noise spread across all

frequencies can reduce the accuracy of this method or generate mismatches.

Phase correlation

A common way of approximating a normalization in the Fourier domain is

to consider only the phase information. By doing this, differences in image

intensity, which show up only in the amplitudes, are ignored. This is done

with the PC method. Here the CC is given by

CC(i, j) = IFFT

(
Fo(u, v)G∗

o(u, v)

|Fo(u, v)G∗
o(u, v)|

)
. (3.6)

Also here the peak of the cross-correlation surface indicates the displacement.

Phase correlation (PC) was developed by Kuglin and Hines (1975), but

the use of this method within glaciology is very limited. Heid and Kääb (in

press) found that this method outperformed NCC in glaciological studies,

but that OC and COSI-Corr performed better.
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COSI-Corr

COSI-Corr is a highly advanced matching program developed by Leprince et

al. (2007). It was originally made for investigating tectonics, but glaciologists

soon found that it was also a valuable tool for deriving glacier velocities. It

estimates the phase difference in the Fourier domain and does not transform

the images back to the spatial domain to find the maximum of the CC. It is

weighted by a bell-shaped window to center the matching to the middle of

the matching window. This makes it more certain where the match actually

comes from within the window, but in cases with little contrast in the image

center it can still obtain matches in the outer part. The method obtains more

correct matches than other tested methods in areas with little visual contrast

and is also generally a very robust method (Heid and Kääb, in press). The

code of the program, however, is not publicly available and this makes it

difficult to make personal adjustments.

COSI-Corr is starting to become a commonly used program within glaci-

ology. Scherler et al. (2008) did the first study in glaciology with this method

(Fig. 3.9), and after that other studies have followed (Quincey and Glasser,

2009; Scherler et al., 2011a,b; Herman et al., 2011).

3.4 Subpixel measurements

All of the methods discussed in Section 3.3 require additional work in order to

obtain subpixel velocities except COSI-Corr. There are three possible ways to

do this. Firstly, the cross-correlation surface can be interpolated. Secondly,

the images can be interpolated before the matching is done. Thirdly, least

squares iterations can be used.

The most common way of estimating subpixel displacement is to inter-

polate the cross-correlation surface from the surrounding points. For spatial

domain methods the images should be oversampled by a factor of two to inter-

polate the cross-correlation surface in order to avoid aliasing (Dvornychenko,

1983). For frequency domain methods, however, this is not necessary. The

cross-correlation surface can be interpolated by fitting functions to the sur-
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3.4. SUBPIXEL MEASUREMENTS 23

Figure 3.9: Velocity measurements from the Mount Everest region in Nepal

derived using COSI-Corr. From: Scherler et al. (2008).

rounding points. Both gaussian and parabolic functions are used for this.

For parabolic functions the subpixel displacements in the x direction dx and

in the y direction dy are found using

dx =
P (xm + 1, ym) − P (xm − 1, ym)

2(2P (xm, ym) − P (xm + 1, ym) − P (xm − 1, ym))
(3.7)

dy =
P (xm, ym + 1) − P (xm, ym − 1)

2(2P (xm, ym) − P (xm, ym + 1) − P (xm, ym − 1))
(3.8)

where P (xm, ym) is the maximum correlation value. For gaussian functions

the subpixel displacements in the x direction dx and in the y direction dy
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are found using

dx =
ln(P (xm + 1, ym)) − ln(P (xm − 1, ym))

2ln(2P (xm, ym) − P (xm + 1, ym) − P (xm − 1, ym))
(3.9)

dy =
ln(P (xm, ym + 1)) − ln(P (xm, ym − 1))

2ln(2P (xm, ym) − P (xm, ym + 1) − P (xm, ym − 1))
(3.10)

The cross-correlation surface can also be interpolated using bicubic interpol-

ation, which is a standard interpolation technique in MATLAB, for example

(’interp2’).

It is also possible to interpolate the images before the matching takes

place. This can be done using different interpolation techniques, but bicubic

is considered to be the most suited interpolation technique (Debella-Gilo and

Kääb, 2011).

Least squares matching can also be used to obtain subpixel measurements.

This is not a matching method in itself, but it is an iteration process that

increases the accuracy of the matchings and makes it possible to obtain

subpixel measurements. The initial displacement measurements have to be

found using other methods and afterwards least squares iteration is used

to minimize the residuals until they converge. Least squares matching can

take strain rates and rotation into account and can therefore be valuable

when deriving glacier velocities (Whillans and Tseng, 1995; Kaufmann and

Ladstädter, 2003; Debella-Gilo and Kääb, in press).

Debella-Gilo and Kääb (2011) compared different subpixel routines for

matching using NCC. They found that interpolating images before the match-

ing is done outperformed interpolating the correlation surface after the match-

ing is done (Fig. 3.10). It is however important to notice that this is

only valid for NCC. Frequency domain methods have much sharper cross-

correlation surfaces that are more suited for interpolation. Images should be

oversampled by a factor of two for the interpolation of the cross-correlation

surface generated using spatial domain methods to be valid, whereas this is

not the case for frequency domain methods.
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Figure 3.10: The performance of four subpixel algorithms for matching with

NCC. Mean deviation indicates the deviation from an assumed correct value.

From: Debella-Gilo and Kääb (2011).

3.5 Post-processing

Because the resulting displacement field usually contains a large number of

both correct and erroneous matches, editing is needed as a post-processing

step. Commonly, the signal-to-noise ratio (SNR) or correlation coefficient is

used as the first step (Kääb and Vollmer, 2000; Skvarca et al., 2003; Kääb,

2005; Kääb et al., 2005; Scherler et al., 2008; Quincey and Glasser, 2009).

Then matches with low signal-to-noise ratio or low correlation coefficients are

removed. This usually leaves some mismatches (and removes some correct

matches) and therefore requires more editing afterwards.

More sofisticated methods are also used for filtering the measurements.

Scambos et al. (1992) used reverse correlations. They calculated the dis-

placements using first the image from time 1 as the reference image and

afterwards the image from time 2 as the reference image. The displacements

were then compared, and those that deviated more than a threshold were
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rejected. Directional filters have been used in some studies (Kääb, 2005;

Kääb et al., 2005; Scherler et al., 2008). In this case, the flow directions are

defined from the flow features visible in the images, and then the result of the

matching is compared to these flow directions. Filters that look at differences

in speed and remove measurements with varying speed over short distances

have also been used (Scherler et al., 2008). Heid and Kääb (in press) low-

pass filtered the displacement field and compared the original to the filtered

version. Measurements that deviated more than a certain threshold were

removed (Fig. 3.11). This approach is similar to an approach suggested by

Evans (2000). Skvarca et al. (2003) filtered the vectors using a vector median

filter developed by Astola et al. (1990). Debella-Gilo and Kääb (in review)

actually filtered the measurements as a pre-processing step by investigating

the texture in the matching windows and ignoring matching windows with

little texture.

For global scale applications it might be more acceptable to remove some

correct matches when filtering the displacements. Having stricter thresholds

on the automatic filtering methods removes more erroneous matches, but at

the same time more correct matches are removed. For global scale applica-

tions this might be acceptable, and also necessary because manual filtering

of a large number of vectors is too time consuming. For studies of specific

glaciers it is often better to use less strict thresholds on the automatic filter-

ing methods and rather filter the results manually in the end to remove the

last errors.

All the above mentioned filters have in common that they require manual

tuning of thresholds. This is because the glacier characteristics vary consid-

erably both between and within regions. Because of this, it seems unlikely

that completely automatic filters ever exist.

3.6 Sources of error

Errors may arise from the pre-processing step, from the matching itself, and

from transformation of the surface between the two image acquisitions. Er-
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Figure 3.11: Unfiltered velocity measurements (upper panel) and automatic-

ally filtered velocity measurements (lower panel) in Karakoram. From: Heid

and Kääb (in press).
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rors that stem from orthorectification and from the matching are usually the

easiest errors to quantify, whereas errors connected to surface transformation

are more difficult to quantify.

Orthorectification may, as mentioned earlier, introduce horizontal shifts

that are not due to displacement but due to errors in the orthorectification.

Such errors can stem from wrong information about the camera position, look

direction or lens distortions, atmospheric effects, or errors in the DEM. Errors

in the DEM will influence all images obtained from the same point the same

way. Therefore, in cases where the two matched images are obtained from

the same point, DEM errors create only minor errors in the derived velocities.

These errors are created because bumps or depressions in the DEMs that are

not real give wrong distances and therefore wrong velocities. Such errors can

become more prominent if the velocity field is used to investigate velocity

gradients. If the same DEM is used to orthorectify images from different

times and the glacier surface elevation changes between image acquisitions,

this can create horizontal shifts that are not due to displacement but due

to change in elevation. The relationship between elevation changes dz and

horizontal position changes dx is given by

dz

dx
=

z0 − z

x
(3.11)

where z0 − z is the sensor height above ground and x is measured as the

horizontal distance of a terrain point from the sensor nadir. For Landsat

images z0 − z = 700 000 m and x = 90 000 m in the outer parts of the image.

The glacier surface therefore has to change its elevation by 39m over the

time period between the two acquisitions to change the horizontal position

1/3 of a 15m pixel. In image matching such large changes in elevation will

also lead to surface decorrelation, and it will not be possible to obtain correct

matches.

The image-to-image registration accuracy of the images used will influence

the matching accuracy. Satellite agencies usually investigate the image-to-

image registration accuracy of their products and publish the results (e.g.

Lee et al., 2004).

The accuracy of the matching algorithm, including the subpixel routine,
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also introduces errors. This error can be quantified either by investigating

the root mean square error (RMSE) of measurements over assumed stable

ground, or by constructing synthetic images with applied displacements and

comparing the derived displacements to the applied displacements. To obtain

only the accuracy of the matching algorithm, synthetic images should be

used because measurements over stable ground also include satellite jitter

and errors from the orthorectification if the two images are obtained from

different locations.

The match can in theory originate from anywhere inside the window, and

where it originates from depends on the matching method. If COSI-Corr

is used it is more likely that the match originates from the center because

of the weighting with a bell-shaped window. For NCC the match is more

likely to come from an area with large differences in DNs. Using frequency

domain methods with no weighting window, the match represents the most

common displacement within the window. In cases where the displacements

have to be attributed to a specific point and not the window, for example

if the displacement field is used to derive strain rates or if the displacement

field is compared to ground truth data, this can introduce errors.

Undiscovered erroneous matches in the filtered and final displacement

field can also be present. Clear mismatches are easy to reject in the post-

processing step, but some matches might have both approximately the same

direction and magnitude as surrounding matches and incorrectly be classified

as a correct match. It can be easier to identify such erroneous matches

over stable ground than over moving surfaces, because neighbouring matches

should be alike over stable ground whereas neighbouring matches are allowed

to vary over surfaces with displacement.

There might be different kinds of surface transformation from one image

to the next image that makes the match less correct. Such transformations

include deformation, melting, opening or closing of crevasses and debris be-

having differently from the glacier. The latter might for example be rocks

sliding or rolling on the glacier, or deformation of the debris. As long as the

surface transformation is not sufficient enough to generate a mismatch such

surface transformations will make the match less accurate.
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For independent errors the final error can be calculated as the root sum

square (RSS) of the individual error contributions. In image matching of

glacier velocities the final error of the measurements E can be given as

E =
√

(Eort)2 + (Ereg)2 + (Emat)2 + (Epos)2 + (Emis)2 + (Etra)2 (3.12)

where Eort is the error from orthorectification, Ereg is the error from image-

to-image registration, Emat is the error from the matching algorithm, Epos

is the error when the match originates from another position in the window

than what is assumed, Emis is the error from the mismatches and Etra is the

error from the surface transformation.

3.7 Comparison to groundbased measurements

A few studies have compared displacements measured using image matching

to displacements measured using ground based surveys. This is usually quite

a difficult task because both measurements should ideally represent the same

time period. Due to both seasonal and yearly variations in glacier speed, it

is easy to capture such differences instead of methodological differences if the

measurements do not originate from the exact same period.

The fact that matches can originate from anywhere inside the window

can also make the comparison difficult. If the match is attributed to the

center point but represents the outer edge of the window, this can give de-

viations between the ground based measurements and the image matching

measurements if there are velocity gradients within the window. This does

not mean that the match is incorrect, only that the match is incorrectly said

to represent the center of the window.

Lucchitta and Ferguson (1986) compared Landsat derived velocities to

velocities derived using ground surveys. They found that there was an agree-

ment of better than 10 %. Frezzotti et al. (1998) compared data from GPS

with image matching results obtained using Landsat MSS, Landsat TM and

SPOT XS. They found that close to tie points the image matching errors

were down to 15m/a whereas the image matching errors far from tie points
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were 70m/a. Berthier et al. (2005) compared SPOT5 derived velocities to

ground truth data obtained using DGPS. The DGPS measurements were

from a shorter time period within the period between the two SPOT5 im-

age acquisitions. Differences between the two methods were in the order of

1/5 of the pixel size of 0.5m, but some of this discrepancy was assumed to

stem from the different time periods or uncertainties in the DGPS system.

Copland et al. (2009) compared yearly ASTER derived velocities to summer

DGPS data. They found that the direction fitted well and that most of the

differences in magnitude were within the error of image matching. However,

they also found one point with higher magnitude in the DGPS data and they

attributed this to higher summer speed. Herman et al. (2011) used COSI-

Corr and ASTER images to derive velocities in New Zealand. They found

a small bias in the north-south component of the displacements that they

attributed to pitch residuals of the spacecraft that were not removed in the

orthorectification process.
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Summary of articles

4.1 Article I

Monitoring ice shelf velocities from repeat MODIS and

Landsat data - a method study on the Larsen C ice

shelf, Antarctic Peninsula, and 10 other ice shelves

around Antarctica

Although many studies have conducted measurements of glacier velocit-

ies using image matching of optical images, very few studies have conducted

measurements on ice shelves using this method. Bindschadler et al. (1994)

and Rack et al. (1999) derived velocities on the relatively small Larsen A

ice shelf, Skvarca (1994) and Glasser et al. (2009) measured velocities of

small sections of Larsen C ice shelf as part of larger studies. Also, the focus

when using image matching to derive glacier velocities has been on medium

and high spatial resolution images, and low spatial resolution images have

received little attention. Low resolution images however, have several advant-

ages over medium and high spatial resolution images. Firstly, low resolution

sensors cover large areas with only one image, which makes it easier to do

large-scale monitoring of glacier velocities. This also ensures that there is

stable bedrock in most images so that different images can be accurately
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coregistered. Secondly, low spatial resolution satellites have high temporal

resolution, especially in polar regions where several images can be obtained

every day. In cloudy regions this is important because the likelihood of ob-

taining cloud-free images for a wanted period increases drastically.

In this article velocities are derived using MODIS images (250m spatial

resolution) for two periods for the Larsen C ice shelf on the Antarctic Penin-

sula. The two periods are 2002-2006 and 2006-2009. The velocities obtained

using MODIS images are also validated for two ice shelf sections against

velocities obtained using Landsat 7 ETM+ panchromatic images with 15 m

spatial resolution. We mainly use orientation correlation to derive velocities,

but normalized cross-correlation is also tested.

The uncertainties for the MODIS derived displacements are about one

fourth of a pixel, and for Landsat derived displacements the uncertainties

are about one pixel. When comparing speeds, the difference between MODIS

and Landsat derived speeds is -15.4 m/a and 13.0 m/a for the two different

sections on the ice shelf for the first period and -26.7 m/a and 27.9 m/a for the

same sections for the second period. We therefore conclude that MODIS im-

ages are well suited for measuring ice shelf velocities and also for monitoring

their changes over time.

Orientation correlation seems better suited than normalized cross-correlation

in this study. Orientation correlation creates fewer mismatches, is able to

match images with regular noise and data voids, and is faster. Because it

can match images with data voids, it can also be used to match Landsat 7

ETM+ images after the failure of the Scan Line Corrector in 2003 (SLC off).

As a second part of the study we test our method on ten other ice shelves

around Antarctica. The method works well on most parts of the ice shelves

investigated. The main factor that hinders successful matching during cloud-

free conditions is the lack of visual contrast. However, on large parts of the

ice shelves it is possible to derive velocities, and this demonstrates that the

approach is suitable for large scale monitoring of ice shelf dynamics.
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4.2 Article II

Evaluation of different existing image matching methods

for deriving glacier surface displacements globally from

optical satellite images

There has been little focus on comparing different correlation algorithms

to find the correlation algorithm that is best suited for measuring glacier

velocities using repeat optical satellite images. However, many different cor-

relation algorithms have been used to derive velocities, so there is a need to

compare commonly used correlation algorithms. We hypothesize that since

glaciers can be very different depending on where in the world they are situ-

ated, it might be that different correlation algorithms work best in different

areas of the world.

We test six commonly used matching methods over five glacierized areas

spread around the world and with different characteristics, which are though

to be globally representative. The matching methods evaluated are (1)

normalized cross-correlation operated in the frequency domain, (2) cross-

correlation operated in the frequency domain, (3) phase correlation operated

in the frequency domain, (4) cross-correlation operated in the frequency do-

main on orientation images, (5) phase correlation operated in the frequency

domain on orientation images, (6) the phase correlation algorithm used in

the COSI-Corr software. The five glacierized study regions are Karakoram,

the European Alps, Alaska, Pine Island in Antarctica and southwest Green-

land. Because the aim of this study also is to open up the possibility to do

global-scale mapping and monitoring glacier flow, we use Landsat images.

One Landsat image covers a large area on the ground, and also they extend

back to 1982 with 30m spatial resolution.

Cross-correlation on orientation images (CCF-O) outperforms the three

similar Fourier methods, both in areas with high and low visual contrast.

Normalized cross-correlation (NCC) experiences problems in areas with low

visual contrast, areas with thin clouds or changing snow conditions between

the images. CCF-O has problems on narrow glaciers where small window
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sizes are needed, and it obtains fewer correct matches than COSI-Corr in

areas with low visual contrast. COSI-Corr has problems on narrow glaciers

and it obtains fewer matches compared to CCF-O when thin clouds cover the

surface or if one of the images contains snow dunes. Of the three methods

NCC, CCF-O and COSI-Corr, only CCF-O manages to match striped Land-

sat images after the failure of the Scan Line Corrector (SLC off) in 2003. In

total we consider CCF-O and COSI-Corr to be the two most robust matching

methods for global-scale mapping and monitoring of glacier velocities.

4.3 Article III

Worldwide widespread decadal-scale decrease of glacier

speed revealed using repeat optical satellite images

Because so much focus has been put into developing, improving, auto-

mating and comparing different image matching methods over the last years

(Leprince et al., 2007; Scherler et al., 2008; Haug et al., 2010; Debella-Gilo

and Kääb, 2011, in review; Heid and Kääb, in press), it is now possible to

derive glacier velocities over large regions of the world. Such velocity meas-

urements make it possible to improve our knowledge about glacier dynamics

both in space and time. In this study we focus on exploring the connection

between glacier mass balance and glacier speed changes. Many regions of

the world have had a negative mass balance over the last decades (Käser

et al., 2006; Lemke et al., 2007; Bahr et al., 2009; WGMS, 2009), and we

hypothesize that this has caused the glaciers in these areas to slow down.

To test this we select five regions of the world with negative mass balance

over the last decades: Pamir, Caucasus, Penny Ice Cap, Alaska Range and

Patagonia. For every region the glacier velocities are derived for two differ-

ent periods and the speeds are compared for these two different periods. We

also select Karakoram, which is an area assumed to have positive mass bal-

ance (Quincey et al., 2009a) and which also contains many surging glaciers

(Hewitt, 1969, 2007; Copland et al., 2009).
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We find that the mapped glaciers in the five areas with negative mass

balance have reduced their speeds over the last decades. Glaciers in Pamir

have reduced their speed by 43 % in average per decade, glaciers in Caucasus

by 8% in average per decade, outlet glaciers from Penny Ice Cap by 25%

in average per decade, glaciers in the Alaska Range by 11 % in average per

decade, and outlet glaciers from the Southern Patagonia Ice Field by 20 %

per decade.

Glaciers in Karakoram behave differently depending on location. Glaciers

in the east have generally increased their speeds as a result of the positive

mass balance. In this area there are probably few surging glaciers due to

the few observations of surging glaciers and the few looped moraines seen in

the satellite images. In the central north many of the glaciers are probably

surging due to the low speeds, which indicate surging glaciers in their qui-

escent phase, and the many observations of glacier surges in this area. In

northwest the glaciers have large speed variations from period to period, but

because the speeds are high in both periods, sliding must be important in

both periods and hence the glaciers cannot be defined as surging glaciers.
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Conclusions and perspectives

The focus of this thesis has been to further develop optical image matching

techniques within glaciology. So far very little focus has been on developing

the methods within glaciology, whereas many studies have applied such meth-

ods to glaciology. Only medium or high spatial resolution images have been

used so far, and studies have only focused on one image matching method. It

has therefore been a need to further explore optical image matching within

glaciology.

Paper I shows that low resolution images can be of great use within im-

age matching in glaciology. The large ice shelves surrounding Antarctica

are difficult to match using high or medium spatial resolution images. This

is because they are so large that many high or medium spatial resolution

images are needed to match one ice shelf, and because it is difficult to find

stable bedrock to orthorectify the images when the ice shelves are so enorm-

ous. It can also be easier to find optical images from each year using low

resolution images because of the shorter repeat times of such imagery. In

this research we used MODIS images with a spatial resolution of 250m, and

obtained an accuracy for MODIS derived displacements of about one fourth

of a pixel. Because it is possible to match images several years apart due to

the little surface transformation, the yearly uncertainty relative to the yearly

displacement is small. Therefore it is possible to monitor ice shelf speed

changes using low resolution images.
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In Paper II we showed that NCC, which is commonly used to derive glacier

displacements, does not perform as well as other methods for most glacier

types. In general, COSI-Corr performs best but CCF-O performs almost as

well. The main problem with NCC is the low number of correct matches

in areas with low visual contrast, but also thin clouds and changing snow

conditions are a problem for this method. CCF-O has problems with narrow

outlet glaciers, and it obtains fewer correct matches than COSI-Corr in areas

with low visual contrast. COSI-Corr has problems on narrow glaciers, when

thin clouds cover the surface or if one of the images contains snow dunes.

Only CCF-O manages to match striped Landsat images after the failure

of the SLC. In total CCF-O and COSI-Corr are considered to be the best

methods for global-scale mapping and monitoring of glacier velocities.

Regional glacier velocities give us the opportunity to improve our know-

ledge about glacier dynamics both in space and time. In this research we

investigate the relationship between glacier mass balance and glacier speed.

In five regions of the world where the mass balance has been negative over

the last decades, glaciers have also reduced their speed. These five areas

are Pamir (reduction in glacier speed of 43% per decade), Caucasus (reduc-

tion in glacier speed of 8% per decade), Penny Ice Cap (reducion in glacier

speed of 25% per decade), Alaska Range (reduction in glacier speed of 11%

per decade) and Patagonia (reduction in glacier speed of 20% per decade).

