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The authors report here on a new technique, combining the atomic precision of molecular beam

epitaxy and atomic layer deposition, to fabricate back illuminated silicon CCD detectors that

demonstrate world record detector quantum efficiency (>50%) in the near and far ultraviolet

(155–300 nm). This report describes in detail the unique surface engineering approaches used and

demonstrates the robustness of detector performance that is obtained by achieving atomic level

precision at key steps in the fabrication process. The characterization, materials, and devices produced

in this effort will be presented along with comparison to other approaches. VC 2013 American Vacuum
Society. [http://dx.doi.org/10.1116/1.4750372]

I. INTRODUCTION

The ultraviolet (UV) represents an extremely important

region of the electromagnetic spectrum as it has a critical

role in a wide variety of scientific, commercial, and govern-

ment applications. For example, ultraviolet spectroscopy

can be utilized to study planetary atmospheres to determine

whether basic elements for life such as oxygen, nitrogen,

and hydrogen are present.1 A UV spectrometer can also

detect evidence of small quantities of complex organic mol-

ecules (e.g., tholins) from the UV reflectivity of the surface

of an icy moon, providing information on how prebiotic

chemistry takes place on extraterrestrial bodies.2 High sen-

sitivity astronomical observations in the UV regime could

enable the observation of faint emission from the interga-

lactic medium, which likely represent 50% of the detecta-

ble baryonic mass in the universe.3 Recent measurements

enabled by the first all sky UV survey mission, GALEX,

have uncovered a startling comet-like tail behind a red

giant star that is streaking through space at nearly 300 000

miles/h. This phenomenon is unique and can only be

observed in the UV and has now provided a means to char-

acterize how stars die and ultimately seed new solar sys-

tems through the shedding of carbon, oxygen, and other

elements.4 Extreme UV lithography is utilized to pattern

the finest features of the latest generation of semiconductor

devices. UV laser inspection and imaging is therefore criti-

cal to identify defects in the fabrication process to maxi-

mize yield and reduce cost in this highly competitive

industry.5 UV imaging has also recently been used in medi-

cal imaging to study how caffeine affects calcium ionic

pathways in the brain.6 Rockets produce significant UV emis-

sion due to the production of excited nitrogen oxide species in

their plumes.7 While infrared imaging is clearly an important

antimissile defense technology, UV can offer significant

advantages in this application due to the ability to observe

even in direct sunlight using “solar-blind” imaging. Bite

marks can be readily observed and identified in forensic inves-

tigations since human saliva (wet or dry) shines brightly under

UV illumination.8 Bruises are also evident for many days in

UV after they have disappeared to the naked eye. As this only

represents a small fraction of the real world applications of

UV detectors, there is clearly strong motivation to have detec-

tors with the highest possible sensitivity.

Unfortunately, despite this wide range of applications,

scientific imaging in the ultraviolet is extremely difficult

because the technology for sensing UV light is substantially

limited by the quantum efficiency (QE) of available detec-

tors and the transparency of optical coating materials. Many

materials absorb near and far UV light so strongly that thick-

nesses of 20 nanometers or less are completely opaque.

Thus, the UV throughput of an instrument is highly sensitive

to impurities on, or contained in, any of the optical elements

or the detector itself. Compounding this problem is that

many important sources of UV light are faint, so maximizing

detector sensitivity is critical to unlocking the true potential

of UV imaging. Table I outlines three examples of ultravio-

let sensitive detectors that are currently in use or have been

used in space missions along with their typical quantum effi-

ciencies in the near and far UV.9,10 New classes of III-nitride

materials based on molecular beam epitaxy (MBE) or metal

organic chemical vapor deposition (MOCVD) grown GaN or

AlGaN hold significant promise for future generations of

a)Electronic mail: frank.greer@jpl.nasa.gov
b)Present address: The Aerospace Corporation, 2310 E. El Segundo Blvd.,

El Segundo, CA 90245-4609.
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UV detectors, but they still face materials challenges to

achieve what is intrinsically possible theoretically. Silicon

based charge coupled devices (CCDs), however, are based

on the same fabrication technologies utilized in the semicon-

ductor industry and are heavily used in commercial imaging

applications such as digital cameras. Silicon-CMOS (com-

plementary metal oxide semiconductor) based imagers are

also widespread, and their use in commercial and scientific

applications has been accelerating over the last few years

due to the rapid progress of the overall CMOS industry.

