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Abstract

Classic tie-point detection algorithms such as the Scale

Invariant Feature Transform (SIFT) show their limitations

when the images contain drastic changes or repetitive pat-

terns. This is especially evident when considering multi-

temporal series of images for change detection. In or-

der to overcome this limitation we propose a new algo-

rithm, the Affine Parameters Estimation by Random Sam-

pling (APERS), which detects the outliers in a given set

of matched points. This is accomplished by estimating

the global affine transform defined by the largest subset of

points and by detecting the points which are not coherent

(outliers) with the transform. Comparisons with state-of-

the-art methods such as GroupSAC or ORSA demonstrate

the higher performance of the proposed method. In partic-

ular, when the proportion of outliers varies between 60%

and 90% APERS is able to reject all the outliers while the

others fail. Examples with real images and a shaded Digital

Elevation Model are provided.

1. Introduction

1.1. Motivations and context

Image registration has many applications such as stere-

ovision [18], mosaicing [19], or change detection [8]. We

address the question of tie-points matching for change de-

tection in multi-temporal series of airborne and spaceborne

images. Relative image content changes are typically due

to landscape or environment evolutions from man-made

changes, vegetation growth, clouds, shadows, landslides,

glaciers flowing, earthquakes, etc. Relative changes due

to variations in the viewing geometry are also common.

Classical registration techniques use local analysis of the

images, that is points in one image are associated to cor-

responding points in another image using information on

their neighborhoods. Because of the significant changes

that may occur in multi-temporal images, state-of-the-art

feature matching algorithms may produce abundant mis-

matches. We propose a method to robustly detect outliers

in a set of tie-points under an affine constraint.

In feature detection algorithms like the Harris detec-

tor [4], SIFT [11], ASIFT [24], or SURF [1], interest points

are found using local extrema of the image’s laplacian. In-

terest points of the two images are then matched if their lo-

cal neighborhoods are similar enough [11]. Feature match-

ing techniques have been improved with the use of robust

distances like the earth mover’s distance [15] or using an a

contrario criterion to match the patches [16], but they still

rely on a local description of the images.

Another way to find corresponding points between pairs

of images is to use block matching via image cross-

correlation, e.g., [26], [22], [5] or [6]. A sliding window

scans the whole image and for each point in one image, a

corresponding point is searched in the other image within

an a priori region.

Both feature and block based matching methods produce

sets of tie-points between pairs of images. As those matches

are based on local texture analysis only, they do not neces-

sarily follow any global geometrical consistency. When im-

ages have sophisticated structures or repetitive patterns, lo-

cal description is therefore not robust enough to avoid mis-

matches (outliers).

The RANdom SAmpling Consensus algo-

rithm (RANSAC) [3], and its modern vari-

ants [13], [23], [2], [25], [7], [14] can be used to remove

outliers from a set of matches. However, RANSAC and

several variants do not handle a proportion of inlier inferior

to 50%. Other versions of RANSAC require abstract or

arbitrary parameters that are hard to determine to ensure

optimal results. Different improvements have been made,

such as the multi a contrario RANSAC [17] that proposed

to iteratively use RANSAC to detect parts of the image

that have sustained different geometrical transforms. The

Optimized Random Sampling Algorithm (ORSA) [12]

uses random sampling to estimate the projective transform

that maps the largest set of tie-points and detects the

matches that best fit with this transform. However, ORSA

is not able to detect every outlier, and works with a fixed
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number of iterations that does not adapt to the outlier

proportion. Hence it does not quickly process tie-points

sets that present a small proportion of outliers. It also has

no criterion to reject the estimated transfom if it poorly fits

to the tie-points.

Other matching techniques such as [7] and [9] have been

developed, but they apply to video tracking and these im-

ages typically do not present drastic changes between pairs.

1.2. Problem statement

We work with a set of tie-points (matches) that could

be produced by any local algorithm such as SIFT, ASIFT,

SURF, or block matching. Those matches may contain

many outliers, especially in multi-temporal registration for

change detection. In addition, the set of matches can be

large, as the number of interest points in an image represent-

ing a complex scene can easily exceed several thousands.

In remote sensing imagery, images are usually first pre-

processed, i.e., rectified, in order to approximately correct

for viewing geometry effects. The residual mapping be-

tween the rectified slave and master images is here approxi-

mated by an affine transform, which accounts for inaccurate

knowledge of the viewing geometries.

