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[1] We present a new approach to extracting spatially and temporally continuous
ground deformation fields from interferometric synthetic aperture radar (InSAR) data.
We focus on unwrapped interferograms from a single viewing geometry, estimating
ground deformation along the line-of-sight. Our approach is based on a wavelet
decomposition in space and a general parametrization in time. We refer to this approach
as MInTS (Multiscale InSAR Time Series). The wavelet decomposition efficiently deals
with commonly seen spatial covariances in repeat-pass InSAR measurements, since the
coefficients of the wavelets are essentially spatially uncorrelated. Our time-dependent
parametrization is capable of capturing both recognized and unrecognized processes, and is
not arbitrarily tied to the times of the SAR acquisitions. We estimate deformation in the
wavelet-domain, using a cross-validated, regularized least squares inversion. We include a
model-resolution-based regularization, in order to more heavily damp the model during
periods of sparse SAR acquisitions, compared to during times of dense acquisitions.
To illustrate the application of MInTS, we consider a catalog of 92 ERS and Envisat
interferograms, spanning 16 years, in the Long Valley caldera, CA, region. MInTS analysis
captures the ground deformation with high spatial density over the Long Valley region.
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1. Introduction

[2] Geodetic imaging aims to discover new crustal defor-
mation processes, to monitor known sources of deformation,
and to estimate the values and uncertainties of the para-
meters controlling these processes. Here, we focus on the
use of repeat pass satellite interferometric synthetic aperture
radar (InSAR) data. (For a review of InSAR techniques, we
refer the reader to Simons and Rosen [2007] and references
therein.) For many important geophysical targets, we already
have deep archives of radar images from a given satellite and
viewing geometry. More importantly, future radar missions
should provide frequent image acquisitions with high inter-
ferometric correlation. In response to the increase in temporal
density of radar acquisitions, we present a new approach to
exploit InSAR archives to determine the spatiotemporal
evolution of surface deformation.
[3] The simplest approach to utilizing multiple inter-

ferograms is to average them (often referred to as “stacking”,
although in this paper we do not use the term “stack” to be

synonymous with “average”). If the primary geophysical
target is a single event that occurred quickly (i.e., anything
taking less than the image acquisition interval) or is a gradual
process occurring at constant rate, averaging is commonly
used to increase the signal-to-noise ratio [e.g., Peltzer et al.,
2001; Lyons and Sandwell, 2003; Gourmelen and Amelung,
2005; Pritchard and Simons, 2006]. For example, averag-
ing reduces the effects due to tropospheric delays, as these
effects are typically uncorrelated on timescales of more than a
day [e.g., Hanssen, 2001; Emardson et al., 2003]. Averaging
images can also reduce computational burden in parameter
estimation schemes by reducing the amount of observations
[e.g., Pritchard and Simons, 2006]. In the case of a single
rapid event, the displacements are averaged, whereas for a
constant rate process, it is common to average the velocities.
We note that by averaging a set of interferograms, one is
implicitly assuming a functional form for the deformation
field (a step or a linear function) and simply estimating the
appropriate constants [Simons and Rosen, 2007].
[4] Over the last decade, the community has made con-

siderable progress in estimating time-dependent deformation
from InSAR data. Approaches include Permanent or Persis-
tent Scatterer (PS) techniques [e.g., Ferretti et al., 2000,
2001;Colesanti et al., 2003;Wegmüller, 2003;Hooper et al.,
2004; Bürgmann et al., 2006] as well as interferogram time
series techniques [e.g., Lundgren et al., 2001, 2009;
Berardino et al., 2002; Schmidt and Bürgmann, 2003; Lanari
et al., 2004; Hooper, 2008]. Most of these techniques exploit
long time series of over a decade of SAR observations. PS
techniques are restricted to using only temporally coherent
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point scatterers, and require a parametrization of the time
dependent deformation. In contrast, other time series tech-
niques use all available pixels in all scene combinations
where the interferometric baseline is well below a critical
baseline [Lundgren et al., 2001; Berardino et al., 2002;
Schmidt and Bürgmann, 2003; Lanari et al., 2004]. As a
result, in the latter techniques one can expand the area of
usable pixels, and for well-correlated areas, potentially the
time-dependent deformation of every pixel could be deter-
mined. For each usable pixel, interferometric pairs yield phase
differences over available time intervals in the time series, with
the shortest possible sampling interval being the satellite
repeat period. In contrast to PS techniques, the phase differ-
ence measurements at a given pixel in all combinations of
radar images are inverted to determine the time-dependent
ground deformation. Typically, a piecewise linear time-
dependence is sought, with the most common version of this
latter technique being the Small Baseline Subset (SBAS)
method [e.g., Lundgren et al., 2001; Berardino et al., 2002;
Doubre and Peltzer, 2007]. Recently, Hooper [2008] pro-
posed a hybrid approach to estimating time-dependent ground
deformation, utilizing both PS and SBAS methodologies.
[5] While providing a solid foundation, these existing

approaches have several important shortcomings. Princi-
pally, current methods are applied on a pixel-by-pixel basis,
with pixel-to-pixel connection made by assuming a single
master reference image. Pixel-by-pixel methods ignore the
known spatial covariances in the observations, as well as
expectations for “reasonable” behavior even in regions of
low interferometric correlation. Current methods also use
ad-hoc strategies to deal with interferograms containing
regions of low interferometric correlation, or to deal with
sets of interferograms that are not connected to other inter-
ferograms by common image acquisitions.
[6] We propose a multiscale InSAR time series (MInTS)

approach to determine the spatiotemporal ground deforma-
tion from a catalog of interferograms of a region. For brevity,
we refer to a catalog of interferograms as a “stack” through-
out this paper. In our approach, we use a wavelet decompo-
sition in space and a general parametrization in time. Spatial
wavelet decompositions have been effectively applied to
InSAR data in order to provide better estimates of orbital
errors [Shirzaei and Walter, 2011]. Additionally, although
not using wavelet based filters, Lin et al. [2010] used a
multiscale decompositions in order to provide a more robust
estimation of topographically correlated tropospheric path
delays. The spatial wavelet decomposition we use in MInTS
is chosen in order to efficiently deal with the spatial covar-
iances in the InSAR phase difference measurements and to
provide an efficient method for interpolating across regions
of low interferometric correlation.
[7] Our approach to the temporal parametrization is highly

influenced by common approaches used for post-processing
continuous GPS data to extract velocities, co-seismic offsets,
etc (e.g., QOCA and GLOBK) [Herring et al., 1990; Dong
et al., 1998, 2002]. Determination of time-dependent
ground deformation using InSAR data substantially differs
from GPS time series techniques, as InSAR has a much
higher density of samples in space, but much lower density of
samples in time. Moreover, InSAR measures differences in
ground position over time spans between repeat orbits,
whereas GPS measures position through time relative to

some reference. In this paper, we only focus on unwrapped
interferograms from a single viewing geometry, thereby only
resolving ground deformation along the satellite line-of-sight
(LOS). In the following, we describe the theory and meth-
odology of MInTS, we illustrate the application of MInTS to
an example InSAR stack from Long Valley caldera, CA, and
we discuss some future directions of MInTS development.

2. Methods

[8] In this section, we outline the methods behind MInTS
(refer to Figure 1 for a conceptual outline of the stages
involved in the MInTS analysis). We first describe our
temporal parametrization of the time dependent deformation,
how this parametrization applies to interferometric mea-
surements, and illustrate this time parametrization using a
synthetic single pixel example. We then describe the full
data covariances of a stack of interferograms, the multiscale
spatial decomposition using 2D wavelets, and the applica-
tion of the discrete wavelet transform to interferograms.
Finally, we describe the inversion method used in MInTS
and the reconstruction of the inferred spatiotemporal defor-
mation field. The entire MInTS analysis has been imple-
mented as a Matlab (The Mathworks, Inc.) toolbox freely
available from the authors.