Karakoram, an area with assumed positive mass balance, shows an increase

in glacier speed over the last decades. However, Karakoram is heavily influ-

enced by glacier surges and dynamically instable glaciers, and this is most

prominent in this area.

The development of image matching within glaciology done in this re-

search, combined with the development done in other studies (e.g. Kääb,

2005; Leprince et al., 2007; Scherler et al., 2008; Debella-Gilo and Kääb,

2011, in review), makes it easier to derive glacier velocities. In this thesis

the focus has been to explore imagery that has never been used to derive

glacier velocity before over areas that have never been mapped using image

matching. We have also compared commonly used image matching meth-

ods to be able to select the best method in every situation. Together with
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adaptive window sizes (Debella-Gilo and Kääb, in review) this gives the pos-

sibility to automatically derive glacier velocities worldwide. However, using

adaptive window sizes is time consuming, and today it is not possible to do

this worldwide due to computing time. Filtering of the measurements af-

terwards to remove mismatches is a task that is difficult to fully automate

because all methods require manual tuning of the filtering parameters. The

adaptive window size approach may be a solution to this problem because

windows with too little texture when the upper window size limit is reached

are ignored in the matching.

New image matching methods developed in the future can be tested

against the methods tested in this study to investigate whether they per-

form better over glaciers. It is then important to test the methods over

several different glacier surfaces, because it may change from glacier to gla-

cier and glacier region to glacier region which method performs the best.

Such a study can be done following the procedure outlined in Paper II.

Image matching of SAR images can also be investigated closer using a

similar approach to what is shown for optical images in Paper II. Comparing

different SAR-based methods for deriving glacier velocities is more done than

comparing different optical methods. However, these studies have focused on

the difference between intensity tracking, coherence tracking, speckle track-

ing and DInSAR (Michel and Rignot, 1999; Strozzi et al., 2002; Luckman et

al., 2007) instead of focusing on the difference between different matching

methods. Future studies could therefore focus on different image match-

ing algorithms within image matching of SAR images. Fig. 5.1 shows the

matching results of NCC, PC and OC using two ERS-1 scenes over Svalbard.

Because of the high level of almost random noise in SAR images, PC and

OC obtain less correct matches compared to NCC. This is the opposite than

for optical images and highlights the importance of testing different image

matching methods also for image matching of SAR images.

It is now possible to derive glacier velocities over larger regions, and more

effort should be focused on this. Such studies can provide valuable insights

in glacier dynamics. Firstly, as shown in Paper III, this can give information

about how glaciers respond to climate change. Secondly, regional glacier ve-
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locities derived for different periods give the possibility to investigate surge

occurrence, surge behaviour and other dynamical instabilities. This can re-

veal new information on how frequent dynamically instable glaciers actually

are. It can also help to solve what the mechanisms behind surging glaciers

are. Thirdly, glacier velocities are linked to glacier hazards. The reduc-

tion of glacier speed can create glacier lakes, and these may burst and flood

lower lying regions. Extending the number of glaciers with velocity meas-

urements can help to point out areas where glacier lakes may form. Such

areas can then be monitored closely to avoid or reduce damage when lakes

drain. Fourthly, glacier velocities may be tested against glacier inventory

parameters such as length, area and hypsometry to point out differences and

similarities between areas. Fifthly, glacier velocities can be used to estimate

transport times and erosion rates, and thereby contribute to knowledge on

landscape development.

42



43

Figure 5.1: SAR intensity tracking using two ERS-1 scenes over Kongsve-

gen, Kronebreen and Kongsbreen between 5 April 1996 and 10 May 1996.

Matching results are obtained using a) the Gamma software developed by

Gamma Remote Sensing AG based on normalized cross-correlation, b) own

written normalized cross-correlation, c) phase correlation and d) orientation

correlation. (Heid, unpublished.)
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Abstract. We investigate the velocity field of the Larsen C
ice shelf, Antarctic Peninsula, over the periods 2002–2006
and 2006–2009 based on repeat optical satellite data. The
velocity field of the entire ice shelf is measured using repeat
low resolution MODIS data (250 m spatial resolution). The
measurements are validated for two ice shelf sections against
repeat medium resolution Landsat 7 ETM+ pan data (15 m
spatial resolution). Horizontal surface velocities are obtained
through image matching using both orientation correlation
operated in the frequency domain and normalized crosscor-
relation operated in the spatial domain, and the two methods
compared. The uncertainty in the displacement measure-
ments turns out to be about one fourth of the pixel size for
the MODIS derived data, and about one pixel for the Land-
sat derived data. The difference between MODIS and Land-
sat based speeds is −15.4 m a−1 and 13.0 m a−1, respectively,
for the first period for the two different validation sections on
the ice shelf, and −26.7 m a−1 and 27.9 m a−1 for the second
period for the same sections. This leads us to conclude that
repeat MODIS images are well suited to measure ice shelf
velocity fields and monitor their changes over time. Orienta-
tion correlation seems better suited for this purpose because
it produces fewer mismatches, is able to match images with
regular noise and data voids, and is faster. Since it can match
images with regular data voids it is possible to match Land-
sat 7 ETM+ images even after the 2003 failure of the Scan
Line Corrector (SLC off) that leaves significant image stripes
with no data. Image matching based on the original 12-bit ra-
diometric resolution MODIS data produced slightly better re-
sults than using the 8-bit version of the same images. Stream-
line interpolation from the obtained surface velocity field on
Larsen C indicates ice travel times of up to 450 to 550 years
between the inland boundary and the ice shelf edge. In a
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(torborg.haug@geo.uio.no)

second step of the study we test our method successfully on
10 other ice shelves around Antarctica demonstrating that the
approach presented could in fact be used for large scale mon-
itoring of ice shelf dynamics.

1 Introduction

Velocities of glaciers, ice sheets and ice shelves can be mea-
sured successfully by remote sensing techniques. The two
most commonly used methods so far have been radar in-
terferometry and correlation of repeat images. Radar inter-
ferometry measures the phase shifts between two SAR im-
age acquisitions. This relies on phase coherence, and in or-
der to avoid coherence degradation on the rapidly changing
snow/ice surface, tandem missions with only a few days be-
tween the acquisitions are often required. This limits the
application of the radar interferometry method. Image cor-
relation has, in principle, much longer decorrelation times.
These can range from about a year for mountain glaciers to
more than ten years for Antarctic glaciers and ice streams.
The correlation method can be applied to both optical im-
ages and to data from synthetic aperture radar (SAR). Image
matching can either be done in the spatial domain or the fre-
quency domain (Brown, 1992; Zitova and Flusser, 2003).

Ice velocity studies using the correlation method have
among others been conducted in Antarctica (e.g., Scam-
bos et al., 1992), on Svalbard (e.g., Rolstad et al., 1997;
Kääb et al., 2005), in the Alps (e.g., Kääb, 2002; Berthier
et al., 2005), in New Zealand (e.g., Kääb, 2002; Quincey and
Glasser, 2009), in the Himalaya (e.g., Scherler et al., 2008;
Kääb, 2005), in Greenland (e.g., Strozzi et al., 2002; Howat
et al., 2005), and in Patagonia (e.g., Skvarca et al., 2003).
However, very few have studied ice shelf velocities using
the correlation method. Bindschadler et al. (1994) and Rack
et al. (1999) derived velocities using this method on the rel-
atively small Larsen A ice shelf. Skvarca (1994) and Glasser
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et al. (2009) measured the velocities of a small section of the
Larsen C ice shelf as part of larger studies.

The purpose of this study is, firstly, to demonstrate that
optical sensors with low spatial resolution can be used to
measure the velocity fields of Antarctic ice shelves and their
changes with satisfactory accuracy. Secondly, the study aims
at an initial selection of ice shelves where the method pre-
sented could actually be employed for easy and operational
monitoring of ice flow. Three major advantages of low reso-
lution optical sensors such as Moderate Resolution Imaging
Spectroradiometer (MODIS) or Medium Resolution Image
Spectrometer Instrument (MERIS) are: (1) that they cover
much larger areas with a single image than medium and high
resolution optical and SAR sensors such as Landsat, SPOT,
Radarsat, ERS SAR or Envisat ASAR do. This fact allows
for large-scale monitoring of ice velocities. In addition, it
ensures that one individual scene will in most cases contain
stable ground. That helps to accurately co-register the repeat
data without having to rely on the satellite-derived geoloca-
tion of the data or without having to mosaic scenes that stem
from different times and contain only moving targets. (2)
The very frequent coverages by low resolution satellite im-
agery of up to several times per day in polar regions increases
drastically the potential for cloud-free scenes compared to
medium and high resolution optical sensors with much lower
repeat times. (3) Correlation over time for optical data is of-
ten much more robust than the phase coherence of SAR data
necessary for SAR interferometry or speckle tracking, allow-
ing to cover much larger time steps using optical data.

On the other hand, application of repeat low resolution
optical images for ice shelf velocity measurements has also
clear disadvantages: (1) image matching accuracy is in gen-
eral governed by the pixel size so that sensors with higher
spatial resolution potentially provide better accuracies. (2)
Phase-based methods such as SAR interferometry and SAR
speckle tracking will naturally provide a much higher dis-
placement accuracy than image intensity correlation meth-
ods as necessary for optical data. (3) Optical sensors are un-
able to image during (polar) night and through cloud cover.
(4) Matching of repeat optical data relies on optical surface
contrast features that are naturally scarce over Antarctica.
SAR backscatter features suitable for matching will often be
denser.

The above list of potential advantages and disadvantages
shows that measuring velocity fields on ice shelves using low
resolution optical data will not be the optimal method for
such work but rather represent a valuable complement to the
other methods, which all have different specific benefits and
limitations. Correlation of low resolution images with large
coverage is a good mean to initially detect regions that have
experienced changes and thus to guide where dedicated stud-
ies should be performed by collecting time series of higher
resolution images.

The potential and accuracy of ice shelf velocities from
low resolution optical data (here: MODIS) is assessed us-

Fig. 1. Sketch map over Antarctica (right) and image of Larsen C
ice shelf (left). The position of the MODIS image is indicated as
red rectangle in the right panel and it forms the background in the
left panel. The position of the Landsat validation images are indi-
cated in red in the left panel (path 216 row 108 and path 216 row
107). The numbers mark the locations of the other ice shelves in-
vestigated: 1. Ross, 2. Getz east, 3. Ronne, 4. Filchner, 5. Riiser-
Larsen, 6. Fimbul, 7. Amery, 8. West, 9. Shackleton, 10. Mertz.
The MODIS image is from 2002 and was preprocessed by Scambos
et al. (2009).

ing repeat optical images of medium spatial resolution (here:
Landsat). For a test site we select the Larsen C ice shelf
and the remnants of the Larsen B ice shelf, both located on
the Antarctic Peninsula (Fig. 1). The velocity measurements
are conducted using two image matching methods, normal-
ized cross-correlation which we operate in the spatial domain
and orientation correlation operated in the frequency domain
which we operate in the frequency domain, and these two ap-
proaches are compared. Velocities are also measured for dif-
ferent periods in order to identify possible velocity changes.

Rise in air and sea temperatures around the Antarctic
Peninsula over the last decades have impacted on the ice
shelves in this area. Turner et al. (2005) found that air
temperatures on the western Antarctic Peninsula rose by
0.56 ◦C decade−1 from 1951 to 2000. Meredith and King
(2005) reported that the ocean surface temperatures on the
western side of the Antarctic Peninsula increased by more
than 1 ◦C in the period 1955 to 1998.

At the same time the ice shelves and glaciers in this area
have undergone large changes. As many as seven ice shelves
have retreated dramatically or completely disintegrated over
the last decades (Cook and Vaughan, 2010). Several studies
have shown that the glaciers feeding the ice shelves have in-
creased their velocities after the disintegration. This speed up
has been attributed to removal of the buttressing ice shelves
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(Rott et al., 2002; Scambos and Bohlander, 2003; De Ange-
lis and Skvarca, 2003; Rignot et al., 2004; Scambos et al.,
2004; Rignot et al., 2005). In addition, surge activity has
been observed after ice shelf disintegration (De Angelis and
Skvarca, 2003). The glaciers on the Antarctic Peninsula have
also accelerated because their termini have thinned (Pritchard
and Vaughan, 2007). As a result of the velocity increase of
glaciers on the Antarctic Peninsula, glaciers in this region
were considered to loose 60±46 Gt a−1 in 2006, which was
an increase of 140% since 1996 (Rignot et al., 2008).

Four ice shelves on the northeastern coast of the Antarctic
Peninsula have disintegrated between 1986 and 2002. Larsen
Inlet started the disintegration process in 1986 and it ended in
1989 (Skvarca, 1993). The ice shelf in Prince Gustav Chan-
nel collapsed between 1992 and 1995 (Rott et al., 1996).
Larsen A collapsed in 1995 (Rott et al., 1996), and Larsen B
followed in 2002 (Rack and Rott, 2004).

It has been observed that several of the ice shelves that
disintegrated underwent large changes before they collapsed.
Bindschadler et al. (1994) found that Larsen A accelerated
by up to 15% from the period 1975–1986 to the period 1986–
1989 and Rack et al. (1999) found that it accelerated by 10%
from 1986–1989 and 1988–1989 to 1992–1993. Skvarca
et al. (1999) measured on Larsen B an acceleration of 13.2%
between the periods 1988–1994 and 1994–1997. Rott et al.
(2002) also measured an increase in velocity after a calv-
ing event in 1995. Furthermore, field measurements carried
out along the center flowline of Larsen B revealed that sur-
face ice-velocity which increased by 10% from 1996–1997 to
1997–1999 has augmented to 26% between 1997–1999 and
1999–2001, i.e. just before the final collapse (Skvarca et al.,
2004). On the other hand, Vieli et al. (2006) derived from
satellite interferometry a maximum increase in ice velocity
on Larsen B of about 150 m a−1 from 1995/1996 to 1999.

It has been widely discussed whether the penetration
of meltwater into crevasses is enhancing the fractures and
thereby triggering the disintegration (Scambos et al., 2000;
MacAyeal et al., 2003; Scambos et al., 2008). However, as
Vieli et al. (2006) point out, this can only explain the final
collapse and not the dynamic response that can be seen prior
to the collapse. Because the ice shelves that have disinte-
grated so far have shown a dynamic response prior to the
collapse, we suggest that studying changes in ice shelf dy-
namics can give valuable insight on their stability.

After introducing the satellite data used, we describe the
image matching methods applied and their accuracy. Then,
the results for Larsen C are presented in detail in order to
understand the potential and limitations of the method. Re-
sults for ten other ice shelves in Antarctica are also described
in order to evaluate the applicability and performance of the
method for Antarctic ice shelves in general and to present an
initial selection of ice shelves that could be monitored that
way. Discussion and conclusions terminate our study.

2 Satellite data

Optical satellite images with two different spatial resolutions
are selected for this study. Both the 250 m spatial resolution
bands from the NASA’s Moderate Resolution Imaging Spec-
troradiometer (MODIS) images (bands 1 and 2, bandwidths
of 620-670 nm and 841–876 nm, respectively) represent the
lowest spatial resolution, and NASA/USGS’ Landsat 7 En-
hanced Thematic Mapper Plus (ETM+) panchromatic im-
ages (channel 8, bandwidth of 520-900 nm) with a spatial
resolution of 15 m represent the highest. The MODIS images
have been preprocessed by the National Snow and Ice Data
Center (NSIDC) (Scambos et al., 2009). This preprocessing
included orthorecitification, i.e. geocoding and topographic
correction using a Digital Elevation Model (DEM). The ac-
curacy of the topographic correction is given as better than
0.2 pixels.

Images from three different times are selected in order to
measure both velocities over the two periods and velocity
changes between the periods. The periods should be long
enough to identify statistically significant displacements, but
also short enough to avoid surface changes that hinder the
correlation of images. Two areas on Larsen C are chosen
to validate the velocities and the velocity changes measured
with the MODIS imagery. These areas are hereafter referred
to as Larsen C South and Larsen C North. The validation is
performed by using the finer spatial resolution imagery from
the Landsat ETM+ pan sensor. “Larsen C South” indicates
images from path 216 row 108 and “Larsen C North” indi-
cates images from path 216 row 107. Their location is indi-
cated in Fig. 1. The validation areas are selected based on the
availability of cloud free images from both the MODIS and
the Landsat sensors with as short as possible time separation
between both. An overview of the selected images can be
found in Table 1.

Until autumn 2005 NSIDC produced images with 8 bit ra-
diometric resolution from the MODIS images. Therefore the
MODIS image from 2002 is 8 bit, while the images from
2006, 2008 and 2009 are 12 bit, which is the original radio-
metric resolution of MODIS. The images from 2006, 2008
and 2009 are also available as 8 bit images, and this gave us
also the opportunity to investigate the impact of different ra-
diometric resolutions on image matching.

Due to the small elevation differences on the Larsen ice
shelf, there are only minor topographic distortions over the
ice shelf caused by elevation differences in the images. These
are assessed to be small enough to be neglected in this study.
Co-registering the MODIS images using stable ground with
varying elevation is possible because the MODIS images
from NSIDC are corrected for elevation. In addition, the
2002 and 2008 MODIS data used are from the same orbit,
and the 2006 and 2009 data from orbits adjacent to these
so that effects from residual topographic distortion are mini-
mized. The matched Landsat images have the same imaging
geometry because they are from the same path and row, i.e.
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Table 1. MODIS and Landsat satellite images used for the velocity
measurements. Larsen C South indicates Landsat images from path
216 row 108 and Larsen C North indicates Landsat images from
path 216 row 107.

Larsen C South Larsen C North
MODIS Landsat MODIS Landsat

17 Mar 2002 1345 22 Nov 2001 17 Mar 2002 1345 15 Apr 2002
5 Jan 2006 1355 4 Jan 2006 5 Jan 2006 1355 4 Jan 2006
1 Jan 2009 1330 12 Jan 2009 28 Nov 2008 1345 11 Dec 2008

orbit position, and accurate co-registration is thus possible
without prior orthorectification.

3 Image matching methods

3.1 Normalized cross-correlation

Matching of two images can be done using the image in-
tensities directly in the normalized cross-correlation method
(NCC). The first image is taken as the reference image, and
a sub-window of this image is searched for in the second im-
age, or the search image. The cross-correlation surface CC is
given by

CC(i,j) =
∑

k,l(s(i +k,j + l)−μs)(r(k,l)−μr)√∑
k,l (s(i +k,j + l)−μs)2

∑
k,l(r(k,l)−μr)2

(1)

where (i,j) indicates the position in the search area, (k,l) the
position in the reference area, r the pixel value of the refer-
ence chip, s the pixel value of the search chip, μr the average
pixel value of the reference chip and μs the average pixel
value of the search chip. The peak of the cross-correlation
surface indicates the displacement between the images.

This method has been widely used for measuring the
displacement of both glaciers and rockglaciers (e.g., Kääb,
2002, 2005; Kaufmann and Ladstädter, 2003; Debella-Gilo
and Kääb, 2010).

3.2 Orientation correlation

The second matching method is based on the orientation cor-
relation method (OC), which is developed by Fitch et al.
(2002). We conduct the matching in the frequency domain.
Matching in the frequency domain works with the image fre-
quencies instead of working directly with the image intensi-
ties. Correlation and convolution are related operations, and
convolution in the spatial domain equals multiplication in the
Fourier domain (the convolution theorem) (McClelland et al.,
2003).

When using OC new orientation images are created from
the original images based on the image intensity differences
in both the horizontal x direction and in the vertical y direc-
tion. Central differences are used, except at the edges where

forward and backward differences are used to maintain the
image size. Taking f as the image at time t = 1 and g as the
image at time t = 2, and choosing a complex representation,
the orientation images fo and go are created from

fo(x,y)= sgn(
∂f (x,y)

∂x
+ i

∂f (x,y)

∂y
) (2)

go(x,y) = sgn(
∂g(x,y)

∂x
+ i

∂g(x,y)

∂y
) (3)

wheresgn(x)=
{

0 if |x| = 0
x
|x| otherwise (4)

where sgn is the signum function and i is the complex imagi-
nary unit. The new images fo and go are complex and hence
consist of one real and one imaginary part, where the inten-
sity differences in the x direction represent the real matrix
and the intensity differences in the y direction represent the
imaginary matrix. The orientation images are divided into
matching windows before the matching is conducted. Such
windows should be small enough to avoid having different
displacements inside the same window, but large enough to
get a clear correlation maximum. In this study we use match-
ing windows of 44×44 pixels (11 000 m) for the MODIS im-
agery and 350×350 pixels (5250 m) for the Landsat imagery.
The spacing between the matching windows is the same as
the size of the windows to give a densely populated grid with
non-overlapping, independent measurements. The correla-
tion surface P(x,y) is then computed from

P(x,y)= IFFT

(
Fo(u,v)G∗

o(u,v)∣∣Fo(u,v)G∗
o(u,v)

∣∣
)

(5)

where Fo(u,v) is the Fast Fourier Transform (FFT) of the ref-
erence window from fo(x,y), G∗

o(u,v) is the complex conju-
gate of the FFT of the search window from go(x,y) and IFFT
is the Inverse Fast Fourier Transform. The shift that is needed
to register the two matching windows is found from the posi-
tion of the maximum of the correlation surface (P (x,y)max).

Subpixel accuracy is obtained following the method of Ar-
gyriou and Vlachos (2007). Subpixel displacements in the
x direction dx and in the y direction dy are found using

dx = P(xm +1,ym)−P(xm −1,ym)

2(2P(xm,ym)−P(xm +1,ym)−P(xm −1,ym))
(6)

dy = P(xm,ym +1)−P(xm,ym −1)

2(2P(xm,ym)−P(xm,ym +1)−P(xm,ym −1))
(7)

where P(xm,ym) is the maximum correlation value. This
means that a parabolic function is fitted to the maximum
point and the two surrounding points. When dividing by the
amplitude in Eq. (5), only the phase of the FFT is kept. This
makes the correlation peak narrower and hence the subpixel
accuracy better.

When matching the Landsat images, the orientation im-
ages are low pass filtered in the Fourier domain using a
Hamming-window based finite impulse response (FIR) filter.
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Fig. 2. Landsat 7 ETM+ pan image from 2006 path 216 row 108
used in this study that shows the regular cross-track data voids
caused by the failure of the Scan Line Corrector.

This is done to remove the high frequencies, and after this
filtering the images can be matched using smaller matching
windows than before the filtering is conducted. This implies
that the low frequencies contain the displacement informa-
tion and that the high frequencies represent noise in this par-
ticular case.

Fourier domain methods have some constraints. Firstly,
displacements larger than half the window size cannot be
measured directly due to the quadrant ambiguity problem.
If larger displacements are expected, the images should be
aligned beforehand based on the expected displacement.
Secondly, the window sizes have generally to be larger than
if the matching is done in the spatial domain.

