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Abstract

Experimental analysis of running gear–soil interaction traditionally focuses on the measurement of forces and torques developed by
the running gear. This type of measurement provides useful information about running gear performance but it does not allow for expli-
cit investigation of soil failure behavior. This paper describes a methodology based on particle image velocimetry for analyzing soil
motion from a sequence of images. A procedure for systematically identifying experimental and processing settings is presented. Soil
motion is analyzed for a rigid wheel traveling on a Mars regolith simulant while operating against a glass wall, thereby imposing plain
strain boundary conditions. An off-the-shelf high speed camera is used to collect images of the soil flow. Experimental results show that it
is possible to accurately compute soil deformation characteristics without the need of markers. Measured soil velocity fields are used to
calculate strain fields.
� 2013 ISTVS. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Particle image velocimetry (PIV) describes an experi-
mental method, based on image cross-correlation tech-
niques, used for the determination of flow velocity fields.
The use of PIV for the calculation of fluid velocities ini-
tially emerged in the 1980s [1,2]. Since then, PIV has played
an important role in many fluid mechanics investigations
[3,4]. Two of the main advantages of PIV over other meth-
ods for the measurement of velocity (e.g. hot-wire-veloci-
metry, Pitot tubes, etc.) are that it is non-intrusive, and
allows for relatively high resolution measurements over
an extended spatial domain.

During fluid-based PIV analysis, the fluid is typically
seeded with marker particles that refract, absorb, or
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scatter light, have a high contrast with the fluid, and do
not interrupt the fluid flow. Imaging is performed at high
speed over an area of the flow illuminated by a light
source, typically a pulsed laser. The resulting light sheet
can be considered as being nearly two-dimensional,
because of its low propagation orthogonal to the plane
of measured motion [5]. Lasers are typically chosen as
light sources because of their ability to emit high-energy,
monochromatic light as thin light sheets. Captured images
are processed with algorithms that perform frame-to-
frame feature tracking and calculation of flow velocity
fields.

PIV is also a useful method for measuring soil motion,
with the notable constraint that soil is typically observed
through a glass sheet, limiting the resulting analysis to
plain strain scenarios. The natural granular texture of soils
often generates an intensity pattern that can be traced by
PIV, without the use of marker particles. Also, incandes-
cent light can generally be used for illumination. Although
the term PIV is traditionally associated with fluid
d.
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mechanics investigation (and the corresponding experimen-
tal setup), here we will use the term to refer to the general
concept of extracting velocity fields from sequences of
images. This is sometimes referred to as digital image
correlation.

Granular PIV has recently been employed in several
applications, including the analysis of grains in converging
hoppers [6], study of flowing granular layers in rotating
tumblers [7], investigation of granular avalanches [8], anal-
ysis of soil motion caused by the movement of animals [9],
the study of burrowing behavior of razor clams [10], and in
the study of wheel-soil interaction [11,12]. The analysis of
soil motion beneath a driven wheel via quantitative analy-
sis of successive temporal images was first introduced by
Wong [13]. However, the experimental capabilities of that
study did not allow for high-speed image capture, limiting
the accuracy and practical utility of the method.

This paper describes a systematic PIV-based methodol-
ogy for analyzing soil motion beneath a running gear (i.e.
wheel, track, limb, etc.). A procedure for determining hard-
ware and software operational parameters is presented,
and various useful techniques for quantitatively analyzing
soil failure are presented. The case of interest in this paper
is that of Mars surface exploration by small, lightweight
wheeled rovers. Experimental results are thus presented
for a rigid wheel traveling on a Mars regolith simulant. A
high speed camera is used to collect images of the soil flow.
Experimental results show that it is possible to compute,
with satisfactory accuracy, soil deformation characteristics
without the need of markers.

The paper is organized as follows: the section entitled
“Particle image velocimetry for granular material” presents
a thorough description of experimental setup and a lean
introduction on PIV parameter identification. This section
also contains validation and verification experiments, and
introduces a methodology for inferring strain fields from
the measured velocity fields. The section “Application to
analysis of running gear–soil interaction” shows how PIV
can be used to qualitatively and quantitatively study soil
failure mechanism under running gears. Details on PIV
parameter identification and procedures are presented in
Appendix A.

2. Particle image velocimetry for granular materials

In this section, a through description of the experimen-
tal apparatus is presented and a brief overview of PIV pro-
cedures is introduced. Note that in the following, the
Matlab-based PIVlab software package is employed [14].
Details on how to identify operational parameters for
PIVlab can be found in Appendix A.

2.1. Testbed description

The Robotic Mobility Group at MIT has designed and
fabricated a multipurpose terramechanics rig based on the
standard design described in [15].
The testbed is pictured in Fig. 1. It is composed of a
Lexan soil bin surrounded by an aluminum frame to which
all the moving parts, actuators and sensors are attached. A
carriage slides on two low-friction rails to allow longitudi-
nal translation while the wheel or track, attached to the
carriage, is able to rotate at a desired angular velocity.
The wheel mount is also able to translate in the vertical
direction. This setup allows control of slip and vertical load
by modifying the translational velocity of the carriage,
angular velocity of the wheel, and applied load. Horizontal
carriage displacement is controlled through a toothed belt,
actuated by a 90 W Maxon DC motor, while the wheel is
directly driven by another Maxon DC motor. The motors
are controlled thorough two identical Maxon ADS 50/10
4-Q-DC servo-amplifiers. The carriage horizontal displace-
ment is monitored with a Micro Epsilon WPS-1250-MK46
draw wire encoder while wheel vertical displacement (i.e.,
sinkage) is measured with a Turck A50 draw wire encoder.
A 6-axis force/torque ATI Omega 85 transducer is
mounted between the wheel mount and the carriage in
order to measure vertical load and traction generated by
the wheel. Finally, a Futek TFF500 flange-to-flange reac-
tion torque sensor is used to measure driving torque
applied to the wheel. Control and measurement signals
are handled by a NI PCIe-6363 card through Labview
software.

The rig is capable of approximately 1 meter of longitu-
dinal displacement at a maximum velocity of approxi-
mately 0.012 m/s with a maximal wheel angular velocity
of approximately 40 deg/s. The bin is 1.2 m long and
0.6 m wide while the soil depth is 0.16 m. Considering the
wheel sizes and vertical loads under study, these physical
dimensions are sufficient for eliminating boundary effects.
Results presented in this paper were obtained with a
smooth aluminum wheel with 0.13 m radius and 0.16 m
width. For PIV tests the wheel angular velocity was fixed
at 17 deg/s while the horizontal carriage velocity was mod-
ified to achieve the desired slip level. The operational con-
ditions described above were chosen because they are close
to those of the Mars Exploration Rover, a successful light-
weight robotic vehicle.

