
PARIS: a Polynomial-Time, Risk-Sensitive Scheduling Algorithm for Probabilistic
Simple Temporal Networks with Uncertainty

Pedro Santana∗, Tiago Vaquero∗†, Cláudio Toledo+, Andrew Wang∗, Cheng Fang∗,
and Brian Williams∗

∗MIT, CSAIL +USP, ICMC † Caltech
Cambridge, MA 02139 São Carlos, SP, Brazil Pasadena, CA 91125

{psantana,tvaquero,wangaj,cfang,williams}@mit.edu claudio@icmc.usp.br tstegunv@caltech.edu

Abstract

Inspired by risk-sensitive, robust scheduling for plane-
tary rovers under temporal uncertainty, this work intro-
duces the Probabilistic Simple Temporal Network with
Uncertainty (PSTNU), a temporal planning formalism
that unifies the set-bounded and probabilistic temporal
uncertainty models from the STNU and PSTN litera-
ture. By allowing any combination of these two types of
uncertainty models, PSTNU’s can more appropriately
reflect the varying levels of knowledge that a mission
operator might have regarding the stochastic duration
models of different activities. We also introduce PARIS,
a novel sound and provably polynomial-time algorithm
for risk-sensitive strong scheduling of PSTNU’s. Due
to its fully linear problem encoding for typical temporal
uncertainty models, PARIS is shown to outperform the
current fastest algorithm for risk-sensitive strong PSTN
scheduling by nearly four orders of magnitude in some
instances of a popular probabilistic scheduling dataset,
while results on a new PSTNU scheduling dataset indi-
cate that PARIS is, indeed, amenable for deployment on
resource-constrained hardware.

1 Introduction
Endowing autonomous agents with a keen sensitivity to
temporal uncertainty is key in enabling them to reliably
complete time-critical missions in the real-world. Such re-
quirement has been the subject of recent research initia-
tives to incorporate duration uncertainty into temporal plan-
ning frameworks (Beaudry, Kabanza, and Michaud 2010;
Cimatti, Micheli, and Roveri 2015; Micheli, Do, and Smith
2015). A dominant effort has been to extend the set-bounded
uncertainty model from Simple Temporal Networks with
Uncertainty (STNU’s) (Vidal 1999) to a probabilistic set-
ting, in which the risk of violating deadlines and other tem-
poral requirements can be quantified (Tsamardinos 2002).

Three essential questions about Probabilistic Simple Tem-
poral Networks (PSTN’s) have been previously addressed.
Tsamardinos (2002) showed that a risk-minimizing sched-
ule of a PSTN could be derived analytically. In his deriva-
tion, he reduced the PSTN to an STNU with variable bounds,
and effectively solved for the bounds that would guaran-

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tee strong controllability. This reduction was further devel-
oped in the context of chance constraints (Birge and Lou-
veaux 1997), where one seeks a schedule whose risk of vi-
olating temporal requirements is guaranteed to be bounded
by a user-defined threshold. Operating in a general nonlin-
ear optimization setting, Fang, Yu, and Williams (2014) ap-
plied the STNU strong controllability reductions from (Vidal
1999) to propose Picard, a chance-constrained strong sched-
uler for PSTN’s capable of optimizing any schedule-related
objective function. Wang and Williams (2015), on the other
hand, present Rubato, an efficient algorithm for verifying the
existence of strong chance-constrained schedules that lever-
ages an SMT architecture to propose candidate STNU’s that
meet the chance constraints and discover temporal conflicts.

Although previous work introduces effective methods for
dealing with temporal uncertainty and scheduling risk, two
main challenges remain. First, neither STNU’s, nor PSTN’s,
accurately capture the varying levels of knowledge that a
mission operator might have about the sources of temporal
uncertainty that can have an impact on a mission. While set-
bounded uncertainty in STNU’s fails to represent frequency
models for random quantities captured by probability distri-
butions, the fully probabilistic models in a PSTN assumes a
potentially unreasonable level of understanding of the natu-
ral phenomena that give rise to uncertain temporal behavior.
Therefore, a first contribution of this work is to unify STNU
and PSTN models under Probabilistic Simple Temporal Net-
works with Uncertainty (PSTNU’s).

Our second and most important contribution is related
to the complexity of scaling current probabilistic schedul-
ing methods, especially if one has in mind the goal of run-
ning such algorithms on embedded robotic hardware, where
on-board computation and energy is scarce. While the state
of the art invariably resorted to general-purpose nonlinear
solvers to implement probabilistic scheduling methods, this
work introduces the Polynomial-time Algorithm for RIsk-
aware Scheduling (PARIS), a new and provably polynomial-
time algorithm for strong scheduling of PSTNU’s. Inspired
by linear approximation techniques used to reduce the com-
plexity of AC power flow analysis (Coffrin and Van Hen-
tenryck 2014), PARIS leverages a fully linear encoding of
the risk-aware probabilistic scheduling problem that allows
it to drastically reduce runtime and memory requirements.
Empirical evaluation on a probabilistic scheduling dataset

(a) Probabilistic Simple Temporal Network with Uncertainty (PSTNU).

e0=0 e1=0 e2=132.35
e3=142.35 e4=157.35 e5=187.35

e6=0 e7=246.64 e8=256.64
e9=271.64 e10=301.64 e11=495.75
e12=505.75 e13=520.75 e14=550.75
e15=650 e16=680 e17=680
e18=700

(b) Activity schedule computed by the
Polynomial-time Algorithm for RIsk-aware
Scheduling (PARIS).

Figure 1: Rover coordination under temporal uncertainty. (a) Scenario representation as PSTNU. (b) Strong activity schedule
for the PSTNU in (a) with scheduling risk bound of 6.7% (i.e., all temporal requirements met with probability of at least 93.3%).

first introduced in (Fang, Yu, and Williams 2014) shows
a several-order-of-magnitude improvement over the current
fastest algorithm for PSTN scheduling, while our new plan-
etary rover-inspired PSTNU dataset indicates that PARIS is,
indeed, amenable for deployment on embedded hardware.