The clear advantages of frequency domain over spatial do-
main methods are that they can be fast if FFT is used, and
that they are not sensitive to image information which is con-
strained to few frequencies. In this study that fact turns out to
be particularly useful, because the Landsat 7 ETM+ images
from 2003 and onward have regular cross-track data voids,
i.e. voids with a very specific frequency (Fig. 2), after a fail-
ure of the Scan Line Corrector (SLC).

3.3 Locational accuracy

This section tries to quantify (i) the errors from co-
registration and (ii) the errors in areas where no ground con-
trol is available.

To quantify the uncertainty of the matching methods,
matching points over stable ground are investigated. We
searched the shift measurements in both x and y direction

Table 2. Root mean square error (RMS) of displacement mea-
surements obtained using frequency domain matching over stable
ground. The number of measurements is indicated by n.

Image pair RMSx RMSy n

m m

MODIS 2002–2006 28.0 38.7 106
MODIS 2006–2008 24.2 26.0 188
MODIS 2006–2009 21.2 35.9 176
MODIS 2002–2009 30.0 36.1 183
Landsat 2001–2006 South 4.72 8.00 71
Landsat 2006–2009 South 7.75 10.6 47
Landsat 2002–2006 North – – –
Landsat 2006–2008 North – – –

for trends. Only zeroth order trends (i.e. mean horizontal
shifts) are found to influence our level of accuracy, and these
translations are therefore subtracted from the measured pixel
shifts. The pixel shifts are in the order of meters for most of
the MODIS images. The only exception is the 2002 image
which is shifted 465 m relative to the others. For Landsat the
shifts range from 6 m to 55 m. The uncertainty of the match-
ing methods is given by the root mean square error (RMS) of
the pixel shifts of stable ground, see Table 2. Note, that the
pixel location errors resulting from errors in the DEM used
for orthorectifying of the MODIS data are systematic in di-
rection (cross-track; roughly east-west), but small (less than
0.2 pixels) and with a random sign from DEM elevations be-
ing both too high and too low.

The Landsat images over Larsen C North from Table 1 and
Fig. 1 cover not enough stable ground to detrend the data. In-
stead, images from the neighbour path 217 row 106 are used
to co-register the images. These neighbour images are taken
on 6 April 2002 and 11 January 2006. They overlap with
some of the same grounded, low-velocity ice shelf area as
the Larsen C North images. In addition they contain stable
ground so that they can be co-registered. These neighbour
images (i.e. path 217 row 106) are first co-registered using
the stable ground present. Then, the ice velocities over the
grounded low-velocity area are found, and these velocities
are finally used to co-register the Larsen C North images ap-
plied in this study. Because the mean velocity is 12 m a−1

the error arising from assuming identical velocity in 2006–
2009 is considered small enough for this use. Matching of
another neighbour image pair, 3 February 2006 and 25 De-
cember 2008 from path 218 row 107, confirmed the 2006–
2008 velocities from Larsen C North with a mean difference
of −1.9 m a−1. The uncertainty is considered to be some-
what higher than for the Landsat images with stable ground
present in the images, and a maximum uncertainty of 15 m in
both x and y direction in both periods is assumed.

Outside the areas with stable ground, the attitude varia-
tions (variations in the roll, pitch and yaw) of the satellite
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may contribute to reduced accuracy. The potential for re-
duced accuracy can be analyzed based on the characteris-
tics of the sensors. Sensors aboard MODIS and Landsat are
whiskbroom sensors that scan pixel by pixel unlike linear ar-
ray pushbroom sensors. Data from whiskbroom systems are
therefore exposed to both along-track and cross-track geo-
metrical distortions due to attitude variations. These errors
are not fully accounted for in the RMS of stable ground, be-
cause this RMS only comes from limited areas in the images.
Wolfe et al. (2002) estimate the geolocation accuracy for
MODIS to be 50 m. For Landsat the geolocation accuracy is
250 m and the image-to-image registration accuracy is 7.3 m
according to NASA (1996). Lee et al. (2004) confirmed that
the image-to-image registration accuracy is within, and actu-
ally better, than the pre-launch requirement.

In the measured displacements over stable ground and over
the ice shelf, obvious matching outliers are removed man-
ually. Because there is displacement variation over the ice
shelf, but not over the stable ground, it is possible that some-
what fewer of the mismatches are filtered out over the ice
shelf compared to the stable ground. It is therefore possible
that the accuracy decreases slightly over the ice shelf. This
effect is, however, difficult to quantify.

Mismatches could also be removed automatically using
the signal-to-noise ratio (SNR) because correct matches
have generally a stronger correlation peak compared to er-
roneous matches. In this study, a threshold of approxi-
mately RMS > 5 would have removed most of the erroneous
matches and left most of the correct matches. However, SNR
is not used in this test study because we wanted to have full
control over the selection process to avoid removal of any
correct matches.

Subsequently, we estimate the total uncertainty of our dis-
placement measurements to be the root sum square (RSS)
of (i) the RMS of the matches on stable ground and (ii) the
above image-to-image registration accuracy. The RMS from
matching over stable ground and the registration accuracy are
then assumed to be independent. Since this image-to-image
registration accuracy is not known to us for MODIS we use
the total geolocation accuracy of 50 m for this sensor instead.
That way, our uncertainty estimate for MODIS resembles a
worst-case scenario. It is assumed that all the individual dis-
placement matchings are dependent (n = 1), which is a sec-
ond accuracy worst-case scenario.

A further algorithm test could have been performed by re-
sampling the 15 m Landsat data to the 250 m MODIS resolu-
tion and comparing the matching results based on both reso-
lution levels of the else identical images. This test was, how-
ever, not possible in our study due to the SLC off data voids
in the Landsat data that dominated any resampled product.

Fig. 3. Average annual velocity between 2002 and 2006 measured
with orientation correlation on MODIS images. Blue and green col-
ors indicate that these measurements are compared with Landsat
measurements. The underlying MODIS image of 2009 is prepro-
cessed by Scambos et al. (2009).

4 Results for Larsen C

4.1 Orientation correlation

OC produces a densely populated network of correct matches
between the MODIS images from 2002 and 2006 (Fig. 3)
and in particular between the MODIS images from 2006 and
2009 (Fig. 4). Also the two images from 2002 and 2009,
nearly seven years apart, are correctly matched for most of
the ice shelf (Fig. 5). The ice flows relatively slowly in the
inner parts of the ice shelf and accelerates as it approaches
the ice shelf edge to the east, as is to be expected. We found
highest velocities for the central to southern outer part of the
ice shelf, with velocities of approximately 700 m a−1. The
directions of the flow generally fit the crevasse pattern and
the peninsulas.

The displacements derived from MODIS images for the
period 2002–2006 and the period 2006–2009 are summed
up and compared with displacements directly derived from
the MODIS images of 2002 and 2009. Only windows that
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Table 3. Average velocity and velocity difference measured from MODIS and Landsat images for 6 points in the Larsen C North section and
28 points in the Larsen C South section. The RMS of the average is also given.

Average velocity Average velocity Average acceleration Average velocity Average velocity Average acceleration
1st period 2nd period 2nd period–1st period 1st period 2nd period 2nd period–1st period

south south south north north north
m a−1 m a−1 m a−1 m a−1 m a−1 m a−1

MODIS 430.2±177.9 427.1±172.5 −3.1±38.0 383.7±22.9 425.8±39.1 42.0±21.3
Landsat 445.6±157.4 453.8±159.6 8.2±20.9 370.8±20.1 397.9±30.0 27.1±14.5
MODIS – Landsat −15.4±39.6 −26.7±40.1 −11.3±44.4 13.0±20.5 27.9±33.5 14.9±22.7

Table 4. Uncertainty of the measured MODIS and Landsat displacements and accelerations. The root sum square (RSS) of the uncertainties
are also given and can be compared with the deviations given in the lower row of Table 3.

Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty Uncertainty
1st period 2nd period 2nd period–1st period 1st period 2nd period 2nd period–1st period

south south south north north north
m a−1 m a−1 m a−1 m a−1 m a−1 m a−1

MODIS ±18.1 ±21.8 ±28.3 ±18.1 ±21.1 ±27.8
Landsat ±2.86 ±4.96 ±5.73 ±6.01 ±7.63 ±9.71
RSS ±18.3 ±22.4 ±28.9 ±19.1 ±22.4 ±29.4

are correctly matched (from manual inspection) in all three
matchings are used for the multitemporal comparison. Over
the ice shelf the 7-year average displacement difference is
−36.3 m with an RMS of 149.6 m (n = 70). In the flow direc-
tion the average displacement difference is −49.0 m with an
RMS of 183.8 m, and in the transverse direction it is 21.5 m
with an RMS of 141.4 m. Over stable ground the average
pixel shift is 33.5 m and the RMS is 44.9 m. The uncertainty
of this comparison, calculated using the RSS of the RMS
over stable ground (Table 2) and the image-to-image regis-
tration accuracy from literature, is ±117 m.

Velocity measurements on the Landsat images are mostly
restricted to the crevassed areas (Figs. 6 and 7). As for the
MODIS-derived data, the flow directions obtained from the
repeat Landsat images fit the crevasse pattern and flow obsta-
cles, and the velocity increases as the ice moves off the inland
boundary. The sections with the highest measured velocities
on the MODIS images are also covered by the Landsat im-
ages. The latter images also indicate velocities of approxi-
mately 700 m a−1 in this area.

In our procedure it is not possible to directly compare
Landsat-derived and MODIS-derived displacements on a
point-by-point base because we use different window sizes
for Landsat and MODIS, and match the Landsat data in their
original geometry, i.e. not geocoded and orthorectified, in or-
der to avoid resampling artifacts. When comparing MODIS
and Landsat derived velocities, we first select all MODIS
points which have velocity measurements from both periods
2002–2006 and 2006–2009. Then we do the same for the
Landsat points, and at last we select a subset of the Landsat
and MODIS points that are less than 11 km apart (the length

of the sides of one MODIS matching window). This results
in 6 MODIS points (see blue colored arrows in Fig. 3) in
the Larsen C North section and 28 MODIS points (see green
colored arrows in Fig. 3) in the Larsen C South section. For
every MODIS point the average of the Landsat points that
have this MODIS point as their closest neighbour is calcu-
lated. The average Landsat and MODIS derived velocity is
then compared. The results of the comparison can be seen in
Table 3 and the uncertainties of the results in Table 4. Land-
sat measures higher average velocities than MODIS in the
south, and lower average velocities in the north. In the south
the velocities were not significantly different in the two pe-
riods, but in the north both sensors measured a velocity in-
crease from the first period to the second period. Due to par-
ticularly little longitudinal strain in this area the acceleration
observed is considered a real acceleration and not a result of
a longitudinal velocity gradient that would bias the results
from matching moving target features at stable matching ge-
olocations. The RMS of the average velocities is highest in
the south. This reflects the fact that the southern section cov-
ers larger velocity gradients.

A difference in average annual velocity between the peri-
ods 2002–2006 and 2006–2009 is evident from the MODIS
images also for the remnants of Larsen B. The four points
measured on this ice shelf reveal a mean speed increase of
135 m a−1 with an RMS of 26.3 m a−1. This is an increase
of approximately 30%. The uncertainty here is ±28.3 m a−1.
Other velocity changes are not statistically significant (i.e.
bigger than the uncertainties given in Table 4) from the
MODIS measurements.
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Fig. 4. Average annual velocity between 2006 and 2009 measured
with orientation correlation on MODIS images.

4.2 Comparison between orientation correlation and
normalized cross-correlation

Normalized cross-correlation (NCC) does not produce such
a dense velocity field as OC when the matching is conducted
in a regular grid using the same window size as used for OC
(44×44 pixels). This can be seen if comparing Fig. 4 show-
ing the velocity field created by the OC and Fig. 8 showing
the velocity field created by NCC. These two velocity fields
are obtained by matching the same images with the same po-
sition and size of the matching windows. OC produces 332
correct velocity vectors out of 471 possible (70%), whereas
NCC produces only 129 correct vectors (27%). The RMS
of the NCC measurements over stable ground are similar to
the RMS of the OC measurements (27.8 m in the x direction
and 29.5 m in the y direction). The mean velocity differ-
ence for points on the ice shelf measured using both meth-
ods is 19.4±63.4 m a−1 (n = 75), OC measuring the higher
velocities on average. The mean velocity difference over sta-
ble ground is 15.1±6.9 m a−1 (n= 108), NCC measuring the
higher velocities on average. The uncertainty of the OC is
±21.8 m and the uncertainty of the NCC is ±21.5 m.

Fig. 5. Average annual velocity between 2002 and 2009 measured
with orientation correlation on MODIS images.

NCC gives correct matches even if the window size is de-
creased. On the MODIS images, window sizes of 15×15
pixels still give correct matches in areas with good contrast,
for example crevassed areas (Fig. 9). However, the RMS of
the measurements over stable ground increases quickly, and
when a window size of 15×15 pixels is chosen, the RMS is
as high as 75 m. Also this method measures an increase in ve-
locity on the remnants of Larsen B from 2002–2006 to 2006–
2009. The velocity increase is 124.4 m a−1 with an RMS of
60.1 m a−1 (n = 11). The uncertainty of this comparison is
43.5 m a−1.

4.3 Radiometric resolution

From autumn 2005 and onward, the MODIS images from
NSIDC are also available with the original MODIS 12 bit
radiometric resolution, in addition to 8 bit that are available
for all dates. Both frequency and spatial domain matching
methods are therefore tested on images with different radio-
metric resolution in order to assess matching differences be-
tween 12 bit images and 8 bit images. Matching with OC
and a window size of 44×44 pixels on the 12 bit images
from 5 January 2006 and 28 November 2008 produces 390
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Fig. 6. Average annual velocity between 2006 and 2008 measured
with orientation correlation on Landsat 7 ETM+ pan images from
path 216 row 107 over Larsen C North. Underlying Landsat image
of 2002.

Fig. 7. Average annual velocity between 2006 and 2009 measured
with orientation correlation on Landsat 7 ETM+ pan images from
path 216 row 108 over Larsen C South. Underlying Landsat image
of 2002.

correct matches, whereas the 8 bit images produce 346 cor-
rect matches using the same matching windows. This means
that the 8 bit images produce 11.3% fewer correct matches
than the 12 bit images. A total of 7 points are correctly
matched using the 8 bit images but not correctly matched us-

Fig. 8. Average annual velocity between 2006 and 2009 measured
with normalized cross-correlation using a window size of 44×44
pixels (the same as used for the orientation correlation) on MODIS
images.

ing the 12 bit images. Matching with NCC and a window size
of 15×15 pixels at manually pre-selected points with good
visual contrast produces 322 correct matches on the 12 bit
images. When the matching is repeated at the exact same lo-
cations using the 8 bit images, 24 of these points (7.5%) do
not produce correct matches. Vice-versa, matching at manu-
ally pre-selected points using NCC on the 8 bit images gives
276 correct matches, and when the matching is repeated at
the same locations using the 12 bit images, 11 of the points
(4.0%) produce mismatches. The RMS of the measurements
over stable ground does not change when the 8 bit images are
used instead of the 12 bit images, presumably reflecting the
good contrast present over the stable areas.

4.4 Streamlines

Streamlines are hypothetical particle tracks interpolated from
a velocity field under the assumption that the velocity field
does not change over time (Kääb et al., 1998). Here, stream-
line starting points for time t (0) are selected manually and
the algorithm interpolates the velocity at these points. The
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Fig. 9. Average annual velocity between 2006 and 2009 measured
with normalized cross-correlation using a window size of 15×15
pixels on MODIS images.

particle position at time t (1) and further for times t (i+1) are
computed by adding the interpolated velocity vectors to the
particle position obtained from the previous iteration step.
Parameters are set for the number of velocity measurements
contributing to the interpolation. Thresholds are set for stop-
ping streamline interpolation either when the velocity falls
below the above velocity RMS or for an insufficient number
of velocity measurements around the interpolation location.
The result of the procedure is theoretical particle positions
at each time step, i.e. positions with a time marker. Due to
the assumption of temporal invariance of the velocity field,
streamlines do not necessarily resemble real particle trajec-
tories. Comparing computed streamlines to actual cumula-
tive flow features such as longitudinal flowlines or crevasse
patterns is an additional accuracy check, but it can also be
used to indicate if and to what extent the assumption of a
steady-state velocity field actually reflects reality. Lack of
coincidence between the streamlines interpolated from the
current velocity field with flow features reflecting past or cu-
mulative flow conditions hints to past changes in the flow
field. Streamlines can also, under the restriction that they do

not resemble real particle trajectories, be used for surface age
estimates.

Here, streamlines are calculated from the 2006–2009
MODIS displacement measurements. The travel time of an
ice particle under present-day flow conditions, i.e. a kind of
relative age of ice within the Larsen C ice shelf is calculated
using inverse streamlines going from the ice shelf edge to-
ward the approximate inland boundary and stopping under
above thresholds (not shown). The maximum travel time is
ranging from 450 years to 550 years for the central areas of
the ice shelf. Along-flow streamlines starting at manual se-
lected points around the inland boundary are also compared
to the flowlines of the ice shelf (Figs. 10 and 11) to detect
possible changes in the flow field. Computed streamlines and
visible flowlines are mostly well aligned, confirming the high
accuracy of the velocities matched, and implying at the same
time that there has been no or little directional change in the
ice-shelf flow over the last decades or few centuries. How-
ever, the four southernmost streamlines deviate significantly
from the visible flowlines. This could be caused by system-
atic errors in the measurements only if the systematic errors
were twice as large as the measurement uncertainty and lo-
calized to one region. The 2006–2009 velocity field has the
best quality, but we also investigated the streamlines from the
2002–2006 and 2006–2008 velocity fields to see if the same
deviations are present. We found that they were, but the devi-
ations were somewhat smaller. Hence, only systematic errors
in this particular part of the 2006 image could have caused
the deviations if it is not caused by a real change in flow di-
rection. A possible explanation for a change in flow direction
is that one or more of the glaciers Lewis Glacier, Ahlmann
Glacier, Bills Gulch and Daspit Glacier have changed their
discharge and thus diverted the ice flow from their neigh-
bours. Alternatively, or in addition, it is also possible that
considerable changes in calving front position could impact
the flow direction on the ice shelf. Closer investigation of this
effect would, however, require calving front positions many
tens or some hundreds of years back in time because the
flow features observed to date might reflect such long time
span. During our observational period 2002–2009, the calv-
ing front position at the end of the southern streamlines in
question constantly advanced, whereas a large iceberg broke
off in front of the northern streamlines in late 2004. Accord-
ing to Skvarca (1994), who studied the calving front position
between 1975 and 1986–1989, two giant ice bergs calved off
in front of the southern and middle streamlines in 1986. Also
in front of the northern streamlines an ice berg broke off be-
tween 1975 and 1988.

5 Results for other ice shelves

In order to test the applicability and performance of the
presented method for monitoring ice shelves dynamics in
Antarctica in general, we also match MODIS images of other
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Fig. 10. Streamlines calculated from the 2006–2009 displacement measurements. Yellow dots are separated by 10 years of displacement and
blue dots by 100 years of displacement. Underlying MODIS image is from 2008 and is preprocessed by Scambos et al. (2009).

Fig. 11. Zoom-in of streamlines calculated from the 2006–2009
displacement measurements. Yellow dots are separated by 10 years
of displacement and blue dots by 100 years of displacement. The
black lines mark the flowlines.

ice shelves. The objective of this study step is to indicate for
what ice shelves or ice-shelf sections the method works and
to characterize the necessary ground conditions. Larsen C
exhibits comparably many flow features, which makes the
matching successful. In addition, it is also comparably fast
flowing, which favours detection of displacements at a sta-
tistically significant level. Other ice shelves may be more
challenging in these respects.

Velocity fields for the ice shelves Ronne, Filchner, Riiser-
Larsen, Fimbul, Amery, West, Shackleton, Mertz, Ross and
Getz are derived. This is done for two different periods to

Table 5. MODIS images used for deriving velocities and velocity
changes for ten other ice shelves in Antarctica.

Ice shelf Time 1 Time 2 Time 3

Ross West 28 Dec 2001 5 Dec 2005 8 Dec 2008
Ross East 6 Oct 2002 25 Oct 2005 27 Dec 2008
Getz 21 Jan 2003 1 Mar 2006 11 Feb 2009
Ronne 3 Dec 2002 4 Oct 2006 13 Oct 2008
Filchner 3 Dec 2002 23 Feb 2006 9 Mar 2009
Riiser-Larsen 19 Feb 2003 29 Jan 2006 14 Feb 2009
Fimbul 2 Mar 2003 1 Mar 2006 11 Mar 2009
Amery 20 Feb 2002 3 Mar 2006 19 Feb 2009
West 20 Jan 2003 16 Mar 2006 19 Mar 2009
Shackleton 26 Feb 2003 20 Feb 2006 23 Feb 2009
Mertz 15 Mar 2002 11 Mar 2006 2 Mar 2009

also identify possible velocity changes. The images used are
listed in Table 5. Velocity fields are shown in Figs. 12 and
13. Displacement matches are generated for the entire im-
ages shown, but non-significant displacements (i.e. displace-
ments of the slow moving parts) are removed to improve the
readability and so are also clear mismatches as revealed by
manual inspection. The parts of the ice shelves not covered
by velocity arrows in the figures are hence not matched cor-
rectly or show no movement. Generally the method produces
densely populated velocity fields for all ice shelves. Gaps in
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Fig. 12. The velocity fields of four ice shelves in Antarctica derived from repeat MODIS images using orientation correlation. (a) Ross
(west),(b) Ross (east), (c) Ronne, (d) Filchner, (e) Fimbul. The arrow in the upper right corner indicate a velocity of 500 m a−1. Note that
the scale of the arrow changes from subfigure to subfigure. The underlying images are preprocessed by Scambos et al. (2009).
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Fig. 13. The velocity fields of six ice shelves in Antarctica derived from repeat MODIS images using orientation correlation. (a) Getz (east),
(b) Amery, (c) Riiser-Larsen, (d) Mertz, (e) Shackleton, (f) West. The arrow in the upper right corner indicate a velocity of 500 m a−1. Note
that the scale of the arrow changes from subfigure to subfigure. The underlying images are preprocessed by Scambos et al. (2009).
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the velocity fields appear mostly where too few radiomet-
ric contrast features are present. This is evident for parts of
the Fimbul (Fig. 12e), Getz (east) (Fig. 13a), Riiser-Larsen
(Fig. 13c) and Shackleton (Fig. 13e) ice shelves. For Ross
(east) (Fig. 12b) snow dunes seem to distract the matching
and thus cause mismatches, and for Filchner (Fig. 12d) there
are some clouds present in the images used. We also tried
to match the Wilkins and Sulzberger ice shelves, but most
parts of Wilkins had too little radiometric contrast and on
Sulzberger most of the velocities were too small to be signif-
icant with the level of uncertainty given by the method and
image type used. Mean and maximum velocity for the ice
shelves is given in Table 6.