2.1. Parametrization of Time-Dependent Deformation

[9] We construct a general parametrization of time-
dependent ground deformation, capable of parameterizing
known processes, as well as capturing unknown processes.
For a given location, W = W(x, y), and time, t, we represent
the projection of the 3D surface deformation into the satellite
line-of-sight (LOS) as

rðW; tÞ ¼ roðWÞ þ FrðW; tÞ; ð1Þ

where, ro(W) is a location specific constant, and Fr(W, t)
can be any time-dependent function. For now we consider
Fr(W, t), in its most complete form, to be

FrðW; tÞ ¼ vrðWÞt þ ð2Þ
X
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where H (t � Ti) is a Heavyside function centered at Ti,
Bn(t � ti

♭) are B-splines of order n centered on the uniformly
spaced knots ti

♭, Bn

R
(t � ti

♭) =
R
Bn(t′ � ti

♭)dt′, and Bni(t � ti
♯)

are B-splines of order n located at the non-uniformly
spaced knots ti

♯. We define I i to be a set of indices of a
collection of functional forms. Note that when Ii is an empty
set, the i’th function is not included in the parametrization
of the time-dependent deformation. The spatially dependent
coefficients Di, ai

L, ai
E, si, ci, ki, ki′, and ki″ are unknown

parameters that will be estimated from the InSAR stack.
[10] The first term in Fr(W, t) is a linear rate of deforma-

tion. The second term describes offsets at specific times, such
as those due to earthquakes. This term can also capture non-
instantaneous offsets whose time span is below the temporal
resolution of the InSAR stack. The second two terms, (4) and
(5), are often used in geodetic studies to represent post-
seismic deformation [e.g., Savage et al., 2003, 2005],
although we note that the time constants ai

L and ai
E in terms

(4) and (5), respectively, are typically taken a priori, and
alone they have no direct physical meaning [e.g., Hetland
and Hager, 2006]. The functions in terms (4) and (5) are
one-sided, and are characterized by sharp onsets, and steady
decay (Figure 2). Term (6) describes periodically repeating
deformation. When IP = {1, 2}, w1 = 2p/yr, and w2 = 4p/yr,
term (6) is the common approximation of ground deforma-
tion due to annual and bi-annual seasonal variations of
groundwater storage [e.g., Dong et al., 2002]. This simple
sinusoidal representation of seasonal ground deformation
is only an approximation, and actual ground deformation due
to seasonal variations in groundwater are more complicated
[e.g., Bennett, 2008]. More complicated descriptions of the
seasonal terms can be incorporated into Fr.
[11] The final three terms in Fr(W, t), terms (7)–(9), do not

carry any assumption of what the underlying component of
the deformation signal is due to. Instead, we use these basis

functions to describe signals that are not well described with
the geophysically motivated functions just described. The
uniform B-splines in term (7) are symmetric and have
compact support. The set of B-splines decompose a signal
into a series of recoverable, transient components of ground
deformation (Figure 2). On the other hand, the time integral
of B-splines, term (8), are one-sided, and decompose a sig-
nal into multiple non-recoverable, transient components,
with each component akin to a slow step (Figure 2). The
temporal frequencies of the transient deformation captured
by each of the B-spline representations is given by the
knot spacing, and as the knot spacing becomes smaller,

Figure 2. Basis functions used in the time-dependent
parametrization of ground deformation. B-splines and B

R
-

splines have uniform knot spacing of 0.25, and only the
basis centered at 0.5 is shown.

Figure 1. Outline of MInTS analysis. (left) Stages of processing each interferogram for MInTS analysis:
dashed ovals are optional stages, solid ovals are required. (right) Stages in the inversion of the InSAR
stack in the wavelet domain: double lined ovals indicate stages repeated independently at each wavelet
location and scale, single lined ovals are stages common to all locations and scales. Section number refers
to explanation of the stage in the main text.
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higher frequency deformation is captured. The non-uniform
B-splines in term (9) are asymmetric, and can approximate
one-sided deformation with the appropriate knot spacings.
Non-uniform B-splines may be useful for describing tran-
sient deformation when one knows the approximate times of
transient deformation, but the exact functional form is not
known. Alternatively, non-uniform B-splines are useful if
one wishes to tie the parametrization to the radar acquisition
times. For example, the piecewise linear deformation model
in the SBAS method [Berardino et al., 2002], can be repli-
cated using zero-order non-uniform B-splines located at
the acquisition times. For brevity, we refer to the integrals
of B-splines as B

R
-splines.

[12] Each set of terms in (7)–(9) are a redundant and over-
complete set of basis functions. There may be a significant
trade-off between generalized B-spline-based functions and
the other functions (e.g., periodic terms). We stress that any
particular inference of function coefficients is not unique
when using a set of non-orthogonal, over-complete, and
potentially redundant basis functions. However, if one is not
necessarily interested in the values of the coefficients in
terms (2)–(9) themselves, and more interested in the recon-
struction of Fr(W, t), it is of minor consequence that the
functions included in any realization of Fr(W, t) are not
orthogonal. On the other hand, there may be some instances
where the values of the coefficients are of interest, where
one would most likely either remove that component of the
deformation or use the inferred coefficients in a geophysical
model. An example of the first case is using inferred
amplitudes of sinusoidal terms to filter seasonal ground
variations from the time-dependent deformation. Alterna-
tively, in the second case, the amplitudes of steps might be
used directly to constrain models of coseismic deformation.
When using a non-orthogonal set of functions to represent
the time-dependence of ground deformation, care should be
taken to choose the regularization appropriate for the given
non-orthogonal functional representation and the interfero-
gram catalog. We purposely include a non-orthogonal set of
functions in our representation of Fr(W, t), and allow a
flexibility of regularization. Each geophysical target likely
represents a unique case, and our formulation is open to
testing multiple options.

2.2. Interferometric Measurements

[13] Equation (1) describes time-dependent ground posi-
tion relative to some reference point. However, InSAR
measures discrete differences in LOS deformation over
given time spans. We defineDrab(W) to be the difference in
phase at a pixel located at W in an interferogram spanning
times ta to tb. It is important that all of the interferograms are
processed on a common geometry, and thus we reference all
interferograms to the geometry of a common SAR image
during processing. The InSAR measurements can be repre-
sented as

DrabðWÞ ¼ FrðW; tbÞ � FrðW; taÞ

 �þRabðWÞ þ N abðWÞ ð10Þ

where Rab(W) describes long wavelength errors due to
incorrect estimates of the interferometric baselines (i.e.,
orbital errors), and N ab(W) describes additional noise con-
tributions in the interferometric measurement.

[14] Orbital errors can be estimated either in the proces-
sing stage [e.g., Simons and Rosen, 2007], or by removing
an estimate of Rab from the interferograms prior to deter-
mining the time-dependent deformation [e.g., Pritchard
et al., 2006; Pritchard and Simons, 2006; Shirzaei and
Walter, 2011]. Both methods implicitly assume that the
orbital errors can be estimated independently from the
ground deformation; however, this assumption is not always
ideal, especially for longer wavelength deformation signals.
It is also possible to use independent data, usually GPS
observations, to either re-estimate the interferometric base-
line or to constrain the longest wavelengths of the physical
model [e.g., Peltzer et al., 2001; Simons et al., 2002;
Lundgren et al., 2001], although we do not use such meth-
ods here.
[15] We approximate Rab as the spatial polynomial