1.1 Motivation: planetary rover coordination
Future planetary exploration missions will require an in-
creasing level of coordination between multiple spacecrafts
under temporal uncertainty. Figure 1 depicts a planetary
exploration scenario illustrating important requirements for
such missions: two autonomous rovers, Spirit and Opportu-
nity, should explore three sites on a region of Mars (gully,
slope streak, and rock outcrop). After exploring all sites,
both rovers must travel to a relay site and transmit their find-
ings to an orbiting satellite within a limited time window.

There are several complicating temporal factors. First,
traversal times between locations are uncertain. However,
rover mobility has been extensively studied, both from ex-
perience on Mars and in simulated environments. There-
fore, these times can be modeled probabilistically based on
the distance between sites and terrain features. Second, the
science-gathering activities at each site have uncertain du-
rations. Due to lack of real and simulated data, there are no
uncertainty models to aid in the prediction of how long these
activities will last, but lower and upper bounds are built into
the rover firmware to prevent deadlocks. Finally, at the relay
site, there is an absolute time window in which the satellite
is in field-of-view. Seeking to maximize throughput, both
rovers should transmit at approximately the same time, but
their transmissions should not overlap.

Due to power and communication limitations, the rovers
cannot coordinate during plan execution. Therefore, one
needs to precompute a schedule that satisfies all temporal
requirements, while being robust to the uncertainty in activ-
ity durations. In other words, this is a strong temporal plan-
ning problem, which Micheli, Do, and Smith (2015) note
is applicable to many safety-critical autonomous missions.
The work of Cimatti, Micheli, and Roveri (2015) approaches
strong temporal planning by replacing the STN scheduler in
COLIN (Coles et al. 2012) with an STNU strong control-
lability solver. In our scenario, we would like a risk-aware

strong controllability solver that handles both probabilistic
and set-bounded uncertain durations, which could be incor-
porated into a planner in a similar manner.

2 Background & PSTNU’s
Motivated by the aforementioned rover coordination sce-
nario, our risk-aware scheduling methods operate on
Probabilistic Simple Temporal Networks with Uncertainty
(PSTNU’s), a novel temporal modeling formalism unifying
features from Simple Temporal Networks (STN’s) (Dechter,
Meiri, and Pearl 1991), Simple Temporal Networks with Un-
certainty (STNU’s) (Vidal 1999), and Probabilistic Simple
Temporal Networks (PSTN’s) (Tsamardinos 2002). For the
sake of completeness, we briefly review these concepts. Fig-
ure 2 shows the different elements in a PSTNU.

Figure 2: Elements of a PSTNU, where [l, u] is a given in-
terval and f is a known probability density function (pdf).
From left to right: controllable event; contingent (uncontrol-
lable) event; STC; STCU; PSTC.

An STN (Definition 1) can model scheduling problems
where the agent has control over the temporal assignments
(a.k.a. the schedule) to all events. Possible assignments are
restricted by simple temporal constraints (STC’s), which
limit the distance between the timing of two events. If there
exists at least one schedule fulfilling all STC’s, we say that
the STN is consistent. Otherwise, it is inconsistent.
Definition 1 (STN). An STN is a tuple 〈Ec, Cr〉, where
- Ec : set of controllable temporal events, all of which must

be assigned by the scheduler;
- Cr : set of requirement STC’s of the form l ≤ e2−e1 ≤ u,
l, u ∈ R ∪ {−∞,∞}, where e1, e2 ∈ Ec.

An STN is capable of modeling externally-imposed tem-
poral requirements (e.g., “return to base in less than 30 min-
utes”) and durations of agent-controlled activities (e.g., “hi-
bernate for 1 hour”), but is unable to model activities with
uncertain durations (e.g., “drill a 2 cm hole in a rock” or

“travel between two sites”). An STNU (Definition 2) ad-
dresses this limitation by extending STN’s with contingent
(also called uncontrollable) constraints and events. In an
STNU, a contingent constraint is represented as an STC with
uncertainty (STCU), which allows the difference between
two temporal events to be non-deterministic, but bounded
by a known interval [l, u]. Depending on how much infor-
mation about contingent durations is made available to the
scheduler during execution, Vidal (1999) defines different
levels of controllability for STNU’s: weak controllability as-
sumes all values of contingent durations to be known to the
scheduler before it has to make any decisions; strong con-
trollability assumes that no such information is ever avail-
able to the scheduler; and dynamic controllability assumes
that the scheduler can only use information about past con-
tingent durations when making future scheduling decisions.
Definition 2 (STNU). An STNU is a tuple 〈Ec, Eu, Cr, Cu〉
that extends STN’s by adding:
- Eu : set of contingent temporal events, which are assigned

by an uncontrollable external agent (“Nature”);
- Cu : set of contingent simple temporal constraints with

uncertainty (STCU’s) of the form

e2 = e1 + d, l ≤ d ≤ u, l, u ∈ R>0, (1)

where d is a set-bounded, non-deterministic duration;
e1 ∈ Ec ∪ Eu; and e2 ∈ Eu.

- Cr : same as in Definition 1, but we allow e1, e2 ∈ Ec∪Eu.

Modeling contingent durations using STCU’s is rather re-
strictive, for they do not incorporate information about the
relative frequency of the different values for d in (1). For
instance, they cannot model the statement “the rover re-
quires 20 minutes to complete the traversal on average, with
a standard deviation of 5 minutes”. To address this need, a
PSTN (Definition 3) allows contingent durations to be rep-
resented as random variables with known probability distri-
butions. The notions of controllability for STNU’s can be
readily transferred to PSTN’s. Moreover, controllability for
PSTN’s can be further extended with a notion of schedul-
ing risk (Tsamardinos 2002; Fang, Yu, and Williams 2014;
Wang and Williams 2015).
Definition 3. (PSTN) Similar to STNU’s, a PSTN is a tu-
ple 〈Ec, Eu, Cr, Cu〉, where Cu contains probabilistic simple
temporal constraints (PSTC’s). A PSTC is also of the form
e2 = e1 + d, with the additional assumption that d is a
continuous random variable following a known probability
distribution with positive support.