2.2. Imager configuration

For the experiments described in this paper, the Mojave
Martian Simulant (MMS) was employed as a test medium
[16]. MMS is a mixture of finely crushed and sorted gran-
ular basalt intended to mimic, at both a chemical and
mechanical level, Mars regolith characteristics. The MMS
particle size distribution spans from micron level to mm
level with 80% of particles above the 10 micron threshold.
For the imager configuration described below, resolution
resulted in approximately 5.3 pixels per millimeter.

The accuracy of PIV strongly depends on the quality of
the captured images. For this study, the Lexan soil bin was
fitted with a 0.0254 m thick tempered glass wall while
the running gear was operated flush against this surface



Fig. 1. CAD drawing of the terramechanics testbed showing the imager for PIV experiments (a). Actual PIV setup with the high speed camera and two
flood lights (b).

Fig. 2. Image transformation for particle counting. (a) Image segment
before transformation. (b) Image segment after transformation.
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(see Fig. 1). Both wheels and tracks have been analyzed
with this testbed, however this paper describes results from
rigid wheel testing.

Since soil–glass friction could not be accurately con-
trolled it should be noted that calculated velocities and
strain, although quantitatively significant, are influenced
by soil–glass friction. When setting up a similar experi-
ment, Wong [13] proposed to use a wheel with half the
width and to reduce the normal load to half as well. The
rationale was that assuming negligible soil–glass friction
the glass becomes a plane of symmetry and therefore the
soil motion is analog to the motion under the median axis
of a full sized wheel. In this paper we did not follow this
route for two reasons: vertical load and wheel size do not
scale linearly; even assuming linear scaling this would
require wheels of different width for every vertical load to
be tested. Therefore, assuming limited soil–glass friction
and minor stress non-uniformity along wheel width [17],
the soil motion at the glass interface remains representative
of the soil motion under the wheel. These are insurmount-
able limitations of this methodology and should be borne
in mind when analyzing the results. Nonetheless, the
method allows for a quantitative evaluation of strain trends
under running gears.

Image sets for the PIV measurement were captured with
a Phantom 7 high-speed camera. The Phantom 7 is able to
record grayscale images at the maximum resolution of
800x600 pixels at a maximum frame rate of 6688 fps. The
camera was placed perpendicular to the front glass wall
(see Fig. 1) at a distance of 0.52 m, while its focal length
was set to 77 mm (a zoom lens was used) resulting in an
image capture region of approximately 0.15 � 0.11 m. It
should be noted that determination of image capture
region size is largely dictated by the particular experimental
conditions. Here, the image capture region was chosen in
order to conservatively bound the region of soil that would
undergo motion when subjected to wheel passage on the
soil surface. Two 250 W Lowel Pro-Light photography
flood lights were placed on either side of the camera at
an angle of 45 towards the object plane, and provided
approximately homogeneous illumination of the soil. By
using two laterally positioned light sources, reflections
and shadows can be significantly diminished.
PIV algorithms (as explained in Appendix A) compare
group of pixels delimited by an interrogation window
(IW). The optimization of IW size and frame rate again
depends on particular experimental conditions. Here, the
soil grain size and magnitude of soil velocity both directly
influence required imager spatial (grain size) and temporal
(image capture rate) resolution. Keane and Adrian [18]
suggest that an average of 10 or more particles per interro-
gation window should be employed in order to maximize
PIV algorithm accuracy. Also, they suggest that particle
displacement should not exceed 25% of the IW length.

Particle packing density for granular materials can be
estimated by detecting the number of particles in a refer-
ence area. A process to perform this computation can be
divided into three parts. First, the grayscale image is trans-
formed into a binary image via thresholding. Each cluster
of pixels representing one particle is then reduced to one
pixel by using a morphological shrinking operation (imple-
mented with Matlabs bwmorph-shrink function). In this
process, pixel clusters with internal holes are transformed
into rings of pixels.Finally, the number of white pixels is
summed over a chosen IW size, with ring artifacts counted
as single pixels (see Fig. 2).

Assuming a minimum IW length of 16 pixels, this results
in an IW area of 256 pixels, or approximately 11 particles,
satisfying Keane and Adrians suggested guideline. Note
that IWs containing fewer particles can be employed,



Table 1
PIV settings.

Parameter Value Unit

Interrogation window (IW) 16 Pixels
Frames per second (fps) 25 fps
Resolution 800 � 600 Pixels
Frame size 0.15 � 0.11 m
CLAHE filter 40 Pixels
High pass filter Off n/a
Clipping filter Off n/a
Intensity capping filter Off n/a
Multi-pass IW sequence 64-32-16 Pixels
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however the result is a decrease in accuracy in frame-to-
frame feature correlation. Generally, if particle density is
unsatisfactorily low, the imager field of view can be
adjusted to focus on a smaller spatial soil region.

The experiments analyzed soil motion for conditions
where the wheel was driven at varying forward velocities
and slip ratios. The maximum speed of a point on the wheel
rim was computed to be 0.038 m/s. Given the imager
parameters described above, this suggests that image cap-
ture rate of 25 fps should satisfy the condition that particle
displacement should not exceed 25% of the IW length.
Experiments were conducted to verify the effectiveness of
selected conditions, and more broadly, analyze the effect
of varying IW sizes and frame rates. The results of these
studies are reported in [19].

The performance of PIV cross-correlation algorithms
generally improves when images are high contrast, feature
dense, and have low noise. In practice, images are subject
to non-uniform illumination, imager sensor noise, and lack
of natural contrast in the granular material, all of which
can degrade PIV algorithm performance. Various image
pre-processing methods were investigated to understand
their effect on algorithm performance. These include com-
monly employed algorithms such as contrast limited adap-
tive histogram equalization (CLAHE), high pass filtering,
and clipping and intensity capping (IC). It was determined
that optimal performance were achieved with the following
settings: CLAHE filter with size of 40 pixels, while all other
filters were disabled.

Motion estimation can be improved through multi-pass
PIV where the results of each pass are used to improve esti-
mation of the IW in the next pass. Several multi-pass com-
binations were tested and a three-pass PIV calculation
which use sequential IW sizes of 64, 32, and 16 pixels
was determined to be a balanced compromise between
improved accuracy and calculation times.