Our problem is to detect, among N interest points

(pk)k=1,...,N in a slave image and their assumed corre-

sponding matches m(pk)k=1,...,N in a master image, the

largest subset of points that follows the same affine model,

and to propose the best affine transform that maps these

pairs of points. It is equivalent to finding the matrix A rep-

resenting the affine mapping between the two images and

the set of inliers that maximizes

N∑

k=1

δk s.t. max
k=1,...,N

δk ‖m(pk)−A(pk)‖2 ≤ ε, (1)

where (δk)k=1,...,N ∈ {0, 1}N is the set of boolean vari-

ables “match k is an inlier” and ε, in pixels, limits the tol-

erated distance between the matches and the geometrical

model.

1.3. APERS

In this paper, we present the Affine Parameters Estima-

tion via Random Sampling (APERS) algorithm. It estimates

the affine transform that fits the largest set of matches, and

detects the matches that can be considered as inliers accord-

ing to the estimated affine transform. It iteratively uses ran-

dom sampling of matches to perform an independent clus-

tering in the six affine coefficient dimensions. It also gives

a posteriori uncertainties on the matches. It only requires a

coarse geometric threshold ε as the maximum distance al-

lowed between the matches and the geometrical model.

This article is organized as follows: Section 2 focuses

on our mathematical model and on the different steps of

APERS, and we give its pseudo-code in Section 3. We

present the results of our experiments in Section 4, where

we show that we can correctly estimate the mapping be-

tween the two images up to 90% of outliers, while we sys-

tematicaly filter every single outlier.

2. Mathematical Model

In our model, outliers are seen as uniform random

matches. Inliers are defined as the largest set of matches

that follow the same transform. The key heuristic is that all

the inliers follow the same affine transform, while outliers

do not have any overall behavior. Using the RANSAC idea

of random sampling [3], we perform a statistical analysis of

the samples to discard outliers.

Our algorithm is based on identifying the most frequent

affine transform defined by all potential triplet of matches.

However, an exhaustive estimation of all possible trans-

forms is out of reach when presented with a large amount

of matches [12]. For instance, 500 matches would yield

more than 20 × 106 triplets and cannot be processed by

a standard computer. One cannot simply use an arbitrary

subset of matches neither because there is no a priori crite-

rion to select that subset. Excluding a part of the matches

could lead to increasing the proportion of outliers, and make

the inliers impossible to identify. Our solution is to iter-

atively randomly regroup the matches into smaller subsets

to exhaustively estimate the best affine transform related to

the inliers of each subset. Then, all these estimated trans-

forms are compared with each other to find the one that fits

with most subsets. Notice that the subsets have to be small

enough to be quickly processed, but large enough to keep

the affine transform estimation accurate and robust. Al-

though three points are enough to define an affine transform,

the statistical analysis must rely on larger sets of points.

Given a subset of matches, every affine transform de-

fined by a triplet in the subset is estimated. We identify

in the space of the affine transform coefficients the cluster

where the concentration of transforms is the highest. In-

deed, we will show that any triplet that contains at least one

outlier yields an affine transform whose coefficients are uni-

formly distributed over an interval, while triplets of inliers

give coefficients that follow a Gaussian distribution. The

outliers’ variance is much larger than the variance of the

coefficients of the affine transform estimated from a triplet

of inliers. For the sake of speed, we perform a unidimen-

sional, separable clustering in every six dimensions [21] of

the affine transform coefficient space. To estimate the prob-

ability density function (PDF) of the coefficients, we use a

Gaussian kernel method as we have no a priori knowledge

of the location of the cluster nor of its width. The mode

of the PDF is considered to be the best estimation of the

coefficient.

Once we have estimated the best affine transform for
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each subset, we identify the most likely global transform.

Again, we use a PDF estimation with a kernel method to

perform that task because we do not know at what scale

the cluster of the best affine transforms is distinguishable.

We also evaluate the accuracy of the transform estimation,

which makes us able to reject a transform if it is not precise

enough. The expected proportion of inliers is not assumed

known and is gradually decreased until enough inliers are

found.