While STNU’s ignore extra knowledge that one might
have about temporal uncertainty, PSTN’s can err on the side
of requiring too much knowledge to be available. As ex-
emplified in Section 1.1, probabilistic models may not be
known for every source of uncertainty affecting a mission.
In most practical applications, these models are obtained
through statistical analysis of experimental data, and “guess-
ing” a model in the absence of data can lead to unquan-
tifiable levels of mission risk. A PSTNU (Definition 4) ad-
dresses these issues by simply allowing the uncertainty mod-
els from STNU’s and PSTN’s to co-exist, so that mission

operators can leverage probabilistic models for temporal un-
certainty if, and only if, there is evidence to support them.

Definition 4. (PSTNU) Same as a PSTN, but Cu may contain
any combination of STCU’s and PSTC’s.

3 Problem formulation
Following (Vidal 1999), given A ⊆ Ec and B ⊆ Eu, denote
a control sequence δ : A → R and a situation ω : B → R.
Intuitively, δ represents a partial assignment to controllable
events in a PSTNU, while ω is a partial assignment to contin-
gent events made by Nature. If δ and ω assign values to every
controllable and contingent event in a PSTNU, we call them
complete control sequence and situation. Consider now the
set of control sequences S = {δ |δ : A ⊆ Ec → R} and the
set of situations O = {ω |ω : B ⊆ Eu → R}. A scheduling
policy π : S × O × Ec → R defines a strategy to schedule
controllable events based on an adopted control sequence
and the resulting situation. Due to uncertain durations, there
might be a non-zero probability of a scheduling policy π vi-
olating requirement constraints in a PSTNU, giving rise to
the notion of scheduling risk (Definition 5).

Definition 5. (Scheduling risk) Let π be a scheduling policy
for a PSTNU N , and C ⊆ Cr. The scheduling risk for the
pair 〈π,C〉 corresponds to the probability of complete con-
trol sequences generated by π violating one or more con-
straints in C.

One should notice that Definition 5 considers violations of
subsets of Cr, the requirement constraints, but not Cu. This is
because contingent durations violating their corresponding
STCU or PSTC are instances of modeling errors, a source
of uncertainty outside the scope of PSTNU’s.1 For that rea-
son, we henceforth assume that all contingent durations take
place according to their modeled behavior in a PSTNU.

3.1 Computing strong schedules
Following (Tsamardinos 2002; Fang, Yu, and Williams
2014; Wang and Williams 2015; Cimatti, Micheli, and
Roveri 2015; Micheli, Do, and Smith 2015), we focus our
attention on strong controllability in Definition 6.

Definition 6. (Strongly controllable PSTNU) A PSTNU N
is strongly controllable (SC) if, and only if, there exists a
complete control sequence δ such that, for all complete sit-
uations ω, all requirement constraints Cr in N are satisfied.

A PSTNU N is strongly controllable if one can compute
a complete assignment to controllable events regardless of
the contingent duration values during execution, and still be
guaranteed to fulfill all requirement constraints in N . We
shall call such a schedule a strong policy πs. Vidal (1999) in-
troduces rules for checking strong controllability of STNU’s
for the particular case where e1 ∈ Ec in (1), which were
later applied to PSTN’s by Fang, Yu, and Williams (2014).
In support of the scheduling risk discussion in Section 3.2
and our polynomial-time scheduling algorithm in Section 4,

1Considering modeling errors can be useful, should one want to
model uncertainty about the uncertainty models themselves.

we now derive linear programming-based necessary and suf-
ficient conditions for PSTNU strong controllability for the
general case where e1 in (1) can be controllable or contin-
gent. For that, let e2−e1 ≤ u, e2−e1 ≥ l, represent a generic
requirement constraint cr in a PSTNU N , where e1 and e2
can be either controllable or contingent events. A strong pol-
icy πs assigns values to elements of Ec, therefore rendering
the satisfaction of cr a function only of the contingent du-
rations. Let Ω be the set of all possible complete situations,
and Ωi be the subset of a complete situation affecting event
ei (directly or indirectly). From Definition 6, a PSTNU N is
strongly controllable if, and only if,

∀cr ∈ Cr,max
Ω

(e2 − e1) ≤ u, min
Ω

(e2 − e1) ≥ l, (2)

where e1 and e2 are taken from cr. To compute (2), use (1)
to write

e1 = ec1 +
∑
Ω1

di, e2 = ec2 +
∑
Ω2

di, (3)

where eci ∈ Ec is a controllable event fixed by the strong
schedule, and Ωi is the “contingent path” of ei (for control-
lable ei, Ωi = ∅ and ei = eci). In the difference e2 − e1,
common contingent durations di cancel out, leaving

max
Ω

(e2−e1) = ec2−ec1+
∑

Ω2\Ω1

max(di)−
∑

Ω1\Ω2

min(di),

min
Ω

(e2−e1) = ec2−ec1+
∑

Ω2\Ω1

min(di)−
∑

Ω1\Ω2

max(di). (4)

3.2 Computing scheduling risk
For unbounded distributions such as Gaussians, or even
bounded distributions on wide intervals, we would expect
(2) to almost never hold for non-trivial requirements. How-
ever, as was previously done in the context of PSTN’s, one
might be able to “restore” strong controllability to a PSTNU
by “squeezing” probabilistic durations, therefore incurring
non-zero amounts of scheduling risk (Definition 7).
Definition 7. (Scheduling risk for strong policies) For a
PSTNU N , let C ⊆ Cr. Also, let [li, ui] be an externally-
imposed bounding interval for the i-th contingent duration
di in Cu, so that (2) holds for every requirement constraint in
C for a particular strong policy πs. We define the scheduling
risk SR(πs, C) of πs with respect to C as

SR(πs, C) = 1− Pr

|Cu|∧
i=1

di ∈ [li, ui]

 . (5)

The joint distribution in (5) can be difficult to compute, or
even completely unknown. In the next section, we present a
scheduling algorithm that can not only minimize a guaran-
teed upper bound on (5), but also optimize other objectives
while ensuring SR(πs, C) ≤ θ for a given θ ∈ [0, 1], the
latter bound being referred to as a chance constraint.