Unfortunately, the native oxide that naturally forms on sili-

con causes unfavorable bending in silicon’s electronic band

structure near the surface. This leads to the capture of

UV-produced photoelectrons in surface traps and leads to

instabilities and very poor response below 400 nm for silicon

imagers.11 This can be overcome though a combination of

techniques known as back illumination and back surface

passivation.

Commercial methods, such as chemisorption and ion

implant/laser anneal, do exist to passivate the back surface

of silicon CCDs.12–14 These techniques work well in the visi-

ble and near UV; however, they have limitations in the

shorter wavelengths in terms of spectral range, sensitivity,

response stability, and hysteresis. Delta-doping using silicon

MBE, on the other hand, enables precise control over the

band structure at the CCD surface to get ideal silicon

reflection-limited response (see Fig. 1).15,16

Even with near ideal back surface passivation, the inherent

reflectivity of silicon significantly limits the absolute detector

quantum efficiency of silicon CCDs.16 This is illustrated by

the dip in quantum efficiency to �25% near 280 nm in Fig. 1.

Therefore, antireflection (AR) coatings should be utilized to

maximize imaging performance. Modeling results predict that

absolute quantum efficiencies of >50% should be achievable

in the near and far UV (100–300 nm).17 We define absolute

quantum efficiency here as the probability of a photon inci-

dent at the detector surface will generate one or more elec-

trons that are detected by the detector element. This is to be

distinguished from internal quantum efficiency which sub-

tracts out reflection losses and therefore only considers those

photons which have the opportunity to be absorbed by the de-

tector. Note that single photons at very short wavelengths can

produce more than one electron when they are absorbed by a

silicon detector.18 Therefore, we correct our calculations of

absolute quantum efficiency for this gain factor, taking into

account that the quantum yield for those photons is greater

than unity.

It should be noted that AR coatings are widely utilized

for many detector systems (silicon, III-V, etc.) in the visi-

ble and infrared to improve absolute quantum efficiency.

However, producing UV antireflection coatings is challeng-

ing as the coatings must be high quality (i.e., low in impu-

rity/defect concentration to avoid UV absorption and

pinhole free to prevent humidity interaction with the

imager surface). In addition, the index of refraction of sili-

con varies over the UV, and therefore, multiple materials

are required to cover the near and far UV effectively. This

is especially important because even ideal materials, such

as hafnium oxide, have absorption cutoffs that make them

opaque in the far ultraviolet (FUV) (in this case, below

240 nm). In addition, a thickness change of 2 nm or less

can shift the peak antireflection performance of a coating

or lead to dramatic changes in absorption cutoffs, espe-

cially in the far UV, making controllable and reproducible

fabrication of ultrahigh performance AR coated silicon

CCDs difficult. Recent modeling results by Hamden et al.
have demonstrated that the target thicknesses for UV anti-

reflective coatings range from 10 to 25 nm.17 When all of

these constraints are considered together, it is clear that a

series of robust, nanoscale, surface-engineering processes

are required to produce the best possible UV-sensitive

CCDs. In this study, we have used back-illumination, sili-

con bandstructure engineering/surface passivation, and pre-

cision AR coating techniques, including atomic layer

deposition (ALD), to achieve this end.

TABLE I. Performance of current typical UV detectors in major space missions.