The raw velocity field produced by PIV calculations can
contain spurious vectors (outliers). These outliers can be
caused by noise, inappropriate interrogation settings, and
accidentally matched patterns. Hence, to improve results,
rejection of these outliers and interpolation of missing data
points can be performed in a post-processing stage through
filtering. In this study, both global and local filters were
used to reject outliers. Global filters commonly employ a
simple thresholding method, with the threshold value
selected by an operator possessing empirical or theoretical
domain knowledge. If elements of the velocity field exceed
the threshold, this element is removed from the results.
Local filters are primarily based on relative differences
between surrounding vectors, rather than absolute values.
A local filter calculates the mean and standard deviation
of the velocity for a selected kernel size around each vector.
If the velocity exceeds certain thresholds, the vector is
rejected.

The filtering methods described above lead to missing
data in the PIV velocity field. It is frequently desirable to
interpolate missing data points, to yield a complete velocity
field. Interpolation based on surrounding vectors. For this
purpose missing data points were reconstructed through
interpolation of surrounding velocity vectors.

Final PIV settings adopted in this paper are presented in
Table 1.

It should be noted that a masking stage has been
employed in the results presented in this paper, in order
to eliminate the non-soil image components (i.e. the run-
ning gear). Masking can be accomplished through standard
image processing techniques. Masking methods specific to
running gear–soil interaction are described in [19].

2.3. Computation times

This study was conducted on a Windows based 2.4 GHz
quad-core machine with 4 GB of RAM. The complete PIV
calculation for an average image set (about 13 s recording
time) took approximately 60 min. More than two thirds
of this time is spend on the main process, the multi-pass
cross-correlation. Post-processing and the creation of the
video file each consume roughly 7% of the total calculation
time. Pre-processing takes only 3% of the total calculation
time.

It should be noted that masking and creation of video
files are two steps that are not inherently part of the PIV
analysis and do not affect the quality of results. Calculation
times are summarized in Table 2.

3. Validation and verification

Validation of the PIV algorithm performance was pur-
sued on two sets of test data that were physically relevant
to the running gear–soil interaction case.

The first test consisted in calculating the velocity from
PIV of a 0.0254 m thick steel plate performing a soil pene-
tration test. The ground truth velocity of the plate was
externally measured by numerically differentiating the out-
put of a draw wire encoder which nominally provides a
position measurement. To obtain a plate velocity measure
from PIV, an average of the velocities was computed over
a rectangular region corresponding to the moving plate.

Fig. 3(a) shows a comparison of the plate velocity as
determined from PIV calculations and the velocity
measured by the draw wire encoder. The absolute average



Table 2
Computation times.

Task Time per image set (270
images) [s]

Time per image
[s]

(%)

Masking 516 1.91 15
Pre-processing 112 0.41 3
Cross-correlation 2320 8.59 67
Post-processing 257 0.95 7
Creation of video

file
256 0.95 7

Total time 3461 12.82 100
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percent error (for the optimal settings) between these mea-
surements was less than 3%. It should be noted that, for
this test case, the PIV algorithm is not performing calcula-
tions on the granular soil, but rather the steel plate edge.
However, this test remains of interest since the soil in con-
tact with the plate necessarily moves at the same velocity.

The second test consisted of calculating the time evolu-
tion of motions of discrete features associated with MMS
simulant soil beneath a driven rigid wheel (see Fig. 3(b)).
Trajectories s(t) are calculated for a grid of 9 x 6 points
of interest over the soil area. The time evolution of the
positions of the points of interest was computed by inte-
grating the velocities with a fourth order Runge–Kutta
method.

sðtÞ ¼
Z t

0

vðtÞdt ð1Þ

The motion of these tracked particles can be compared
to trajectories of individual soil particles that are large
enough to be manually tracked from frame to frame. Also,
the calculation of feature trajectories is useful for illustrat-
ing soil flow when subjected to various loading conditions.
When compared to non-digital techniques [13], PIV allows
for systematic quantitative investigation of soil motion. In-
depth discussion of observed soil kinematics will be pre-
sented in 5.
Fig. 3. (a) Comparison of velocity calculated through PIV and measured wit
obtained through PIV analysis for a wheel slipping at +30% while advancing to
large, white particle, is tracked over successive images (images were captured
4. Inferring strain from PIV measurements

The methodology presented thus far allows for precise
calculation of soil motion. The approach yields displace-
ment vectors from one captured image to the next at dis-
crete pixels inside the image domain. The inferred
displacements describe a motion of groups of particles.
While this provides significant insight in terms of local
material response, a more convenient quantity to report
is strain.

Here, the material strain is calculated in a Lagrange ref-
erence frame using a large-strain finite element-based
approach [20–22]. Specifically, we initialize a fixed set of
material points, conveniently defined as the nodal points
of a finite element mesh at a chosen reference configura-
tion. The nodal points are subsequently tracked in time,
as they progress through a grid of incremental PIV dis-
placements. This approach is favoured over local image-
based methods because of the extreme plastic nature of
(most) soil materials. In particular, the ability of soil to
undergo large plastic deformations arising from micro-
structural rearrangement means that PIV must be applied
in an incremental fashion (and not with respect to a single
image reference).

Below are briefly summarized the non-trivial steps
involved in extracting local strains from PIV measurements
(as summarized in Fig. 4). All calculations and visualiza-
tion were performed in Matlab2012b using an in-house
program built for the purpose.

1. A finite element mesh is used to fill the domain occupied
by soil. To this end, we use four-node quadrilateral ele-
ments (rather than constant-strain triangular elements)
to insure a continuous strain field. The element size is
on the order of 8x8 pixels.

2. At each imaged time step, incremental displacements of
all nodes in the finite element mesh are interpolated
from PIV results using bi-linear shape functions. The
h a draw wire encoder. (b) Soil trajectories calculated from velocity field
the right of the field (right, bottom). A close up of a region of soil where a

at 25 fps).



Fig. 4. Schematic flowchart of strain calculation from PIV data.

Table 3
Summary of data collected. Each test was repeated for �30%, �10%, 0%,
10%, and 30% slip. Wheel diameter is 0.13 m and wheel width is 0.16 m for
all the experiments.

Test type Load [N] Label

Coated wheel standard 70 Std low load
Velocity loose soil 100 Std medium load

130 Std High Load
Coated wheel standard velocity dense soil 130 Dense high load
Coated wheel double velocity loose soil 130 2 V high load
Smooth wheel standard velocity loose soil 130 Loose high load

Table A.4
Summary of image canonical transformations adopted to investigate PIV
performance.