4 Polynomial-time, risk-aware scheduling
We now introduce the Polynomial-time Algorithm for RIsk-
aware Scheduling (PARIS), an algorithm leveraging a lin-
ear program (LP) formulation to extract (or determine the

nonexistence of) risk-sensitive strong scheduling policies
for PSTNU’s. Different from the nonlinear approaches of
(Tsamardinos 2002; Fang, Yu, and Williams 2014; Wang
and Williams 2015), PARIS’ linear formulation allows it to
achieve not only dramatic speedups compared to the state
of the art in risk-sensitive strong scheduling, but also, to the
best of the authors’ knowledge, be the first scheduler guar-
anteed to run in polynomial time.

4.1 Assumptions and walk-through
PARIS assumes that all events e ∈ Eu in a PSTNU are the
endpoints of exactly one element of Cu. If an event e′ ∈ Eu
is not associated with an uncontrollable duration, we make
this event the endpoint of an STCU [0,∞) starting at the
time reference (t = 0). Also, if e′ ∈ Eu is the endpoint of
two distinct elements of Cu, we deem this a modeling error.
This is because contingent constraints correspond to random
continuous durations, and having them share an endpoint
is equivalent to forcing random durations to be consistent
with each other. Loops involving contingent durations are
another modeling error: contingent durations are constrained
to be positive, so a loop represents the inconsistent case of
an event happening before itself.

The pseudo-code for PARIS is shown in Algorithm 1. For
each requirement constraint in the PSTNU, line 5 uses Al-
gorithm 2 to extract the set of events involved in (3) (contin-
gent loops are detected in line 5 of Algorithm 2). The max-
imums and minimums in (4) are computed in line 6 by Al-
gorithm 3, which are used in line 7 to enforce the necessary
and sufficient conditions for strong controllability in (2). The
functions CtgLb and CtgUb in Algorithm 3 return, respec-
tively, externally-imposed lower and upper bounds for con-
tingent constraints in terms of “squeezing variables”, which
are also used by function SqueezeRisk in Algorithm 1
(line 9) to compute a linear upper bound on (5). Line 11
of Algorithm 1 solves an LP to determine a risk-bounded
strong scheduling policy πs, and both πs and an upper bound
ΛSR for (5) are returned. One should notice that Algorithm
2 will always return sequences ending in a controllable event
(the eci terms in (3)), which are returned by Last in lines 7
and 8 of Algorithm 3. Details on how these quantities are
computed are given next.

4.2 A linear scheduling risk bound
Here we present the risk bound used as the objective in Al-
gorithm 1 (line 9), allowing us to determine, from all avail-
able options, the strong scheduling policy πs minimizing this
bound. Section 4.5 shows how PARIS can be extended to
handle other types of linear objectives as well.

In order to obtain a linear risk objective, we apply Boole’s
inequality to (5) and obtain the upper bound

ΛSR(πs, C)=

|Cu|∑
i=1

Φi(li) + (1−Φi(ui))≥SR(πs, C), (6)

where Φi is the cumulative density function (cdf) associated
with di. Notice that (6) holds regardless of whether contin-
gent durations are independent or not, since it is obtained
from Boole’s inequality. As it stands, (6) is a combination

Algorithm 1: THE PARIS ALGORITHM.
Input: PSTNU N
Output: Strong policy πs and scheduling risk bound ΛSR.

1 Function PARIS (N)
2 Obj ← 0,Cts ← ∅
3 for cr ∈ Cr do
4 e1, e2 ← StartOf(cr),EndOf(cr)
5 d1, d2 ← CtgPath(N, e1),CtgPath(N, e2)
6 dfmn, dfmx ← DiffMinMax(N, d2, d1)
7 Cts ← Cts ∪ (dfmn ≥ Lb(cr), dfmx ≤ Ub(cr))

8 for cu ∈ Cu do
9 Obj ← Obj + SqueezeRisk(cu)

10 Cts ← Cts ∪ SqueezeCtrs(cu)

11 sol ← Minimize Obj s.t. Cts
12 πs ← ControllableEventValues(sol)
13 ΛSR ← Objective(sol)
14 return πs,ΛSR

Algorithm 2: EVENT’S CONTINGENT PATH.
Input: PSTNU N , event e.
Output: List of duration variables dv.

1 Function CtgPath(N, e)
2 dv ← ∅
3 while e ∈ Eu do
4 cu ← CtgDurationByEnd(N, e)
5 if cu ∈ dv then
6 return ERROR

7 else
8 dv, e← dv ∪ cu,StartOf(cu)

9 return dv ∪ e

of potentially nonlinear functions. Hence, we now develop
efficient linear approximations of Φ(li) and 1 − Φ(ui) for
several common models of contingent durations.

4.3 The risk of “squeezing” contingent durations
The [li, ui] bounds in (6) are externally imposed on contin-
gent durations to cause (2) (strong controllability) to hold.
If [l, u] are the true bounds of a contingent duration, we
see that imposing li > l (squeeze lower bound) will cause
Φ(li) > 0 in (6). Analogously, choosing ui < u yields
(1 − Φ(ui)) > 0. Therefore, squeezing contingent duration
bounds causes (6) to grow. In the following, we show how
we can quantify this risk as linear combinations of “squeez-
ing variables” for common types of contingent durations.