Typical quantum efficiency(155–300 nm) Example of use in astronomy

Cs2Te microchannel plates �10% or less GALEX Space Telescope

Silicon CCD coated with Lumogen �15–25% or less Cassini ISS, WF/PC2—Hubble Space Telescope

Ion implanted-laser annealed CCD �15–25% or less WF3—Hubble Space Telescope

FIG. 1. (Color online) Measured and absolute quantum efficiency for a back-

illuminated, delta-doped silicon CCD. This CCD was not AR coated. Note

that the data, once corrected for quantum yield, lies along the silicon trans-

mittance curve. This indicates that the CCD is exhibiting reflection-limited

response and 100% internal quantum efficiency. Data for an unmodified,

front-illuminated CCD is shown for comparison purposes to illustrate the

improvement in UV sensitivity that is achieved by the delta-doping and

back-illumination processes.
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II. EXPERIMENT

Wafers containing fully fabricated CCDs of several types

were acquired for this investigation from multiple commer-

cial sources. These included: (1) flight spare CCD wafers,

originally manufactured by Loral to supply the main camera

on board the Cassini spacecraft mission. This mission,

launched in 1997, is currently flying in the Saturn system,19

(2) CCD imagers obtained from EG&G Reticon, and (3)

wafers containing newly designed electron-multiplied CCDs

(EM-CCDs) from e2v. These EM-CCDs have a gain register,

which results in measurements with extremely high signal to

noise ratio (as high as 10 000:1), enabling them to be utilized

in photon counting applications. These three different types

CCDs were utilized to demonstrate the robustness of the

techniques in this investigation and show that this is a gener-

ally applicable approach to enhance the UV quantum effi-

ciency of any type of silicon imager.

The CCDs were set up for back-illumination to remove

the frontside circuitry from the photon pathway. The bulk

thickness of the CCDs is reduced by polishing and chemical

etching to leave a thin membrane. The final thickness of the

membrane after this process is thick enough so that it has

sufficient mechanical strength to withstand its environment.

The membrane is also thin enough so that charge carriers

produced at the back surface do not diffuse too far laterally

as they drift to their destination pixel on the frontside. This

maps the point of photon entry to a specific frontside pixel in

the image. CCDs are produced with an epitaxial layer that

provides a natural definition for the membrane thickness. It

is uniform across the entire CCD and provides a chemical

etch-stop for the thinning process. For this work, the mem-

brane is created in a way that makes it monolithic with a

thick frame of original silicon from the CCD. In fact, the

frontside CCD circuitry resides, in continuity, over regions

that are thick frame and thin membrane. The thick frame

serves the purpose of mechanically supporting the mem-

brane, and it makes it convenient to wire bond the imaging

device using its existing bond pads. It should be noted that

residual stresses in the imaging membrane result in macro-

scale deformations when the frame thinning approach is

used (see Fig. 2). However, this frame thinning approach is a

relatively easy and inexpensive way to back-illuminate a sili-

con CCD and therefore is ideal for proof of concept demon-

strations. Backside illumination processes where the entire

CCD is thinned are currently commercially available, but

these commercial processes are not currently compatible

with the MBE and ALD techniques that will be discussed in

this report. For these experiments, the quick approach of

frame thinning was used. An approach where the entire CCD

is thinned that is compatible with MBE and ALD has been

developed at JPL.

In the frame thinning approach, the backside of the CCD

wafer is polished by chemical mechanical polishing (CMP),

and the membrane region is defined by a nitride mask on the

polished surface. The bulk silicon is aggressively etched by

hot 55% KOH except for the frame defined by the nitride

mask. We monitor the progress of the etch and terminate

when it comes within 20 lm of the known epitaxial layer

thickness. The surface texture of the KOH etch is rough by

comparison to the CMP surface. This condition is rectified

by the next step by isotropic etching in a specific mixture of

hydrofluoric, nitric, and acetic acids (HNA). The expression

for relative volume in the mixture is 1:3:8. This mixture of

HNA continues the etch to the epitaxial layer where it self-

terminates upon exhaustion of bulk silicon. The chemical

reason for the well defined etch stop comes from the higher

resistivity of the epitaxial layer. The epitaxial layer has

many orders of magnitude fewer charge carriers on hand for

participation in the chemical reaction of the etch. The etch

reaction stops as it is starved for charge carriers.20 Addi-

tional brief etch exposures are made to mixtures of 1:40:15

HNA and KMnO4/HF. These solutions help to remove cer-

tain stains and haze, which are left by the previous reactions.