RabðWÞ ¼ aab þ bab xþ cab yþ dab xyþ � � � ð11Þ

In practice Rab is often taken to be a bi-linear function with
four coefficients [e.g., Pritchard et al., 2006; Pritchard and
Simons, 2006]. In some studies it may be appropriate to
approximate Rab as a plane with three coefficients [e.g.,
Shirzaei and Walter, 2011] or a constant offset. We note that
using equation (11) implicitly lumps together all long-
wavelength processes that could cause spurious phase
ramps, not just orbital error. Nab(w) includes propagation
delays due to atmospheric or ionospheric perturbations (i.e.,
“path delays” [Massonnet et al., 1993]), and noise due to
temporal decorrelation of the reflective properties of the
ground. Atmospheric path delays can be considered to be
composed of a regional tropospheric stratification, plus a
more spatially complex component which describes the
impact of atmospheric and ionospheric dynamics [e.g.,
Delacourt et al., 1998; Cavalié et al., 2007]. The multiscale
approach we outline here lends itself to a robust estimation
of tropospheric path delays for a simple model in which the
delays are correlated to topography [Lin et al., 2010].
However, exploring approaches to estimating the atmo-
spheric contribution to the interferometric measurements
along with the spatiotemporal deformation is left to a future
study. For now we consider the path delays as some unde-
fined data noise.
[16] Note that we do not need to include unknown offsets

to tie together subsets of the stack that are not connected by
interferograms (i.e., disconnected interferograms in perpen-
dicular baseline and time space, referred to as B? space), as
long as the temporal parametrization in Fr does not depend
on the acquisition times.

2.3. Single Pixel Demo

[17] Before discussing the spatial aspect of MInTS and the
inversion procedure, we illustrate our temporal parametri-
zation using a synthetic displacement time series at a single
point (i.e., in a single pixel). We also use this synthetic
example to highlight the differences between our time-
dependent parametrization and an assumption of constant
deformation rate between SAR acquisition times. The syn-
thetic deformation consists of a linear-rate, an instantaneous
offset at time to, a logarithmic deformation following the
offset, a non-instantaneous offset during the logarithmic
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decay, and annual and semi-annual seasonal components
(Figure 3). We construct the synthetic Dr samples, using
two sample interferometric stacks based on a random tem-
poral sampling (i.e., synthetic SAR acquisition times). In
the first stack, we assume that a Dr measurement is made in
all pairs of acquisitions (Figure 3a), and in the second
stack, we assume that there are no Dr measurements span-
ning the center of the synthetic time series (Figure 3b).
We refer to the first as the “connected stack”, and the second
as the “disconnected stack”. We add 20% Gaussian noise
to the synthetic Dr measurements. We then invert the Dr
measurements in the two stacks for a time-parametrization
composed of a constant offset at to, annual and semi-
annual seasonal components, and a collection of ten 3rd
order B

R
-splines. We damp the coefficients of the time-

dependent parametrization, and we use a ten-fold cross-
validation to determine the optimal penalty parameter (the
inversion technique is fully described in section 2.7).
For both the connected and disconnected stacks, we recover
the total deformation signal well (Figure 3c). We also
recover the magnitude of the offset at to (Figure 3d), and

the largest amplitude variation of the seasonal signals
(Figure 3f) fairly well. The B

R
-splines approximate the

combined effect of the linear rate, the logarithmic decay,
and the slow step (Figure 3e).
[18] For comparison, we also invert the connected stack for

a constant rate of deformation between each of the synthetic
SAR acquisition times. This piecewise linear time parame-
trization captures the overall trend of the synthetic signal, and
resolves a change in rate coincident with the offset and start
of the logarithmic decay (Figure 3b). However, using the
piecewise linear time parametrization, it is difficult to resolve
the structure of the deformation signal following the instan-
taneous offset. Without being able to identify the approxi-
mate contribution of various types of deformation (e.g.,
seasonal signals, offsets), it would make it difficult to clean
those contributions from the total deformation.
[19] The recovery of a synthetic time-dependent signal

depends on the particular choice of the synthetic SAR
acquisition times; however, in numerous cases of random
sampling of the synthetic time series, we found that we were
able to recover the independent components of deformation

Figure 3. Two synthetic InSAR stacks: (a) one fully connected and (b) one disconnected. Green dots
in Figures 3a and 3b are synthetic SAR acquisition times, and B? values are for illustration purposes only.
(c–f ) Synthetic ground deformation (thick gray solid line) for a single position, and the recovered signals
using the connected stack (blue line) or the disconnected stack (red line), assuming a time-parametrization
as described in the main text. Also shown is the signal recovered from the connected stack assuming a
linear deformation rate between each acquisition time (green dashed line; shown in Figure 3c only).
Figure 3c is the total signal, Figure 3d is the offset, Figure 3e is the linear rate, logarithmic decay and
slow-step combined, and Figure 3f is the annual and semi-annual signals. Note that MInTS analysis is
insensitive to absolute position, and the signals are arbitrarily shifted so that their means are zero.
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fairly well. An exception is if the time-spans bracketing the
instantaneous offset are long, then the inferred offset tends to
be overestimated, and the rates immediately following the
offset tend to be underestimated. Likewise, if the synthetic
SAR acquisition times are at similar times in each synthetic
year, the annual and semi-annual signals are not recovered
well. It is important to note that these synthetic SAR
acquisition times are fairly evenly distributed throughout the
total time-span. In section 2.7, we discuss methods for
additionally damping the time parametrization during times
when there are sparse acquisitions.

2.4. Data Covariances

[20] The full data covariance is constructed of three pri-
mary parts: (1) the variance of the phase difference at a given
pixel, (2) the intra-interferogram pixel-to-pixel covariance,
primarily due to ionospheric and tropospheric path delays,
and (3) the inter-interferogram covariances associated with
use of a single common image in two separate interfero-
metric pairs [Emardson et al., 2003]. As is commonly done,
we assume that intra-interferogram pixel-to-pixel covariance
depends only on the relative distance between two given
pixels [Hanssen, 2001; Emardson et al., 2003; Lohman and
Simons, 2005]. The inter-interferogram covariance can be
derived analytically, while the intra-interferogram pixel
covariance is found empirically [Emardson et al., 2003].
Following Emardson et al. [2003] and Lohman and Simons
[2005], we define the covariance matrix between pixel i in
interferogram (ab) and pixel j in interferogram (xz), as

CðabÞðxzÞ
ij ¼ 1

2
s2
e �

1

2
ð1� dijÞeLij=Lc

� �
ðdax þ dbz � daz � dbxÞ;

ð12Þ

where se
2 is the variance of a single pixel, dij is the Kronecker

delta, Lij is the distance between the pixels, and Lc is a
characteristic scale over which pixels are correlated in a
single interferogram. For two pixels within a single inter-
ferogram, daz = dbx = 0, dax + dbz = 2, and the right-hand
side of equation (12) becomes either se

2 (variance of a single
pixel) or se

2 � 1
2e

Lij/Lc (covariance between two pixels). For
interferograms with one common scene, only one dij is non-
zero, and the covariance is �1/2 the covariance in a single
interferogram [Emardson et al., 2003]. For interferograms
with no common scenes, the covariance is zero.
[21] In the case of redundant interferograms in B? space,

for instance with three interferograms formed from any three
acquisitions, the data covariance matrix is singular. The
singularity arises from the fact that the temporal portions of
the covariance matrix are positive semi-definite. This semi-
definiteness can be understood since the dual of the con-
nectivity matrix of a closed graph is not uniquely defined
[Whitney, 1932], and the temporal covariance of interfero-
metric measurements is simply FCSARF

T, where CSAR is a
diagonal covariance matrix of a single radar acquisition and
F is the connectivity matrix of the interferometric stack.
(Mapping the SAR covariance matrix with the connectivity
matrix results in the identical temporal covariances of
interferograms as derived by Emardson et al. [2003].) To
account for the positive semi-definiteness of the temporal

portions of the covariance matrix, we use the SVD pseudo-
inverse of the covariance matrix in the least squares inver-
sion [e.g., Krzanowski et al., 1995; Bondár and McLaughlin,
2009].
[22] In the case that the spatial correlation length-scale is

shorter than the interferogram pixel dimensions, one could
treat each pixel independently. In this case, the data covari-
ance matrix will then only contain information regarding the
correlations due to interferograms sharing common scenes
[e.g., Emardson et al., 2003], and considering each pixel
independently would be appropriate. At the other extreme,
where the spatial correlation length-scale is comparable to
the interferogram dimension, the entire data covariance
matrix should be considered in the inversion for the spatio-
temporal deformation. For M interferograms, each with N
pixels, Cij