2.1. Random sampling of triplets and affine trans-
form estimation

Generally, interest points in the image are not detected

with high spatial accuracy. Furthermore, the affine geomet-

rical deformation model may not be accurate. For these rea-

sons our model accounts for additive white Gaussian noise.

In this section the variance formulas of the affine coeffi-

cients are given.

2.1.1 Expected variance of affine parameters

Let (xs, ys) be an interest point in the slave image Is and

let (xm, ym) be the theoretical matched point in the master

image Im. Then the observed match (x̂m, ŷm) = (xm +
x̃m, ym + ỹm) contains the residual error (x̃m, ỹm).

Let (xs
i , y

s
i )i ∈ Is and (x̂m

i , ŷmi )i ∈ Im with i =
1, . . . , 3 be three matches between the slave and the master

images where the points in the slave image are not aligned.

We denote

S =



xs
1

xs
2

xs
3

ys
1

ys
2

ys
3

1 1 1


 and M =



xm
1

xm
2

xm
3

ym
1

ym
2

ym
3

1 1 1




(2)

Similarly, M̂ and M̃ are defined with the triplets (x̂m
i , ŷmi )i

and (x̃m
i , ỹmi )i respectively, but the last row of M̃ contain-

ing zeros. With this notation, the affine transform defined

by this triplet, Â, and the theoretical affine matrix A are the

matrices such that

Â · S = M̂ and A · S = M . (3)

Proposition 2.1. With the notations above, if the residual

errors x̃m
i , ỹmi are i.i.d. centered Gaussian variables, then

the coefficients of the noise matrix

Ã = Â−A :=



ã c̃ ũ

b̃ d̃ ṽ
0 0 0


 (4)

are centered Gaussian variables and their expected vari-

ances are

σ2

ã =
(ys

1
− ys

2
)2 · σ2

x̃m
3

+ (ys
2
− ys

3
)2 · σ2

x̃m
1

+ (ys
3
− ys

1
)2 · σ2

x̃m
2

(det(S))
2

σ2

c̃ =
(xs

2
− xs

1
)2 · σ2

x̃m
3

+ (xs
1
− xs

3
)2 · σ2

x̃m
2

+ (ys
3
− ys

2
)2 · σ2

x̃m
1

(det(S))
2

σ2

ũ =
1

(det(S))
2
·
(
(xs

1
ys
2
− xs

2
ys
1
)2 · σ2

x̃m
3

+ (xs
3
ys
1
− xs

1
ys
3
)2 · σ2

x̃m
2

+ (xs
2
ys
3
− xs

3
ys
2
)2 · σ2

x̃m
1

)

(5)

and σ2

b̃
, σ2

d̃
, σ2

ṽ are obtained with the same formulas than

σ2

ã, σ
2

c̃ , σ
2

ũ respectively but using σ2

ỹm
i

instead of σ2

x̃m
i

.

Proof. Since Ã = M̃ · S−1 we have

ã =
(ys

1
− ys

2
) · x̃m

3
+ (ys

2
− ys

3
) · x̃m

1
+ (ys

3
− ys

1
) · x̃m

2

det(S)
.

(6)

With the hypothesis that x̃m
i ∼ N (0, σ2

x̃m
i

), i = 1, . . . , 3

we have that ã ∼ N (0, σ2

ã). By the same token, we obtain

the result for the other coefficients.

Applying Eq. (5) to outliers, we show how the trans-

form coefficients behave when not estimated from three in-

liers. We consider that outliers behave as if they had been

matched randomly, thus the transform defined by a triplet

composed by at least one outlier is also randomly defined.

Proposition 2.2. Let A be an affine trans-

form, (xs
i , y

s
i )i=1,2,3 be three points in Is, and

(xm
i , ymi )i=1,2,3 be their image by A. Let (X,Y) be

a uniform random vector on Im. Then each coeffi-

cient of the affine transform Â related to the triplet

({(xs
1
, ys

1
), (X,Y)}, {(xs

2
, ys

2
), (xm

2
, ym

2
)}, {(xs

3
, ys

3
), (xm

3
, ym

3
)})

is of the form:

â = µa + λaX (7)

and follows a uniform distribution where µa and λa are two

deterministic constants.