The resulting thin membrane has a smooth mirror-like spec-

ular finish.

To prepare the CCDs for electrical passivation and band

structure engineering, they are brought into an inert and

clean glove box environment. A UV ozone clean is utilized

to remove adventitious carbon and other organics, and a HF-

ethanol spin clean is utilized to remove the native oxide

from the imaging membrane. The backside surface of the

imager is then passivated by delta-doping.11,21,22 Briefly, in

delta-doping, an extremely thin silicon layer is grown epitax-

ially using a low temperature (<450 �C) molecular beam

epitaxy process. This silicon epi grown layer is delta-doped

during the growth process by incorporating a third of a

monolayer of boron atoms, effectively as a single atomically

thin sheet that does not interrupt the overall silicon epitaxy,

FIG. 2. (Color online) Cassini CCD that has been frame thinned to enable

back-illumination for proof-of-concept demonstration of ultrahigh absolute

UV quantum efficiency. Its frontside detection electronics are face down as

pictured. This CCD is mounted in a picture frame package with a window

cut to enable the backside illumination. The clover leaf pattern evident in

the thin membrane is due to compressive stresses present in the processed

silicon. It should be noted that an alternative thinning approach, currently

under development at JPL, involves the use of a handle wafer to support the

imaging membrane. This approach eliminates the deformation and is appro-

priate for high volume production of scientific grade CCDs.
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but dramatically affects the electronic band structure of the

silicon in the near surface region. This sheet becomes nega-

tively charged and counteracts the positive potential well

that typically forms at the surface due to the presence of sili-

con’s native oxide. This allows the efficient collection of UV

produced photoelectrons. This delta-layer enables the CCD

to operate at 100% internal QE, limited only by reflection of

light from the silicon surface.

AR coatings were tested to improve the imaging perform-

ance of these silicon CCDs. The index of refraction of the

silicon changes significantly in the ultraviolet region of the

spectrum, especially from 100 to 300 nm. Therefore, to

obtain optimum quantum efficiency, it was necessary to test

different thin film materials and coating methods. Contact

shadow masks, such as the one shown in Fig. 3, were posi-

tioned to ensure that all AR coated CCDs had an internal,

uncoated standard for comparison to validate subsequent

measurements of QE. The following thin film coating techni-

ques were evaluated in this study: physical sputtering, elec-

tron beam evaporation, thermal evaporation, and atomic

layer deposition.

Once the AR coatings were applied to the CCDs, they

were packaged and tested in a custom built UV-visible CCD

characterization system described elsewhere.18 Briefly,

imaging performance of the CCD was characterized from

121.6 to 650 nm starting from the longer wavelength end of

the spectrum by taking flat field images over controlled ex-

posure times. Two separate light sources were used for illu-

mination (deuterium lamp for UV and tungsten-halogen for

UV-visible). Absolute QE measurement was made by com-

parison to a NIST calibrated photodiode that could be posi-

tioned in the same location as the CCD being characterized.

Some of the CCD characterization data presented here (as

noted on the figures in the text) was obtained in a different

testing system of similar design.

III. RESULTS AND DISCUSSION

Thinned, delta-doped Cassini (1 megapixel, 12 micron

pixels, manufactured by Loral Farchild) and EG&G Reticon

CCDs (1kx1k, 7.5 micron pixels) were utilized to evaluate

thin film AR coating techniques and materials for their abil-

ity to improve absolute detector quantum efficiency. Magne-

sium oxide (MgO) and hafnium oxide (HfO2) were

deposited by physical sputtering. HfO2 AR coatings were

also deposited by electron beam evaporation and thermal

evaporation. Lastly, HfO2 and aluminum oxide (Al2O3) were

deposited by atomic layer deposition. This combination of

materials and deposition methods was chosen to elucidate

the efficacy of each deposition technique. Examples of flat

field images obtained from some of the partially AR coated

CCDs produced in this investigation are shown in Fig. 4.

