Multiscale characterization & modeling of geomaterials

José E. Andrade, Carlos F. Avila, WaiChing Sun Engineering & Applied Science, Caltech

AGU fall meeting, December 2011

LINSTITUTE FOR SPACE STUDIE

Today's Menu

- Multiscale concept in porous rocks
- Multiscale flow in porous materials
- Multiscale deformation in porous materials
- Conclusion

Multiple scales in sandstones: CO2 repositories

Flow: from Boltzmann to Darcy

Based on synchrotron data from Argonne

d crade d accedet

x-rays on Valley of Fire sandstone

$k_{11} \approx 10^{-12}$ $\phi \approx 0.2$

$k_{11} \approx 10^{-13}$ $\phi \approx 0.15$

pressure

Homogenization using finite elements: specimen scale

Strength: from Newton to Cauchy

based on data from ESRF, Grenoble France

Hierarchical multiscale scheme

Unit cell concept: experiments Vs. calculations

calculations

extract strains=> dilatancy AND extract stress=> friction

In-situ X-ray CT data from Grenoble

Strain fields and dilatancy

Strain prediction Vs. experiment

Conclusions

- New X-ray characterization can show microstructure & grain kinematics
- New models needed to harness powerful data for better prediction
- Modeling+characterization=prediction

Journal of the Mechanics and Physics of Solids 59 (2011) 237-250

References

Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

journal homepage: www.elsevier.com/locate/jmps

Multiscale modeling and characterization of granular matter: From grain kinematics to continuum mechanics

J.E. Andrade^{a,*}, C.F. Avila^a, S.A. Hall^b, N. Lenoir^c, G. Viggiani^b

^a Applied Mechanics, California Institute of Technology, Pasadena, CA 91125, USA ^b Laboratoire 3S-R, Université Joseph Fourier, 38041 Grenoble Cedex 9, France

^c Material Imaging, UR Navier, 77420 Champs-sur-Marne, France

GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L10302, doi:10.1029/2011GL047683, 2011

Connecting microstructural attributes and permeability from 3D tomographic images of in situ shear-enhanced compaction bands using multiscale computations

WaiChing Sun,¹ José E. Andrade,¹ John W. Rudnicki,² and Peter Eichhubl³

Received 8 April 2011; revised 12 April 2011; accepted 13 April 2011; published 17 May 2011.

[1] Tomographic images taken inside and outside a compaction band in a field specimen of Aztec sandstone are anations, they inferred that this band accommodated about equal amounts of shear displacement and band-perpendicular