(ab)(xz) is an NM � NM matrix (assuming no
regions of low interferometric correlation). For N = O(104)
pixels and M = O(10) interferograms, Cij

(ab)(xz) would have
O (1010) elements, although in general, Cij

(ab)(xz) may be
much larger. A matrix of this size would be computationally
expensive to invert, if possible at all; however, the sparse-
ness of the data covariance could be utilized in the inversion
scheme.
[23] Lohman and Simons [2005] found that the correlation

length scale in interferograms was on order of tens of kilo-
meters, so in most cases smaller than the interferogram size,
but much larger than the pixel size. Lohman and Simons
[2005] also found that Lc inferred from interferometric data
not surprisingly decreased when the best fit spatial bi-linear
ramp was removed from the interferogram. Likewise, the
extent of spatial correlation is decreased when the inter-
ferograms are successively high-pass filtered. Motivated by
this observation, we base MInTS on a spatial filter bank
constructed using 2D Meyer wavelets.

2.5. Multiscale Spatial Decomposition

[24] We represent the 2D spatial discrete wavelet decom-
position of a given unwrapped interferogram as

DrabðWÞ ¼
X
a;b

raba;bya;bðWÞ; ð13Þ

where ya,b(W) are 2D spatial wavelets of scale a and posi-
tion b, and ra,b

ab are the corresponding wavelet coefficients for
the interferogram spanning ta � tb. We similarly represent
the spatial discrete wavelet transform of Fr(W, t) as

FðW; tÞ ¼
X
a;b

F a;bðtÞya;bðWÞ; ð14Þ

where Fa,b(t) represents the time-dependent wavelet coeffi-
cients in the parametrization of the time-dependent defor-
mation. For example, if the time-dependent deformation is
parameterized by a linear-rate only, Fa,b(t) represents the
coefficients of the spatial wavelet decomposition of the
velocity field. If the time-dependent deformation is param-
eterized by a collection of uniform B-splines, then

F a;bðtÞ ¼
X
i∈IUB

~�ia;bBnðt � t♭Þ; ð15Þ
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where ~�a,b
i are the coefficients of the discrete wavelet trans-

form of ki:

kiðWÞ ¼
X
a;b

~�ia;bya;bðWÞ: ð16Þ

In the present implementation of MInTS, we use 2D Meyer
wavelets [Mallat, 2008]. In the 2D wavelet transform, there
are three components at each scale (Figure 4), representing
the high-low, low-high, and high-high frequency bands in
the 2D spatial frequency domain [e.g., Mallat, 2008].
[25] For a distance-dependent covariance model, Meyer

wavelets have the benefit that the covariances between
wavelet coefficients in a single interferogram are negligible
(Appendix A). Essentially the discrete wavelet transform
decorrelates the spatial part of the data covariance matrix.
The decorrelating power of the wavelet transform overcomes
the computational challenge associated with using the full
data covariance matrix, and thus we can determine the time-
dependence of each wavelet coefficient independently. In
essence, because the wavelets are supported over a finite num-
ber of pixels, the wavelet coefficients themselves inherently
include information about the underlying spatial data covar-
iances at any given spatial scale. While we use Meyer
wavelets in this paper, the reduction of the covariances
between coefficients is a general benefit of wavelet decom-
position, although the covariances between wavelet coeffi-
cients may be larger with other wavelet transforms. In some
situations, it might be desirable to use other wavelets, for
instance to account for anisotropic spatial correlations [e.g.,
Knospe and Jònsson, 2010], or to use phase-preserving
wavelets. The latter is important if unwrapping is to be
attempted simultaneously with the time-dependence estima-
tion. The wavelet approach also provides a consistent method
for space-time interpolation of holes (i.e., regions of low
interferometric correlation) in individual interferograms.

2.6. Interferogram Wavelet Transformation

[26] A general requirement of discrete wavelet transforms
(DWT) using dyadic wavelets is that the dimension of the
image must be base two. For Meyer wavelets the size must
be 2J+3 � 2J+3 pixels, where J is the maximum scale of the
wavelet transform. Wavelet scale 1 refers to the highest
spatial frequency, and scale J is the lowest. After removal of
scales 1– J, there is a remaining image representing the
information at the lowest spatial frequencies. There are three

components at each wavelet scale 1– J, with only one com-
ponent for the low-pass residual [e.g., Mallat, 2008]. As
interferograms are not constrained to be of base-two size
when processing, we expand each interferogram to a base-
two dimension by mirroring, which also avoids possible
edge-effects in the transformation (Figures 5a and 5b).
Additionally, the DWT requires that the interferograms do
not contain any holes. We interpolate within masked regions
associated with low interferometric correlation in the
unwrapped interferograms using an inpainting algorithm
developed by John D’Errico and freely available as the
Matlab function inpaint_nans.m from the Matlab Central file
exchange (Figure 5c). To construct the wavelet coefficients
ra,b
ab of each interferogram, we use the Meyer DWT included
in the WaveLab package implemented in Matlab [Buckheit
and Donoho, 1995] (Figure 5d). As we do not want the
interpolated values within the interferogram holes to affect
the resulting model of time-dependent deformation, we cal-
culate weights for every wavelet coefficient based on the
degree to which the associated wavelet is supported by
interpolated values (Figure 5e). For instance, in the event
that a wavelet at a given scale and location in an interfero-
gram does not overlap any holes, the weight would be one.
On the other hand, if wavelet is supported entirely by
interpolated values, the weight would be zero (Figure 5e).
We then use these weights in the inversion for time-
dependent deformation as described below.

2.7. Inversion Method

[27] We estimate the temporal behavior of a given wavelet
by solving the least squares solution that minimizes

f ¼ jjGma;b � ya;bjj22 þ l2jjHma;bjj22; ð17Þ

where k • k2 is the L2-norm, the vector ya,b represents the
wavelet coefficients at a given scale a and location b in all of
the interferograms, and the vector ma,b represents the
wavelet coefficients of the parameters of the time-dependent
deformation in Fa,b(t). G is the design matrix based on the
choice of F(W, t), H is a model regularization matrix, and l
is the regularization penalty parameter. We find the
weighted least squares solution as

ema;b ¼ GTWTC†
t WGþ l2H

� 	T
GTWTWya;b; ð18Þ

Figure 4. Meyer wavelets in the spatial domain, representing the (a) high-low, (b) high-high, and
(c) low-high frequency bands in the two spatial directions.
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where Ct
† is the pseudo-inverse of the temporal component

of the data covariance matrix, and W is the weighting matrix
defined in the section 2.6. We solve equation (18) separately
at each scale and location, and we retain only the temporal
components of the data covariance matrix as the covariances
between wavelet coefficients at neighboring locations and
scales are negligible (see Appendix A). We use the SVD
pseudo-inverse as the covariance matrix is positive semi-
definite and singular whenever there are redundant interfer-
ogram pairs [e.g., Krzanowski et al., 1995; Bondár and
McLaughlin, 2009]. The diagonal weighting matrix, W,
reflects the degree to which a given wavelet is supported by
measured as opposed to interpolated phase differences. It is
important to note that W is distinct for each scale and loca-
tion, although for brevity we do not write W as Wa,b.
[28] The type of regularization in H should be chosen

based on the properties of the time-dependent basis func-
tions. For instance, when using B-splines, it might make
most sense to choose to enforce a smoothness constraint,
either on the model parameters or on the time-dependent
deformation. On the other hand, when using B