Figure 4 shows flat field images taken by two partially AR

coated Cassini CCD under 300 nm UV illumination. The

upper regions were sputter coated with MgO and HfO2,

respectively, A and B, while the lower regions were pro-

tected by the shadow mask. The relative performance of the

coated and uncoated regions was counter to expectations as

the brightness of these flat field images is directly related to

the absolute quantum efficiency of the detector. As men-

tioned earlier, the short wavelength flat field brightness is

enhanced because the quantum yield is greater than one, but

in all cases, a brighter image indicates greater sensitivity.

Figure 5 shows the quantum efficiency of these two CCDs

over a range of wavelengths. The performance of the MgO

coating was poor over the entire range of wavelengths. The

HfO2 coating was roughly identical to the uncoated side in

the range of visible wavelengths, but substantially dropped

off in the ultraviolet. Figure 6 shows the 270 nm flat field

image of an EG&G Reticon CCD AR coated with various

thicknesses of HfO2 in four different regions. The two circu-

lar regions of the device were AR coated using e-beam evap-

oration and the two square regions are AR coated using

thermal evaporation. The circular AR coated regions of the

device are believed to have failed due to the exposure of the

CCD to x-rays during the electron beam evaporation process.

The brighter regions, coated by thermal evaporation of

HfO2, demonstrate the successful application of a function-

ing AR coating. These results clearly indicate that, while

delta-doped CCDs can be AR coated to improve their per-

formance, the method of depositing the coating is critical.

Figure 7 shows the 183.2 nm flat field of a Cassini CCD

AR coated with Al2O3 by plasma enhanced atomic layer

deposition (PEALD). The demarcation between the brighter,

AR coated region at the top, and the uncoated region at the

bottom is blurred compared to the flat field images obtained

for AR coatings applied using sputtering, e-beam evapora-

tion, and thermal evaporation techniques. This is due to the

highly conformal nature of the ALD process. The contact

FIG. 3. (Color online) Demonstration of shadow masking approached used

in AR coating experiments. A cleaved silicon wafer was placed in direct

contact with the backside of a thin imaging membrane to block the deposi-

tion of the AR coating from a portion of the device. This shadow masking is

used to ensure that coated and uncoated references were present within the

same device.
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shadow masking technique (shown in Fig. 3) has topo-

graphic limitations due to the compressive stresses present in

the thin silicon membrane. The raised clover-leaf pattern in

the membrane (shown in Fig. 2) causes the shadow mask to

be elevated above a certain portion of the imaging surface.

That allows the ALD process to partially coat the shadowed

regions because the ALD precursors can penetrate under the

mask. However, this is not a concern for the real world

applicability of these techniques. It is noted here again that

the purpose of the shadow mask is only to provide an inter-

nal calibration standard for an uncoated delta-doped CCD.

The ultimate applications for these UV AR Coatings will

most likely require uniform blanket coatings over an entire

CCD, eliminating the shadow masking artifacts.

The design and accurate prediction of the performance of

ALD AR coatings was straightforward due to the inherent

reproducibility and control of the ALD technique. Figure

8(a) shows the performance of a conventional and EM-CCD

coated with a 16.5 nm AR coating of aluminum oxide. Their

measured quantum efficiency is the same both qualitatively

and quantitatively over the entire wavelength range tested

despite there being a month between deposition runs. The

modeled performance of the coatings also matches the meas-

ured data extremely well. Figure 8(b) shows that a 23 nm

aluminum oxide, deposited by scaling to the appropriate

number of ALD cycles based on the 16.5 nm result, displays

quantum efficiency that qualitatively matches that of the pre-

dicted values. The absolute QE is a bit lower than the mod-

eled value, as the absorption parameters used in the

TF-calcTM model are taken from the literature for bulk mate-

rials rather than the films in this study.

While HfO2 AR coatings deposited by thermal evapora-

tion do perform well, the ALD technique has inherent advan-

tages in uniformity and reproducibility, which are of great

importance in the production of high quality AR coatings.