Uniform durations Let cu ∈ Cu be a PSTC representing
a random uniform duration d ∼ U(l, u). Also, let sl and
su be, respectively, the amount by which one squeezes d’s
lower and upper bounds. In this case, we have
CtgLb(cu) = l + sl,CtgUb(cu) = u− su,

SqueezeRisk(cu) =
sl

u− l +
su
u− l ,

SqueezeCtrs(cu) = sl, su ∈ [0, u−l], sl+su ≤ u−l. (7)

It should be clear that Φ(li) and (1−Φ(ui)) in (6) cor-
respond, respectively, to the first and second terms of

Algorithm 3: MINIMUM AND MAXIMUM IN (2).
Input: PSTNU N , duration variables dv1 and dv2 as in (3).
Output: Minimum and maximum in (2)

1 Function DiffMinMax(N, dv2, dv1)
2 mx1 ← mx2 ← mn1 ← mn2 ← 0
3 for i = 0, 1 do
4 for (cu ∈ dv(i+1))&&(cu /∈ dv(2−i)) do
5 mn(i+1) ← mn(i+1) + CtgLb(cu)
6 mx(i+1) ← mx(i+1) + CtgUb(cu)

7 dfmn ← Last(dv2)− Last(dv1) +mn2 −mx1

8 dfmx ← Last(dv2)− Last(dv1) +mx2 −mn1

9 return dfmn, dfmx

SqueezeRisk(cu) in (7). Fortunately, these are already
linear functions of the squeeze variables for uniform distri-
butions, so no approximations are required.

Set-bounded durations Since PSTN’s were first intro-
duced, STCU’s have sometimes been treated as a particu-
lar type of PSTC, such as in (Tsamardinos 2002). Unfortu-
nately, with respect to scheduling risk, the latter might not
be true. In order to see that, let cu ∈ Cu be an STCU with
bounds [l, u]. For any nonzero amount of squeezing sl of
its lower bound, the true probability distribution of cu could
concentrate all probability mass in the interval [l, l+s/2],
and an analogous statement holds for the upper bound. This,
in turn, would cause (6) to become a trivial bound ΛSR ≥ 1.
Therefore, if (6) is to be a guaranteed non-trivial scheduling
risk upper bound, one must constrain STCU squeezing to be
zero, yielding the risk model

CtgLb(cu) = l,CtgUb(cu) = u,

SqueezeRisk(cu)=0,SqueezeCtrs(cu)=∅. (8)

When Cu in a PSTNU only contains STCU’s, (8) turns
PARIS into a strong controllability checker for STNU’s ex-
tending that of Vidal (1999) to the case where start events of
contingent durations are not necessarily controllable.

Gaussians and other unimodal contingent durations A
key distinction between PARIS and previous methods lies
in its linear handling of common unimodal distributions for
contingent durations, Gaussians being arguably the most
common example. Instead of resorting to a nonlinear solver,
here we develop piecewise-linear upper bounds (see Figure
3) for the risk terms in (6) involving Φ. Moreover, we ex-
ploit the fact that the pdf’s of such distributions are mono-
tonic on either side of the mode to derive piecewise-linear
approximations of the cdf without integer variables, there-
fore yielding a purely linear formulation.

Let f(x) be the pdf of a unimodal distribution, and let
p0 be its mode. Also, let p={p−m, . . . , p−1, p0, p1, . . . , pn}
be a partition around p0 with m segments to the left of the
mode and n segments to the right (see Figure 3). For li ∈
[pj , pj+1], −m ≤ j ≤ −1, one can write

Φ(li)≤

(
Φ(p−m)+

j−1∑
k=−m

f(pk+1)(pk+1−pk)

)
+ f(pj+1)(li − pj) (9)

Figure 3: Piecewise-constant approximation of a Gaussian
pdf used in the piecewise-linear upper bounds of Φ(li) and
(1− Φ(ui)) in (6), where pi’s are given partition points.

Similarly, for ui ∈ [pj−1, pj], 1 ≤ j ≤ n, we have

1−Φ(ui) ≤

1− Φ(pn)+

n−1∑
k=j

f(pk)(pk+1−pk)

+ f(pj)(pj − ui). (10)

The terms within parentheses in (9)-(10) are constants, as
are all pi’s. Hence, these are, respectively, piecewise-linear
upper bounds for Φ(li) and 1 − Φ(ui). Seeking to incorpo-
rate (9)-(10) into (6), let si∈[0, pi+1−pi] be the amount of
squeezing in the interval [pi, pi+1], −m ≤ i ≤ n − 1. The
squeezing risk model for unimodal distributions is given by

CtgLb(cu)=p−m+

−1∑
i=−m

si, CtgUb(cu)=pn−
n−1∑
i=0

si,

SqueezeRisk(cu)=Φ(p−m) + (1− Φ(pn))

+

−1∑
i=−m

f(pi+1)si+

n−1∑
j=0

f(pj)si,

SqueezeCtrs(cu)=si ∈ [0, pi+1−pi],−m≤i≤n−1, (11)

The si in (11) must consistently implement the piecewise-
linear behavior from (9)-(10), i.e., for i<0, one must have
si−1<pi−pi−1⇒si=0; and, for i > 0, si<pi+1−pi ⇒
si−1=0. In general, these rules would have to be enforced
through binary variables representing the “activation” of
piecewise-linear segments. However, since I) si’s in (11)
only affect duration bounds through their sum; II) the coef-
ficients of the si in SqueezeRisk are monotonic on either
side of the mode; and III) PARIS minimizes (6), an optimal
solution found by Algorithm 1 must necessarily fulfill the
aforementioned rules, therefore correctly “squeezing” the
distribution. Hence, no binary variables are needed!