Three ice-shelf sections experienced small accelerations
from the first period to the second period. Drygalski ice
tongue northwest of Ross ice shelf (Fig. 12a) had a mean
speed increase of 34.8 m a−1 (5%). The uncertainty of
this comparison is ±32.4 m a−1. The ice to the west of
the main ice stream of Shackleton ice shelf (Fig. 13e) in-
creased in speed by 63.8 m a−1 (15%) with an uncertainty
of ±45.8 m a−1. Mertz (Fig. 13d) increased its speed by
51.2 m a−1 (4%), with an uncertainty of ±42.1 m a−1. Ve-
locity measurements of Drygalski ice tongue from January
1990 to January 1992 (Frezzotti et al., 2000) are available
through the Antarctic Ice Velocity Data (VELMAP) project
of NSIDC (http://www.nsidc.org/data/velmap). They found
that the mean speed of the ice tongue was 719 m a−1, but
also report that the difference between these measurements
and GPS measurements was ±70 m a−1. This is compara-
ble to the velocities measured in this study (647 m a−1 from
2001–2005 and 682 m a−1 from 2005–2008) because of the
large uncertainties.

The western part of the West ice shelf (Fig. 13f) deceler-
ated from the first period to the second. In the first period
the mean speed was 762.1 m a−1 and in the second period
the mean velocity for the same points was 570.7 m a−1. This
corresponds to a deceleration of approximately 25%. The
uncertainty of this comparison is 39.5 m a−1. Matching us-
ing NCC on the MODIS images and also manual matching of
Landsat and ASTER images confirmed the MODIS-derived
deceleration.

6 Discussion

The comparison between MODIS and Landsat derived ve-
locities reveals that MODIS derived velocities are accurate
enough to derive velocities for ice shelves, even for a few
years of separation between the images. These velocities can
also be used to study dynamic changes. This is possible, in
spite of the large pixel size of 250×250 m, because the ac-
curacy of the measurements is approximately 1/4 pixel using
orientation correlation.

Table 6. Mean and maximum velocity for the ten other ice shelves
in Antarctica.

Ice shelf Mean velocity Maximum velocity
m a−1 m a−1

Ross 580 1100
Getz 420 1080
Ronne 660 1420
Filchner 780 1400
Riiser-Larsen 760 1230
Fimbul 450 770
Amery 400 1200
West 460 770
Shackleton 850 1790
Mertz 1100 1340

Both clouds, surface changes and lack of contrast can
hinder successful matching. For the MODIS matching on
Larsen C in the first period 2002–2006 it is mostly surface
change between the two image acquisitions that hinders suc-
cessful matching, but also lack of radiometric contrast. For
the MODIS matching in the second period 2006–2009, the
areas that are not correctly matched are mostly obscured by
clouds. Successful matching of Landsat images is mainly
hindered by the lack of radiometric contrast.

Average difference and RMS between the results when
summing up the MODIS measurements from 2002–2006 and
2006–2009, and comparing them to the MODIS measure-
ments directly for 2002–2009, are larger over the ice shelf
and smaller over stable ground. The most important reason
for this is that the velocity measurements are repeated on
points with fixed geolocation, i.e. points that do not follow
the ice movement (cf. remark on longitudinal strain in the
results section, subsection on orientation correlation). Thus,
longitudinal strain happening as the ice moves toward the ice
shelf front is not accounted for. Another reason for the larger
difference on the ice shelf is that it is easier to identify erro-
neous matches over stable ground than over the moving ice.
It is more difficult to exclude mismatches from a nominally
varying velocity field (ice shelf) than from a nominally con-
stant one (stable ground). This is especially a problem where
there are few measurements in close vicinity, which is the
case for matching of the 2002 and 2009 images.

The difference in measured displacements between OC
and NCC probably arises because the two methods match
differently. The matching result will for instance be different
if there is one strong contrast feature in the image. NCC will
then match this feature, but OC is dependent on several fea-
tures with different frequencies and with the same displace-
ment.

Matching windows have to be chosen to be considerably
larger (in pixels) for the Landsat images compared to the
MODIS images in order to obtain successful matches. The
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main reason for that is due to the typical large wavelength
of contrast features on Larsen C such as crevasses. In the
case of window sizes smaller than this density, most mov-
ing window positions simply contain not enough radiomet-
ric contrast to enable successful matching. In addition, the
Landsat data have to be filtered to remove high frequencies,
because the Landsat 7 ETM+ pan images contain detector
noise of several digital numbers (DN), much more than the
MODIS data, as can easily be explored over the vast low-
contrast areas on the images. This high noise level within the
15 m ETM+ pan data compared to the 250 m MODIS data is
a direct consequence of the much smaller instantaneous field
of view and related weaker SNR in the detector. The high
noise level in the ETM+ pan data requires relatively larger
matching window sizes. It will be interesting to test how the
potential gain in matching performance from using less noisy
30 m multispectral ETM+ or TM data relates to the potential
loss in matching performance due to the reduced spatial res-
olution of 30 m in contrast to 15 m. In addition, using 30 m
data instead of 15 m ones would offer the possibility to apply-
ing Landsat TM5 data instead of the SLC off affected ETM+
data. Such recent TM5 data after 2003 are, though, not avail-
able for Larsen C.

Deriving velocities from MODIS and Landsat images are
both based on tracking of surface features, and are hence not
completely independent methods. If surface features change
their shape over the observational period in a way that intro-
duces a systematic bias, this bias would affect the displace-
ment measurements from both methods. Only a completely
independent method, which was not available to us, could
rigorously test the results.

Accuracy relative to pixel size is poorer for the Land-
sat 7 ETM+ pan images compared to the MODIS images.
This is mainly because the accuracy of the Landsat sensor
is poorer, and because of the above sensor noise, which re-
quires low-pass filtering. Low-pass filtered images give a less
pronounced correlation peak, on which then the derivation of
subpixel accuracy has to rely on.

OC operated in the frequency domain is better suited for
image matching in this particular study. It produces more
correct matches than NCC operated in the spatial domain for
the MODIS images. It is capable of matching Landsat im-
ages that have regular data voids after the failure of the SLC
in 2003. OC is also faster than NCC. The clearest advan-
tage of NCC against OC is that the size of the matching win-
dows can be smaller, and thus more independent, i.e. non-
overlapping displacements can be measured. However, re-
duced window size leads, in turn, to reduced accuracy. When
matching low resolution images the best possible accuracy is
needed in order to obtain meaningful results. In other studies
where better spatial resolution of the velocity field is needed
over best possible accuracy, NCC can be a better choice.

Images with 12 bit radiometric resolution are better suited
for image matching in this area than images with 8 bit radio-
metric resolution because they produce more correct matches

using both OC and NCC. It is therefore possible that areas
that give no correct matches using 8 bit images can give cor-
rect matches if 12 bit images are used instead. However,
8 bit images give correct matches in most of the areas, and
unless measurements over a relatively featureless area are
needed, they produce satisfying results. Some points are even
matched with the 8 bit images that are not matched correctly
with the 12 bit images. These can be mismatches that are not
revealed by our selection procedure. However, the reduced
noise level in 8 bit images compared to 12 bit images from
the same sensor will also lead to more robust matches in 8 bit
data. In the figures, there seems to be a difference in the
effect of using 12 bit images instead of 8 bit images between
OC and NCC. However, this is just an apparent, not necessar-
ily a real difference because NCC is matched on manually se-
lected points in high-contrast areas, whereas OC is matched
in a regular grid where the contrast may also be low. NCC
matching in a regular grid with large window sizes gives too
few matches for the MODIS images applied in our study.

It is possible that creating a 12 bit radiometric resolution
image from the original 2002 MODIS data would have in-
creased the number of MODIS matches in the first period
due to more contrast. However, since the difference between
12 bit and 8 bit resolution turned out to be small, this is not
done.

Co-registering images before the matching procedure im-
proves the results, both when it comes to the accuracy of
the measurements and the number of correct measurements.
This is particularly important for the Landsat images which
only have an absolute geolocation accuracy of 250 m, or
16.7 pixels (NASA, 1996). In order to get more correct
matches on the ice shelf, the images were sometimes also
aligned locally based on an assumed first-order displacement
or a first matching iteration.

In this study we only use forward tracking when we per-
form the matching. This means that a window from time 1
is searched for in the image from time 2 and not vice versa,
which would be called backward tracking. These two differ-
ent methods can potentially give different results, especially
if the number of surface features is sparse. On Larsen C the
surface features are usually clustered, so that where there is
enough contrast to get a match, this is based on several sur-
face features. In addition the displacement is very small com-
pared to the window size, so that it is likely that both forward
tracking and backward tracking would be based on the same
surface features and thus give the same results.

The presented method works well on most parts of the ice
shelves investigated. The main factor that hinders successful
matching during cloud-free conditions is the lack of radio-
metric contrast features, mostly flow features. Also snow
dunes can be a problem when they cover the flow features
in one of the images. Because of the uncertainty of the dis-
placement measurements, some ice shelves actually showed
velocities below the significance level.
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Both Skvarca (1994) and Glasser et al. (2009) have con-
ducted velocity measurements on Larsen C. Skvarca (1994)
found that the heavily crevassed area just north of Kenyon
Peninsula (see Fig. 1 for location) moved with velocities
ranging from 430 to 550 m a−1 between 1975 and 1986, the
velocities increasing as the ice moved seawards. In the same
area we find velocities ranging from 410 to 630 m a−1. Our
results are therefore consistent with previous results in this
area. Glasser et al. (2009) measured the velocities between
2002 and 2007 in a crevassed area close to the ice shelf edge
in the middle of the ice shelf by an unspecified method. They
measured a mean velocity of 640 m a−1 in this area. We mea-
sure velocities of 670 m a−1 in both periods, which is also
consistent with their measurements in this area.

The acceleration that is observed at Larsen B and southeast
of Churchill Peninsula can be put in context with the eleva-
tion decrease that Shepherd et al. (2003) measured between
1992 and 2001. The acceleration is found in the areas where
also the largest elevation decrease was found. It is therefore
likely that the acceleration can be attributed to the reduced
backstress that a thinning ice shelf causes. This has been ob-
served earlier for tidewater glaciers on the Antarctic Penin-
sula (Pritchard and Vaughan, 2007). Large calving events in
front of the accelerating part could also explain the acceler-
ation. Such calving events were searched for in the satellite
images, but only a calving event in late 2004 just south of the
accelerating area was found.

Glasser et al. (2009), who studied the surface structure of
the Larsen C ice shelf from features such as crevasses and
flowlines, did not see any large changes in the surface struc-
ture of the ice shelf between 1963 and 2007, and concluded
that the ice shelf is stable. It is therefore likely that the accel-
eration seen so far in this northern part is too small to have
an impact on the visible surface structures. It is important to
keep in mind that Glasser et al. (2009) only looked at changes
from 1963 to 2007, whereas when we compare streamlines
and flowlines we can possibly see changes from the last cen-
turies, which is the time it takes for ice to flow across the ice
shelf.

The most likely explanation for the deceleration of the
West ice shelf is that the ice shelf is already detached from
its contributing glaciers. The satellite images support this hy-
pothesis because there is a intersection going across the flow
direction in the inner part of the ice shelf where there are no
flow features. However, the detached part is probably still
grounded and therefore not an iceberg.

7 Conclusions and outlook

We have demonstrated that repeat optical MODIS satellite
images are well suited for measuring and monitoring veloci-
ties on Antarctic ice shelves in spite of their low spatial res-
olution of 250 m. This is done by comparing velocities de-
rived from MODIS images over the Larsen C ice shelf with

velocities derived from Landsat 7 ETM+ pan images with a
spatial resolution of 15 m. The results agree well. For the pe-
riod 2002–2006 the difference between MODIS and Landsat
derived velocities are −15.4 m a−1 and 13.0 m a−1 for two
sections on the ice shelf, and for the period 2006–2009 it is
−26.7 m a−1 and 27.9 m a−1 for the same sections. The un-
certainties of the method are ±18.3 m a−1 and ±19.1 m a−1

for the first period, and ±22.4 m a−1 and ±22.4 m a−1 for the
second period. Uncertainties are calculated as the RSS of the
RMS of the displacement measurements over stable ground
and the image-to-image registration accuracy from the liter-
ature.

It is possible to obtain better results from matching
MODIS images than obtained here. In this study we chose
MODIS images with small amount of clouds acquired as
close as possible in time to the Landsat images. Images with
less clouds and of better radiometric quality were available,
but then the time separation between the MODIS and the
Landsat images would have been larger. Short time separa-
tion between MODIS and Landsat images was considered to
be more important than maximizing the number of matches
for this validation study.

Both OC operating in the frequency domain and NCC op-
erating in the spatial domain are tested for matching the im-
ages. OC is faster, gives more correct matches, and can
match images with regular noise because it is not sensi-
tive to information restricted to few frequencies. The latter
makes it possible to match Landsat 7 images with striped
data voids after the failure of the SLC. NCC can match im-
ages with smaller matching window sizes than OC. However,
this reduces the accuracy of the measurements. In situations
where small window sizes are important, for example where
the velocity varies over short distances, NCC can produce
a higher resolution velocity field, but the accuracy will then
be reduced. In this study both accuracy, number of correct
matches and insensitivity to information constrained to few
frequencies were important. Therefore OC produced the best
results both for MODIS and Landsat images. In total, we
achieved a sub-pixel accuracy of about 1/4 of a pixel for
matching displacements based on repeat MODIS data.

The remnants of Larsen B and one section in the north
of Larsen C accelerated from the 2002–2006 period to the
2006–2009 period. These areas also thinned between 1992
and 2001 (Shepherd et al., 2003), which can have reduced
the backstress and thereby caused the acceleration. However,
these changes have so far not changed the surface structure of
the ice shelf in a visually obvious way (Glasser et al., 2009).

From a deviation between calculated streamlines and flow-
lines visible in the MODIS images of Larsen C we find that
there is a possible change in discharge from one or more of
the glaciers Lewis Glacier, Ahlmann Glacier, Bills Gulch and
Daspit Glacier. The deviation between streemlines and flow-
lines could also be caused by a considerable change in calv-
ing front position. For the rest of the ice shelf the streamlines
and flowlines agree well, indicating stable flow direction over
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the ice particle travel time. The same streamlines indicate a
travel time of the ice of the Larsen C ice shelf between the
inland boundary and the ice edge of up to about 450 to 550
years. We applied our method successfully to ten other ice
shelves around Antarctica and present an initial selection of
ice shelves that could be monitored that way, confirming that
the method developed here is, indeed, capable for Antarctic
ice shelf velocity monitoring in general.

Our study opens for a new strategy that complements ex-
isting approaches, mainly based on SAR interferometry and
tracking, to monitor and better understand dynamics, calving
rates and stability of ice shelves around Antarctica. In ad-
dition to the MODIS data tested here, other low-resolution,
but large coverage and high repeat-rate sensors such as ESA’s
Envisat MERIS are available for this purpose.

Acknowledgements. Special thanks are due to Wolfgang Rack, an
anonymous referee, Mauri Pelto, and the paper’s editor, Jonathan
Bamber, for their detailed, thoughtful and constructive comments.
MODIS data are courtesy of NASA, and were prepocessed
by Scambos et al. (2009) and obtained from NSIDC through
http://www.nsidc.org. Landsat data are courtesy of USGS and were
obtained through http://glovis.usgs.gov. We are grateful to these
institutions for making their unique data available. We are also
grateful to the NASA GSFC MODIS team for their insights into
MODIS orbits. This study is funded by The Research Council of
Norway (NFR) through the CORRIA project (no. 185906/V30)
and serves in addition as test study for the ESA DUE GlobGlacier
project and the NFR IPY Glaciodyn project.

Edited by: J. L. Bamber

References

Argyriou, V. and Vlachos, T.: Quad-tree motion estimation in the
frequency domain using gradient correlation, IEEE Transactions
On Multimedia, 9, 1147–1154, doi:10.1109/TMM.2007.898926,
2007.

Berthier, E., Vadon, H., Baratoux, D., Arnaud, Y., Vincent, C.,
Feigl, K., Remy, F., and Legresy, B.: Surface motion of moun-
tain glaciers derived from satellite optical imagery, Remote Sens.
Environ., 95, 14–28, doi:10.1016/j.rse.2004.11.005, 2005.

Bindschadler, R. A., Fahnestock, M. A., Skvarca, P., and Scambos,
T. A.: Surface-velocity field of the northern Larsen Ice Shelf,
Antarctica, Ann. Glaciol., 20, 319–326, 1994.

Brown, L. G.: A survey of image registration techniques, Comput.
Surv., 24, 325–376, 1992.

Cook, A. J. and Vaughan, D. G.: Overview of areal changes of the
ice shelves on the Antarctic Peninsula over the past 50 years, The
Cryosphere, 4, 77–98, 2010,
http://www.the-cryosphere-discuss.net/4/77/2010/.

De Angelis, H. and Skvarca, P.: Glacier surge after ice shelf col-
lapse, Science, 299, 1560–1562, 2003.
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Kääb, A., Lefauconnier, B., and Melvold, K.: Flow field of Kro-
nebreen, Svalbard, using repeated Landsat 7 and ASTER data,
Ann. Glaciol. 42, 7–13, 2005.

Lee, D. S., Storey, J. C., Choate, M. J., and Hayes, R. W.: Four
years of Landsat-7 on-orbit geometric calibration and perfor-
mance, IEEE T. Geosci. Remote Sens., 42, 12, 2786–2795, doi:
10.1109/TGRS.2004.836769, 2005

MacAyeal, D. R., Scambos, T. A., Hulbe, C. L., and Fahnestock,
M. A.: Catastrophic ice-shelf break-up by an ice-shelf-fragment-
capsize mechanism, J. Glaciol., 49, 22–36, 2003.

Meredith, M. P. and King, J. C.: Rapid climate change in the
ocean west of the Antarctic Peninsula during the second half
of the 20th century, Geophys. Res. Lett., 32, L19604, doi:
10.1029/2005GL024042, 2005.

McClellan, J. H., Schafer, R. W., and Yoder, M. A.: Signal Process-
ing First, Pearson Education, Inc., Pearson Prentice Hall, ISBN:
0-13-120265-0, 2003

NASA, G.: Landsat 7 System Specification, NASA Goddard Space
Flight Center, 1996.

Pritchard, H. D. and Vaughan, D. G.: Widespread acceleration of
tidewater glaciers on the Antarctic Peninsula, J. Geophys. Res.,
112, F03S29, doi:10.1029/2006JF000597, 2007.

Quincey, D. J. and Glasser, N. F.: Morphological and ice-
dynamical changes on the Tasman Glacier, New Zealand, 1990–
2007, Global and Planetary Change, 68, 185–197, doi:10.1016/j.
gloplacha.2009.05.003, 2009.

Rack, W., Rott, H., Siegel, A., Skvarca, P.: The motion field of

www.the-cryosphere.net/4/161/2010/ The Cryosphere, 4, 161–178, 2010



178 T. Haug et al.: Monitoring ice shelf velocities from repeat MODIS data

northern Larsen Ice Shelf, Antarctic Peninsula, derived from
satellite imagery, Ann. Glaciol., 29, 261–266, 1999.

Rack, W. and Rott, H.: Pattern of retreat and disintegration of the
Larsen B ice shelf, Antarctic Peninsula, Ann. Glaciol., 39, 505–
510, 2004.

Rignot, E., Casassa, G., Gogineni, P., Krabill, W., Rivera, A., and
Thomas, R.: Accelerated ice discharge from the Antarctic Penin-
sula following the collapse of Larsen B ice shelf, Geophys. Res.
Lett., 31, L18401, doi:10.1029/2004GL020697, 2004.

Rignot, E., Casassa, G., Gogineni, S., Kanagaratnam, P., Kra-
bill, W., Pritchard, H., Rivera, A., Thomas, R., Turner, J.,
and Vaughan, D.: Recent ice loss from the Fleming and other
glaciers, Wordie Bay, West Antarctic Peninsula, Geophys. Res.
Lett., 32, L07502, doi:10.1029/2004GL021947, 2005.

Rignot, E., Bamber, J. L., Van Den Broeke, M. R., Davis, C., Li, Y.,
Van De Berg, W. J., and Van Meijgaard, E.: Recent Antarctic ice
mass loss from radar interferometry and regional climate mod-
elling, Nature Geosci., 1, 106–110, doi:10.1038/ngeo102, 2008.

Rolstad, C., Amlien, J., Hagen, J. O., and Lunden, B.: Visible and
near-infrared digital images for determination of ice velocities
and surface elevation during a surge on Osbornebreen, a tidewa-
ter glacier in Svalbard, Ann. Glaciol., 24, 255–261, 1997.

Rott, H., Skvarca, P., and Nagler, T.: Rapid collapse of northern
Larsen Ice Shelf, Antarctica, Science, 271, 788–792, 1996.

Rott, H., Rack, W., Skvarca, P., De Angelis, H.: Northern Larsen
Ice Shelf, Antarctica: further retreat after collapse, Ann. Glaciol.,
34, 277–282, 2002

Scambos, T. and Bohlander, J.: Glaciers of Larsen B embayment
area show marked speed-up since shelf collapse, Eos Trans.
AGU, 86, Fall Meet. Suppl., C11C–0829, 2003.

Scambos, T., Ross, R., Bauer, R., Yermolin, Y., Skvarca, P., Long,
D., Bohlander, J., and Haran, T.: Calving and ice-shelf break-up
processes investigated by proxy: Antarctic tabular iceberg evolu-
tion during northward drift, J. Glaciol., 54, 579–591, 2008.

Scambos, T., Bohlander, J., and Raup, B.: “Images of Antarctic ice
shelves”, National Snow and Ice Data Center, online available at:
http://nsidc.org/data/iceshelves\ images/, 2009.

Scambos, T. A., Hulbe, C., Fahnestock, M., and Bohlander, J.: The
link between climate warming and break-up of ice shelves in the
Antarctic Peninsula, J. Glaciol., 46, 516–530, 2000.

Scambos, T. A., Bohlander, J. A., Shuman, C. A., and Skvarca,
P.: Glacier acceleration and thinning after ice shelf collapse in
the Larsen B embayment, Antarctica, Geophys. Res. Lett., 31,
L18402, doi:10.1029/2004GL020670, 2004.

Scambos, T. A., Dutkiewicz, M. J., Wilson, J. C., and Bindschadler,
R. A.: Application of image cross-correlation to the measure-
ment of glacier velocity using satellite image data, Remote Sens.
Environ., 42, 177–186, 1992.

Scherler, D., Leprince, S., and Strecker, M. R.: Glacier-surface ve-
locities in alpine terrain from optical satellite imagery - Accu-
racy improvement and quality assessment, Remote Sens. Envi-
ron., 112, 3806–3819, doi:10.1016/j.rse.2008.05.018, 2008.

Shepherd, A., Wingham, D., Payne, T., and Skvarca, P.: Larsen ice
shelf has progressively thinned, Science, 302, 856–859, 2003.