R
-splines, it

might make most sense to damp the B
R
-spline amplitudes, so

that any given B
R
-spline will only have a non-negligible

amplitude if a transient offset is required by the data in the
associated time period. In our toolbox, the choice of regu-
larization is left to the user. We solve equation (18) using the

Tikhonov regularization implemented in the Regularization
Tools Matlab toolbox [Hansen, 1994, 2007]. To determine
F(W, t), we take the inverse discrete wavelet transform
(IDWT) of each of the model parameters in ema,b. The IDWT
of the model wavelet coefficients results in the spatial fields
of the amplitudes in the time-dependent function F(W, t).
2.7.1. Cross-Validation
[29] The penalty parameter l is chosen using n-fold cross-

validation [e.g., Stone, 1974; Geisser, 1975]. In cross-
validation, the data are randomly split into two sets, a
learning set and a testing set. Only the data in the learning set
are inverted for various choices of l, with the estimated
model found for each choice of l tested against the
remaining data in the testing set. The optimal l is such that
the model estimated from the learning set produces the best
fit to the data in the testing set. It is important that the
learning and testing sets are formed such that every datum is
in either the learning or testing sets, but not both, that
the data in the testing set represents a non-biased test of
the predictability of the estimated model, and that the data in
the learning and testing sets are independent [Picard and
Cook, 1984]. In n-fold cross-validation, the data is parti-
tioned into n nearly equal size learning sets, each with an
associated testing set. The optimal penalty parameter is then
taken as the l in which the n estimated models best fit
the data in the associated testing sets. If n is equal to the

Figure 5. (a) Unwrapped interferogram with regions of low interferometric correlations masked out.
(b) Interferogram mirrored to expand to a base-two size; solid line is the outline of the original interfero-
gram in Figure 5a. (c) Interferogram with the masked regions filled using an inpainting algorithm. (d) The
wavelet coefficients for the image in Figure 5c, only scales greater than 4 and the remaining low-pass
image are shown. (e) The calculated weights on the wavelet coefficients in Figure 5c, signifying the rel-
ative amount of support of each wavelet over decorrelated regions; color scale is from green to red, signi-
fying wavelets with zero weight to a weight of one.
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number of data, n-fold cross-validation is just leave-one-out
cross-validation.
[30] We form the cross-validation sets based on the radar

acquisitions, not the interferograms. We randomly select
radar acquisitions, and all interferograms formed from those
acquisitions forms a learning set. The associated testing set
is composed of all interferograms not in the learning set. For
example, in 10-fold cross-validation the radar acquisitions
are split into ten nearly equal subsets. All of the inter-
ferograms formed by the acquisitions in each subset then
forms ten learning sets, with the remaining interferograms
forming ten testing sets. Forming the learning/testing sets
based on the acquisitions minimizes, but does not entirely
avoid, the dependence between the learning and testing sets
in most cases. In our experience, for N acquisitions, n-fold
cross-validation is most stable when n/N ≈ 1/3.
[31] In an interferometric stack, there can be several mil-

lion sets of wavelet coefficients at every scale and location.
Cross-validating for the optimal penalty parameter inde-
pendently at each scale and location can be computationally
demanding. Moreover, one may expect that the amount of
regularization required at nearby location might be similar.
The computational time of the cross-validation may be
decreased by only cross-validating at a sub-sample of loca-
tions at each scale, and then inverting at all scales and
locations assuming that the optimal penalty parameter in a
given scale varies smoothly in space. Likewise, the cross-
validation for optimal l can be skipped at locations and
scales where wavelets are mostly supported by interpola-
tions within decorrelated regions in all interferograms.
2.7.2. Variable Shape Smoothing
[32] In some parameterizations of time-dependent defor-

mation constrained by a given InSAR stack, it is advanta-
geous to apply differing degrees of regularization to different
model parameters. For example, in the case when one
parameterizes time-dependence with evenly spaced B-
splines, an uneven distribution of SAR acquisitions may
result in time spans that are less resolved. One can always tie
the time parametrization to the acquisition dates; however,
using constant time sampling allows MInTS to use the same
time parametrization for all regions, regardless of whether a
given region may have low interferometric correlation in any
given subset of interferograms. Using uniform time sam-
pling with variable acquisition times, one should apply a
large regularization to the model parameters that control
components of deformation in periods of sparse or no SAR
acquisitions.
[33] In order to regularize relatively unconstrained model

parameters to a larger degree than more constrained para-
meters, we augment the model regularization by a diagonal
variable shape smoothing matrix, Sp, which is based on an
initial estimate of the model resolution matrix [Lohman,
2004]. The diagonals of the model-resolution reflect the
relative resolution of each of the model parameters [e.g.,
Aster et al., 2005]. We estimate the model resolution using
an SVD of the non-regularized inverse problem [Golub and
van Loan, 1980], where we truncate the pseudo-inverse at
the p’th singular value. We use this truncated pseudo-inverse
to compute the model resolution matrix, Rp, and in index
notation the diagonals of Sp are

Spii ¼ j1� Rpii ja: ð19Þ

The power a determines the dynamic range of the variable
shape smoothing, and we commonly take a = 1/2. The
degree to which less constrained model parameters are more
heavily regularized compared to more constrained para-
meters is mainly controlled by p. In general, a smaller p
results in models that are rougher in times of sparse SAR
acquisitions and a larger p results in models that are rougher
during times of dense acquisitions.
[34] When augmented by a model-resolution-based regu-

larization, the total regularization in equation (18) is
H′ = SpH, where H is the typical model regularization
matrix. As Sp is diagonal and 0 < Spii < 1, the regularization
on each model parameter is equivalent to li

2H, where
li
2 = l2Spi are composite penalty parameters specific to each

model parameter. When the i’th model parameter is perfectly
resolved, li = 0, and that model parameter is not subject to
regularization. Alternatively, when the i’th model parameter
is completely unresolved, li = l.

3. Application to Long Valley, CA

[35] To illustrate the application of MInTS, we consider a
stack of interferograms of the Long Valley, CA, volcanic
region. Several uplift events in Long Valley have been
observed using ground based geodesy over the last few
decades [Langbein et al., 1993, 1995; Langbein, 2003; Feng
and Newman, 2009]. The largest was in late 1997, where
2-color electronic distance measurements (EDM) indicated
short-lived rapid uplift of the resurgent dome in the Long
Valley caldera [Langbein, 2003].
[36] We construct an interferometric stack using 24 ERS-2

and 15 Envisat SAR descending acquisitions, with a total of
92 interferograms (63 ERS-2 and 29 Envisat interferograms)
spanning just over 16 years (Figure 6a). The interferograms
are looked down eight times, equivalent to a resolution of
about 196 and 160 meters in the range and azimuth direc-
tions, respectively. We unwrap the interferograms using
the SNAPHU algorithm [Chen and Zebker, 2001]. The
SNAPHU algorithm underestimates the regions of low inter-
ferometric correlation, for instance almost always unwrap-
ping over Mono lake. Therefore, we calculate a common
mask based on regions below a correlation coefficient of
0.25 in an interferogram formed from a one-day ERS pair
(01–02 June 1996). We apply this common mask to all inter-
ferograms, in addition to those determined for each interfero-
gram during unwrapping. We remove the best fit bi-linear
ramp from each interferogram to account for long-wavelength
signal we attribute to orbital errors.
[37] We follow the procedure outlined in section 2.6 to

take the DWT of the interferogram stack. The time it takes to
compute the DWT and calculate the weights of the wavelet
coefficients of one interferogram depends on the interfero-
gram size and the amount of interferometric decorrelation.
For each of these interferograms, it takes a few minutes on a
desktop computer with dual 3.2 GHz quad-core CPUs. Each
interferogram is independently processed, and thus the process
is inherently parallelizable. For each stack of interferograms,
the DWT and the weights only need to be computed once.
[38] We invert the stack assuming a time-dependent

deformation model composed of 42 evenly spaced B
R
-

splines, and we regularize by damping the magnitude of the
amplitudes of the B

R
-splines. Since the SAR acquisitions are
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not evenly spaced in time (Figure 6a), we apply a variable
shape smoothing in order to more heavily damp the B