4.4 Improving piecewise approximations
The previous section does not discuss how the partition p
should be chosen. In principle, the specific pi’s should not
matter, as long as the “box” between pi−1 and pi is chosen
so that it always overestimates the pdf (and, thus, the area
under the curve). However, Figure 3 shows that such series
of boxes can yield a rather crude approximation of the cdf,
depending on where partition points are placed. Therefore,
given a fixed number of partitions, we now focus on choos-
ing p so that it approximates the cdf well. For that, let

g(p)=

−1∑
i=−m

(pi+1−pi)f(pi+1)+

n−1∑
j=0

(pj+1−pj)f(pj) (12)

be the total area of the piecewise approximation. Since (12)
is an upper bound, one might seek to

minimize
p

g(p) subject to pi+1≥pi,∀i, p−m, p0, pn fixed. (13)

The objective in (13) is not linear or convex in general
(e.g., it is neither for Gaussians). Due to the inequalities, one
could resort to SUMT (Fiacco and McCormick 1964), a.k.a.
barrier methods, to solve a sequence of unconstrained min-
imization problems to provide increasingly better estimates
of a local solution to (13). However, these intermediate steps
are costly and, as pointed out by Boyd and Vandenberghe
(2004), computing them exactly is not necessary. Therefore,
seeking to keep computational requirements manageable,
we resort to a simpler approach based on gradient descent.
Starting with p0=p0, we compute

pt+1 = Q

(
pt − µ∇g

∣∣∣
p=pt

)
(14)

until ‖∇g(pt)‖≈0 or a maximum number of iterations is
reached. In (14), the components of∇g are

∂g

∂pk
=f ′(pk)(pk−pk−1)+f(pk)−f(pk+1),−m<k<0,

∂g

∂pk
=f ′(pk)(pk+1 − pk)+f(pk−1)−f(pk), 0≤k<n, (15)

and 0 for k∈{−m, 0, n}; µ is a positive constant; and Q(·)
is a projection ensuring (14) remains in the feasible region
of (13). In our implementation, Q(·) is the identity if its ar-
gument is feasible, and otherwise outputs a random feasible
perturbation around pt. Thus, at any t, (14) is feasible and,
for small enough µ, will improve the upper bound (12) at
every iteration. For a Gaussian N(µ, σ2), we have

f(x)=
1√
2πσ

e

(
− 1

2 (x−µσ)
2
)
, f ′(x)=f(x)

(µ− x
σ2

)
. (16)

4.5 From minimum risk to other linear objectives
The description of PARIS in Algorithm 1 computes πs min-
imizing the scheduling risk bound (6). However, as pointed
out in (Fang, Yu, and Williams 2014; Wang and Williams
2015), there might be situations where other types of lin-
ear objectives (e.g., the schedule’s makespan) might be pre-
ferred over minimizing risk. Thus, let

minimize
x

h(x) subject to Cts(x) (17)

be the target problem, where h(x) is the desired objective
(e.g., the makespan) for PARIS; x is the vector of problem
variables (schedule of controllable events, squeezing vari-
ables, etc.); and Cts are the same as in line 11 of Algorithm
1, plus any additional (linear) ones required by h(x). In this
section, we analyze two risk-motivated settings for solving
(17): I) a chance-constrained setting, in which we solve (17)
without caring for the actual value of the scheduling risk
SR(x), as long as one can ensure that it is bounded by a
user-specified tolerable risk level θ; and II) a tight risk gap
setting, in which we would like to solve (17) while ensuring
that our estimate of SR(x) is as good as possible.

Chance-constrained In the chance-constrained setting,
(17) must be solved while ensuring SR(x) ≤ θ for a given
θ ∈ [0, 1]. Following Section 4.2, we achieve SR(x) ≤ θ
through the sufficient condition

ΛSR(x) ≤ θ, (18)

which should be added as an element of Cts(x) in (17).
It is worthwhile to notice that (18) is sufficient to enforce
SR(x) ≤ θ even in the absence of binary values to ensure
that the “squeezings” in (11) are performed correctly! The
reasons are the same as presented in Section 4.3: squeeze
variables have monotonic coefficients and can only affect
bounds through their sums, so a bound Λ′SR(x) resulting
from “potentially incorrectly squeezed” distributions can
only overestimate the bound ΛSR(x) generated by the same
amount of squeezing, but performed in the correct order.
Therefore, since Λ′SR(x) ≤ θ is sufficient for (18), a solu-
tion of (17) is guaranteed to be chance constrained no matter
how the squeezings are performed.

Tight risk gap Assume now that, in addition to solving
(17), we require the scheduling risk bound given by (6) to
be tight. This is useful, for instance, when no knowledge
about the joint distribution of durations is available, so that
(5) cannot be computed even if all bounds [li, ui] for the
contingent durations are given. In this case, (6) becomes our
best estimate of the scheduling risk for the mission, and we
would like to make it as good as possible.

A natural way of achieving this goal would be to introduce
binary variables in (17), so that the piecewise-linear approx-
imations in Section 4.3 are correctly implemented. However,
that would turn (17) into a significantly harder problem to
solve, since it would become a Mixed-Integer LP (MILP).
Therefore, we propose to replace (17) by the surrogate

minimize
x

ΛSR(x) +Mh(x) subject to Cts(x), (19)

where ΛSR(x) is the risk bound (6) andM is a finite positive
constant. Unlike (17), (19) does not require binary variables
due to the introduction of ΛSR(x) in the objective. On the
other hand, (19) no longer optimizes our desired objective
h(x). Despite the latter, we now show that M can be cho-
sen so that a solution to (19) approximates that of (17) with
arbitrary precision while requiring no integer variables.