Skvarca, P.: Fast recession of the northern Larsen Ice Shelf moni-
tored by space images, Ann. Glaciol., 17, 317–321, 1993.

Skvarca, P.: Changes and surface features of the Larsen Ice Shelf,
Antarctica, derived from Landsat and Kosmos mosaics, Ann.
Glaciol., 20, 6–12, 1994.

Skvarca, P., Rack, W., and Rott, H.: 34 year satellite time series
to monitor characteristics, extent and dynamics of Larsen B Ice
Shelf, Antarctic Peninsula, Ann. Glaciol., 29, 255–260, 1999.

Skvarca, P., Raup, B., and De Angelis, H.: Recent behaviour of
Glaciar Upsala, a fast-flowing calving glacier in Lago Argentino,
southern Patagonia, Ann. Glaciol., 36, 184–188, 2003.

Skvarca, P., De Angelis, H., and Zakrajsek, A.: Climatic condi-
tions, mass balance and dynamics of Larsen B ice shelf, Antarctic
Peninsula, prior to collapse, Ann. Glaciol., 39, 557–562, 2004.

Strozzi, T., Luckman, A., and Murray, T.: Glacier motion esti-
mation using SAR offset-tracking procedures, IEEE T. Geosci.
Remote Sens., 40(11), 2384–2391, doi:10.1109/TGRS.2002.
805079, 2002

Turner, J., Colwell, S. R., Marshall, G. J., Lachlan-Cope, T. A.,
Carleton, A. M., Jones, P. D., Lagun, V., Reid, P. A., and Iagovk-
ina, S.: Antarctic climate change during the last 50 years, Int. J.
Climatol., 25, 279–294, 2005.

Vieli, A., Payne, A. J., Du, Z. J., and Shepherd, A.: Numeri-
cal modelling and data assimilation of the Larsen B ice shelf,
Antarctic Peninsula, Philos. T. Roy. Soc. A, 364, 1815–1839,
doi:10.1098/rsta.2006.1800, 2006.

Wolfe, R., Nishihama, M., Fleig, A., Kuyper, J., Roy, D., Storey,
J., and Patt, F.: Achieving sub-pixel geolocation accuracy in sup-
port of MODIS land science, Remote Sens. Environ., 83, 31–49,
2002.

Zitova, B. and Flusser, J.: Image registration methods: a survey, Im-
age Vision Comp., 21, 977–1000, doi:10.1016/S0262-8856(03)
00137-9, 2003.

The Cryosphere, 4, 161–178, 2010 www.the-cryosphere.net/4/161/2010/



II





6.2. ARTICLE II 81

6.2 Article II

Heid, T. and A. Kääb, in press. Evaluation of different existing

image matching methods for deriving glacier surface

displacements globally from optical satellite images, Remote

Sensing of Environment.

81



82 6. PEER-REVIEWED ARTICLES

82



Evaluation of existing image matching methods for deriving glacier surface displacements
globally from optical satellite imagery

T. Heida,∗, A. Kääba

aDepartment of Geosciences, P.O Box 1047 Blindern, 0316 Oslo, Norway
torborgh@geo.uio.no

Abstract

Automatic matching of images from two different times is a method that is often used to derive glacier surface velocity. Nearly
global repeat coverage of the Earth’s surface by optical satellite sensors now opens the possibility for global-scale mapping and
monitoring of glacier flow with a number of applications in, for example, glacier physics, glacier-related climate change and
impact assessment, and glacier hazard management. The purpose of this study is to compare and evaluate different existing image
matching methods for glacier flow determination over large scales. The study compares six different matching methods: normalized
cross-correlation (NCC), the phase correlation algorithm used in the COSI-Corr software, and four other Fourier methods with
different normalizations. We compare the methods over five regions of the world with different representative glacier characteristics:
Karakoram, the European Alps, Alaska, Pine Island (Antarctica) and southwest Greenland. Landsat images are chosen for matching
because they expand back to 1972, they cover large areas, and at the same time their spatial resolution is as good as 15m for images
after 1999 (ETM+ pan). Cross-correlation on orientation images (CCF-O) outperforms the three similar Fourier methods, both in
areas with high and low visual contrast. NCC experiences problems in areas with low visual contrast, areas with thin clouds or
changing snow conditions between the images. CCF-O has problems on narrow outlet glaciers where small window sizes (about
16 pixels by 16 pixels or smaller) are needed, and it also obtains fewer correct matches than COSI-Corr in areas with low visual
contrast. COSI-Corr has problems on narrow outlet glaciers and it obtains fewer correct matches compared to CCF-O when thin
clouds cover the surface, or if one of the images contains snow dunes. In total, we consider CCF-O and COSI-Corr to be the two
most robust matching methods for global-scale mapping and monitoring of glacier velocities. If combining CCF-O with locally
adaptive template sizes and by filtering the matching results automatically by comparing the displacement matrix to its low pass
filtered version, the matching process can be automated to a large degree. This allows the derivation of glacier velocities with
minimal (but not without!) user interaction and hence also opens up the possibility of global-scale mapping and monitoring of
glacier flow.

Keywords: image matching, optical imagery, glacier, Landsat, surface displacement, global

1. Introduction

Deriving surface velocity fields of glaciers, rockglaciers, ice
caps and ice shelves using optical satellite images is an effi-
cient method with low costs, which has been used since mid
1980s. When satellite images were first used for this pur-
pose, the matching was done by manually identifying corres-
ponding objects and their displacement in images from differ-
ent times (Lucchitta and Ferguson, 1986). Bindschadler and
Scambos (1991) and Scambos et al. (1992) were the first to
do this process automatically on glaciers. They used image
matching algorithms based on normalized cross-correlation and
the work of Bernstein (1983). After this first demonstration,
different image matching methods have been tested and ap-
plied in glaciological studies. This includes normalized cross-
correlation (e.g. Bindschadler et al., 1996; Rack et al., 1999;

∗Corresponding author

Kääb, 2002; Berthier et al., 2003; Skvarca et al., 2003; Cop-
land et al., 2009), cross-correlation operated in the Fourier do-
main (Rolstad et al., 1997), least squares matching (Kaufmann
and Ladstädter, 2003), phase correlation (Leprince et al., 2008;
Scherler et al., 2008; Quincey and Glasser, 2009) and orient-
ation correlation (Haug et al., 2010) (first author’s last name
meanwhile changed to Heid), developed by Fitch et al. (2002).

A large number of archived and upcoming optical satellite
image missions now make it possible to map and monitor gla-
cier flow on a nearly global scale. Deriving glacier displace-
ments globally will give unique glaciological information. It
will make it possible to compare spatio-temporal variations of
glacier velocities both within regions (Kääb, 2005) and between
regions. Such knowledge will enable to better understand a
wide range of processes related to glacial mass fluxes, such as
glacier response to climate and climatic changes, glacier phys-
ics and flow modes, glacier flow instabilities (e.g. surges),
subglacial processes (e.g. erosion), supra- and intra-glacial
mass transport, etc. Knowledge about glacier ice supply helps
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to understand the development of glacial lakes and associated
hazards. Glacier velocities are also input into numerical gla-
cier models. Mapping and monitoring glacier flow globally per-
fectly complements current attempts for mapping and monitor-
ing glacier areas and glacier volume changes on a global scale
(Zemp et al., 2009; Haeberli, 2004; Bishop et al., 2004; Raup
et al., 2007).

Studies based on matching of repeat glacier images have
so far mostly concentrated on obtaining the best results us-
ing one specific image matching method, and little work has
been done on comparing different methods over glaciers. This
contrasts to the effort done with comparing different methods
in the more technical signal processing community using syn-
thetic tests (Scharstein and Szeliski, 2002; Brown et al., 2003).
It is therefore a need to evaluate different existing methods over
a globally representative set of glacier surface types in order to
recommend an optimal method or set of methods for precise,
accurate, robust and broadly applicable measurement of glacier
flow over large scales from repeat optical satellite data. The
goal of this study is therefore to look into different case studies
which together represent the challenges that are often met when
doing image matching in glacierized areas. The purpose of
the study is not to compare algorithms on the strictly technical
level, but to compare algorithms with global scale applications
as a focus. The ultimate goal of this study is to contribute the
methodological background for operational global-scale map-
ping and monitoring of glacier flow from repeat optical satellite
images.

Here we compare six commonly used image matching al-
gorithms over five glacierized areas spread around the world
and with different characteristics, which are thought to be glob-
ally representative. The methods evaluated are (1) normal-
ized cross-correlation operated in the spatial domain, (2) cross-
correlation operated in the frequency domain, (3) phase correla-
tion operated in the frequency domain, (4) cross-correlation op-
erated in the frequency domain on orientation images, (5) phase
correlation operated in the frequency domain on orientation im-
ages, and (6) the phase correlation algorithm used in the COSI-
Corr software, explained below. Methods 2 to 5 are all based
on the same Fourier matching technique, but have different nor-
malizations. The matching method from COSI-Corr is also a
Fourier method, but in contrast to the other Fourier methods
evaluated here, the result is not transformed back to the spatial
domain for getting the correlation surface. Least squares match-
ing is a method that is often used for image matching, in partic-
ular in photogrammetry. This method, however, requires initial
measurements from other matching methods and is only a way
to improve the accuracy. It is therefore not tested in this study.
The five glacierized study regions chosen are the Karakoram,
the European Alps, Alaska, Pine Island (Antarctica) and south-
west Greenland (Figure 1). In addition, for a small section in
the Karakoram a method using adaptive window sizes is tested.

Given the scale of glaciers and glacial features considered in
this study on the one hand, and the availability and accessibility
of suitable data on a global scale on the other hand, we focus
here on applying medium resolution satellite imagery (ca. 30m
to 15m). It should however be noted that even low-resolution

Figure 1: Map showing the location of the five selected glacierized areas.

data can be used for deriving the flow of very large glaciers
(typically Antarctica; (Haug et al., 2010)). On the other hand,
high-resolution data are able to provide glacier velocity fields
for selected sites (e.g. for validation) at very high density and
accuracy, but are not yet available and accessible for global-
scale applications.

This study is not a complete study investigating all possible
image matching methods. There are both more possible match-
ing methods and also more possible implementations of the
matching methods evaluated here. But this study evaluates the
traditionally and much used normalized cross-correlation and
also COSI-Corr that is more and more used. The study also
includes other Fourier matching methods that are often used in
image matching, and that have also been used in glaciological
studies with success.

2. Methods

2.1. Selecting satellite images and glacier regions

This study focuses on Landsat satellite images because one
image covers a large area (183 km by 170 km for ETM+,
185 km by 172 km for TM and 185 km by 185 km for MS),
and at the same time the spatial resolution for the panchromatic
band after 1999 is as good as 15m. This makes them highly
suited for global measurements. The Landsat series extends
back to 1982 with 30m spatial resolution and to 1972 with 68m
by 83m spatial resolution. This long time series makes it pos-
sible to study velocity changes. Landsat images are available
at no cost through the U.S. Geological Survey (USGS). Also
ASTER images have a spatial resolution of 15m in the visible
and near-infrared spectrum, and are available at no cost for sci-
entific users. However, one ASTER image covers a much smal-
ler section of the Earth than one Landsat image does (60 km by
60 km), so that ASTER images are considered to be less eas-
ily used for global mapping of glacier velocities compared to
Landsat data. Landsat images have, however, subpixel noise
created by the attitude variations. Lee et al. (2004) found that
the the image-to-image registration accuracy was better than the
requirement of 7.3m, and that the average was at about 5 m.
This noise is impossible to model because it is a whisk-broom
system, and therefore the accuracy of the matching reduces to
this level. For most glaciological studies this is an acceptable
accuracy because the glacier displacements over the time period
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that the glacier features are preserved by far exceed this noise
level.

Here we select images from Landsat 7 ETM+ before failure
of the Scan Line Corrector (SLC). This is because the striped
data voids that are present in Landsat images after SLC fail-
ure are special for Landsat images, and avoiding these stripes
makes our method comparison more valid for images from
other sensors. However, we also test selected methods on Land-
sat images after SLC failure to see how they perform in case of
such striped data voids. We use Level 1T images, which are
terrain-corrected using ground control points (GCPs) and di-
gital elevation models (DEMs).

We choose a set of glacier regions and glaciers with different
characteristics that we think are globally representative in terms
of glacier dimensions, topography, surface features, flow rates,
climatic setting, etc. The European Alps (Landsat path 195 row
28) are chosen because the glaciers in this area are small valley
glaciers with high surface transformation due to intense sum-
mer melt. Karakoram (path 148 row 35) is chosen because
many of the glaciers in this area have a thick debris cover in
their lower parts. Alaska (path 63 row 18) is selected because
of the large mass flux and the high velocities. Pine Island in
Antarctica (path 233 row 113) is selected because of the very
little visual contrast in this area, and because of the very large
glacier size. Southwest Greenland (path 9 row 11) is chosen
because the velocity differences between fast ice streams and
slower moving parts of the ice cap are very large, and because
the glaciers here contain very little debris. Table 1 gives an
overview of the images used.

2.2. Image matching methods

Six different image matching methods are tested and eval-
uated: (1) normalized cross-correlation operated in the spatial
domain (hereafter referred to as NCC), (2) cross-correlation op-
erated in the frequency domain using Fast Fourier Transform
(FFT) (hereafter referred to as CCF), (3) phase correlation op-
erated in the frequency domain using FFT (hereafter referred
to as PC), (4) cross-correlation operated in the frequency do-
main using FFT on orientation images (hereafter referred to as
CCF-O), (5) phase correlation operated in the frequency do-
main using FFT on orientation images (hereafter referred to as
PC-O), and (6) the phase correlation algorithm used in COSI-
Corr (hereafter referred to as COSI-Corr). When computing
the cross-correlation it is assumed that the first and second or-
der statistics are constant (stationarity) and that the noise is ran-
dom.

NCC is a matching method that is often used when studying
glacier velocities. This is much due to its simplicity. The first
image is taken as the reference image, and a template out of this
image is searched for in the second image, or the search image.
The centered cross-correlation surface CC is given by

CC(i, j) =

∑
k,l(s(i + k, j + l) − μs)(r(k, l) − μr)√∑

k,l (s(i + k, j + l) − μs)2
∑

k,l(r(k, l) − μr)2
(1)

where (i, j) indicates the position in the search area, (k, l) the
position in the reference area, r the pixel value of the refer-

ence chip, s the pixel value of the search chip, μr the average
pixel value of the reference chip and μs the average pixel value
of the search chip. The peak of the cross-correlation surface
indicates the displacement between the images. This cross-
correlation is normalized, which has two effects. Firstly, images
with different illumination conditions can be better compared,
and secondly, the correlation coefficient from different correla-
tion attempts can be compared. Because this method operates
in the spatial domain (as a convolution operation), the com-
putation is time-consuming compared to computations in the
frequency domain.

The NCC method is easily dominated by large differences in
the digital numbers. If large differences exist within the refer-
ence or the search template, large differences also have to exist
in the opposite window (i.e. the search or the reference tem-
plate, respectively). We hypothesize that this is a major draw-
back with this method for glacier applications. Glacier areas
usually contain large differences in digital numbers, because
white snow and black rocks etc. are present. This would not be
a problem if these differences were present in both images and
also represented the displacement. However, it is common that
snow patches in one image disappears in the nest image, that
rocks move independently of the glacier movement by rolling
or sliding at the glacier surface. Situations where large intens-
ity differences are not present in both images or where large in-
tensity differences do not represent the displacement are hence
hypothesized to create erroneous matches for the NCC method.

Cross-correlation can also be computed in the frequency do-
main by multiplying the Fourier transform of one image and the
complex conjugated Fourier transform of the second image (the
convolution theorem) (McClellan et al., 2003). This procedure
is equivalent to computing the cross-correlation in the spatial
domain. However, the above normalization cannot easily be
transformed to the frequency domain. In the CCF method, only
the cross-correlation is computed, so that this method does not
normalize. This implies that different illumination conditions
in the two images can lead to mismatches. Also, the method
can result in a wrong match if the illumination varies within the
section to be matched. In this approach the cross-correlation
surface CC is given by

CC(i, j) = IFFT (F(u, v)G∗(u, v)) (2)

where F(u, v) is the Fast Fourier Transform (FFT) of the match-
ing window from the image at time t = 1, G(u, v) is the FFT
of the matching window from the image at time t = 2, ∗ de-
notes the complex conjugate and IFFT is the Inverse Fast Four-
ier Transform.

Since the CCF method does not contain any kind of normal-
ization, it is hypothesized not to outperform other methods. But
by including this method, it is easier to evaluate the effect of
different normalizations.

A common way of approximating normalization in the Four-
ier domain is to consider only the phase information. By doing
this, differences in image intensity, which show up only in the
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Table 1: Overview of the Landsat image pairs used.
Area Path/Row Date Date ID ID

image t = 1 image t = 2 image t = 1 image t = 2
European Alps 195/28 12 Aug 2000 30 Jul 2001 LE71950282000225EDC00 LE71950282001211EDC00
Karakoram 148/35 16 Jun 2000 21 Jul 2001 LE71480352000168SGS01 LE71480352001202SGS00
Alaska 63/18 31 Aug 2000 03 Sept 2001 LE70630182000244AGS00 LE70630182001246EDC00
Pine Island 233/113 13 Jan 2001 15 Dec 2001 LE72331132001013EDC00 LE72331132001349EDC00
Greenland 9/11 07 Jul 2001 08 Aug 2001 LE0090112001188EDC00 LE70090112001220EDC00

amplitudes, are ignored. In this PC method the CC is given by

CC(i, j) = IFFT

⎛⎜⎜⎜⎜⎜⎝ Fo(u, v)G∗o(u, v)∣∣∣Fo(u, v)G∗o(u, v)
∣∣∣
⎞⎟⎟⎟⎟⎟⎠ . (3)

Also here, the peak of the cross-correlation surface indicates
the displacement.

In the PC method the phase differences at every frequency
contributes equally, and the dominant phase difference is taken
as the displacement (Brown, 1992). Noise limited to one or few
frequencies is therefore ignored, whereas noise spread across
all frequencies makes the location of the peak inaccurate, and
therefore also the final displacement estimate inaccurate. This
is hypothesized to effect the matching in both wanted and un-
wanted ways. Firstly, the method should be robust against dif-
ferent illumination between the images, because this effect is
constrained to low frequencies (Brown, 1992). Secondly, it
should also be robust to large intensity differences that are hy-
pothesized to create erroneous matches for the NCC method.
This is because snow patches and rolling/sliding rocks will be
constrained to a few frequencies and thereby ignored in the PC
method. Thirdly, this method can be hypothesized to exper-
ience problems in areas with deformation, because the phase
differences at the different frequencies will not agree.

Fitch et al. (2002) developed a method called orientation cor-
relation. Haug et al. (2010) showed that this method is well
suited for deriving ice shelf velocities. Taking f as the image
at time t = 1 and g as the image at time t = 2, the orientation
images fo and go are created from

fo(x, y) = sgn(
∂ f (x, y)
∂x

+ i
∂ f (x, y)
∂y

) (4)

go(x, y) = sgn(
∂g(x, y)
∂x

+ i
∂g(x, y)
∂y

) (5)

where sgn(x) =

{
0 if |x| = 0
x
|x| otherwise (6)

where sgn is the signum function and i is the complex imagin-
ary unit. The new images fo and go are complex and hence
consist of one real and one imaginary part, where the intens-
ity differences in the x direction represent the real matrix and
the intensity differences in the y direction represent the imagin-
ary matrix. These orientation images are then matched using
cross-correlation operated in the frequency domain (CCF-O)
and phase correlation (PC-O).

According to Fitch et al. (2002) orientation correlation is il-
lumination invariant. Because the orientation vector (and hence
both orientation images) has zero value in uniform areas and

a length of one in non-uniform areas, the correlation is not ef-
fected by uniform areas. This is a desired property in glaci-
ological research because uniform areas are common. We also
hypothesize this to be important when it comes to matching
striped Landsat images after the failure of the scan line cor-
rector (SLC-off) because the stripes are ignored when using ori-
entation correlation.

When it comes to PC-O, two types of normalizations are ac-
tually included. Firstly, orientation images are already normal-
ized, and then the amplitudes are removed, which is another
normalization. We hypothesize that it is unnecessary to use
two kinds of normalizations, and that this actually removes too
much of the original signal so that this method obtains less cor-
rect matches.

The last matching method that we test is the matching
method incorporated in the COSI-Corr software (Leprince
et al., 2007). Only the matching algorithm of COSI-Corr is
evaluated because the orthorectification and coregistration parts
of COSI-Corr are not developed for Landsat and other whisk-
broom systems. The matching method in COSI-Corr estimates
the phase difference in the Fourier domain as in the above PC,
but does not transform the images back to the spatial domain
to find the maximum of the CC (Leprince et al., 2007). It also
uses a robust function to produce measurements, a method that
is less sensitive to outliers.

Matching windows in COSI-Corr are weighted by a bell-
shaped function to avoid edge effects. The effect of this is that
central parts of the window are given more weight in the match-
ing than the outer parts of the window. The effective size of the
matching windows in COSI-Corr are therefore smaller. This,
however, will depend on the visual contrast in the windows.
COSI-Corr also uses re-weighted least squares in the match-
ing process, and this makes COSI-Corr less sensitive to outliers
within the windows. The pixels within the window hence have
to move coherently for COSI-Corr to get a correct match. We
therefore hypothesize that COSI-Corr can experience problems
in areas with much deformation.

All of the frequency domain methods are hypothesized to
perform worse compared to the spatial domain method on small
window sizes. This follows from the Heisenberg’s uncertainty
principle. However, small window sizes may in some cases be
useful for measuring glacier displacements. This is especially
hypothesized to be the case for shear zones or where glaciers
flow over obstacles, and for small glaciers where deformation
is important over much of the glacier areas.
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2.3. Implementations

How image matching methods perform highly depend on
how they are implemented. This section therefore explains how
the different matching methods are implemented in this study.

For all of the methods except COSI-Corr, we determine the
subpixel displacement by fitting orthogonal parabolic functions
to the correlation surface. Subpixel displacements in the x dir-
ection dx and in the y direction dy are found using

dx =
P(xm + 1, ym) − P(xm − 1, ym)

2(2P(xm, ym) − P(xm + 1, ym) − P(xm − 1, ym))
(7)

dy =
P(xm, ym + 1) − P(xm, ym − 1)

2(2P(xm, ym) − P(xm, ym + 1) − P(xm, ym − 1))
(8)

where P(xm, ym) is the maximum correlation value. The para-
bolic function is therefore fitted using the two nearest neigh-
bours. Debella-Gilo and Kääb (2011) found that when using
NCC, this method for determining displacement at subpixel
precision performed worse compared to interpolating the im-
age before the matching is conducted. However, for the size of
Landsat images, interpolating the images and matching using
bigger window sizes would be too computationally expensive
at the moment for large-scale applications. In the near future,
or using super-computers, it will be possible to use this method
instead.