Frames Transformation

1–4 Diagonal translation (positive), 1 to 4 pixels
5–8 Diagonal translation (negative), 1 to 4 pixels
9–12 Horizontal translation, 1 to 4 pixels
13–16 Horizontal simple shear, 1 to 4 pixels
17–20 Vertical displacement, 1 to 4 pixels
21–24 Vertical simple shear, 1 to 4 pixels
25–32 Rotation 1 to 8 degrees
33–36 Discontinuous shear (upper half moving, 1 to 4 pixels)
37–40 Discontinuous shear (both halves moving in opposite directions,

1 to 4 pixels)
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process is repeated for all time steps, yielding the cumu-
lative displacements at finite element nodes as a function
of time.

3. To determine strain, at each of the 4 Gauss points inside
an element, nodal quantities are first converted to a
deformation gradient tensor F = dx/dX, that relates a
vector dx in the deformed state with a vector dX in
the reference state. The deformation gradient tensor is
calculated based on the gradients of the finite element
shape functions. Subsequently, a large strain (Green–
Lagrange) tensor is calculated, such that E = FTF � I,
where I is a unit tensor. Deviatoric (shear) strain is
defined as �s ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4J 2=3

p
, where J2 is the second deviator-

ic strain invariant.
4. To visualize the strain field, Gauss point strains are first

transferred back to element nodes and their magnitude
is subsequently plotted over the entire (meshed) domain
using standard element shape functions. Because a con-
tinuous mesh describes the soil, the technique makes it
possible to visualize material deformation, and at the
same time, visualize the local strain state in the
deformed finite element mesh.

Representative results of PIV-based strain calculations
are provided in Figs. 8, 9.

5. Application to analysis of running gear–soil interaction

Typically, analysis of running-gear soil interaction relies
on the use of a single wheel (or track) test rig that is capable
of measuring performance parameters such as applied load,
torque, slip ratio, and net thrust. While useful, such testing
does not provide fundamental insight into soil motion and
failure, nor does it allow for explicit validation of constitu-
tive laws relating soil stress to displacement. Granular PIV
can be employed as a complementary testing apparatus to a
single wheel test rig. In this section we present several sim-
ple PIV-based analysis and visualization tools for charac-
terizing soil response to loading. The tests are conducted
under controlled slip conditions. Slip is defined as:

i ¼ 1� v
xr

ð2Þ

where v is the translational velocity of the wheel, x is the
angular velocity of the wheel, and r is wheel radius. By
modifying v and keeping x constant, it is possible to drive
the wheel at desired slip level. In results presented here, the
wheel was coated with a layer of MMS bonded to the sur-
face with spray glue while tests were performed at 70 N,
100 N, and 130 N of vertical load (labeled low, medium,
and high load). The wheel was driven at a constant angular
velocity of 17 deg/s, while for higher velocity tests angular
velocity was set to 34 deg/s (these tests were labeled 2 V).
Testing conditions are summarized in Table 3. For all the
figures presented in this paper, the wheel is moving from
the left to the right. (See Table A.4)

5.1. Characterization of soil velocity field

The PIV algorithm generates a velocity vector for each
IW, which results in a closely-spaced array of vectors
describing soil motion. An example visualization of such
a result is shown in Fig. 5 (top left). Here, each IW is asso-
ciated to a vector, with the vector length corresponding to
the flow velocity and the vector direction aligned with the
flow direction. Analysis of such images can provide insight
into the spatial distribution of soil velocity under running
gear, and can vary dramatically for such cases as slip, skid,
free-rolling wheels, braked wheels, etc.

Decomposition of this flow field can yield useful insight
into soil shearing (which occurs primarily in the horizontal
direction, see upper right image) and soil compaction phe-
nomena (which occurs primarily in the vertical direction,
see upper right image). Here, a blue region corresponds
to no motion while red indicates a maximum velocity.



Fig. 5. A snapshot of a 30% slip test (Std High Load). Nominal vertical load is 100 N and wheel angular velocity 17 deg/s. From top-left-clockwise:
velocity vectors, u-velocity (horizontal component of velocity vector, negative is left), v-velocity (vertical component of velocity vector, negative is up), and
velocity magnitude.
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Fig. 6. Periodicity of failure zone for a coated wheel under 100 N of
vertical load and +30% slip (Std High Load) is evident when visualizing
soil mean velocity and wheel torque reading. This figure is obtained
calculating the average velocity of soil motion per frame. The periodicity
occurs at about 2 Hz. Torque reading was not sampled synchronously
with images therefore a phase shift between the two signals may exist even
if here they have been plotted in phase. Nevertheless, it is remarkable that
such close correlation between the two quantities exists, indicating that the
measured wheel telemetry could potentially be used to improve estimation
of soil properties below surface and vice versa.
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Another phenomenon that was clearly highlighted by
PIV analysis is the periodic nature of soil failure. For slip
level above 10–15%, soil exhibits a periodic loading cycle
of alternating compaction and shearing (behavior is pri-
marily dilative during the shearing phase), which results
in discontinuous failure in of the soil mass. This has two
direct consequences: oscillations in drawbar pull/torque
readings, and creation of ripples on the soil surface behind
the wheel. Note that while these effects have been noted
previously, they have been typically assigned to the effect
of grousers [23]. However, these effects are present even
for smooth wheels, without grousers.Fig. 6 presents soil
flow mean velocity for a +30% slip test. Mean velocity
oscillation capture the periodic nature of soil failure and
are clearly visible also in the torque signal.

Analysis of these images shows that soil flow remains
attached to the wheel rim. Moreover, for low vertical load
(such as the one utilized during experiments) it was
observed that two separate slip failure lines did not evolve,
as predicted by classical theory [24,25]. This finding is inter-
esting because according to [24], the maximum stress
occurs where the soil flow separates. Also, for slip levels
below ±10%, the soil was not observed to develop a signif-
icant shearing plane.

5.2. Characterization of soil failure

Traditionally, soil failure under running gear has been
considered as an analog of failure under a strip load [26].
Following the analogy, two time-independent failure zones
were predicted under the wheel. A basic approach for
shearing plane identification is to define it based on velocity
magnitude: the deepest point in the soil, where the velocity
is above a specified threshold, is identified in each column.
A polynomial curve is fitted to these points. Fifth order
polynomials were used to interpolate the data, since
lower-order representations produced poor results, while
higher order representations did not improve significantly



Fig. 7. Visualization of shearing planes for a �30% (left) and a +30% (right) slipping wheel (Std High Load). Shearing planes are detected through a line
scanning algorithm and the extension of the sheared area depends on the threshold chosen. Because of soil periodic failure, shearing planes are time-
varying features. Best viewed in color. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 8. (Top) Cumulative deviatoric (shear) strain at different time instants for positive +30% wheel slip (Std High Load). (Bottom) Cumulative deviatoric
(shear) strain at different time instants for negative �30% wheel slip. The depth and magnitude of soil disturbance for positive (top) and negative (bottom)
wheel slip indicate markedly different soil responses.