Proof. Focusing on the coefficient â and ignoring the Gaus-

sian noise, we have

â =
1

det(S)
·
(
(ys

1
− ys

2
)xm

3
+(ys

2
− ys

3
)X+(ys

3
− ys

1
)xm

2

)

(8)

Let

µa = a−
1

det(S)
· (ys

2
− ys

3
)xm

1
and

λa =
1

det(S)
· (ys

2
− ys

3
),

(9)
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where a is the first coefficient of the matrix A. It then yields

Eq. (7).

This result remains true when more than one point are

replaced by uniform random variables. The proof is similar,

and for example if the second master point is replaced with

a uniform variable, we have:

µa = a−
1

det(S)
·
(
(ys

2
− ys

3
)xm

1
+ (ys

3
− ys

1
)xm

2

)

λa =
1

det(S)
·
√
(ys

2
− ys

3
)2 + (ys

3
− ys

1
)2.

(10)

In practice, the scalar λa is large enough for the coefficients

estimated from triplets containing outliers to be largely

spread compared to the coefficients correctly approximated.

For Is = [1...1024]2 and (xs
i , y

s
i )i=1,2,3 uniformly gener-

ated on Is, λa is on the order of 0.1. Thus the magni-

tude of the product λax̂m
1

varies between 0.1 and 100, when

the standard deviation of the coefficients estimated from a

triplet of inliers is usually below 0.01.

2.1.2 Random sampling of triplets: a group-

experiment

During the random sampling, we take m matches uni-

formly drawn among all the matches. We compute the
(
m
3

)

affine transforms related to the possible
(
m
3

)
triplets from

the sample via SVD. We use SVD to avoid ill-conditioned

affine transforms matrices encountered for instance when

the matches that define it are too similar. We also compute

the six standard deviations associated to the six coefficients

of each affine transform using Eq. (5), with the assumption

that

(σx̃m
i
)i=1,2,3 = (σỹm

i
)i=1,2,3 = 1 pixel, (11)

which is a good estimate for the precision of typical in-

terest point detection methods. We call this step a group-

experiment. It yields
(
m
3

)
sets of six coefficients and stan-

dard deviations.

After the group-experiment, we have a list (Âk)k=1,...,T

with T =
(
m
3

)
, and for each coefficient of each Âk, we have

computed an estimation of its variance with Eq. (5). For the

six coefficients, we estimate independently their empirical

probabilistic distribution using the kernel method detailed

further to detect the most likely value of each coefficient.

2.2. Meaningful cluster of affine transforms

A good estimation of the coefficients’ value requires to

identify the cluster of coefficients defined by triplets of in-

liers. As we do not a priori know the width of the cluster,

we estimate the coefficients PDF using a kernel method that

automatically adapts its scale as a function of the standard

deviation σk of every coefficient [20]. A parameter estima-

tion with a small σ and with a lot of points close to it (w.r.t.

σ) will have a high “score” according to the kernel method,

while isolated points will be neglected. We give the defini-

tion of our Gaussian kernel function:

Definition 2.2.1. Let T be a number of experiments, let

(tk)k=1,...,T be a set of values and let (σk)k=1,...,T be their

error terms. For all k, we define:

score(tk) =
T∑

j=1

1√
2πσ2

j

e
−

(tk−tj)
2

2σ2
j . (12)

The score function computes a histogram of

(tk)k=1,...,T with an adaptive scale. It gives a smooth

curve that can be seen as an empirical probability density

function.

After computing (Âk, σâk
, σb̂k

, σĉk , σd̂k
, σûk

, σv̂k , )k=1,...,T ,

the kernel method is used to detect the corresponding clus-

ter. For each coefficient, we perform several tests to detect

if the experiment is meaningful and to decide if we can

correctly estimate the coefficient value.

Because the procedure is identical for all coefficients, we

here only focus on the coefficient a and its estimation â. We

define â, the most likely value of a as

â = argmax
âk,k=1,...,T

score(âk) (13)

and we define σtemp
â as being the error term associated to â.

We restrain our search to the discrete values (âk)k=1,...,T

to reduce computation time. Although the score function

could be maximized on R, we do not need an accurate esti-

mation of its maximum, and finding it in R would be much

longer.