These advantages make it generally preferable to use to

FIG. 5. (Color online) Quantum efficiency for the AR coated and uncoated

sides of delta-doped CCDs. The AR coatings were applied by sputter deposi-

tion [(a): HfO2, (b): MgO]. Note that the quantum efficiency of the coated

side of the CCD has worse performance, contrary to the calculations made

using TF-calcTM that had indicated the utility of HfO2 and MgO at those

thicknesses.

FIG. 4. Flat field images produced by delta-doped back-illuminated silicon

CCDs when illuminated with 300 nm light. The top of each image comes

from the half of the CCD that was coated with a sputtered film. (a) CCD

half coated with sputtered MgO film. (b) CCD half coated with sputtered

HfO2 film. The brightness of the image is proportional to the QE. Note that

in each case, the side of the CCD that is sputter coated demonstrates lower

quantum efficiency than the uncoated side.
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ALD instead of thermal evaporation for these ultrathin

UV-AR coatings. However, since remote plasma ALD of

hafnium oxide on hydrogen terminated silicon is known to

lead to the formation of a hafnium silicate interfacial layer,

transmission electron microscopy was utilized to determine

whether a similar silicate would form during HfO2 deposi-

tion on a delta doped silicon wafer.23 Note that there is an air

exposure between the delta-doping process and the deposi-

tion of the ALD AR coating, so a native oxide silicon oxide

is present prior to the ALD process. The TEM image in

Fig. 9 shows that a large interfacial layer has formed

between the ALD HfO2 (the dark layer at the top of the

image) and the crystalline silicon substrate. Because this

undesirable interfacial layer was observed, a 2 nm ALD alu-

minum oxide film was deposited in situ as a barrier, immedi-

ately prior to the ALD HfO2 deposition during all further

ALD HfO2 AR coating experiments. A high resolution TEM

image of this ALD bilayer is shown at left in Fig. 10. This

image confirms that a high density, nanocrystalline HfO2

film is produced and chemical interactions between the HfO2

and the silicon are blocked.

X-ray photoelectron spectroscopy (XPS) was employed to

characterize the nature of the silicon/ALD interface whether

the 2 nm aluminum oxide layer was sufficient to prevent the

formation an interfacial hafnium silicate layer. Samples were

prepared where 25 ALD cycles (�1.2 nm) of HfO2 were de-

posited on 2 nm of Al2O3 on silicon. Figure 11 shows the high

resolution XPS scans for hafnium 4f peaks for these two

FIG. 6. Flat field image taken under 270 nm illumination. The dark circles at

the top and bottom of the image are regions that were coated with HfO2

using electron beam evaporation. It is believed that x-ray damage during the

evaporation degraded the CCDs imaging capability in these regions. The

bright rectangular regions are coated with HfO2 using thermal evaporation.

The differences in the brightness of the two regions are due to different

thicknesses of AR coating applied to each (25 and 40 nm, respectively).

Changing AR coating thickness enables one to maximize performance at

different target wavelength ranges (see Fig. 14).

FIG. 7. (Color online) Flat field image produced by delta-doped AR coated

back-illuminated silicon CCD when illuminated with 183.2 nm light. The top

of this image comes from the portion of the CCD that is coated with a

PE-ALD Al2O3 film. The brightness of the image is proportional to the QE.

Note that the side of the CCD that is AR coated has higher quantum efficiency

than the uncoated side. The shadow masking used is imperfect for this device

due to the highly conformal nature of ALD deposition processes, which

allows the coating to sneak under the shadow mask (see Figs. 2 and 3).