When fitting a parabolic curve to the correlation surface, it is
important that the correlation surface approximates a parabola
around the peak for the subpixel estimation to be as correct
as possible and thereby avoid aliasing. For NCC the images
should be oversampled by a factor of two before the match-
ing to avoid aliasing, whereas for frequency domain methods
such an oversampling is not necessary. Oversampling by a
factor of two is difficult to apply in the case of global glacier
matching because of the time consumption associated with both
the oversampling process and the matching of two times larger
windows in each direction. Biases associated with not over-
sampling images are usually on the order of 1/10th of a pixel
(Dvornychenko, 1983; Kim, 2011), and for Landsat images,
with considerable sensor noise, such biases are here not con-
sidered significant.

In spatial domain matching, a small reference template is
cut out from the reference image (of time 1) and the most
similar template within a search window in the search image
(of time 2) is found. This procedure requires optimal adjust-
ment of both the reference template size and the search win-
dow size (Debella-Gilo and Kääb, 2011, in review). In fre-
quency domain matching, the displacement is found directly
without iteration as phase difference from multiplication of the
reference template (of time 1) and the search template (of time
2). This procedure requires that the displaced terrain section is
well contained both in the reference and search template. Also,
in frequency domain matching the displacement cannot be lar-
ger than half the window size in each direction for the methods
to work correctly. In sum, both spatial and frequency domain
matching need selection of optimal window sizes (i.e. refer-
ence and search templates and windows; here summarized as
the term window). The windows should be big enough to en-

Table 2: Size of matching windows and thresholds for the deviation between
the raw matching result and the low pass filtered matching result that are used
to filter the displacement fields in the different glacierized areas.

Area Window size, Filtering threshold,
pixels m

Karakoram 32 ± 45
European Alps 16 ± 45
Alaska 128 - 64 ± 300
Pine Island 512 - 64 ± 150
Greenland 64 ± 100

sure that texture and not noise is matched, but small enough to
limit displacement gradients within the window.

For each of the five test areas we use a small but representat-
ive section of the Landsat images to find the optimal image win-
dow sizes. Applying this selection procedure on entire Landsat
images would be very time consuming due to the image size
of about 15000 pixels by 17000pixels. The size of the small
test sections used is 2000 pixels by 2000pixels, which trans-
lates to 30 km by 30 km. Different window sizes are tested on
this section to find a window size that optimizes the matching
results. The matching result is considered to be optimized when
assumed correct matches are obtained over most of the glacier-
ized areas, but without increasing the window size more than
necessary. This is to avoid much deformation in one window.
Because only window sizes of 2n may be used when images are
matched using Fourier methods, the choice of window size is
very limited for each site, and in practice usually without altern-
atives. The spacing between the matching windows is kept the
same as the matching windows themselves to get completely in-
dependent matches. The size of the matching windows is given
in Table 2. For Alaska and Pine Island, the images were first
matched with large windows but with the wanted final window
size as spacing between the windows, then aligned according
to the measured initial displacement so that every center pixel
has its own vector for aligning, and finally matched with smal-
ler windows to produce the final displacement field. Therefore,
for the final match every position has an a priori displacement.
For example for Alaska, the images were first matched using
windows of 128 pixels but a spacing of 64 pixels, then aligned
for every matching using the displacement measured with the
128 pixel window and then matched again with the 64 pixels
window.

Because the six matching methods methods work differently,
we have to aim for implementations that make the methods
as comparable as possible. As mentioned in the above para-
graph, frequency domain methods find the displacements dir-
ectly without iterating, whereas spatial domain methods require
iterations to locate the highest correlation. This is one funda-
mental difference that makes it impossible to design completely
identical implementation cases for all the matching methods.
Instead we have to make sure that the search area in the NCC
method allows for matches half the window size away to be
most like the frequency domain methods. Another important is-
sue is that COSI-Corr weights the window using a bell-shaped
function making the effective window size smaller, as men-
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tioned before. However, in areas with low visual contrast in par-
ticular, it is clear that also COSI-Corr can get matches from the
outer parts of the window. We therefore decide to use the same
matching windows for COSI-Corr as we use for the other meth-
ods. However, this should be kept in mind especially when it
comes to the accuracy of the matching methods, because larger
matching windows normally give higher accuracy. This topic
will be discussed in the Discussion section.

We compare the image matching methods based on two cri-
teria: 1) their accuracy and 2) their ability to obtain correct
matches for each of the five glacier areas. The first criterion,
the accuracy of the different matching methods, is evaluated
based on the root mean square error (RMSE) of the assumed
correct matches over a section containing stable ground in the
Landsat image over the European Alps (path 195 row 28) with a
window size of 16 pixels by 16 pixels. The size of the section is
14 km by 14 km and the number of possible correct matches is
3481. The window size used for the accuracy evaluation is the
smallest window size that is used when matching the different
areas, and will therefore represent a worst case matching ac-
curacy. Since the accuracy is down to fractions of a pixel, also
attitude variations and accompanying pixel geolocation errors
of the Landsat sensor, and erroneous topographic corrections
may influence the RMSE. To test the RMSE of images without
geometric distortion between the two images we also generate
a synthetic image over the Alaska site (path 63 row 18). To the
original image we apply scaling and first and second order ana-
lytical displacements ranging from 0m to 200m, and match it
to the original image without distortions to see how the accur-
acy is influenced by deformation. We also introduce modelled
systematic radiometric noise. The noise model used is among
others common in least squares matching, where systematic ra-
diometric differences are accounted for by gain (λ) and offset
(η). Here, the digital numbers F(x, y) at time t = 1 are given by

F(x, y) = G(x′, y′)λ + η + e (9)

where G(x′, y′) is the digital numbers at time t = 2 over the
same area and e is random noise. In this study we generate λ
and η randomly for windows of 10 pixels by 10 pixels. λ has a
mean of 1 and a standard deviation of 0.3, whereas η has a mean
of 0 and a standard deviation of 8. The synthetic image and
the original image are matched using window sizes of 32 pixels
by 32 pixels. Because the focus of this study is global image
matching of glacierized areas using Landsat images, the accur-
acy cannot be better than the whisk-broom sensor noise, since
this noise cannot be modelled. The second criterion, the abil-
ity to obtain correct matches for each of the five glacier areas,
is evaluated by filtering the raw image matching results in the
glacierized area to remove erroneous matches. Then, the per-
centage of correct matches for each matching method for each
area is calculated.

The filtering method to filter erroneous matches over the gla-
cierized area should require little user interaction. The large
number of displacement vectors makes it too time consuming
to filter the results completely manually. A directional filter
is useless in most cases over large scales because the multiple

glaciers flow in different directions within the same scene. Fil-
tering by the length of the displacement vectors is possible, but
this requires that the user first identifies a maximum velocity.
This maximum velocity has to be set for every of the five gla-
cierized areas because both the displacements and the window
sizes change from test study to test study. This filtering method
will only remove some of the erroneous matches. Signal-to-
noise ratio (SNR) and correlation coefficient make it possible
to filter depending on the quality of the match. However, the
values of SNR and correlation coefficient also vary depending
on the matching method. These filtering methods will therefore
not be independent of the matching methods, and we therefore
consider them to be inappropriate for this study.

Following basic glacier physics, in particular stress transfer,
we choose to filter the obtained vectors depending on the neigh-
bouring vectors, so that vectors are assumed correct if they
agree to a certain extent with their neighbouring vectors. First,
all vectors outside glacierized areas are removed manually or
using digital glacier outlines. Then the assumed real maximum
displacement is found by manually investigating the vectors.
All vectors larger than the assumed real maximum displace-
ment are removed. Using only the remaining vectors, the dis-
placement field in both x and y direction is filtered using a 3 by
3 mean low-pass filter. Individual original vectors that deviate
more than a certain threshold from this low-pass filtered dis-
placement field are removed. The threshold varies between the
five different areas depending on the displacement variations
within the areas. Table 2 lists the different thresholds. Figure 2
shows the unfiltered displacement field and Figure 3 shows the
automatically filtered displacement field for Karakoram. Some
manual editing is still needed in the end to remove erroneous
vectors without neighbours and clusters of erroneous matches
of the same size in both x and y direction. The final overview
of how many assumed correct matches are produced by the dif-
ferent matching methods is therefore not only a result of the
matching methods used, but also, to some extent, a result of the
filtering methods used. But by selecting a filtering method that
is independent of the matching method used, we assume that
the filtering method has the same effect on all the displacement
fields.

Also a median low-pass filter could have been used to filter
erroneous matches. A mean filter takes better care of areas with
velocity gradients, but also removes some correct matches in
the outer areas of patches with correct matches. A median filter
tends to remove more of the erroneous matches than a mean
filter does.

It should be noted that we believe that, in order to receive
glaciologically sound and useful glacier displacements, the
automatic results should undergo in any case an expert check
and, potentially, editing, as is for instance well acknowledged
and good practice in multispectral glacier mapping Paul et al.
(2009). Thus, the aim of displacement filters becomes to sup-
port the analyst to remove as much as possible obvious errors to
let focus on details that require glaciological expert judgment.
For instance, gradients in glacier velocities are very different
from area to area due to the large variety of glaciers, so by
manually tuning the filtering, raw displacement fields might be
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Baltoro Glacier

Figure 2: The unfiltered displacement field for Karakoram using CCF-O. Underlying image is from 21 July 2001.

better filtered. To filter the displacements based, for instance,
on the assumption that glaciers flow downslope is considered to
be impossible globally, because the required accurate elevation
models are not available in all glacierized areas, and because of
physical reasons where this assumption does not simply hold,
such as in confluence areas or for supraglacial ice topography.

It would be very beneficial to compare our velocity meas-
urements to velocity measurements obtained using completely
independent methods. However, due to the variability of gla-
cier flow, this is a very difficult task. Glacier flow may vary
significantly on daily, seasonal and yearly scales. To be able to
compare velocities obtained using different sources it is there-
fore important that the periods overlap completely. Very few
studies have compared velocities derived using optical remote
sensing with other methods, and in most of the cases the time
periods have not been overlapping. With the global focus of
this study it was not possible to compare the velocities with
data from independent sources. This is only possible for spe-
cific points on a limited number of glaciers where continuous
field measurements are available.

3. Case studies

Table 3 shows the percentage of assumed correct matches
over glacierized areas for the different matching methods. The
results vary both from method to method and from area to
area. Generally, COSI-Corr obtains the highest percentage of
assumed correct matches, whereas NCC and PC-O obtain the
lowest. Alaska is the area which obtains the highest percentage
of assumed correct matches, whereas Pine Island obtains the
lowest percentage of assumed correct matches.

3.1. Stable ground and synthetic displacements
The RMSE of the matching measurements in both x and y

directions over stable ground in the European Alps is given in
Table 4. The results are comparable and better than 1/10of a
pixel for NCC, PC and PC-O. CCF and CCF-O perform slightly
worse, but still close to 1/10of a pixel. The matching method
from COSI-Corr has the highest RMSE with about 1/4 pixel.
Due to several small clouds in the Landsat scene from 2001 the
number of erroneous matches is relatively high. NCC and CCF
have more erroneous matches than the other matching methods.

The results of the synthetic displacement test is given in
Table 5. COSI-Corr obtains the best results and NCC the worst
results both when it comes to average error and RMSE. CCF
has the highest number of mismatches.
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Figure 3: The automatically filtered displacement field for Karakoram using CCF-O. Underlying image is from 21 July 2001.

Table 3: Percentage of assumed correct matches over glacierized areas for the different matching methods. Maxima by region is bold, maxima by method is italics.
Area NCC CCF PC CCF-O PC-O COSI-Corr n
Karakoram 46 % 59 % 56 % 61 % 54 % 67 % 21950
European Alps 49 % 56 % 51 % 57 % 48 % 67 % 5476
Alaska 76 % 86 % 83 % 87 % 73 % 91 % 13393
Pine Island 16 % 18 % 17 % 17 % 11 % 13 % 28822
Greenland 14 % 25 % 22 % 23 % 17 % 30 % 23790

Table 4: RMSE of the matching measurements for the 6 different matching
methods over stable ground in the European Alps.

Matching method σx, σy, n
m m

NCC 1.2 1.2 2917
CCF 1.5 1.7 3128
PC 1.0 1.2 3271
CCF-O 1.4 1.7 3288
PC-O 1.1 1.4 3252
COSI-Corr 2.9 3.9 3260

3.2. Karakoram

Figure 4 shows the displacement measurements from CCF
in Karakoram. The difference between this matching method
and CCF-O (shown in Figure 3) is striking. CCF-O obtains as-
sumed correct measurements over most of the glacierized areas,
whereas CCF has problems revealing that the fast valley gla-
ciers have moved over the time period. This means that instead
of matching the moving glacier features, it matches the station-
ary patterns that do not move while the glaciers flow. The dis-
placement field created by CCF is therefore very coherent, but
wrong. However, in the upper and slower moving parts of the
glaciers, the performance of the two methods is similar.

The performance of NCC is comparable to the performance
of CCF-O on the lower parts of the glaciers where the visual
contrast is good (not shown). However, as can be seen in Table
3, NCC produces fewer correct matches compared to the CCF-

8



Table 5: Average and RMSE between derived displacements and actual displacements in a synthetic test.
Average Average RMSE RMSE Number of

x-direction y-direction x-direction y-direction mismatches
m m m m

NCC 0.0 -4.9 7.4 5.6 5
CCF 0.7 0.0 5.2 3.8 46
PC 1.4 0.0 4.5 3.8 4
CCF-O 1.3 0.0 3.3 2.3 0
PC-O 1.1 0.0 4.5 3.7 1
COSI-Corr 0.1 0.0 0.9 0.8 0

O over all. This is mainly because NCC produces fewer correct
matches above the snowline where the visual contrast is poor.

PC performs similarly to CCF, which means that it does not
capture the velocity of the fast valley glaciers. Instead of match-
ing the moving glacier features also this method matches the
stationary patterns. The other glacierized parts are, however,
well matched. The number of correct matches in total is, how-
ever, lower compared to CCF. PC-O manages, like CCF-O, to
capture the displacement both of the fast valley glaciers and of
the glacierized area with poor visual contrast, but the number
of correct matches is lower for PC-O compared to CCF-O.

COSI-Corr performs similarly to CCF-O on the glacier
tongues, which have good visual contrast, but above the snow-
line COSI-Corr obtains a higher number of assumed correct
matches than CCF-O. Therefore, the percentage of assumed
correct matches for COSI-Corr is higher than the percentage
of assumed correct matches for CCF-O.

The sections with highest glacier speeds in the part of the
Karakoram studied here show displacements of up to about
150m over the 13 months investigated (138m/a). Not only the
largest glaciers in the area turn out to be fast flowing, but also
some of the smaller ones. Since this is an area that is known to
include surging glaciers (Hewitt, 1969; Copland et al., 2009),
it is likely that these small but fast moving glaciers are in an
active phase of a surge cycle. The pattern of speed variation de-
rived here for Baltoro Glacier fits well with the pattern derived
by Quincey et al. (2009) for the period 2003-2008.

3.3. European Alps

NCC is the only matching method to match most of the area
below the snowline of the glaciers in this region (Figure 5, left).
COSI-Corr creates fewer assumed correct matches below the
snowline, but above the snowline, where the visual contrast is
poor, COSI-Corr creates more assumed correct matches than
NCC. When it comes to the number of assumed correct matches
in total, COSI-Corr outperforms both NCC and the other four
matching methods. This is because of its superior performance
in the areas with low visual contrast. CCF-O obtains more cor-
rect matches than the three other similar Fourier methods.

The displacement field in the European Alps needs more
manual editing than the displacement fields in Karakoram be-
cause the matching methods produce fewer correct matches.
Aletsch Glacier (see Figure 5 for location) is the fastest glacier
in this area, moving up to 150m over the 11.5 months studied.

However, maximum displacement in both x and y direction is
less than half the window size, 120m.

Since we know that the effective window size for COSI-Corr
is less than the actual window size, we also try to match the im-
ages from the European Alps using COSI-Corr and a window
size of 32 pixels by 32 pixels (Figure 5, right). NCC still per-
forms better using a window size of 16 pixels by 16 pixels than
COSI-Corr does using window sizes of 32 pixels by 32 pixels.

3.4. Alaska

In this region, NCC experiences trouble not just with areas
with poor visual contrast, but also with thin clouds and snow
in crevasses. Figure 6 shows the displacements measured us-
ing NCC and Figure 7 show the displacements measured using
CCF-O. In the 2001 image there is a thin cloud covering parts
of Malaspina Glacier (see Figure 6 for location). CCF-O and to
some extent also COSI-Corr manage to match this area in spite
of the thin cloud, whereas NCC does not succeed. At Bering
Glacier (see Figure 6 for location) some of the crevasses are
filled up with snow in the 2000 image but not in the 2001 im-
age. This also causes the NCC method to fail, whereas CCF-O
and COSI-Corr succeed.

CCF-O performs better than the three similar Fourier meth-
ods also in this area. It both captures the displacement of the
outlet glaciers better than the other methods and obtains more
correct matches above the snowline.

The most striking velocity feature in this area is the fact
that the speed of Bering Glacier is much smaller compared
to the speed of Malaspina Glacier (maximum displacement of
about 200m for Bering versus 800m for Malaspina over the 12
months studied), even though their sizes are comparable. These
two glaciers are both known to surge (Post, 1969; Lingle et al.,
1997), and they are clearly in different modes during our study
period.

3.5. Pine Island

Since the displacement of the front of Pine Island Glacier is
close to 3000m over this time period (approximately 1 year),
large window sizes are needed in this area in order to capture
the movement. The ice stream itself is therefore matched with
a window size of 512 pixels, aligned depending on the meas-
ured displacements, and matched again using a window size of
64 pixels. The area outside of the ice stream is matched using
a window size of 64 pixels since the movement here is much
smaller.
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Figure 4: Displacements measured using CCF in Karakoram. Underlying image is from 21 July 2001.

All six of the methods manage to match Pine Island Glacier
relatively well (not shown). This is an area with many crevasses
that makes it easy to match. The parts surrounding Pine Island
Glacier, however, lack visual contrast and are hence more dif-
ficult to match. This is the reason for the low percentage of
correct matches in this area. The performance of the different
matching methods is relatively similar.

CCF obtains the highest percentage of assumed correct
matches in this area according to Table 3. However, many
of these matches come from the slow flowing area surround-
ing Pine Island Glacier. On the ice stream itself, this method
obtains fewer correct matches compared to the other methods.
Because CCF measures smaller displacements over parts of the
slow flowing area compared to other methods, we strongly sus-
pect that many of the assumed correct matches are actually in-
correct because the method does not normalize. It is therefore
possible that instead of capturing small displacements it cap-
tures stagnant features. It is however difficult to quantify this
effect and filter the measurements correctly because of the sim-
ilar magnitudes.

The different window sizes that are used in the matching over
Pine Island Glacier make it possible to investigate the differ-
ence in the displacements derived (Figure 8). At the margins of
the ice stream, the largest window size measures a larger dis-

placement than the smaller window size, as can be seen in the
figure as arrows pointing upglacier. The difference between the
methods is in the most extreme cases more than 400m. This in-
dicates that there is a strong velocity gradient in this area. In the
middle of the ice stream the two window sizes perform much
more similarly, indicating small velocity gradients in this area.

Joughin et al. (2003) have studied the velocity of Pine Island
Glacier using InSAR, and also they found maximum velocities
of about 3000m/a.

3.6. Greenland

Also in our Greenland case study, the percentage of assumed
correct matches is relatively low because a large section of the
images contain areas above the snowline and hence has poor
visual contrast. As can be seen in Figure 9, COSI-Corr resolves
the velocity differences between the fast flowing ice streams
and the slower flowing parts of the ice cap better than CCF-
O (Figure 10). COSI-Corr also has the highest percentage of
assumed correct matches in total.

CCF obtains a high percentage of assumed correct matches
compared to the three other similar Fourier methods also here,
but many of these matches stem from the slower flowing parts
above the snowline. Many of these matches are therefore, as for
the areas surrounding Pine Island Glacier, probably incorrect.
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Figure 5: Displacements for a section in the European Alps measured using NCC with window sizes of 16 pixels by 16 pixels (left) and COSI-Corr with window
sizes of 32 pixels by 32 pixels (right). Underlying image is from 30 July 2001.

Obtaining cloud free images in this area was difficult, and in
the image from 8 August 2001 a cloud is covering large parts of
Jakobshavn Glacier (see Figure 9 for location). Therefore, this
area lacks correct matches.

In some areas it is difficult to identify the ice streams in the
Greenland images visually before the matching is conducted.
There are large velocity variations over short distances, and
velocity measurements are necessary to separate fast flowing
areas from more stagnant areas. Maximum displacement over
the one month period is about 350m. The pattern of speed vari-
ation fits well with the pattern derived by Joughin et al. (2010)
using InSAR.

3.7. Other tests: SLC-off images, 15 m vs. 30 m resolution, ad-
aptive windows

To test how the three methods NCC, CCF-O and COSI-Corr
perform on striped Landsat images from 31 May 2003 and on-
wards after a failure of the Scan Line Corrector (SLC-off), two
images covering Larsen B, Antarctic Peninsula, are chosen.
The images are from path 217 row 106, taken on 8 January
2005 and 11 January 2006. Figure 11 shows the matching result
using windows of 64 pixels by 64 pixels for a 43 km by 43km
section covering both an area with stripes and an area without
stripes. Both NCC and COSI-Corr fail in the striped area,
whereas CCF-O ignores the stripes and obtains correct matches.
The striped area contains strong visual contrast features like a
crevassed glacier and several nunataks, so all methods are ex-
pected to perform well in this area if the images lacked stripes.
In addition, COSI-Corr obtains very few correct matches out-
side the striped area, whereas NCC and CCF-O return approx-
imately the same number of assumed correct matches. This area
has some surface transformation because the 2005 image con-
tains many small-scale snow dunes that are not present in the
2006 image. Also several melt ponds are present in the 2006
image but not in the 2005 image.

We also match the Karakoram images with CCF-O and
COSI-Corr using Landsat band 4 (near infrared) which has a
spatial resolution of 30m. This is both to test how the perform-
ance is on Landsat images obtained before 1999, which are only
available with 30m spatial resolution, and also to test how the
higher noise level in the panchromatic band with 15m spatial
resolution Haug et al. (2010) influences the results. Using a
window size of 16 pixels, compared to 32 pixels for the pan-
chromatic images with 15m spatial resolution, it is possible to
obtain matches using windows covering the same ground sec-
tions. The matches are compared based on the difference in
displacement between the assumed correct matches using 15m
and the displacement obtained for the same ground section us-
ing images with 30m spatial resolution. Assuming an uncer-
tainty using CCF-O of about 1/9 of a pixel, as Table 4 indicates,
and statistically completely dependent matches (n = 1) , the
two methods are assumed to measure the same displacement if
the displacement difference is within ± 5 m (Figure 12). A total
of 59% of the matches (n=13438) are within this range. Ex-
tending this threshold to ± 10 m (2σ), 75% of the matches are
within this range. For COSI-Corr the accuracy is about 1/3 of a
pixel, therefore the methods are assumed to measure the same
displacement if the displacement difference is within ± 15 m. A
total of 57% of the matches (n=14765) are within this range,
and 70% are within the 2σ range.