Fig. 9. Total deviatoric (shear) strain over 4 time steps, showing localized
failure region under the wheel. Strain is shown with respect to reference
frame 133, rather than frame 1 as in other the strain plots of Fig. 8. A
localized shear band is clearly visible. It should be noted that soil under
the wheel is not continuously failing, and therefore failure bands are
typically time-varying features.

318 C. Senatore et al. / Journal of Terramechanics 50 (2013) 311–326
the result. According to classical theory, shearing failure is
thought to occur along a logarithm spiral, however it was
not possible to confirm this experimentally.

Identification of a shearing plane depends on the speci-
fied velocity threshold. Fig. 7 presents images for �30%
(left) and +30% (right) wheel slip, for various velocity
thresholds. It is interesting to note that for both slip level,
there exists only a single shearing plane. However, it should
be noted that soil under the wheel is not continuously fail-
ing, and therefore shearing planes are typically time-vary-
ing features.

A more systematic way to study the failure zone is to
calculate soil strain as presented in Section 4. Calculation
of strain allows for quantitative description of shear bands
and enables more detailed description of soil evolution.
Fig. 8 shows a “strain imprint” left behind by a wheel as
it travels across the image domain. The depth and



Fig. 10. Horizontal (left), vertical (center), and magnitude (right) of mean flow velocity for slip values ranging from �30% up to +30%. These metrics
summarize the results obtained for different soil preparation (dense and loose), different wheel velocity (17 deg/s and 34 deg/s), different vertical load
(70 N, 100 N, and 130 N), and different wheel surface finish (smooth and coated with MMS). Note that for dense soil and smooth wheel only one series of
experiments (at 17 deg/s and 100 N of vertical load) was conducted. Data is obtained by averaging soil motion measured over all the IWs where motion
was detected.
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magnitude of soil disturbance for positive (top) and nega-
tive (bottom) wheel slip indicate markedly different soil
responses for positive and negative wheel slip conditions.
Positive wheel slip produces a shallower soil disturbance,
with a clear transition between the disturbed and undis-
turbed soil regions.

For 30% positive slip, the largest accumulated strains
can easily surpass 100%, owing to localized failure of the
material. In contrast, for �30% wheel slip, no localized soil
failures are observed, with soil deformation distributed
over a much deeper portion of material, and the largest
accumulated strains consistently below 50%. In both cases,
after the wheel has passed, a complex deformation (strain)
field is left behind.

In order to visualize shear band formation it is beneficial
to isolate a reference frame. This is presented in Fig. 9
where strain, for a 30% slipping wheel, is calculated over
4 frames. The starting frame (i.e. the reference frame), is
conveniently chosen just prior to shear band initiation.This
allows one to highlight localized shear failure of the gran-
ular material during positive wheel slip with the wheel posi-
tioned roughly in the center of the image for a better field
of view. These localized failures occur at periodic intervals,
as highlighted in Fig. 6.

5.3. Motion metrics

To grossly summarize results obtained from PIV analy-
sis, a series of qualitative metrics was developed. The mean
horizontal velocity, mean vertical velocity, and mean mag-
nitude velocity were calculated for each frame, and again
over the entire experiment duration. These metrics are
intended to give a “snapshot” of collected data and reveal
the key trends of soil motion. Results for the experiments
described in Table 3, are presented as function of slip in
Fig. 10.

For standard velocity tests, the u-velocity ranges
between �0.2 mm/s and 0.2 mm/s. The u-component
vanishes for 0% slip, where the horizontal motion is caused
solely by compressive motion of the soil, which pushes
equally to both directions. Dense soil yields a lower hori-
zontal velocity independent of the slip ratio, while experi-
ments with the smooth wheel result in reduced horizontal
velocity for high positive slip, due to wheel slip at the
wheel-soil interface (and thus reduced soil shearing). For
doubled rotational velocity, the horizontal component of
the mean flow is approximately doubled (Fig. 10, left). This
is intuitively reasonable, because the relative velocity
between wheel and soil beneath the wheel axle depends
proportionally on the rotational velocity. The vertical com-
ponent of the mean flow shows a generally declining trend
from negative to positive slip ratios. By increasing the
weight, the vertical velocity increases, as illustrated in tests
with the coated wheel in Fig. 10(center). Dense soil causes
significantly reduced vertical flow. An unexpected trend is
shown by all standard tests for 0% slip: The vertical veloc-
ity increases compared to �10%.

In these tests, each experiment was performed once and
averaging was performed over all frames of that experi-
ment. Experimental variation is likely due to variable soil
conditions, despite the fact that an identical soil prepara-
tion process was performed for each run. Soil was stirred
with a rod and then leveled. When higher density was
desired, terrain was compacted with a cylindrical roller.
This procedure guaranteed consistent soil preparations at
large scale.

6. Conclusions

This paper shows how granular particle image velocime-
try can enable investigation of running gear–soil interac-
tion phenomena. This type of analysis can allow for
development of improved constitutive models for granular
materials, and for development of reduced order models
based on soil displacement predictions. An important con-
sideration to bear in mind when examining flow fields like
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the one presented in Fig. 5, is that the relationship between
stress and displacement is typically complex, and one must
avoid the temptation to directly correlate velocity magni-
tudes with stress magnitudes.

This paper presented a detailed description of granular
particle image velocimetry methodology for analyzing soil
flow under running gears. Although this approach is con-
fined to plain strain analysis, it enables detailed quantita-
tive and qualitative analysis of soil failure patterns.

A procedure for systematically determining operational
parameters for PIV analysis was presented. The natural
texture of the granular, dry, material under investigation
was found to be sufficient for PIV analysis eliminating
the need of markers.

For the experimental setup under investigation it was
found that only a contrast limited adaptive histogram
equalization (CLAHE) pre-processing filter (set to 40 pix-
els) was necessary while the best interrogation windows
and multi-pass sequence was found to be 64-32-16 (corre-
sponding to IW size, in pixels, for first, second, and third
pass). Post-processing strategies for outlier detection and
substitution based on local and global filters were pre-
sented as well. The methodology utilized in this paper to
determine the best blend of settings could be in theory uti-
lized with any type of soil and imager setup.