R
-

spline amplitudes during periods of no SAR acquisitions,
relative to the amplitudes during periods of dense acquisi-
tions. Three parameters control the model regularization in
the inversion: (1) the penalty parameter, l, (2) the singular
value truncation, p, of the pseudo-inverse used to determine
Sp, and (3) the exponent in the variable smoothing, a. We
use 12-fold cross-validation in order to determine the opti-
mal l at each scale and location separately. We assume
a common p and a in all inversions, since cross-validation
on these two parameters is not well defined as the cross-
correlation objective functions do not have a clear minimum
in terms of p or a. The choice of a has the smallest affect
on the inversion results, and we use a = 1/2. Recall that
each model parameter is regularized by a composite penalty
parameter, li

2 = l2Spii, and using a small p results in all of the
model parameters being regularized almost uniformly
(Figure 6b). As p approaches the number of model para-
meters, Spii corresponding to model parameters during times
that are densely sampled decreases (Figure 6b), and the model
is largely non-regularized during those periods. We use
p = 20, although the results we present here are consistent
with those using other values of p. A more formal approach
to selecting the total regularization is left to a future analysis.
[39] MInTS analysis of this example stack takes just under

12 hours on the aforementioned computer, which includes
cross-validated inversion of 262,088 sets of wavelet coeffi-
cients. In Figure 7, we show the cumulative LOS ground
displacement determined in the MInTS analysis over four

time periods, roughly corresponding to prior to the 1997–
1998 uplift event, during the event, during the period of
sparse radar acquisitions (cf. Figure 6a), and during the last
four years of the stack time span. The spatiotemporal
deformation is presented in the radar range and azimuth
coordinates, and for these descending orbits, increasing
range and azimuth is roughly westward and southward,
respectively. The deformation is along the satellite LOS
direction. We use a convention wherein increasing r corre-
sponds to ground deformation toward the satellite, which we
loosely refer to as uplift. In Figure 8a, we show the time-
dependent deformation in three regions, roughly corre-
sponding to the region of maximum uplift during the 1997–
1998 uplift event (labeled A in Figures 7 and 8), the Casa
Diablo geothermal field (labeled B), and north of Mammoth
mountain (labeled C).
[40] The results show a steady uplift of the resurgent dome

during 1993 to about mid-1997, followed by an abrupt
increase in uplift rate until about mid-1998. The maximum
uplift is to the eastern edge of the resurgent dome, and the
location of maximum uplift shifts slightly to the south when
the uplift accelerated during 1997–1998 (Figure 7). Fol-
lowing the uplift event, there is a slight subsidence of the
Long Valley caldera to the west of the resurgent dome. We
do not resolve the uplift event that occurred between 2002
and 2003, which was of smaller magnitude than the 1997–
1998 event [e.g., Feng and Newman, 2009]. That we do not
capture the smaller uplift is not surprising, as there are no
SAR acquisitions during 2001 to 2004, and the model
parameters are highly damped during this time period due

Figure 6. (a) Perpendicular baseline, B?, plot for the Long Valley interferometric stack; stars indicate B?
of each SAR orbit relative to the first SAR pass, and solid lines indicate interferograms. Gray vertical lines
indicate the knot locations of the B

R
-splines in the temporal parametrization of deformation in the Long

Valley region. (b) Diagonals of the shape smoothing matrix, Spii, for various truncations of the SVD
pseudo-inverse at the pth singular value. Black thin lines indicate the SAR acquisition times.
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to the model-resolution-based variable shape smoothing
(Figure 6). There is a slight subsidence over the resurgent
dome during 2004–2008, and greater subsidence (≈1 cm/yr)
of the Casa Diablo geothermal plant.
[41] The results we obtain here are broadly consistent with

those obtained using SBAS [Tizzani et al., 2007, 2009],
although our results have higher spatial density. One notable
difference is that we do not resolve the subsidence at the
Casa Diablo geothermal field during the 1990’s [Howle
et al., 2003; Tizzani et al., 2007]. We do resolve that the
Casa Diablo region is not uplifting as rapidly as in the rest of
the caldera, but we do not resolve the subsidence over sev-
eral kilometers that has been documented by leveling

measurements [Howle et al., 2003]. The early subsidence in
the Casa Diablo region is not apparent in the interferograms
we consider here (see auxiliary material),1 which indicates
that the Casa Diablo deformation was essentially smoothed
over in the InSAR processing.
[42] The inferred spatiotemporal deformation is broadly

consistent with the EDM observations (Figure 7b). EDM
measures changes in distance between two points on the
ground, whereas the recovered deformation from the InSAR

Figure 7. Cumulative LOS displacement, Sr, over the indicated time periods, see main text for details of
the parameters used in the MInTS analysis. Triangles show the locations of three continuous GPS stations,
grey lines are select EDM baselines, and boxes labeled A, B, and C are where the time-dependent displa-
cements are shown in Figure 8. Also indicated is Crowley Lake and the outlines of the Long Valley cal-
dera (solid black line), resurgent dome (dashed black line), and Mammoth mountain (thick solid black
line; geographic features are labeled in upper-right panel).

1Auxiliary materials are available in the HTML. doi:10.1029/
2011JB008731.
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stack is of ground deformation along the satellite LOS. Due
to the differing nature of these two data sets, we do not
attempt a direct comparison between our results and the
EDM measurements. Continuous GPS measures the ground
deformation in three components through time, and we show
the projection of these measurements onto the LOS at four
continuous GPS sites in Figure 8c. The continuous GPS
records start in late 2001, and resolve a relatively small
magnitude uplift from 2002 to 2004, followed by relatively
steady deformation [Feng and Newman, 2009]. The along
LOS deformation we constrain from the MInTS analysis is
noisier than the GPS time series (Figure 8c).
[43] In the present version of MInTS, we do not use either

the EDM or GPS data to constrain the spatiotemporal

deformation. The spatiotemporal deformation is determined
such that the predicted interferograms best fit the observed
interferograms in the InSAR stack. There are systematic
residuals that are correlated with the resurgent dome and
caldera boundary (see auxiliary material). There is a residual
signal in the center of the resurgent dome in several of the
interferograms that is similar to the observed phase differ-
ences, and probably indicates un-modeled ground deforma-
tion. That there is a slight amount of un-modeled ground
deformation apparent in the residuals indicates this spatio-
temporal deformation field estimated from MInTS analysis
is slightly too smooth in time. On the other hand, some of
the residuals appear to be correlated with topography, and
may indicate topographically correlated path delays due to

Figure 8. (a) Time series of LOS displacements determined from the Long Valley stack within the boxes
A, B, and C shown in Figure 7; solid colored lines are the mean displacement and shaded regions indicate
the total spread of displacements in each box. (b) Line length changes measured by two-color EDM along
three baselines. (c) Displacements at four continuous GPS stations projected in the LOS. Solid lines and
shaded region shows the average and variation in LOS displacements determined by MInTS analysis, over
a 3 � 3 pixel region centered at each GPS station (the root mean square difference between the GPS and
model is indicated). Vertical gray lines in all three panels are the SAR acquisition times, and locations of
EDM baselines and GPS stations are shown in Figure 7.

HETLAND ET AL.: MULTISCALE INSAR TIME SERIES B02404B02404

12 of 17



tropospheric effects [e.g., Delacourt et al., 1998; Cavalié
et al., 2007; Lin et al., 2010]. The topographically corre-
lated residuals are most apparent in the Envisat inter-
ferograms, which capture a time during which there was less
ground deformation than in the proceeding ten years.