Let x∗ be optimal solution found by (17), and let h∗ =
h(x∗) be the corresponding minimal value of h(·) over the
convex region defined by Cts(x). Also, let x′ be the solu-
tion found by (19) over the same convex region, with cor-
responding desired objective h(x′) = h∗ + ∆h. The ∆h
term is the objective degradation, and must be such that
∆h ≥ 0, given that h∗ is the minimum of h(·) over Cts(x).
Any such degradation in h(x) must be a result of a cor-
responding decrease ∆ΛSR(x) of the risk bound, and the
minimality of (19) implies ∆ΛSR(x) + M∆h ≤ 0. The
last step is noticing that the risk bound improvement is such
that−∆ΛSR(x) ≤ |Cu|, which is the difference between the
maximum (ΛSR = |Cu|) and minimum (ΛSR = 0) values of
ΛSR in (6). Therefore, we arrive at the degradation bound

∆h ≤ |Cu|
M

. (20)

For instance, if h(x) is the schedule’s makespan measured
in seconds and one chooses M = 1000|Cu|, (20) guaran-
tees that the fully linear surrogate (19) approximates the
true minimal makespan h∗ with millisecond precision! Also,
nothing prevents us from imposing (18) on (19) to enforce
SR(x) ≤ θ. In Section 5, this will be referred to as the tight,
chance-constrained (TCC) setting.

4.6 Algorithm properties
This section presents soundness, completeness, and com-
plexity properties for the different formulations of PARIS.
Lemma 1. PARIS is sound.

Proof : PARIS enforces (4), which are necessary and suf-
ficient for strong controllability. Therefore, any schedule
found must be a strong scheduling policy. �
Lemma 2. PARIS runs in polynomial time.

Proof : the loops in lines 3 and 8 of Algorithm 1 run a poly-
nomial number of iterations, and both Algorithms 2 and 3
run in polynomial time. Also, the scheduling risk models
in (7), (8), and (11) create a polynomially-large number of
variables and constraints relative to the number of contin-
gent durations, and Karmarkar (1984) showed that the LP
in line 11 of Algorithm 1 can be solved in polynomial time.
Finally, the cap on the number of iterations for the partition
optimization step (14) introduces a maximum overhead that
grows linearly with the number of contingent durations. �
Lemma 3. When contingent durations are restricted to
STCU’s or uniform PSTC’s, PARIS is complete.

Proof : the squeezing models (7) and (8) consider the
whole range of possible externally-imposed upper and lower
bounds for contingent durations. Therefore, if there are
squeezings for which a strong policy exists, PARIS will find
it. Otherwise, it will return no solution. �
Lemma 4. The squeezing model (11) for unimodal PSTC’s
renders PARIS incomplete.

Proof : the model (11) will fail to return strong schedules
requiring upper and lower bounds to be squeezed beyond
the extrema of the interval, or not containing the mode. �
Lemma 5. Chance-constrained PARIS is sound, but incom-
plete.

Proof : Soundness of (18) follows from SR(x) ≤
ΛSR(x) ≤ θ. Incompleteness follows from the fact that en-
forcing (18) to ensure SR(x) ≤ θ may discard valid solu-
tions when θ is placed in the gap between the minimum of
ΛSR(x) and the true value of SR(x). �

5 Experiments
The empirical evaluation of PARIS leveraged two dis-
tinct datasets: CAR-SHARING and ROVERS, both avail-
able at http://mers.csail.mit.edu/datasets/
scheduling, along with several other examples.

The CAR-SHARING dataset, first made available by
Fang, Yu, and Williams (2014) and later used by Wang and
Williams (2015), served the purpose of evaluating PARIS
against the state of the art in PSTN scheduling. Experiments

(a) Strong policy was found
.

(b) Strong policy was not found
.

(c) Risk gap with (blue) and without (red)
partition optimization.

(d) Elapsed time for 4c. (e) Min. risk (blue) and min. makespan. (f) Elapsed time for 4e.

Figure 4: Performance of Rubato and PARIS on CAR-SHARING dataset.

(a) Strong policy was found. (b) Strong policy was not found. (c) Min. risk (blue) and min. makespan.

Figure 5: Performance of PARIS on ROVERS dataset.

by Wang and Williams (2015) on this dataset show that
Rubato, their SMT-based chance-constrained strong con-
trollability checker for PSTN’s, outperforms Tsamardinos’s
(2002) approach and the Picard system presented in (Fang,
Yu, and Williams 2014) by nearly an order of magnitude.
Therefore, here we compare Rubato’s performance rela-
tive to that of PARIS on CAR-SHARING. Rubato is im-
plemented in Common Lisp and uses Ipopt (Wächter and
Biegler 2006) as the nonlinear solver, while PARIS is im-
plemented in Python and uses Gurobi 6.0.4.

The ROVERS dataset consists of 4380 randomly-
generated PSTNU instances modeling planetary rover coor-
dination scenarios similar to the one depicted in Figure 1a.
ROVERS instances feature the coordination between two to
ten rovers, which have to complete between one to ten se-
quential exploration tasks (drive, drill, collect, and process)
in parallel before reconvening at a relay location and trans-
mitting their data to a satellite within a given visibility win-
dow. ROVERS contains all combinations of uncontrollable
temporal durations discussed in this work and, to the best
of the author’s knowledge, cannot be handled by existing
scheduling algorithms.

Our first test consisted of running the risk-bound mini-

mization version of PARIS explained in Algorithm 1 against
Rubato on CAR-SHARING, with results shown in Figures
4a and 4b (vertical axes in log scale). Out of 1800 instances,
PARIS found strong policies for 186 in Figure 4a (same
number as in (Fang, Yu, and Williams 2014)), while Rubato
found 142. Unsurprisingly, we see that strong schedules tend
to exist for networks with fewer uncontrollable durations.
PARIS handled Gaussian durations using 8 equally-spaced
partitions (length equal to σ) on either side of the mean.
Notice that Figures 4a and 4b shows PARIS outperforming
Rubato by about 1 or 2 orders of magnitude in most test in-
stances, and up to three or four orders in some of the most
difficult problems. Also, while PARIS computes the strong
policy, Rubato solves the strictly easier problem of checking
if one such policy exists.