It was shown that velocity fields calculated through
granular PIV can be successfully utilized to infer strain
fields. Experimental results show that it is possible to com-
pute, with satisfactory accuracy, soil motion characteris-
tics. A series of controlled-slip wheel experiments was
performed and analyzed with the proposed methodology
highlighting complex soil failure patterns.

Further investigation of small robot-terrain interaction
mechanics will focus on extending these experiments to a
wider range of vertical loads. This will provide a basis for
characterization of soil plastic internal variable, validation
of constitutive laws, and, ultimately, the improvement of
reduced-order models.
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Appendix A. Steps for PIV

Soil motion analysis can be broken down into three main
steps: (1) image pre-processing, (2) image cross-correlation,
and (3) velocity field post-processing. Each step is briefly
described and methods for parameter selection are
presented.

A.1. Image pre-processing

Various image pre-processing methods were investigated
to understand their effect on algorithm performance. These
include commonly employed algorithms such as contrast
limited adaptive histogram equalization (CLAHE), high
pass filtering, and clipping and intensity capping (IC).

CLAHE differs from basic histogram equalization in
two aspects. First, it computes several histograms, each
for a separate region of the original image, and thus oper-
ates on local parts of the image. Additionally, by limiting
the contrast amplification for a given pixel value, it pre-
vents addition of noise to the images. The contrast of
images used for PIV has a significant influence on the shape
of the correlation plane, which is used for estimation of the
velocities. Hence, pre-processing of the images by optimiz-
ing contrast can improve the performance of PIV calcula-
tions [27].

High pass filtering reduces low-frequency image inten-
sity fluctuations. A high pass filter can remove the back-
ground artifacts that are of a lower frequency than the
natural particle texture, and is usually carried out by per-
forming basic multiplications on the image in the frequency
domain.

Clipping itself is not a pre-processing filter to increase
image quality, but rather a method to increase the compu-
tation speed through determination of irrelevant areas for
the PIV calculation.

Intensity capping attempts to reject local image intensi-
ties which differ too much from their surrounding environ-
ment, and could thus degrade the accuracy of the PIV by
causing bias.

To systematically investigate the effect of these pre-pro-
cessing methods on PIV algorithm performance, test image
segments of the Mars regolith simulant with dimensions
256 � 256 pixels were captured, and then synthetically
deformed in canonical directions. Since the particle distri-
bution in the soil under investigation is locally not perfectly
homogeneous, two distinct image segments were captured
in order to adequately represent common grain appearance
in the MMS simulant. This resulted in one image popu-
lated by relatively large grains (Fig. A.11(a)) and one pop-
ulated by relatively small grains (Fig. A.11(b)). Synthetic
deformation of the image was performed as a means of
generating a ground truth for cases of linear translation
(1–4 pixels in both horizontal, vertical, and diagonal direc-
tions), rotation (1–8 degrees in clockwise and counter-
clockwise directions), shear (1–4 pixels of relative motion
between upper and lower image halves), and simple shear
(1–4 pixels of motion of the upper edge of image) (see
Figs. A.12, A.13).

A total of 40 transformed images was produced. Since
the pixel shift for each deformation was controlled, this



Fig. A.11. Examples of soil natural textures: coarse (a) and fine (b).
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methodology allowed quantitative evaluation of PIV algo-
rithm results. A relative error metric was defined as
following:
Fig. A.12. Examples of image canonical transformations used to evaluate PIV
used to evaluate PIV accuracy. Transformations included: rigid translation
discontinuous shear (bottom-right). Details in Table A.4.

Fig. A.13. Velocity field for image transformation, discontinuous shear
� ¼ 1

2N

XN

i

ðui � uiPIV Þ2 þ ðvi � viPIV Þ2 ðA:1Þ

where ui, vi are the true velocity components (based on con-
trolled image transformation) at image location i, and
uiPIV, viPIV are the velocity components, for the same spa-
tial location, estimated through PIV analysis. This is
essentially an average mean square error. When the
cross-correlation algorithm is not able to calculate a veloc-
ity, it returns a NaN value. The error metrics does not
account for NaN values, however the number of NaNs is
monitored to allow for a comprehensive evaluation of algo-
rithm performance.

The forty synthetically deformed images were analyzed
under various combinations of pre-processing settings. In
total, 96 different combinations of pre-processing parame-
ters were studied (see Appendix B for details on pre-pro-
cessing parameter combinations).
settings. Nine image transformations for coarse and fine soil textures were
(upper-left), simple shear (upper-right), rigid rotation (bottom-left), and

(a) and rotation (b). Largest error occurs at peak velocity gradient.
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These tests were conducted using an IW size of 16 � 16
pixels. Generally, it was observed that the largest errors
occurred in shear tests at the simulated failure plane (i.e.
the plane of relative motion between the top and bottom
halves of the image), as shown in Fig. A.12. For rotation
and simple shear, the largest errors occurred at the image
borders (see Fig. A.13).

Overall, the accuracy of the PIV calculations was found
to be good even without any pre-processing method
applied. The high level of performance was attributed to
the natural, significant intensity variation present in the
MMS simulant, the carefully controlled lighting condi-
tions, and the proper selection of imager configuration.

Fig. A.14(a) shows the averaged (over all frames) mean
square error for all the settings. Employing a CLAHE fil-
ter with filter sizes of 20 and 40 was found to reduce the
mean square error. The use of a high pass filter was found
to be uniformly detrimental to PIV calculation accuracy
while a clipping filter was found to be effectively negligi-
ble. Intensity capping had a varying effect on accuracy,
depending on the other pre-processing settings, however
its influence was small when other settings are judiciously
chosen. Examining the other dimension of the test space,
it can be seen that the mean square error was influenced
significantly by the different image transformation
(Fig. A.14(b)).

Generally, linear translation deformations could be
accurately estimated with a wide range of algorithm
parameter settings, whereas rotational transformations
resulted in larger errors. Averaged mean square error for
all the frames (Fig. A.14(a)) is usually small because
cross-correlation works particularly well with rigid transla-
tion which represent most of the transformations.

As Fig. A.14(b) shows, the highest error levels are
observed during rotation and shear (i.e., when relatively
high velocity gradients are present). Those results can be
contextualized by noting that the ground truth velocity
for the synthetically deformed images ranged between 0
and 8 pixels/frame. Although the average square error is
in the order of 0.1 pixels2/frame2, the maximum error
reaches 3 pixels2/frame2 for the most unfavorable (but
not physically unreasonable) conditions.