4. Future Directions

[44] MInTS is a new tool for exploring crustal deforma-
tion using temporally deep collections of InSAR observa-
tions. The framework of MInTS also lends itself to being
extended, for instance to include better treatment of non-
ground deformation processes during the inversion, to utilize
more robust estimation algorithms, and to further constrain
ground deformation by incorporating ground-based geodetic
measurements. In this section, we outline several issues that
need to be addressed in future revisions of MInTS.
[45] The method described here can be easily extended to

include multiple viewing geometries (i.e., ascending and
descending orbits, or other satellite platforms). With suffi-
cient observations on multiple viewing geometries, there is
the potential to recover the underlying 3D deformation.
Additionally, the wavelet based approach may possibly be
extended to operate on the original wrapped interferograms,
thereby avoiding errors incurred in unwrapping [e.g.,
Goldstein et al., 1988; Chen and Zebker, 2001; Simons and
Rosen, 2007].
[46] In our representation of interferometric measure-

ments, equation (10), we lumped all interferometric signal
that is not associated with ground deformation into an un-
described noise. Either correcting the interferograms for
significant spatially coherent noise prior to MInTS analysis,
or simultaneously estimating a model of such noise, may
yield a better estimation of ground deformation [e.g.,
Pritchard et al., 2006; Cavelié et al., 2007; Lin et al., 2010;
Shirzaei and Walter, 2011]. Given even a purely horizon-
tally stratified troposphere, one expects topographically
correlated delays [e.g., Delacourt et al., 1998; Cavalié et al.,
2007]. These so-called “tropostatic delays” are typically a
large contribution to the interferometric measurement, and
are relatively straightforward to model [e.g., Cavelié et al.,
2007; Lin et al., 2010]. Excursions from horizontal strati-
fication, due to atmospheric turbulence are often important
[e.g., Lin et al., 2010], and are more difficult to model. In the
case of significant turbulent tropospheric signal, high reso-
lution weather models may be used to estimate the spatial
variation in wet delay [Foster et al., 2006; Puyssegur et al.,
2007].
[47] The interferometric measurements for Long Valley

show strong topographically correlated signal (see auxiliary
material). Lin et al. [2010] developed a robust method for
the estimation of topographically correlated signal using a
multiscale decomposition filter-bank approach, and esti-
mated the tropostatic signal in the ERS interferometric data
for Long Valley. The multiscale filter-bank approach of Lin
et al. [2010] is similar to as is used in MInTS, although their
filter-bank is built with Gaussian filters and the estimation of
the tropostatic signal is done in the spatial domain. In con-
trast, MInTS is based on a wavelet-based filter-bank, and the
estimation is done in the wavelet domain. The multiscale
approach of Lin et al. [2010] may be extended to the use of a
wavelet-based filter-bank and the estimation of tropostatic

signal in the wavelet domain. In which case, it would be
trivial to incorporate the simultaneous estimation of tropo-
static signal and ground-deformation into MInTS.
[48] In the regularized estimation, we use an n-fold cross-

correlation to select the optimal penalty parameter. In cross-
validation, it is essential that the data in the learning and
testing sets are independent [Picard and Cook, 1984]. In the
case of inverting the wavelet coefficients of InSAR inter-
ferograms, ensuring the independence of the learning and
testing sets is only possible if the interferograms in the
learning and testing sets share no common SAR acquisi-
tions. Hence, to ensure that the interferograms in the learn-
ing and testing are formed from different radar acquisitions it
is likely that interferograms would need to be held out of
both the learning and testing sets. The particular inter-
ferograms that would need to be removed would depend
on the n random learning/testing sets in the n-fold cross-
validation. The random removal of data from the estimation
scheme is problematic. For instance, particular folds in
which a larger number of interferograms are dropped might
have significantly less resolving power that other folds in the
cross-validation, thereby complicating the selection of the
optimal penalty parameter [e.g., Picard and Cook, 1984].
We have tested the cross-validation scheme using learning/
testing sets formed on the interferograms and on the acqui-
sitions, and found that in almost all instances the cross-
validation returns the lowest tested l (i.e., noisiest model)
when the data are partitioned based on interferograms. When
the learning/testing sets are formed on SAR acquisitions,
the cross-validation is almost always stable, with a clear l in
which the estimated models from inverting all learning sets
best fits the data in the associated testing sets. When the
learning/testing sets are formed from the acquisitions, as
long as the number of folds in the cross-validation is not
comparable to the number of acquisitions, the dependence
between the learning and testing sets is minimized. In
MInTS, cross-validation is not required, and users can
choose to invert for ground deformation with specified
penalty parameters.
[49] The estimation of ground deformation in the present

version of MInTS is entirely built upon least squares. The
use of a purely least squares approach, relying on an L2
norm, is somewhat debatable since phase noise is not
Gaussian. Additionally, interferometric noise contains other
non-Gaussian processes, such as unwrapping errors [e.g.,
Goldstein et al., 1988; Chen and Zebker, 2001], and tropo-
spheric path delays [e.g., Massonnet et al., 1993; Goldstein,
1995]. It may be more robust to use an L1 norm when
dealing with interferometric data.
[50] Due to the often large contributions to interferometric

measurements from processes other than ground deforma-
tion, it is difficult to constrain ground deformation during
periods of low deformation rates. This can be readily seen in
our demonstration of MInTS with the Long Valley InSAR
stack (Figures 7–8), where although the deformation we
estimated is broadly consistent with ground-based geodetic
measurements, our estimation does not capture the small
amplitude deformation after about 2002. It may be that the
Envisat interferograms are dominated by topographically
correlated signal, and simultaneous estimation of a tropostatic
noise model may improve the estimates of the spatiotemporal
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ground deformation. However, our inability to capture the
low signal deformation may also be due to the inherent sen-
sitivity of interferometric measurements. Incorporation of
ground based deformation measurements, primarily GPS, into
the MInTS analysis has the potential to add strong constraints
on the spatiotemporal ground deformation, as ground based
geodetic measurements tend to include much more redundant
time sampling than InSAR measurements. GPS and InSAR
are largely complementary measurements, as GPS is a more
continuous record of time-dependent ground deformation at
specific locations, while InSAR provides a near continuous
image of ground offsets. Incorporating the point-measure-
ments of GPS into the multiscale wavelet decomposition of
MInTS is not a straightforward task, and we save it for a
future study.

5. Conclusions

[51] We present MInTS, a new approach to extracting
continuous spatiotemporal ground deformation from InSAR
catalogs. We use a Meyer wavelet decomposition, which is
chosen in order to efficiently deal with the spatial covar-
iances in the InSAR phase difference measurements, as the
Meyer wavelet transform essentially diagonalizes the inter-
ferogram spatial covariances. We base MInTS on a gener-
alized model of time-dependent ground deformation, that
can include linear rates, offsets, logarithmic or exponential
trends, sinusoidal oscillations, and a collection of B-spline-
based basis functions. We propose the B-spline-based rep-
resentation of time-dependent ground deformation to capture
unknown processes, while the other functions may be used
to parameterize known processes (e.g., earthquakes, post-
seismic deformation, seasonal signals).
[52] The estimation of ground deformation is done in the

wavelet-domain at each location and scale independently.
We use a regularized least squares estimation, optionally
using n-fold cross-validation in order to select the optimal
regularization penalty parameter. We include an additional
model-resolution-based regularization in the estimation,
which may be used to more heavily damp the model during
periods of sparse SAR acquisitions, compared to during
periods of dense acquisitions. The MInTS approach provides
an efficient method for interpolating across regions of low
interferometric correlation, providing a constrained estima-
tion of the continuous spatiotemporal ground deformation
field. In this paper, we only focus on unwrapped inter-
ferograms from a single viewing geometry, so this approach
only resolves ground deformation along the satellite line-
of-sight. MInTS is developed as a toolbox in Matlab, and
provides an extensible framework for estimation of defor-
mation from catalogs of interferograms.
[53] We illustrate the application of MInTS to a catalog of

92 ERS and Envisat interferograms in the Long Valley, CA,
region, spanning 16 years. The MInTS estimation of ground
deformation resolves the uplift in the caldera prior to 1999,
with accelerated uplift initiating in late 1998. In early 1999,
the ground slightly subsides within the caldera, and then
slightly inflates again prior to 2004. Following 2004, there is
a larger subsidence signal over the western regions of the
Long Valley caldera, with more pronounced subsidence
localized at the Casa Diablo geothermal plant. The estimated
deformation is broadly consistent with that detected by

ground-based geodetic measurements and conventional
InSAR time series techniques.