Debella-Gilo and Kääb (2011) present displacements for
Baltoro Glacier in Karakoram (see Figure 2 for location) us-
ing the same images as we use in the current study. They ob-
tain the displacements using normalized cross-correlation and
adaptive matching window sizes based on the signal-to-noise
ratio (SNR) of the digital numbers in the image and the cross-
correlation coefficient. The SNR of the digital numbers is the
variance of the signal divided by the noise variance. This means
that the window sizes are varying over the image based on the
level of noise in the images and the maximum correlation coef-
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Figure 6: Displacements in Alaska measured using NCC. Underlying image is from 31 August 2000.

ficients for each location. If the SNR is lower than a given
threshold even at maximum window sizes, the method does not
match. Hence, filtering is performed automatically before the
matching is conducted. Comparing the results from the adapt-
ive matching and COSI-Corr reveals that 89% of the matches
(n = 640) agree within ± 15m. For CCF-O and the adaptive
method 90% agree within ± 15m (n=617). Mean size of the
reference image for all the matchings is 29 pixels by 29 pixels.
All of the matches that do not agree within 15m are situated
at the glacier margins or on the small tributaries to Baltoro.
For almost all of these cases, the adaptive method measures
higher velocities than the two other methods, due to less sus-
ceptibility to velocity gradients. In total, CCF-O and COSI-
Corr give a higher number of assumed correct matches than the
adaptive method does. CCF-O returns 1124 assumed correct
matches, COSI-Corr 1175 assumed correct matches and the ad-
aptive method 701 assumed correct matches in this area. The
lower number for the adaptive method is mainly because it is,
here, based on the NCC and returns hence fewer matches in the
areas with low visual contrast (cf. above for NCC).

4. Discussion

Matching methods with high RMSE values over stable
ground are in general considered to be less accurate than match-
ing methods with low RMSE values. However, since the accur-
acy is down to fractions of a pixel, also attitude variations and
accompanying pixel geolocation errors of the Landsat sensor,
and erroneous topographic corrections influence the RMSE in
the nonsynthetic case. The higher RMSE of COSI-Corr in
the nonsynthetic case can both be because COSI-Corr captures
the geolocation errors and because the effective window size is
smaller. The small RMSE of COSI-Corr in the synthetic case
suggests that COSI-Corr is the most accurate matching method,
but that geolocation errors increase the RMSE of this method
in the nonsynthetic case. The RMSE of NCC is higher than for
CCF-O and COSI-Corr in the synthetic displacement case. This
is because NCC is easily dominated by large differences in di-
gital numbers, and can therefore match features away from the
center of the window. Large deformations can therefore make
the measurements less accurate. It is clear that both CCF-O
and COSI-Corr obtain higher accuracies than what is possible
to get using Landsat images due to the sensor noise. Therefore,
the sub-pixel level accuracies of these methods are dominated
by the sensor noise and not the accuracy of the matching meth-
ods. For the four other methods the accuracy of the matching
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Figure 7: Displacements in Alaska measured using CCF-O. Underlying image is from 31 August 2000.

methods and the geolocation errors in Landsat images are com-
parable.

Surprisingly, the unnormalized matching method CCF gives
more correct matches than the normalized matching methods
PC and PC-O (Table 3). This is probably because it performs
well above the snowline where the surface is very homogen-
eous, both spatially and temporally. Normalization is therefore
not so important in this area. Below the snowline and outside of
the glacier area it experiences problems, and it therefore proves
that normalization is important in areas that are not homogen-
eous. This is especially clear in Karakoramwhere CCF matches
the stationary patterns instead of the moving glacier features.
This is also the case for PC. Crevasses at one geographical place
are more like the crevasses at the same geographical place the
year after than the corresponding but displaced crevasses, prob-
ably due to different illumination conditions and surface de-
gradation. Since CCF does not capture movement well, it is
also difficult to use in slower flowing areas where it seems to
return correct results, because there will always be transitions
between fast and slow flowing areas. In zones where there is a
transition from slow to faster flow it is difficult to know at which
value to start filtering the matches. For the same reason there
might also be erroneous matches that are not discovered in the
present study. This could be part of the reason why the percent-

age of correct matches for this method is so high, especially for
the Pine Island and Greenland studies.

CCF-O performs best compared to the three other Fourier
methods (CCF, PC and PC-O) that are operated in the same
way but with different normalizations. PC has problems cap-
turing the displacement of fast outlet glaciers, so this kind of
normalization seems to have little effect in such areas. In ad-
dition it in general gives fewer correct matches compared to
CCF-O. PC-O does not have any clear weaknesses compared to
CCF-O, but in general gives fewer correct matches.

A previous study on the Larsen C ice shelf on the Antarctic
Peninsula showed that few correct matches could be obtained in
this area using the NCC method (Haug et al., 2010). The Larsen
C ice shelf has a relatively homogeneous snow surface with few
surface features like crevasses and flowlines. The present study
confirms that the NCC method performs worse than other tested
methods in areas with poor visual contrast. Hence, other meth-
ods should be chosen for matching such areas. COSI-Corr gives
the most correct matches in low visual contrast areas, and this is
mainly the reason why COSI-Corr obtains a higher percentage
than other matching methods in Table 3.

In areas of high visual contrast, the performance of NCC is
comparable to the performance of CCF-O and COSI-Corr. In
the European Alps, where the glaciers are small, NCC outper-
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Figure 8: The measured displacements after aligning the images with displacements obtained using a window size of 512 pixels. The vectors therefore indicate the
difference in the matching between a window of 512 pixels and a window of 64 pixels. The glacier flow is downwards (south). Arrows pointing upstream (north)
indicate that a matching window of 512 pixels obtains higher velocities than a matching window of 64 pixels. The matching method used here is CCF-O. Underlying
image is from 31 January 2001.

forms CCF-O and COSI-Corr in the narrow parts of the glaciers
that are being channelized down the valleys. This is because
NCC performs better with small window sizes, and in this case
increasing the window size does not improve the results be-
cause the velocity varies significantly over short distances. For
small glaciers where small window sizes are preferred, NCC
can be a better choice than CCF-O and COSI-Corr. COSI-Corr
performs better than CCF-O in such cases because it mainly
uses the center part of the window to match due to weighting
of the central pixels, whereas CCF-O uses the entire window
with equal weight. Large velocity gradients within the window
therefore make it more difficult for CCF-O to match, whereas
COSI-Corr and especially NCC are less sensitive in such cases.

Increasing the window size from 16 pixels by 16 pixels to
32 pixels by 32 pixels in the European Alps did not improve the
COSI-Corr displacement measurements much. We tried this
because of the smaller efficient window size of COSI-Corr. It is
still difficult to get correct measurements on small glaciers with
much deformation because COSI-Corr is less sensitive to out-
liers, as explained in the Methods section. This method there-
fore needs the window to move coherently, which is not the case
in areas with deformation.

Not only poor visual contrast, but also thin clouds and snow
filled crevasses in one of the images can disturb the NCC
method. CCF-O and to some extent also COSI-Corr are more
robust under such conditions. This difference, like the differ-
ence between the methods for the small glaciers in the European
Alps, arises because the matching methods work differently.
Because CCF-O uses the entire window to match, it is less sens-
itive to noise. NCC, however, is easily dominated by large spa-
tial gradients in digital numbers, like the difference between
dark ice and bright snow for windows with snow filled cre-
vasses, and searches for a similar jump in digital number in
the image without snow filled crevasses. Since this difference
in digital number is not present at the same feature in the im-
age without snow filled crevasses it may find another feature
with a similar difference in digital numbers and hence create a
mismatch. Because COSI-Corr mainly uses the center part of
the window to match due to weighting of the central pixels, this
method is more sensitive to noise constrained to few frequen-
cies compared to CCF-O, but less sensitive to noise constrained
to few frequencies compared to NCC. The example with snow
filled crevasses and clouds is therefore connected to the ex-
ample from the small glaciers in the European Alps, but the

14



Figure 9: Displacements in southwest Greenland measured using COSI-Corr. Underlying image is from 8 August 2001.

sensitivity of NCC therefore has an unwanted effect and the in-
sensitivity of CCF-O has a wanted effect. This highlights the
fact that one single matching method can not be expected to
perform well under all circumstances.

All the methods obtain a relatively similar number of as-
sumed correct matches in the Pine Island area. This is probably
because this area has too little visual contrast in most areas for
the methods to obtain correct matches. But in the areas where
the methods obtain assumed correct matches the visual contrast
is very good due to crevasses, and all the methods manage to
match these areas. As discussed above, normalization is not so
important here because the area is very homogeneous.

The difference in the velocity derived using a large and a
small window size over Pine Island Glacier highlights how im-
portant it is to use the smallest window size possible to avoid
large velocity gradients within one window. The derived ve-
locity may stem from anywhere inside the window depending
on the digital numbers and the velocity distribution. It is there-
fore important to be aware of the fact that the displacement de-

rived is not necessarily the displacement for the center pixel
of the window. This gets even more important when using the
displacement measurements to derive strain rates. The smaller
the windows are and the smaller the velocity gradients are, the
more correct it will be to assume that the displacement derived
is actually the displacement for the center pixel of the window
(Debella-Gilo and Kääb, in review).

Of the three matching methods NCC, CCF-O and COSI-
Corr, only CCF-O manages to match striped Landsat images
successfully. Hence, only this method is considered to be use-
ful on Landsat images from the ETM+ sensor after 31 May
2003 (SLC-off).

COSI-Corr obtains fewer assumed correct matches than
CCF-O and NCC on the non-striped section of Larsen B. The
2005 image here contains many small-scale snow dunes that are
not present in the 2006 image. These features are likely to cor-
rupt the phase differences at many of the frequencies and hence
inhibit successful matching. NCC is less sensitive to this kind
of noise because other features represent a greater difference in
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Figure 10: Displacements in southwest Greenland measured using CCF-O. Underlying image is from 8 August 2001.

digital numbers. The performance of CCF-O was assumed to
be lower because of these snow dunes since it normally outper-
forms NCC in areas with low visual contrast, but still it per-
forms as well as NCC.

The difference between using images of 15m spatial resol-
ution and 30m spatial resolution is generally within the 1σ
uncertainty of the methods. According to statistical theory,
68% of the differences are expected to be within this range,
and since 59% are within this range for CCF-O and 57% for
COSI-Corr the results are slightly worse than expected. There
can be several reasons for this. Firstly, the different spatial res-
olutions may enhance or suppress different features so that ac-
tually different features are matched in 30m spatial resolution
images compared to 15m spatial resolution images. If velo-
city gradients are present within the windows, this may also
result in different displacements at different resolutions. Many
of the glacier tongues in Figure 12 show larger displacements
using 15m spatial resolution compared to 30m spatial resol-
ution. It is likely that small scaled features on glacier sur-

faces are better captured using finer spatial resolution so that
especially for glacier margins, where the velocity gradients are
large, images with finer resolution capture the displacement of
the glacier whereas images with courser resolution capture the
more stagnant areas. Secondly, erroneous matches are present
in both displacement fields. Most of the erroneous matches
stem from the 30m spatial resolution matching since this res-
ult is not filtered. But it is also possible that not all erroneous
matches are filtered in the 15m spatial resolution displacement
field. However, since the general agreement is good, both CCF-
O and COSI-Corr can be expected to provide accurate displace-
ment measurements for images with 30m spatial resolution.
For areas with low visual contrast the results can actually be
better using 30m spatial resolution, because the noise level is
known to be higher for Landsat images with 15m spatial resol-
ution compared to Landsat images with 30m spatial resolution
(Haug et al., 2010). This is the case for some areas with low
visual contrast in Karakoram.

The reason why the adaptive NCC method disagrees with
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Figure 11: Displacements over Larsen B for a pair of Landsat images with SLC-off. NCC is shown to the left, CCF-O in the middle and COSI-Corr to the right.
Underlying image is from 11 January 2006.
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COSI-Corr and CCF-O by more than 15m for some points at
the glacier margins is probably because the adaptive method
uses smaller window sizes in this area compared to the other
methods. The windows then include smaller velocity gradi-
ents so that the displacements measured are more representative
for the center pixel. Since the adaptive method implemented
here is based on NCC, it is not surprising that it returns fewer
matches than CCF-O and COSI-Corr in areas with low visual
contrast. In the future, or using faster computers, the adaptive
method can certainly be used for deriving glacier displacements
globally. If SNR thresholds are tuned, locally adaptive win-
dow sizes can also be used in combination with other methods
than the NCC. This will probably increase the number of cor-
rect matches in areas with low visual contrast, and at the same

time areas containing large velocity gradients can be matched
with smaller window sizes so that the velocities obtained are
more representative for the center pixel. However, it is diffi-
cult to use the adaptive method in combination with COSI-Corr
since the latter method only accepts window sizes of 2n where n
is an integer. For all window sizes used in typical glaciological
studies the difference from one window size to the next possible
window size will probably be too large.

5. Conclusion

In this study we have tested and assessed six existing image
matching methods with as similar as possible implementations
on a set of five glacier regions on Earth with different, globally
representative glacier characteristics. The methods have been
evaluated according to their applied suitability for global-scale
mapping and monitoring of glacier flow using repeat medium-
resolution optical satellite imagery, rather than evaluated on a
strict technical level. Landsat data have been used for matching
as they are probably the best suited data source for such global-
scale application at present. The matching methods investig-
ated are the normalized cross-correlation, the phase correlation
algorithm used in COSI-Corr, and four other Fourier methods
with different normalizations.

Of the four Fourier methods with different normalizations,
CCF-O outperforms the other methods, both in areas with good
and poor visual contrast. NCC is outperformed in areas of poor
visual contrast, areas with thin clouds or changing snow condi-
tions from one image to the next, but it performs well in high
visual contrast areas and performs better than all other tested
methods on narrow glaciers where small window sizes (about
16 pixels by 16 pixels) are needed. CCF-O has problems on
narrow outlet glaciers. It also obtains fewer correct matches
than COSI-Corr in areas with poor visual contrast, but more
correct matches than NCC. COSI-Corr has problems on nar-
row outlet glaciers where small window sizes (about 16 pixels
by 16 pixels) are needed, when snow dunes cover one of the
images and also to some extent where thin clouds cover the sur-
face. Of the three methods CCF-O, NCC and COSI-Corr, only
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CCF-O manages to match the striped Landsat images that are
available after the failure of the SLC in May 2003.

The most robust matching method of the six matching meth-
ods tested in this study is the matching method in COSI-
Corr. CCF-O performs almost as well as COSI-Corr, but pro-
duces fewer correct matches above the snowline, making COSI-
Corr better, although COSI-Corr has more problems with areas
covered with thin clouds and snow dunes. The COSI-Corr
program also has a coregistration processor where some push-
broom sensors are included to model the imaging geometry. For
cases where sensors included in the coregistration processor of
COSI-Corr are being used, the accuracy of COSI-Corr will be
higher because also the coregistration between the images to be
matched is improved. Since COSI-Corr mainly uses the cent-
ral part of the window to match due to weighting of the central
pixels, the velocities derived using this method are more rep-
resentative for the center coordinates of the window. Users can
therefore also be relatively confident that the matches are inde-
pendent even when using overlapping windows.

This study does not give a complete overview of all match-
ing methods and all variations of the different matching meth-
ods, but it focuses on methods that are commonly used and that
have performed well in published glaciological studies. Other
matching methods might theoretically perform equally or bet-
ter than the matching methods tested here, and in the future new
matching methods will be developed that should also be tested
against existing methods.

In sum, our study suggests that no one matching method
clearly outperforms all others investigated under all circum-
stances, but rather that a set of two or three methods should
be combined depending on the image conditions and the gla-
cier characteristics. Further improvement can be achieved us-
ing locally adaptive template sizes as proposed by Debella-Gilo
and Kääb (in review) combined with CCF-O and filtering the
matching results automatically by comparing the displacement
matrix to its low-pass filtered version as proposed here. Thus,
future improvements of glaciological image matching should
also focus more on the algorithm implementation and intelli-
gent post-processing and filter procedures, rather than the pure
algorithms itselves. Matches over stable ground can be used
to check and improve the co-registration between the images
compared. Using all these approaches, the matching process
can be automated to a large degree for deriving glacier velo-
cities with minimal user interaction, a prerequisite for being
able the measure ice velocities over large areas and many re-
gions. Though, we believe that a final expert check and edit of
displacements should be performed and will still be necessary
for some time to come in order to obtain glaciologically sound
and useful results. Spatio-temporal variations of glacier velo-
cities measured over large areas or even globally will soon be
possible, and will provide new insights in, for example, glacier
response to climate, glacier physics, ice and sediment fluxes,
erosion and landscape development, glacial geomorphology, or
glacial hazard development.
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Abstract

Matching of repeat optical satellite images to derive glacier velocities is an approach
that is much used within glaciology. Lately, focus has been put into developing, improv-
ing, automating and comparing different image matching methods. This makes it now
possible to investigate glacier dynamics within large regions of the world and also be-5

tween regions to improve knowledge about glacier dynamics in space and time. In this
study we investigate whether the negative glacier mass balance seen over large parts
of the world has caused the glaciers to change their speeds. The studied regions are
Pamir, Caucasus, Penny Ice Cap, Alaska Range and Patagonia. In addition we derive
speed changes for Karakoram, a region assumed to have positive mass balance and10

that contains many surge-type glaciers. We find that the mapped glaciers in the five re-
gions with negative mass balance have decreased their speeds over the last decades,
Pamir by 43 % in average per decade, Caucasus by 8 % in average per decade, Penny
Ice Cap by 25 % in average per decade, Alaska Range by 11 % in average per decade
and Patagonia by 20 % in average per decade. Glaciers in Karakoram have generally15

increased their speeds, but surging glaciers and glaciers with flow instabilities are most
prominent in this area.

1 Introduction

Deriving glacier surface velocities from optical satellite images using image matching is
well established within glaciology. In the beginning manual methods were used (Luc-20

chitta and Ferguson, 1986), but later automatic techniques took over. Bindschadler
and Scambos (1991) and Scambos et al. (1992) were the first to use automatic im-
age matching techniques to derive glacier velocities. They used normalized cross-
correlation (NCC) based on the work of Bernstein (1983). Later, different image match-
ing techniques have been applied for this purpose. Most studies have used the NCC25

technique (e.g. Scambos et al., 1992; Kääb, 2002; Copland et al., 2009; Skvarca et al.,
2003; Berthier et al., 2005), some have used least square matching (Kaufmann and
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Ladstädter, 2003; Debella-Gilo and Kääb, 2011b), and lately frequency domain meth-
ods have become more common (Rolstad et al., 1997; Scherler et al., 2008; Haug
et al., 2010; Herman et al., 2011; Quincey and Glasser, 2009) especially after the de-
velopment of COSI-Corr (Leprince et al., 2007).

Most studies have focused on specific glaciers or smaller glacier regions, and only5

a few studies so far have focused on deriving glacier surface velocities for larger regions
and comparing those (Kääb, 2005; Copland et al., 2009; Scherler et al., 2011b,a).
However, since much focus is put into developing, improving and automating image
matching techniques to make them well suited for image matching of glaciers (e.g.
Leprince et al., 2007; Debella-Gilo and Kääb, 2011a,c; Haug et al., 2010; Heid and10

Kääb, 2011; Scherler et al., 2008) and also on comparing image matching techniques
to find the methods that produce best results for glaciers (Heid and Kääb, 2011), it
is now possible to focus on comparing glacier velocities within large regions and also
between regions to improve our knowledge about glacier dynamics and its variation in
space and time.15

Using repeat optical satellite images to investigate annual glacier speed changes has
one important advantage over using differential interferometric synthetic aperture radar
(DInSAR), a technique that has immensely progressed our understanding of glacier
flow (Rott, 2009). Because the coherence time is much longer for optical images than
the phase coherence time is for SAR images, it is in most areas of the world possible to20

derive annual speeds using optical satellite images taken one year apart. DInSAR usu-
ally requires images days or at the maximum two months apart. Using optical satellite
images it is thus less need to take seasonal speed variations into account when inves-
tigating whether annual glacier speeds are changing. Concerning coherence times,
offset tracking based on repeat radar magnitude images lies in between optical match-25

ing and radar interferometry, but has else also a very large potential for global-scale
mapping and monitoring of glacier flow (Quincey et al., 2009).