As the triplets made of inliers produce coefficients that

follow a normal distribution, we consider that all correct

coefficients, that is estimated from inlier triplets, should be

located in [â − 3σtemp
â , â + 3σtemp

â ]. We define the neigh-

borhood of â as being:

Eâ = {(âk)k=1,...,T / |â− âk| ≤ 3σtemp
â }. (14)

The set Eâ is seen as the cluster of correct coefficients.

Then, the normalized score function

score(Eâ) =

∑
âk∈Eâ

score(âk)
∑T

k=1
score(âk)

(15)

indicates the relative weight of the detected cluster with re-

spect to the entire distribution of coefficients.

An experiment is meaningful if its corresponding neigh-

borhood satisfies:

card(Eâ) ≥ 4 and score(Eâ) ≥ scorethresh (16)

where card(Ω) is the number of elements that contains the

set Ω. Indeed, if a group-experiment is made with a set of
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matches that contains 3 inliers or less, we cannot correctly

estimate the value of the coefficient. If the set of matches

used for the group-experiment contains at least 4 inliers, the

associated set of triplets will contain at least
(
4

3

)
= 3 triplets

made by inliers, thus there will be at least three coefficients

really close from each other, thus located in the cluster we

were looking for. scorethresh = 0.15 is a good trade off

between speed and robustness. This ensures that the cluster

determined by the kernel method is concentrated enough

relatively to the standard deviation of its center value.

If the experiment is meaningful, one can then re-estimate

the standard deviation of â:

σâ =
1

card(Eâ)
·

√ ∑

âk∈Eâ

(â− âk)
2
. (17)

We now have â, an estimated value of a, and its precision

term σâ. If the set (âk)k=1,...,T meets the requirements in

Eq. (16), we consider that â provides a meaningful estima-

tion of a, and we store its value and its estimated standard

deviation σâ. We perform several group-experiments to ob-

tain a set of meaningful parameters.

2.3. Outliers filtering

We explain how we compute an affine transform with the

stored parameters, and how outliers are rejected.

2.3.1 Global affine transform estimation

The results of a group-experiment are not directly used to

detect outliers as we need a robust affine estimation. Indeed,

some experiments could verify Eq. (16) without being a

good approximation of the global affine mapping. This hap-

pens when a set of m matches contains too many outliers.

If the number of inliers is low, outliers may unfortunately

form a cluster. Therefore, the PDF estimation method is

used again to compute a robust value for each coefficient,

using all the stored meaningful values and their standard

deviation. As the kernel method needs at least three or four

points to work correctly, we only apply it every 10 group-

experiments. The kernel method gives the six final coeffi-

cients af , bf , cf , df , uf , vf of Af , and their six related stan-

dard deviations σaf
, σbf , σcf , σdf

, σuf
, σvf

.

2.3.2 Outliers detection

We now have to check if Af fits well with a significant pro-

portion of matches pmin ∈ [0, 1]. This “significant propor-

tion” evolves during the execution of APERS and is dis-

cussed later.

Definition 2.3.1. Let {(xs, ys), (x̂m, ŷm)} be a pair of

points. The geometrical deviation σM associated to this

pair is defined as the norm of the standard deviation of

Ãf · (xs, ys, 1)t, where Ã is defined by Eq. (4):

σM =
(
(σaf

2 + σbf
2)xs2 + (σcf

2 + σdf

2)ys2

+ σuf

2 + σvf
2

)1/2

.
(18)

As we modeled the inaccuracy of the inliers with a Gaus-

sian noise, the probability that a point (x̂m, ŷm) in Im and

the point predicted by the geometric model Af · (x
s, ys, 1)t

are separated by a distance smaller than 3σM is above 99%

if (x̂m, ŷm) is an inlier.

Definition 2.3.2. Let {(xs, ys), (xm, ym)} be a pair of

points. It is considered an inlier if

∥∥Af · (xs, ys, 1)t − (xm, ym, 1)t
∥∥
2
≤ 3σM . (19)

We check if we have found enough inliers, that is

card{inliers}

card{points}
≥ pmin, (20)

where pmin is the expected minimum proportion of inliers.

We assume here that outliers have no affine consistency,

which is coherent with our initial hypothesis. If Af has

been too inaccurately estimated, our model could accept all

the matches as inliers, allowing them to be far from the ge-

ometrical model. We accept Af and the set of inliers if the

largest deviation among all inliers is below ε.

max
k∈{inliers}

{σk
M} ≤ ε. (21)

The ε parameter can be adapted according to the desired

accuracy. We set its value to 5% of the image dimension,

which was found appropriate in our practical examples.