For the 186 instances for which PARIS found a strong
policy, our next test on CAR-SHARING evaluated how the
partition optimization procedure from Section 4.4 impacts
the gap between the risk bound in (6) and the true schedul-
ing risk in (5). Since (5) is hard to compute in general, we
assumed, for this particular experiment only, that all contin-

gent durations were independent, in which case (5) becomes

SR(πs, C) = 1−
|Cu|∏
i=1

Pr(di ∈ [li, ui]). (21)

Gradient descent was allowed a maximum of 12000 itera-
tions with gradient norm tolerance 10−3 and fixed µ = 0.03.
Figure 4d shows the elapsed time as a function of the num-
ber of uncontrollable duration, while Figure 4c shows the
risk gap between (6) and (21) for different instances with and
without partition optimization. Partition optimization caused
the risk gap to improve on all instances, with an average gap
improvement of 4.8% (absolute value, not relative). Also,
the linear trend in Figure 4d confirms that partition optimiza-
tion does not affect PARIS’ polynomial-time complexity.

Our last test on CAR-SHARING evaluated the effective-
ness of PARIS in optimizing general linear objectives, as ex-
plained in Section 4.5. For this test, the schedule makespan
was used as the desired objective in (19), with a chance
constraint θ=30% imposed through (18). It was compared
against the risk-bound minimization version in Algorithm 1,
and the results are shown in Figures 4e and 4f. As expected,
using (19) with makespan as the desired objective improved
the makespan for all test instances, with an average reduc-
tion of 8.5 seconds. Also, Figure 4f shows that both formu-
lations have similar runtimes.

On the ROVERS dataset, from a total of 4380 PSTNU
instances, PARIS found strong policies for 2840 of them.
From those, 911 had probabilistic durations squeezed to a
single value, i.e., even though a strong policy exists, it is
almost guaranteed to fail. Different from CAR-SHARING,
Figures 5a and 5b show that there are instances of ROVERS
featuring both strong policies and a large number of uncon-
trollable durations. Moreover, we observe from these fig-
ures the small amount of time required by PARIS to solve
instances with and without strong policies, reinforcing the
claim that PARIS is suitable for hardware with computa-
tional and energy constraints. Finally, the same conclusions
from CAR-SHARING regarding partition optimization and
makespan optimization hold on ROVERS. For instance, as
shown in Figure 5c, makespan optimization with a chance
constraint θ=20% improved the makespan for all problem
instances, with an average reduction of 37.36 seconds.

6 Conclusions

This work introduces PSTNU’s, a temporal modeling for-
malism subsuming STNU’s and PSTN’s that captures dif-
ferent levels of knowledge about sources of temporal uncer-
tainty. It also presents PARIS, a provably polynomial-time
and sound algorithm for risk-sensitive strong scheduling of
PSTNU’s that outperforms the current fastest algorithm for
PSTN strong scheduling by several orders of magnitude.
Due to their significantly reduced computational require-
ments, we hope that our results will serve to endow temporal
planners in general, and autonomous robotic agents in par-
ticular, with a keen sensitivity to scheduling risk.

Acknowledgements
This research was partially funded by the AFOSR grant
FA95501210348. The second author is funded by the Keck
Institute for Space Studies (KISS). We would like to thank
Peng Yu for making the CAR-SHARING dataset available,
and Christian Muise and our anonymous reviewers for their
constructive and helpful comments.

References
Beaudry, E.; Kabanza, F.; and Michaud, F. 2010. Planning
for concurrent action executions under action duration un-
certainty using dynamically generated bayesian networks. In
ICAPS, 10–17.
Birge, J. R., and Louveaux, F. V. 1997. Introduction to
stochastic programming. Springer.
Boyd, S., and Vandenberghe, L. 2004. Convex optimization.
Cambridge University Press.
Cimatti, A.; Micheli, A.; and Roveri, M. 2015. Strong tem-
poral planning with uncontrollable durations: a state-space
approach. AAAI.
Coffrin, C., and Van Hentenryck, P. 2014. A linear-
programming approximation of AC power flows. INFORMS
Journal on Computing 26(4):718–734.
Coles, A. J.; Coles, A. I.; Fox, M.; and Long, D. 2012. Colin:
Planning with continuous linear numeric change. Journal of
Artificial Intelligence Research 1–96.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49(1):61–95.
Fang, C.; Yu, P.; and Williams, B. C. 2014. Chance-
constrained probabilistic simple temporal problems. In
Twenty-Eighth AAAI Conference on Artificial Intelligence.
Fiacco, A. V., and McCormick, G. P. 1964. The se-
quential unconstrained minimization technique for nonlin-
ear programing, a primal-dual method. Management Science
10(2):360–366.
Karmarkar, N. 1984. A new polynomial-time algorithm for
linear programming. In Proceedings of the Sixteenth Annual
ACM Symposium on Theory of Computing, 302–311. ACM.
Micheli, A.; Do, M.; and Smith, D. E. 2015. Compiling
away uncertainty in strong temporal planning with uncon-
trollable durations. In International Joint Conference on Ar-
tificial Intelligence.
Tsamardinos, I. 2002. A probabilistic approach to robust
execution of temporal plans with uncertainty. In Methods
and Applications of Artificial Intelligence. Springer. 97–108.
Vidal, T. 1999. Handling contingency in temporal constraint
networks: from consistency to controllabilities. Journal of
Experimental & Theoretical Artificial Intelligence 11(1):23–
45.
Wächter, A., and Biegler, L. T. 2006. On the implementa-
tion of an interior-point filter line-search algorithm for large-
scale nonlinear programming. Mathematical Programming
106(1):25–57.
Wang, A. J., and Williams, B. C. 2015. Chance-constrained
scheduling via conflict-directed risk allocation. In Twenty-
Ninth AAAI Conference on Artificial Intelligence.