Although the use of setting # 73 caused relative error to
improve only marginally compared to un-preprocessed
images, it was found that the PIV algorithm produced
fewer NaN returns (i.e., areas where the displacement
could not be estimated) with this setting, therefore # 73
was adopted. A complete description of the image/pre-pro-
cessing parameter combinations and results are presented
in [19].

A.2. Image cross-correlation (PIV)

In PIV, images are divided into small interrogation win-
dows (IW) and then analyzed to compute the probable dis-
placement between successive images for each IW using
cross-correlation techniques. This results in an equally
spaced field of calculated velocity vectors. The probable
displacement is determined by using the cross-correlation
function:

RII�ðx; yÞ ¼
XK

i¼�K

XL

j¼�L

Iði; jÞI�ðiþ x; jþ yÞ ðA:2Þ

where I is the intensity of the first image and I0 the intensity
of the second image [28]. As noted in Section 2.1, particle
packing density, image resolution, and IW size are inter-
connected parameters that must carefully selected to opti-
mize performance. Based on experimental investigations,
Keane and Adrian [18] defined four empirical rules for
optimal PIV setup. First, the number of particles per IW,
NI, should be more than 10:

NI > 10: ðA:3Þ
In-plane particle motion can lead to an inability to com-
pute cross-correlation across image pairs, because of the
reduction of correlation between particle intensities in both
images. Hence, the particle displacement XI should not ex-
ceed a 25% of the IW length L:

X I <
1

4
L: ðA:4Þ

Out-of-plane soil motion can cause particles to leave the
visible plane and appear/disappear in different images. This
effect again leads to an inability to compute cross-correla-
tion across image pairs. For granular PIV, however, it is
typically impossible to explicitly control out-of-plane soil
motion. Instead, experiments should be designed in order
to minimize out-of-plane soil flow.

PIV methods compute a velocity vector for an area of
particles. Since the soil particle velocity in this area is usu-
ally not constant, the computed velocity represents an
average of the velocities of all particles within the area.
High gradients in the velocity field will cause the peak
in the correlation-plane to broaden. As a guiding rule,
the maximum difference of displacement, a, should not
exceed the average particle size ds, and also be below
5% of the IW length L:

a ¼ jX I ;max � X I ;minj
a < ds a < 0:05L: ðA:5Þ

It should be noted that while enlarging the IW size
may allow for better cross-correlation performance,
larger IWs result in greater spatial averaging of the flow
velocities. Also, the maximum displacement that can be
measured depends on the size of the IWs. (The smaller
the chosen IWs are, the shorter the measurable
displacement.) Ideally, the IW size is chosen to measure
the maximum frame-to-frame displacement, while
minimizing spatial averaging, and yielding good cross-
correlation performance. When selection of a static IW
size that yields good performance can be difficult,
multi-pass PIV can be employed to achieve improved
performance.
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Fig. A.14. Pre-processing test space was bi-dimensional: 40 frames � 96 pre-processing settings. Fig. A.14(a) presents the mean square error averaged over
all frames. Setting #73 (see Appendix B) was chosen to be the optimal choice because of the good balance of performance (low error and low number of
NaN). Fig. A.14(b) shows the mean square error for pre-processing settings # 73 over all the synthetically deformed images. Performance deteriorates for
high velocity/velocity gradient corresponding to rigid rotation and shear frames (see Table A.4).

Table A.5
Multi-pass settings. Units are in pixels.

Setting # 1st IW 2nd IW 3rd IW 4th IW

1 64 32 16 16
2 64 32 32 16
3 64 16 16 –
4 64 32 16 –
5 32 16 16 –
6 32 32 16 –
7 64 16 – –
8 32 16 – –
9 16 – – –
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A.2.1. Multi-pass PIV

In multi-pass PIV, multiple PIV calculations are per-
formed successively, where the results of each pass are used
to improve estimation of the IW in the next pass.

This can yield improved performance at the cost of addi-
tional computation. The simplest approach to multi-pass
PIV relies on a repetitive determination of a static window
offset for each IW, which is based on the calculated velocity
from the prior pass [29].

The multi-pass settings that were evaluated are dis-
played in Table A.5. The IW size for each pass was varied
between 16 pixels and 64 pixels, while the last pass was
always performed with the previously determined optimum
IW size (i.e., 16 pixels). A maximum of four passes was
tested. These tests were executed on the previously
described synthetically deformed images and the error is
reported as mean square error over all the frames for
pre-processing setting # 73.

The mean square error of the velocities computed from
PIV compared to the actual velocities is displayed in
Fig. A.15. As expected, the use of multi-pass led to
improved performance at the expense of increased process-
ing times. Error can be reduced by approximately an order
of magnitude when moving from single-pass PIV (setting #
9) to multi-pass. Note that although the minimum errors
were observed for settings # 1, 3, 5 setting # 4 (a three pass
calculation) was selected as optimal because it required
approximately 30% less computation time while still show-
ing a significant improvement with respect to the single
pass setting # 9. To further reduce computation at a cost
of modestly reduced accuracy, setting # 7 can be employed
(a two pass calculation) (see Fig. A.15). Note that the times
presented in Fig. A.15 represent wall clock times for the
PIV calculations running on a 2.4 GHz quad-core desktop
PC (although the code was not parallelized and Matlab
used only one core). A three-pass PIV calculation (setting
# 4), which uses sequential IW sizes of 64, 32, and 16 pixels
was considered a balanced choice between accuracy and
computation times.
A.3. Velocity field post-processing

The raw velocity field produced by PIV calculations can
contain spurious vectors (outliers). These outliers can be
caused by noise, inappropriate interrogation settings, and
accidentally matched patterns. Hence, to improve results,
rejection of these outliers and interpolation of missing data
points can be performed in a post-processing stage through
filtering. Filters for the rejection of outliers can primarily
be divided into two separate classes: global and local
methods.

Global filters commonly employ a simple thresholding
method, with the threshold value selected by an operator
possessing empirical or theoretical domain knowledge. If
elements of the velocity field exceed the threshold, this ele-
ment is removed from the results.

For granular PIV, a global threshold can be defined as a
maximum speed for which it is known that no flow vector
will physically exceed. For the case of running gear–soil
interaction, such a velocity can be determined by comput-
ing the maximum velocity, calculated in an inertial frame,
of points lying on the running gear itself. For non-dynamic
tests (i.e. with negligible impact forces), it can be assumed
that no element of the flow field with have a velocity
greater than the maximum running gear velocity.