Appendix A: Decorrelating Power of Orthogonal
Wavelet Bases

[54] In this appendix we review classical properties of the
covariance structure of wavelet coefficients, discuss the intra
and inter-scale covariances of the wavelet coefficients, and
demonstrate the decorrelating power of the orthogonal
wavelet transform. For the sake of simplicity, this analysis is
presented for one dimensional stochastic processes, whereas
interferograms are 2D.
[55] We define E[X] to be the expectation of X and

Cov[X, Y] to be the covariance between X and Y. For zero
mean processes, Cov[X, Y] = E[XY]. A stochastic process
{X(t), t ∈ R} is said to be wide sense stationary (WSS) if
E[jX(t)j2] < ∞, ∀t ∈ R, E[X(t)] = m, and ∀r ∈ R, Cov[X(t),
X(t + r)] = f(r). For an orthonormal wavelet basis of L2(R),

yj;nðtÞ ¼ 2�j=2yð2�jt � nÞ
n o

ð j;nÞ∈Z2
; ðA1Þ

where y is the mother wavelet, and we denote the wavelet
coefficients of f at scale j and location n by dj,n = 〈f, yj,n〉.
We are interested in characterizing the covariance structure
of the wavelet coefficients of a WSS process with given
autocovariance function f. Note that since the wavelets
have zero mean and E X tð Þ½ � is constant, the wavelet
coefficients of f also have zero mean. Hence, the covari-
ance of dj,n and dk,m is just the autocorrelation:

E dj;ndk;m

 � ¼ E

Z
R
yj;nðtÞX ðtÞdt

Z
R
yk;mðsÞX ðsÞds

� �
ðA2Þ

¼
Z
R
yj;nðtÞ

Z
R
E X ðtÞX ðsÞ½ �yk;mðsÞds

� �
dt ðA3Þ

¼
Z
R
yj;nðtÞ

Z
R
f ðt � sÞyk;mðsÞds

� �
dt ðA4Þ

¼
Z
R
yj;nðtÞ f � yk;mðtÞ

� �
dt: ðA5Þ

Introducing the function �yj;nðtÞ ¼ yj;nð�tÞ, the last equa-
tion can be written as a double convolution:

E dj;ndk;m

 � ¼ Z

R
�yj;nð0� tÞ f � yk;mðtÞ

� �
dt ðA6Þ

¼ �yj;n � f � yk;mð0Þ: ðA7Þ

Our analysis can be simplified by writing equation (A7) in
terms of the Fourier transforms of the involved functions, by
means of the inverse Fourier transform evaluated at t = 0:

E dj;ndk;m

 � ¼ 1

2p

Z
R
bf ðwÞb �

j;nðwÞb k;mðwÞdw; ðA8Þ

where we denote the Fourier transform of y as b , and b � as
the complex conjugate of b (b � is the Fourier transform of �y).
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Then, replacing the wavelets by its expressions in terms of
the mother wavelet, y, we find

E dj;ndk;m

 � ¼

ffiffiffiffiffiffiffiffiffiffiffi
2 jþkð Þ

p
2p

Z
R
bf ðwÞb �ð2jwÞb ð2kwÞexpðiwð2jn� 2kmÞÞdw:

ðA9Þ

[56] In the following we assume the wavelets have com-
pact spectral support. Introducing the positive constant A, we
denote the spectral support of the mother wavelet by

supp b � 	
¼ �2A� d;�A½ �∪ A; 2Aþ d½ � , and we assume

that 0 < d < 2A, which is a totally non-restrictive condition
for orthogonal wavelet bases.
[57] Let us assume without loss of generality that k = j + l,

with l ≥ 0. Then

E dj;ndjþl;m


 �  ≤ 2ðjþl=2Þ

2p

Z
R
jbf ðwÞjjb �ð2jwÞjjb ð2jþlwÞjdw ðA10Þ

≤
2ðjþl=2Þ

p

Z 2�ðjþl�1ÞAþ2�ðjþlÞd

2�jA

bf ðwÞ dw: ðA11Þ

Since d < 2A, it follows that

E dj;ndjþl;m


 �  ≤ 2 jþl=2ð Þ

p

Z 2� jþl�2ð ÞA

2�jA

bf wð Þ
 dw: ðA12Þ

Consequently, ∀l ≥ 2; E dj;ndjþl;m


 � ¼ 0 , which is to say
that all wavelet coefficients separated by at least two scales
are uncorrelated. For two neighboring scales (i.e., l = 1), it
follows from (A10) that

E dj;ndjþ1;m


 �  ≤ d
p

ffiffiffi
2

p max bf wð Þ
  : 2�jA ≤ w ≤ 2�jAþ 2� jþ1ð Þd

n o
:

ðA13Þ

Finally, for wavelet coefficients at the same scale, j = k in
equation (A9), and the covariance of intrascale wavelet
coefficients is given by

E dj;ndj;m

 � ¼ 2j

2p

Z
R
bf ðwÞjb ð2jwÞj2expð2jiwðn� mÞÞdw ðA14Þ

¼ 1

2p

Z
R
bf ð2�jxÞj b ðxÞj2expðixðn� mÞÞdx ðA15Þ

¼: g n� mð Þ: ðA16Þ

Hence, if bf and b are both of class Cp, g(n � m) will decay
as 1/jn � mjp+1. By choosing, for instance, Meyer wavelets
with d → 0 (for any d > 0, Meyer wavelets are C∞ in the
spectral domain), one can still have jb j2∈C∞ [Daubechies,
1992]. In this case, the covariance between neighboring
scales can be made arbitrarily small, and the decay of the
intrascale coefficients will be given by the regularity of bf .
[58] We consider two test functions, a delta distribution

and an exponential spatial covariance function (Figure A1).
The latter is a 1D version of the spatial covariance in
equation (12) and from Emardson et al. [2003]. For both
cases, we show the wavelet covariance matrices for the
Meyer wavelets. The delta function is used to illustrate the
case where the coupling between different scales or locations
is the highest possible. This can be readily seen from equa-
tion (A10) and (A15), since the Fourier Transform of the
delta distribution is a constant, the decay in the covariance
with scales or locations depends only on the wavelet

Figure A1. Exponential spatial domain noise covariance
function, which is the 1D equivalent of equation (12).

Figure A2. (a) Absolute value of the covariance matrix of Meyer wavelet coefficients assuming a delta
distribution spatial covariance function. (b) Absolute value of the covariance matrix of Meyer wavelet
coefficients assuming the covariance function in Figure A1.
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spectrum. The second test covariance function is similar to
those from nearly signal free interferograms [e.g., Lohman
and Simons, 2005]. For the delta distribution, the wavelet
transform of the covariance has non-trivial off-diagonal
elements (Figure A2a), indicating covariances both between
wavelet coefficients at the same scale and in different scales.
In the case of the exponential spatial covariance function,
most of the off-diagonal terms are small, indicating negli-
gible correlation of the wavelet coefficients across scales
(Figure A2b).
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