If Eq. (20) and (21) are verified, the algorithm stops and

outputs Af , σaf
, σbf , σcf , σdf

, σuf
, σvf and the set of

inliers. Otherwise, the parameter pmin is decreased and we

proceed as described in the next section.

2.4. APERS convergence

The last step consists in automatically updating the pa-

rameters so that APERS converges. We begin with an ex-

pected inlier proportion pmin = 90%. The algorithm pro-

ceeds with one series of 10 group-experiments. If the result

does not satisfy Eq. (20) and Eq. (21), another series of 10

group-experiments is processed, and its results are added to

the stored parameters of the first series. The algorithm per-

forms up to 10 series of 10 group-experiments. If APERS

does not find an inlier set containing 90% of the matches,

we delete the stored values and reduce pmin.

The reason we delete stored values is first because the

PDF estimation is not tractable if applied to a very large
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set of points. Second, if the outlier proportion is large,

keeping all stored values would lead to an incorrect inlier

detection. Indeed, as all triplets would be sampled several

times, many irrelevant clusters would appear and could be

accepted. pmin is reduced until APERS converges or until

it reaches 5%, where APERS enters a slow search regime.

In this slow search regime, APERS stops storing values as

it looks for a very small set of inliers. We perform 500 inde-

pendent series of 10 group-experiments. If Eq. (20) is ver-

ified during the slow search, APERS stops and outputs the

set of matches it detected as inliers. If the algorithm does

not converge, the computation is stopped, and all matches

are considered as outliers.

3. APERS algorithm

APERS pseudo-code is presented in Algo. 1. We use the

same parameters for every pair of images, that is: m = 10,

the number of matches that composes a group-experiment.

scorethresh = 0.15, seen in Eq. (16). ε = 5% of the image

size, which controls the distance between the geometrical

model and the matches (all our images were downsampled

to be approximately a thousand pixel wide). Parameters

m and scorethresh have been experimentally determined,

being good trade-offs between robustness and speed.

Algorithm 1: APERS pseudo-code.

Data: A set of potential matches

{(xs
k, y

s
k), (x

m
k , ymk )}k=1,...,N , a precision

parameter ε, in pixels

Result: Set of inliers that fit with the estimated

transform with a precision better than ε
for

pmin = [0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.05]
do

while (Eq. (19) or Eq. (21) is not satisfied) and the

number of stored parameters is not too large do
Perform a group-experiment and store the

result if meaningful;

if number of loop is a multiple of 10 then
Use the kernel method to estimate the

transforms coefficients and compute all

geometrical thresholds using Eq. (18);

Identify inliers and stop if the number of

inliers exceeds ⌊pminN⌋;

end

if Number of stored values is too high then

Delete stored values and reduce pmin;

end

end

end

4. Experiments

4.1. Theoretical experiments

To test APERS with different amounts of outliers we

simulate several sets of matches. Every set has 512 matches

where the proportion of outliers varies between 0% and

100%. The outliers proportion in our experiments is de-

noted by pout. The matches are generated in a 1024× 1024
pixel square and we generate an affine transform, with

the a, b, c, d coefficients uniformly distributed in [−20, 20]
and the translation coefficients u and v are uniform in

[−100, 100]. We compute the images of the slave points

by the affine transform, and randomly reassign a proportion

pout uniformly inside the smallest rectangle that contains

all the original master points. Finally, we add a white Gaus-

sian noise with variance of 1 pixel on every match. Fig. 1

and Fig. 2 show the result of this synthetic benchmark.

To compare APERS to other algorithms, we implemented

RANSAC and ORSA for affine transform estimation. We

also used the implementation of GroupSAC proposed in

[13] , as well as a recent implementation of RANSAC la-

beled HomogSAC on the figures, for finding a homography

among pairs of points [23]. The homographic model ap-

plies to our case, although it is slightly less accurate than

the affine model.

APERS correctly identifies a significant proportion of in-

liers up to 90% of outliers, while it is always capable of fil-

tering every single outliers. For pout ≤ 80%, all the inliers

and outliers are correctly identified, and the proportion of

identified inliers remains very high even for pout = 90%.