Local filters are primarily based on relative differences
between surrounding vectors, rather than absolute values.
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Fig. A.15. Mean square error and computation time for different multi-
pass settings. Setting # 9, based on a single pass, produces the worst result.
On the right, computation time for different multi-pass settings.

Fig. A.16. Mean square error for different post-processing kernel sizes
and threshold settings. These results were obtained for pre-processing
settings # 73 and the synthetically deformed images. High relative error
for low thresholds is caused by rejection of a high number of vectors (see
Fig. A.17, where a wheel experiment is presented). However, even for
threshold that produces low error, it is necessary to verify the number of
rejected vectors in order to produce balanced results.

Fig. A.17. (a) Percentage of rejected vectors for different threshold and kerne
size, even at high threshold, a significant portion of vectors are rejected. Partia
kernel size 3 � 3 threshold 4; Green, kernel size 5 � 5 threshold 8; Blue, kernel s
eliminate non-soil regions from the image. (For interpretation of the references
this article.)

324 C. Senatore et al. / Journal of Terramechanics 50 (2013) 311–326
A local filter calculates the mean and standard deviation of
the velocity for a selected kernel size around each vector. If
the velocity exceeds certain thresholds, the vector is rejected.

Thresholds are defined by the mean velocity plus or
minus a number of standard deviations. Such a filter typi-
cally operates on the u and v velocity components
separately:

umax ¼ umean þ kustd

umin ¼ umean � kustd

vmax ¼ vmean þ kvstd

vmin ¼ vmean � kvstd : ðA:6Þ

The effect of local filter settings on PIV performance was
investigated for the synthetically deformed images. Three
different kernel sizes (3 � 3, 5 � 5, and 7 � 7 pixels) were
tested with thresholds ranging from 1–10 standard devia-
tions. The mean square error over these settings is shown
in Fig. A.16.

Error decreased for all kernel sizes while the number of
standard deviations increased the accuracy for lower
thresholds. Increasing the number of standard deviations
also results in fewer rejected vectors, as displayed in
Fig. A.17(a), where a wheel experiment is presented.

The large errors observed for low thresholds are a con-
sequence of rejecting non-spurious vectors. By increasing
the threshold, a point of minimum error is reached between
2–6 standard deviations, depending on the filter size. Error
tends to increase for higher thresholds, due to the fact that
some outliers are retained, which decreases accuracy. It
should be noted that larger kernel sizes lead to higher com-
putational cost, since they require more calculations per
vector under consideration.

A.4. Interpolation of missing data points

The filtering methods described above lead to missing
data in the PIV velocity field. It is frequently desirable to
l size obtained for a +30% slipping wheel Fig. (A.17(b)). For 7 � 7 kernel
l results are overlayed on the right image. Color legend is as follow. Red,
ize 7 � 7 threshold 10. Images considered for error analysis were masked to
to colour in this figure legend, the reader is referred to the web version of



16 off 15 5 on
17 off 15 10 off
18 off 15 10 on
19 off 30 off off
20 off 30 off on
21 off 30 5 off
22 off 30 5 on
23 off 30 10 off
24 off 30 10 on
25 10 off off off
26 10 off off on
27 10 off 5 off
28 10 off 5 on
29 10 off 10 off
30 10 off 10 on
31 10 5 off off
32 10 5 off on
33 10 5 5 off
34 10 5 5 on
35 10 5 10 off
36 10 5 10 on
37 10 15 off off
38 10 15 off on
39 10 15 5 off
40 10 15 5 on
41 10 15 10 off
42 10 15 10 on
43 10 30 off off
44 10 30 off on
45 10 30 5 off
46 10 30 5 on
47 10 30 10 off
48 10 30 10 on
49 20 off off off
50 20 off off on
51 20 off 5 off
2 20 off 5 on
53 20 off 10 off
54 20 off 10 on
55 20 5 off off
56 20 5 off on
57 20 5 5 off
58 20 5 5 on
59 20 5 10 off
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interpolate missing data points, to yield a complete velocity
field. Two interpolation approaches are described here:
replacement with alternative correlation peaks, and inter-
polation based on surrounding vectors.

Spurious correlation results may be caused be a peak in
the correlation plane that is higher than the peak corre-
sponding to the real displacement. In this case, the peak
corresponding to the real displacement may still exist in
the correlation plane. Hence, the rejected vector should
be replaced by an alternative correlation peak, if this data
is available. For this reason, it is common to compute
lower peaks, and thus if the highest peak does not corre-
spond to the true displacement, a lower peak can be
employed. Vectors computed from alternative peaks must
then be filtered again, to ensure that they are consistent
with respect to the surrounding flow field.

If information about lower correlation peaks is not
available, missing data in the flow field must be interpo-
lated in a different manner. The simplest interpolation
method is linear interpolation. The value of the currently
missing vector is simply replaced by information from
neighbouring vectors:

U i ¼
1

2
ðU i�1 þ Uiþ1Þ: ðA:7Þ

Other interpolation methods can be employed based on
non-linear expressions. Furthermore, it is possible to build
an over-determined system for the local area, and approx-
imate the missing vector with a least squares approach [30].
It should be noted that while spatial filtering and interpo-
lation has been discussed here, similar methods can be
employed for temporal filtering. Due to space constraints
this discussion is omitted.

Appendix B. Pre-processing settings

Table B.6.
Table B.6
Pre-processing settings.

Test CLAHE High pass Clipping IC

1 off off off off
2 off off off on
3 off off 5 off
4 off off 5 on
5 off off 10 off
6 off off 10 on
7 off 5 off off
8 off 5 off on
9 off 5 5 off
10 off 5 5 on
11 off 5 10 off
12 off 5 10 on
13 off 15 off off
14 off 15 off on
15 off 15 5 off

60 20 5 10 on
61 20 15 off off
62 20 15 off on
63 20 15 5 off
64 20 15 5 on
65 20 15 10 off
66 20 15 10 on
67 20 30 off off
68 20 30 off on
69 20 30 5 off
70 20 30 5 on
71 20 30 10 off
72 20 30 10 on
73 40 off off off
74 40 off off on
75 40 off 5 off
76 40 off 5 on
77 40 off 10 off
78 40 off 10 on
79 40 5 off off
80 40 5 off on
81 40 5 5 off



82 40 5 5 on
83 40 5 10 off
84 40 5 10 on
85 40 15 off off
86 40 15 off on
87 40 15 5 off
88 40 15 5 on
89 40 15 10 off
90 40 15 10 on
91 40 30 off off
92 40 30 off on
93 40 30 5 off
94 40 30 5 on
95 40 30 10 off
96 40 30 10 on
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