FIG. 8. (Color online) Demonstration of the repeatability and control of the

ALD technique. (a) Quantum efficiency for two individual delta-doped-

CCDs coated on one half by 16.5 nm thick ALD Al2O3 AR coating. Device

#1 was a conventional CCD, while device #2 is an electron multiplied CCD

with gain. Note that there is no measurable quantitative or qualitative differ-

ence between the two devices when the measurement error (þ/�5%) is

taken into account. The depositions were carried out using the same deposi-

tion recipe but were separated by a month between coatings. (b) Comparison

of modeled and measured performance of a 23 nm thick ALD Al2O3 AR

coated CCD. Note that the qualitative QE behavior predicted by our model

matches the measured performance.
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samples. The absence of the low binding energy tail for the

HfO2 grown on the 2 nm Al2O3 barrier layer on silicon con-

firms the TEM result that 2 nm is sufficient to prevent the for-

mation of interfacial hafnium silicates. Figure 11 also shows

data for the sputtered hafnium oxide film. The sputtered haf-

nium 4f results appear to be comparable to the ALD bilayer,

which suggests that the poor performance of the sputtered haf-

nium oxide [shown in Fig. 5(a)] is not related to a chemical

interaction between the coating and the silicon surface of the

CCD. This conclusion is supported by high resolution TEM

analysis of a sputtered HfO2 film on delta-doped silicon

(Fig. 12). Unlike the case of PEALD HfO2 deposited directly

on silicon, there is no evidence of a large silicate interfacial

layer. The lighter layer at the boundary is likely the native ox-

ide that forms after the delta-doping process prior to the AR

coating deposition. However, the sputtered HfO2 film appears

noticeably less dense, amorphous, and rough as compared to

the corresponding PEALD HfO2 bilayer (see Fig. 11). This

may account for the superior performance of the PEALD

bilayer as an AR coating.

FIG. 9. (Color online) TEM image of PEALD HfO2 grown on a blank delta-

doped silicon wafer. Note that the PEALD process forms an interfacial layer

despite the presence of the native oxide that forms after the delta-doping

process. The prevention of the formation of this silicate layer provides the

motivation for the ultrathin (2 nm) aluminum oxide barrier layer grown for

the HfO2 AR coatings in this study.

FIG. 10. TEM images of a PEALD HfO2/Al2O3 bilayer grown on a blank

delta-doped silicon wafer. Note that the presence of the thin (2 nm) alumi-

num oxide barrier layer prevents the formation of the interfacial layer

observed Fig. 9.

FIG. 11. (Color online) High resolution hafnium 4f XPS scans for three haf-

nium oxide AR coatings. The samples were prepared to target HfO2 film

thicknesses of �1.2 nm in all cases to enable the XPS to characterize the

interface properties. The sputtered HfO2 deposited on silicon and the

PEALD HfO2 grown on the 2 nm barrier layer of Al2O3 show Hf peaks con-

sistent with the data observed for much thicker films. However, the presence

of a low binding energy tail for the PEALD HfO2 grown directly on silicon

suggests that a chemical interaction has occurred between of the HfO2 and

the underlying silicon (see TEM in Fig. 9).

FIG. 12. TEM images of a sputtered HfO2 thin film on a blank delta-doped

silicon wafer. Unlike the case of PEALD HfO2 deposited directly on silicon,

there is no evidence of a large silicate interfacial layer. The lighter layer at

the boundary is likely the native oxide that forms after the delta-doping pro-

cess. The sputtered HfO2 film appears less dense, amorphous, and rough as

compared to the corresponding PEALD HfO2 bilayer (see Fig. 10).
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Figure 13 shows the optical properties of the HfO2 ALD

AR single and bilayer coatings as compared to the sputtered

HfO2 thin films. These three coatings were deposited on 1

in. diameter silicon substrates, and the optical properties

were calculated by J.A. Woollam Inc. using ultraviolet spec-

troscopic ellipsometry. The roughness values, as estimated

by the model fits, for the two ALD samples were substan-

tially lower than the sputtered HfO2 sample (1.3 nm vs

3.5 nm). The superiority of the aluminum oxide/hafnium

oxide ALD bilayer as compared HfO2 alone is clear both

from the effective index of refraction of the deposited films

and the lower absorption coefficient. This supports the con-

clusion that the hafnium component of the PEALD bilayer

stack has a higher density than the sputtered film. It also is

consistent with the XPS observation that the HfO2 in the

PEALD bilayer has not reacted with the silicon substrate.