The computation time increases approximately linearly un-

til pout = 80%, because APERS always converges before

entering the slow search regime. As ORSA and RANSAC

algorithms have no stop criterion, we adapt the number of

iterations so their computation time is the same as APERS

i.e., 0.1,0.1,10,25,45,55,65,80,100,160 and 220 seconds for

the eleven values of pout. The default values for the num-

ber of iterations proposed with the RANSAC variants were

much smaller than the value we used, which made the al-

gorithms find many more inliers. All implementations are

done in Matlab and using the same computer. RANSAC

and GroupSAC reject almost every outlier in each experi-

ment, but they discard almost all inliers when pout exceeds

50%. The rejection threshold being underestimated, a good

estimation of the affine transform is performed at the cost of

many inliers incorrectly identified. ORSA detects inliers as

well as APERS, but starts to accept outliers for pout ≥ 60%.

The HomogSAC algorithm filters every outliers, but always

misses a portion of the inliers because of its sensitivity to

noise. The authors adjusted the parameters of the different

algorithms to maximize the proportion of detected inliers

without accepting any outliers, whenever possible.
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Figure 1. Theoretical experiments with APERS compared to

RANSAC and ORSA showing detected inliers as a function of

outlier proportion. Every 10% of pout, we generate 40 similar ex-

periments. The solid curves represent the proportion of inlier that

were identifyed. The dashed curves represent the standard devia-

tion of different series. We used a Matlab implementation on a PC

with an Intel i7 2.8 Ghz processor.
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Figure 2. Theoretical experiments with APERS compared to

RANSAC and ORSA showing detected outliers as a function of

outlier proportion.

4.2. Application to remote sensing imagery

We present the results of APERS applied to different

pairs of images. We use the SIFT algorithm to generate

potential matches [11]. Inliers are displayed in green, out-

liers in red. We essentially use airborne and spaceborne

optical images, but also a shaded Digital Elevation Model

(DEM). The images are down-sampled with a Lanczos fil-

ter to be processed on a standard computer, to a resolution

of few mega pixels. Figure 3 is an example where a part of

the image has been masked to avoid tie-points in a specified

area of the image (the assumed location of a seismic fault

zone). Fig. 4 is an example of a difficult case with a small

proportion of inliers, and Fig. 5 is an example with a mix

of a shaded Lidar DEM as slave image, and an aerial image

for the master.

Figure 3. Pair of SPOT 5 satellite images above Mexicali, Mexico.

926 matches, 163 outliers (18%) and 763 inliers (82%). A part

of the image, in white, has been masked to avoid tie-points in a

specified area.

Figure 4. Pair of NAPP USGS aerial images from Imperial Valley,

CA, USA. 155 matches, 100 outliers (65%) and 55 inliers (35%)

Figure 5. Pair of images from Central California along the San

Andreas fault, USA. The master is a Lidar shaded DEM, compared

with an aerial acquisition. 130 matches, 24 outliers (18%) and 106

inliers (82%)
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5. Conclusion

We developed an algorithm, APERS, that separates in-

liers and outliers among a set of matches between two im-

ages mapped by an affine transform. The best matching

affine transform is estimated, along with uncertainty on its

parameters. The algorithm is fast for sets of matches with

high proportion of inliers, detects inliers even when the pro-

portion of outliers reaches 90%, and systematically identi-

fies all the outliers, even when there are no inliers. More-

over, the algorithm does not need any manual intervention,

as all the parameters have default values that make possi-

ble to process all kinds of images automatically. Never-

theless, several improvements could be done. The affine

model could be upgraded to a projective model, with two

additional coefficients, which would require to use another

method to estimate the transform, such as the eight-point

algorithm [10]. The computation time should stay reason-

able, as it depends linearly on the number of coefficients

to be estimated because all dimensions are processed sepa-

rately. One could also optimize the evolution of parameter

pmin and thus reduce the computation time or increase the

proportion of inliers correctly identified.

In multi-temporal and multi-sensor image registration,

current point matching algorithms are often subject to

wrong pairing and therefore require to be supervised. By

allowing for a robust and automatic extraction of correct

tie-points, APERS could provide the missing link for

complete automation of multi-temporal and multi-sensor

image registration.
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