Glacier velocities are connected to mass balance because the mass flux through
a cross section of a glacier equals the mass balance upstream of the cross section
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when a glacier is in balance (Paterson, 1994). In theory, negative mass balance there-
fore gives reduced ice flux under equilibrium conditions. Mass balance estimates have
been strongly negative over large parts of the world for the last decades (e.g. Käser
et al., 2006; Lemke et al., 2007; Bahr et al., 2009; WGMS, 2009), and we hypoth-
esize that this negative mass balance has caused glaciers in many regions to slow5

down, at least on regional averages. To test this hypothesis, we select five glacier
regions where the mass balance has been negative over the last decades. These
regions are Pamir with a mass balance of Abramov glacier of −0.53 m w.e. a−1 from
1980 to 1997 (WGMS, 1999), Caucasus with a mass balance of Djankuat glacier of
−0.13 m w.e. a−1 from 1966/67 to 2002/03 (Shahgedanova et al., 2007), Penny Ice10

Cap in the Canadian Arctic with a mass balance of the Southern Canadian Arctic
Archipelago of −0.57 m w.e. a−1 as calculated from mass losses derived by Gard-
ner et al. (2011) for the 2004–2009 period, Alaska Range with a mass balance of
−0.30 m w.e. a−1 from 1953 to 2004 (Berthier et al., 2010), and Southern Patagonia Ice
Field with a mass balance of −0.93 m w.e. a−1 as calculated from elevation changes by15

Rignot et al. (2003) for the period 1975 to 2000. Other mass balance estimates also
exist for some of these regions, but we choose the most recent estimates. In addition
we also select Karakoram in Himalaya, where modelled climate data indicate positive
mass balance over the last decades, and measured glacier speed increases at Baltoro
glacier are assumed to be associated with this mass surplus (Quincey et al., 2009).20

The aim of this study is to test if, and to what degree, glacier speeds have decreased
on regional scales due to negative mass balance. Such a relationship is well expected,
but it has never been observed on regional scales before. It has been observed for
individual glaciers using ground observations (Haefeli, 1970; Span and Kuhn, 2003;
Vincent et al., 2009), but also the opposite has been observed (Vincent et al., 2000).25

Because glaciers may behave very differently even though they experience the same
climatic conditions, the relationship between mass balance and speed should not only
be studied for individual glaciers, but also for entire regions.
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2 Methods

All previous studies that have investigated glacier velocities on regional scales using
optical images have used ASTER images. In this study however, we use Landsat im-
ages, because they have several advantages compared to ASTER images in studies
like the present. One Landsat image covers an area of 183 km by 170 km for ETM+,5

185 km by 172 km for TM and 185 km by 185 km for MSS, whereas one ASTER im-
age covers an area of only 60 km by 60 km. The Landsat series also extends long
back in time, to 1982 with 30 m spatial resolution and to 1972 to 1982 with 68 m by
83 m spatial resolution. This makes it possible to study long-term velocity changes.
ASTER only extends back to 1999. (We should however note that it is also possible10

to combine ASTER and Landsat data in the kind of study performed here, Kääb et al.,
2005b). Landsat images are also used in other studies of global glacier changes,
like Global Land Ice Measurements from Space (GLIMS) (Bishop et al., 2004; Kargel
et al., 2005; Raup et al., 2007), GlobGlacier and Glacier CCI. The use of Landsat data
for glacier velocity measurements thus ensures a consistency in source data for the15

various glacier parameters derived, and a larger combined automation potential. The
spatial resolution is 15 m for both panchromatic Landsat images after 1999 and visible
and near-infrared ASTER images. Landsat images are available at no cost through
the US Geological Survey (USGS), and ASTER images are available at no cost for
scientific users. The disadvantage with Landsat images however, is subpixel noise20

created by attitude variations. Lee et al. (2004) found that the image-to-image regis-
tration accuracy was better than the requirement of 7.3 m, and that the average was at
about 5 m for the ETM+ sensor. For the TM sensor the accuracy is approximately 6 m
(Storey and Choate, 2004). This noise is impossible to model because TM and ETM+
are whisk-broom systems, and therefore the accuracy of the image-to-image registra-25

tion reduces to this level. For most glaciological studies this is an acceptable accuracy
because the glacier displacements over the time period that the glacier features are
preserved by far exceed this noise level. The attitude variations of ASTER images can
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be modelled and removed, as is done in the COSI-Corr matching software, and there-
fore displacements derived using ASTER can be more accurate than displacements
derived using Landsat. In consideration of the above aspects and our primary goal,
worldwide decadal-scale glacier velocity changes, we use images from both Landsat
TM and Landsat ETM+, depending on the availability of data. The images used in this5

study are listed in Table 1.
We mainly use cross-correlation operated in the frequency domain on orientation

images (CCF-O), a method developed by Fitch et al. (2002), to derive glacier displace-
ments in this study. This method was one of the methods that performed the best on
most glacier surfaces in a worldwide evaluation study by Heid and Kääb (2011). COSI-10

Corr performed slightly better in general, especially in areas with low visual contrast,
but COSI-Corr cannot match striped Landsat images. Landsat7 images are striped
from May 2003 and onwards because of a failure of the scan line corrector (SLC-off). To
also be able to use these striped images we select CCF-O instead of COSI-Corr. How-
ever, in Caucasus we use normalized cross-correlation (NCC) because this method15

performs the best on smaller glaciers with good visual contrast (Heid and Kääb, 2011).
First we derive orientation images from the original images. Taking f as the image

at time t = 1 and g as the image at time t = 2, the orientation images fo and go are
created from

fo(x,y)= sgn(
∂f (x,y)

∂x
+ i

∂f (x,y)

∂y
) (1)20

go(x,y)= sgn(
∂g(x,y)

∂x
+ i

∂g(x,y)

∂y
) (2)

wheresgn(x)=

{
0 if |x|= 0
x
|x| otherwise (3)

where sgn is the signum function and i is the complex imaginary unit. The new images
fo and go are complex and hence consist of one real and one imaginary part, where
the intensity differences in the x direction represent the real matrix and the intensity25
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differences in the y direction represent the imaginary matrix. These orientation images
are then matched using cross-correlation operated in the frequency domain. The cross-
correlation surface CC is given by

CC(i ,j )= IFFT
(
Fo(u,v)G∗

o(u,v)

|Fo(u,v)G∗
o(u,v)|

)
. (4)

The peak of the cross-correlation surface indicates the displacement. Subpixel dis-5

placements are derived by fitting orthogonal parabolic functions to the correlation sur-
face. Subpixel displacements in the x direction dx and in the y direction dy are found
using

dx=
P (xm+1,ym)−P (xm−1,ym)

2(2P (xm,ym)−P (xm+1,ym)−P (xm−1,ym))
(5)

dy =
P (xm,ym+1)−P (xm,ym−1)

2(2P (xm,ym)−P (xm,ym+1)−P (xm,ym−1))
(6)10

where P (xm,ym) is the maximum correlation value. The parabolic function is therefore
fitted using the two nearest neighbors.

For each of the five study areas we use a small but representative section of the
Landsat images to find the optimal matching window size. Applying this selection pro-
cedure on entire Landsat images would be very time consuming due to the ETM+15

image size of about 15 000 pixels by 17 000 pixels. The size of the small test sections
used is 30 km by 30 km. Different window sizes are tested on this section to find a win-
dow size that optimizes the matching results. The matching result is considered to be
optimized when assumed correct matches are obtained over most of the glacierized
areas, but without increasing the window size more than necessary. This is to avoid20

much deformation in one window (Debella-Gilo and Kääb, 2011c). The spacing be-
tween the matching windows is half the window size, which means that the matchings
are not completely independent. The size of the matching windows used is given in
Table 2.
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Following basic glacier physics, in particular stress transfer, we choose to filter the
obtained vectors depending on the neighboring vectors, so that vectors are assumed
correct if they agree to a certain extent with their neighboring vectors. First, all vectors
outside glacierized areas are removed using digital glacier outlines from GLIMS if avail-
able or we digitize such outlines from Landsat images. Then the assumed real max-5

imum displacement is found by manually investigating the vectors. All vectors larger
than the assumed real maximum displacement are removed. Using only the remaining
vectors, the displacement field in both x and y direction is filtered using a 3 by 3 mean
low-pass filter. Individual original vectors that deviate more than a certain threshold
from this low-pass filtered displacement field are removed (Heid and Kääb, 2011). The10

threshold varies between the different areas depending on the displacement variations
within the areas. Such filtering is not conducted in Caucasus and Patagonia because of
the few correct matches derived in these areas. Table 2 shows the different thresholds.

For Pamir, Alaska Range and Karakoram the velocity fields derived are dense
enough for comparing velocities derived for points closest to the centerline. However,15

for Caucasus, Penny Ice Cap and Patagonia the derived velocity fields are more patchy,
and therefore also points further away from the centerline are accepted. In all cases
the automatically derived results are checked manually in the end and points with mis-
matches in one or both of the two periods are removed. Thus, only points with accepted
matches in both periods are used for computing velocity changes.20

The accuracy of the measurements is in theory determined by the image-to-image
registration accuracy of the Landsat images and the accuracy of the matching method.
But, because the accuracy of the matching method is much smaller than the image-to-
image registration accuracy, the accuracy is dominated by the image-to-image registra-
tion accuracy (Heid and Kääb, 2011). The uncertainty of single measurements is ± 5 m25

for ETM+ (Lee et al., 2004) and ± 6 m for TM (Storey and Choate, 2004), whereas the
accuracy of the matching method is around 1/10 of a pixel (Heid and Kääb, 2011). We
matched stable ground in all of the image pairs, and for all image pairs the root mean
square error (RMSE) was between 1.8 m and 5.7 m. For comparison of two different
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displacement measurements, the uncertainty will be ± 8 m for ETM+ and ± 9 m for TM
using root sum square (RSS). Since time spans are about one year, but in some cases
slightly shorter, speed changes of more than ± 10 m a−1 are considered significant
speed changes in this study.

3 Results5

Changes in glacier speed in the areas with negative mass balance are derived for the
2000/2001–2009/2010 period for Pamir, the 1986/1987–2010/2011 period for Cauca-
sus, the 1985/1987–2009/2010 period for Penny Ice Cap, the 1986/1987–2009/2010
period for Alaska Range, and the 1984/1986–2001/2002 period for Patagonia. Speed
changes from the first to the second period are shown in Figs. 1 and 2 and are also10

summed up in Table 3. We compute the mean speeds and their changes from the
means of each individual glacier, not from all measurements directly. This normaliza-
tion is necessary because some glaciers are large or have good visual contrast and
allow thus for many measurements, whereas others do not. However, it is important
to notice that the numbers in Table 3 are not area averages since not all glaciers and15

all parts of glaciers are covered. Thus, the numbers from our study are indicative for
speed changes but do not quantitatively reflect overall ice flux changes. The largest
reduction in speed per decade is found in Pamir where the speed decreased by 43 %
per decade. Caucasus has the smallest reduction in speed with only 8 % reduction
per decade. Decadal reduction in glacier speed is calculated by simply dividing total20

change through number of decades, not as compound interest due to the short time
intervals involved.

In Pamir we derive speed changes for parts of 50 glaciers. The majority of the
glaciers reduced their speed or showed no significant speed changes over the time
period, but two glaciers, Bivachnyy and Grum-Grzhimailo, also increased their speeds25

(Fig. 1a). Pamir is a region with surging glaciers, hence also surge activities potentially
influence the results. In total the speed decrease is of about 39 % or 43 % per decade.
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In Caucasus we derive speed changes for parts of 16 glaciers. Most glaciers reduced
their speed over the time period (Fig. 1b), but the largest glacier in the area, Bezengi
glacier, increased its speed over large parts of the glacier. In total, the areas we map
show a general decrease in glacier speed of about 19 % over the time period, which
translates to about 8 % per decade.5

Speed changes are derived for parts of 12 of the outlet glaciers of Penny Ice Cap.
Generally all glaciers decreased their velocity from the first period to the second
(Fig. 1c). The total speed decrease over the areas we map is about 59 % or 25 %
per decade.

The matching in the Alaska Range gives us speed changes for parts of 9 glaciers.10

All but one glacier, Ruth Glacier, have reduced their speed or had constant speed over
the time period (Fig. 1d). Also this is an area with surging glaciers. In total the speed
decrease is about 26 %, or 11 % per decade.

In Patagonia speed changes are derived for 10 of the northern outlet glaciers of the
Southern Patagonia Ice Field. All the outlet glaciers that we map have reduced their15

speed over the time period (Fig. 1e), and the total percentage of speed reduction is
34 %, or 20 % per decade.

We also derive changes in glacier speed for Karakoram for the 2001/2002–
2009/2010 period (east) and for the 2000/2001–2009/2010 period (west) (Fig. 3).
Glaciers in this area are assumed to have had a positive mass balance over the last20

years (Quincey et al., 2009) and the Karakoram area is also known for its many surging
glaciers (Hewitt, 1969, 2007; Copland et al., 2009).

As Fig. 3 shows, the pattern of velocity changes in Karakoram is complex. In the
east, glaciers are mainly increasing their speeds, but the difference in speed between
the first and the second period is generally less than 25 m a−1. Two exceptions are25

Stanghan glacier and Skamri glacier, which have low speeds in the first period and
very high speeds in the second period. In the west, the speed changes are dramatic for
glaciers flowing into the Shimshal valley and also for Khiang glacier and Batura glacier.
However, there is no clear pattern in the velocity changes, and both accelerating and
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decelerating glaciers are found. In Shimshal valley the speeds are high in both periods,
but they are extremely high in one of the periods. Khiang glacier has high speeds in
the first period, but in the second period the speed is close to zero. Batura glacier has
high speeds in both periods, but the speed is increasing from the first to the second
period.5

4 Discussion

All the glacier regions with negative mass balance that we investigate in this study
show a clear sign of glacier deceleration on a regional scale. This indicates that indeed
less ice mass is transported down the glaciers so that the glaciers are thinning and
retreating in their lower parts as a response to the negative mass balance. However,10

there is a lag expected between changes in mass balance and changes in glacier
speeds due to the response time of glaciers (Johannesson et al., 1989). The response
time is related to the altitudinal mass balance gradient, the mean surface slope of the
glacier and the length of the glacier (Oerlemans, 2005).

It is not possible to see a clear correlation between the magnitude of the mass bal-15

ance in a study region and the percentage speed change on a regional level. This
might be due to several factors. Firstly, and most importantly, it can be due to the re-
sponse times of the glaciers in the different regions. The regions are different when
it comes to the factors influencing the response time, hence very different response
times must be expected. Secondly, the mass balance estimates and the speed reduc-20

tion estimates might not be representative for the same regions. Speed differences are
not derived for all parts of the glaciers or for all glaciers within one region, and mass
balance is sometimes derived for single glaciers within the regions or sometimes for
larger regions than what we have investigated. Thirdly, the mass balance estimates
and the speed change estimates are from different time periods. Fourthly, glaciers25

could have changed their amount and way of sliding, i.e. their flow mode, indepen-
dently of mass balance changes. Or similar, surge-type activities, at lower magnitudes
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than full surges, though, may have influenced our measurements. Fifthly and finally,
one should have in mind that our measurements represent speed changes between
two annual periods, and not necessary steady changes in ice flux on a decadal scale.

Some of the glaciers are accelerating from the first to the second period. In Pamir
two glaciers are accelerating, in Caucasus one glacier is accelerating and one glacier5

is also accelerating in the Alaska Range. Both Pamir and the Alaska Range contain
surging glaciers. It is therefore not surprising that some glaciers in these areas are ac-
celerating. The Bivachnyy Glacier in Northwestern Pamir is clearly a surge type glacier
in its quiescent phase in the first period, due to velocities close to zero. In the sec-
ond period this glacier is moving much faster with maximum speed of about 100 m a−1.10

These speeds probably reflect a surge or surge-type movement. Looped moraines
on this glacier as visible in the satellite images also confirm that it is a surge-type
glacier. The Grum-Grzhimailo Glacier to the southeast in Pamir and the accelerating
glacier in Alaska Range, Ruth Glacier, cannot be defined as surge type glaciers from
the velocity measurements obtained in this study. These glaciers have speeds of more15

than 100 m a−1 in both periods, and in addition no looped moraines can be seen in the
satellite images. It is however likely that it is flow instabilities that are causing these in-
creased speeds since the glaciers are situated in areas containing surging glaciers and
because they are behaving differently from their neighbouring glaciers. The accelerat-
ing glacier in Caucasus, Bezengi Glacier, can possibly be accelerating as a reaction20

to positive mass balance values. Mean mass balance here was close to zero for the
period 1966/67 to 2002/03 (Shahgedanova et al., 2007), but the mass balance mea-
surements were only done on one glacier, the Djankuat Glacier, so mass balance might
have been positive for Bezengi Glacier.

Although Penny Ice Cap and Patagonia have a smaller decrease in glacier speed25

per decade than Pamir, these are the two areas that show the most homogeneous
speed decrease from the first period to the second. No glacier in these two areas
accelerates, and in Patagonia almost all compared points show a speed decrease of
more than 20 m a−1 from the first to the second period. This is probably because all
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investigated glaciers in these two areas are dynamically stable and hence only have
velocity variations that can be attributed to changes in mass balance.

The moderate increase in glacier speeds in Eastern Karakoram indicates that these
glaciers are increasing their speeds as a response to the positive mass balance in
this area. Quincey et al. (2009) found that Baltoro accelerated due to positive mass5

balance, and the present study shows that this is also the case for Siachen Glacier.
Staghan Glacier and Skamri Glacier are clearly surge-type glaciers in their quiescent
phase in the first period due to their low speeds. In the second period the glaciers
are surging according to derived speeds of more than 200 m a−1 and also large areas
where the speed cannot be measured probably due to very high speeds and much10

surface transformation.
Many of the glaciers flowing into the Shimshal valley are glaciers with flow instabil-

ities. They cannot be characterized as surge type glaciers from the speed changes
derived in this study. This is because they have large speeds in both periods, hence
sliding is clearly an important component of the surface speed although the veloci-15

ties are lower than in the other period. A previous study has speculated that many
glaciers in the Karakoram have flow instabilities instead of being of classical surge type
(Williams and Ferrigno, 2010). The results in the present study for glaciers flowing into
Shimshal valley support this.

Khiang Glacier was in the first period moving more than 100 m a−1. In the second20

period its speed was close to zero. This glacier has not been identified as a surging
glacier before. A tributary of Batura Glacier in the west is surging in the last period,
influencing also the speed of Batura Glacier in the confluence zone.

The velocity measurements obtained here indicate that glaciers in Karakoram be-
have differently depending on location. Glaciers in the east seem to by dynamically25

stable and their speed changes are linked to changes in mass balance. This is also
supported by the very few observations of glacier surges in this area, and few looped
moraines. The Central North Karakoram probably contains many surging glaciers be-
cause of the very low speeds that are measured in this area. This indicates that these
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are surging glaciers in their quiescent phase. Many of these glaciers have also been
identified as surging glaciers in previous studies (Hewitt, 1969, 2007; Copland et al.,
2009). The area in northwest contains many dynamically instable glaciers that cannot
be defined as surging glaciers in the classical sense. This is because their speed is
always high, and therefore sliding seems very important at all times. This area also5

contains some classical surging glaciers.

5 Conclusions and perspectives

In this study we derived speed changes using repeat optical satellite images for five
large glacier regions of the world with negative mass balance: Pamir, Caucasus, Penny
Ice Cap, Alaska Range and Patagonia. We also derived speed changes for Karakoram,10

which is an area with positive mass balance and that contains a large number of surging
glaciers. In general, all the five regions with negative mass balance had a mean speed
decrease in mapped areas from the first period to the second period. Glaciers in Pamir
reduced their speed by 43 % per decade, glaciers in Caucasus by 8 % per decade,
outlet glaciers from Penny Ice Cap by 25 % per decade, glaciers in the Alaska Range15

by 11 % per decade and outlet glaciers from the Southern Patagonia Ice Field by 20 %
per decade.

On regional scales and over longer time periods, the glacier speeds are expected to
decrease because less mass accumulates and therefore also less mass will be trans-
ported down to lower elevations. We have shown that this regional speed decrease20

is taking place. However, we could not observe a relationship between magnitude of
negative mass balance and percent speed decrease. This may be because the re-
sponse time of glaciers is different from area to area, and within the areas, and due to
other reasons such as the uncertain representativeness of our velocity measurements.
Glaciers in Karakoram generally increased their speed due to the positive mass bal-25

ance, but the speed changes here are heavily influenced by the dynamic instabilities in
this area.
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Our study opens up for a range of other analyses based on regional or worldwide
glacier velocity measurements as were demonstrated here. For instance, it seems
possible to roughly estimate the response time of glaciers from inventory parameters
(Haeberli and Hoelzle, 1995), and investigate their correlation with speed changes
and mass balance measurements. Velocity measurements can be correlated against5

glacier inventory parameters such as length, area and hypsometry. Glacier velocities
can also be used to estimate erosion rates or mechanisms (Scherler et al., 2011b) and
transport times (Casey et al., 2011) and thus to contribute towards better understanding
of glacial landscape development. On the more applied side, widespread decrease in
glacier speed will increase the probability and speed of glacier lake development in10

areas prone to such lakes, because ice supply is one of the dominant factors in lake
development and growth. Studies of speed change can help to point out areas where
glacier lakes can develop or the growth of existing ones is expected (Kääb et al., 2005a;
Bolch et al., 2008; Quincey et al., 2007).

Now that it is demonstrated to be feasible not just to focus velocity measurements15

on specific glaciers or smaller glacier regions, more effort should be put into deriving
glacier velocities globally. This study shows that deriving glacier velocities for large
regions or even on a global scale can give valuable insights to glaciers’ dynamic climate
change response and to glacier flow instabilities. It also shows that there is a potential
to understand the importance of glacier sliding and deformation on regional scales20

better by investigating speed changes over time and the spatial structure of velocities.
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Table 1. Overview of the image pairs used in this study.

Area Sensor Path/Row Date Date Date Date
image t= 1 image t= 2 image t= 1 image t= 2

period 1 period 1 period 2 period 2

Pamir ETM+/TM 151/33 24 Aug 2000 26 Jul 2001 9 Aug 2009 27 Jul 2010
Caucasus TM 171/30 6 Aug 1986 26 Sep 1987 8 Aug 2010 11 Aug 2011
Penny Ice Cap TM 18/13 19 Aug 1985 24 Jul 1987 21 Aug 2009 7 Jul 2010
Alaska Range TM 70/16 15 Jun 1986 21 Aug 1987 20 Aug 2010 6 Jul 2011
Patagonia TM 231/94 26 Dec 1984 14 Jan 1986 20 Mar 2001 18 Jan 2002
Karakoram east ETM+ 148/35 16 Jun 2000 21 Jul 2001 28 Aug 2009 31 Aug 2010
Karakoram west ETM+ 149/35 29 Aug 2001 16 Aug 2002 20 Sep 2009 22 Aug 2010
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Table 2. Matching window sizes and filtering thresholds in the different areas.

Area Matching window Filtering threshold
m m

Pamir 240 ± 105
Caucasus 120 –
Penny Ice Cap 240 ± 90
Alaska Range 480 ± 120
Patagonia 480 –
Karakoram 240 ± 45
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Table 3. Speed change for each area.

Area Mean Mean Percent Percent Number of Number of
speed change speed 1. period speed change speed change points glaciers

per decade
m a−1 m a−1 decade−1

Pamir −17.0 45.8 −39 % −43 % 3148 50
Caucasus −4.9 25.7 −19 % −8 % 1057 16
Penny −12.6 21.3 −59 % −25 % 471 12
Alaska Range −15.9 61.2 −26 % −11 % 1018 9
Patagonia −85.3 248.6 −34 % −20 % 85 10
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Fig. 1. Glacier speed changes between the two periods for (a) Pamir, (b) Caucasus and
(c) Penny Ice Cap. Negative values indicate lower speeds in the second period. Changes
between −10 m a−1 and 10 m a−1 are insignificant. Bi indicates Bivachnyy, Gr indicates Grum-
Grzhimailo and Be indicates Bezengi.
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Fig. 1. Glacier speed changes between the two periods for (d) Alaska Range and (e) Patag-
onia. Negative values indicate lower speeds in the second period. Changes between
−10 m a−1 and 10 m a−1 are insignificant. R indicates Ruth Glacier.
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Fig. 2. Box plot showing the speed change of individual glaciers from the first to the second
period for the five different regions. The box outline indicates the 25th percentile and the 75th
percentile. The dotted bars indicate the range of the speed changes. Negative values indicate
lower speeds in the second period.
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Fig. 3. Differences in centerline speed in Karakoram between the two periods 2001–2002
(east)/2000–2001 (west) and 2009–2010. Negative values indicate lower speeds in the last
period. Changes between −10 m a−1 and 10 m a−1 are insignificant. Note that the scale is
different compared to Fig. 1. The large red circles indicate glaciers that are known to surge
(Hewitt, 1969, 2007; Copland et al., 2009). Ba indicates Batura, Sh indicates Shimshal valley,
Kh indicates Khiang, Sk indicates Skamri, St indicates Stanghan and Si indicates Siachen.

3051



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