Figure 14 compares the quantum efficiency of HfO2 AR

coatings produced by thermal evaporation and PEALD. The

QE of the ALD bilayer is somewhat higher than the ther-

mally evaporated HfO2 coatings at shorter wavelengths. This

may be due to differences in the film properties, or the slight

difference in thickness between the 23 nm ALD and 25 nm

evaporated films. The sputter deposited HfO2 data are not

shown here, due to its negligible UV response. The TEM,

XPS, and ellipsometry observations discussed above provide

insight into the mechanisms for why the quantum efficiency

of the sputtered AR coatings is degraded in comparison to

the other techniques. Although the differences in optical con-

stants appear to be relatively minor between these different

techniques, it appears that the roughness and lower density

of the sputtered HfO2 is sufficient to dramatically impact the

AR coating performance, perhaps due to scattering of the

incident UV light. It is possible that by employing a small

amount of bias to the substrate during to smooth and density

the film would help improve the quality of the sputtered

HfO2 AR coating.

Figure 15 shows the quantum efficiency measured for the

three different ALD AR coatings characterized in this study.

For clarity, the performance of only one of the uncoated

sides of these is presented as a reference for all three CCDs.

The thicknesses of these ALD coatings were selected to

maximize quantum efficiency over this range, dividing the

spectra into three different near ultraviolet (NUV) and FUV

bands. The bands selected were as follows: 170–200 nm,

190–240 nm, and 230–300 nm. Through judicious choices of

these materials and their thicknesses, the absolute QE can be

maintained above 50% for the entire range from 170 to

300 nm. With more complex coatings (multilayers or graded

materials), it should be possible to obtain QE’s �90% or

greater in certain regions of the spectrum. Therefore, there is

a great deal of promise in this AR coating technique.

FIG. 13. (Color online) Optical properties of ALD and sputter deposited AR

coatings. (a) Index of refraction of HfO2 and HfO2/Al2O3 bilayer coatings.

Note that the ALD coatings have higher index of refraction over the NUV

band (above 235 nm), which is indicative of a higher quality thin film as it is

closer to the value for bulk HfO2. (b) Absorption coefficient, as modeled by

UV spectroscopic ellipsometry for HfO2 and HfO2/Al2O3 bilayer AR coat-

ings. Note that the ALD bilayer shows the lowest absorption over the wave-

length range of 265–300 nm.

FIG. 14. (Color online) Comparison of HfO2 AR coated delta-doped CCDs.

The ALD bilayer outperforms the thermally evaporated HfO2 coatings at

shorter wavelengths. This may be due to superior film quality, or the slight

difference in thickness between the 23 nm ALD and 25 nm evaporated films.

The sputter deposited HfO2 data are not shown here, due to its negligible

UV response.
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IV. SUMMARY AND CONCLUSIONS

The unique challenges presented by imaging in the ultra-

violet require surface engineering at the nanoscale to control

both the electronic band structure and optical properties of the

silicon-based UV detector surface. In this paper, several dif-

ferent AR coatings and materials deposition methodologies

were evaluated experimentally for their ability to optimize de-

tector sensitivity. By combining the atomic precision of mo-

lecular beam epitaxy and atomic layer deposition, a robust

and reproducible technique was developed to fabricate a new

class of delta-doped silicon CCD ultraviolet imaging detectors

demonstrating world record quantum efficiency in the near

and far UV (155–300 nm). This new demonstration of the

integration of ALD coatings onto live silicon detectors opens

tremendous possibilities in tailoring the response of detectors.

Given the variety of materials available to be deposited by

ALD, this technique offers great flexibility in tailoring the

exact sensitivity and responsiveness of a detector to any given

application. As ultraviolet imaging systems have the potential

to detect life on other planets, explain the origins of the

universe, identify defects in the latest generation of semicon-

ductor devices, perform medical imaging and brain mapping,

improve missile defense, and even solve crimes, this new

approach to UV detector fabrication may have an extremely

significant impact on a wide range of fields.
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