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Ivan Vlahinić · Edward Andò · Gioacchino Viggiani ·
José E. Andrade

Received: 5 September 2012 / Published online: 7 December 2013
© Springer-Verlag Berlin Heidelberg 2013

Abstract Imaging, epitomized by computed tomography,
continues to provide unprecedented 3D access to granu-
lar microstructures at ever-greater resolutions. The non-
destructive technique has enabled deep insight into the mor-
phology and behavior of granular materials, in situ and as
a function of macroscopic states, e.g., loads. However, a
significant bottleneck in this paradigm is that it ultimately
yields qualitative ‘pictures’ of microstructure. Hence, a major
challenge is to extract quantitative descriptors of grain-scale
processes, e.g., morphological description of particles, kine-
matics, and spatial interactions. Existing methods, including
watershed and burn algorithms, are plagued with limitations
related to image resolution and with the inability to sharply
identify grain-to-grain contact regions, which is crucial for
studying force transmission and strength in granular mate-
rials. In this work, we propose a method to overcome these
drawbacks. Specifically, a novel way to extract grain topol-
ogy in particulate materials via level sets is introduced. It
is shown that the proposed method can sharply resolve the
topology of grain surfaces near to and far from grain-to-grain
contact regions with sub-voxel resolution, and is capable of
grain extraction directly in three dimensions. The proposed
method still relies on traditional techniques for input, but ulti-
mately leads to much improved grain characterization. We
validate the approach using three dimensional CT images of
highly rounded (Caicos ooid) and highly angular (Hostun
sand) natural materials, with excellent results.
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1 Introduction

High-resolution imaging continues to provide unprecedented
access into the 3D microstructure of natural granular materi-
als. X-ray Computed Tomography (XRCT) has emerged as
the most prevalent technique due to its tremendous poten-
tial to image opaque materials whose microstructure has
historically been difficult to access [1,16]. Attainable reso-
lutions are quickly improving, with individual voxels begin-
ning to break a micrometer lengthscale using commercially
available scanners. Other techniques are able to reach much
lower scales (e.g., scanning electron microscopy, scanning
laser confocal microscopy) but are typically limited to sur-
face measurements in opaque materials.

The ability to perform in situ characterization of mate-
rials has been one of the early drivers of XRCT. Here, in
situ characterization refers to the extraction of morphologi-
cal information in the natural state of the material. In granular
materials, such extraction can yield properties available using
traditional lab techniques, e.g., porosity or grain size distribu-
tion, as well as those often unavailable in practice, e.g., parti-
cle orientations and coordination numbers [39]. For example,
characterization of in-situ pore space geometries has enabled
numerical studies of transport properties (e.g., permeability),
of importance in applications ranging from filtration to flow
characteristics of hydrocarbon reservoirs [37,38,42].

Coupled with a loading apparatus, XRCT also enables
an uninterrupted sequence of 3D snapshots, each containing
thousands of grains, to be collected over the course of a single
experiment. Comparing successive snapshots gives insight
into the incremental microstructural changes as a function of
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an external state (e.g., loads). Unlike at any point in history,
this experimental process has opened up significant oppor-
tunities in relating discrete microstructural features to con-
tinuum macroscopic quantities [4,11,29]. The process has
also helped steer the research focus from phenomenologi-
cal towards more physics-based, with the promise of vali-
dating and improving models for granular media, and just
as importantly, unmasking the physical origins of observed
phenomena such as shear bands [5,33].

A significant challenge in applying imaging such as XRCT
as a general paradigm is in translating what are essen-
tially three dimensional photographs (voxelated images) into
‘quantities’ that are palatable for mechanical analysis. In
other words, the photographs need to be converted into quan-
titative descriptors of particle morphology and kinematics
that can then be used in quantitative analysis. This neces-
sary step not only brings image data into the physical scale
of interest but also helps reduce what are extremely large
data sets into a smaller set of geometric and/or statistical
descriptors.1 A key difficulty lies in irregularity of individ-
ual particles and also in the fact that particles are touching.

Current techniques do relatively well in segmenting grains
from the pores, and also grains from other grains, i.e., dis-
criminating grains from voids and identifying grains as indi-
vidual units. However, these techniques also contain two
crucial shortcomings. (1) Grain characterization is voxel-
based. This unnecessarily limits the level of detail that can
be extracted from 16-bit CT image data. (2) Segmentation
process tends to ‘damage’ the resolution near grain-to-grain
contacts. This is problematic because contact regions are of
great importance to our understanding of force transmission
in granular media. Both of these issues are a direct conse-
quence of the current methods being dependent on voxelated
data structures.

In this work, we overcome these shortcomings and in
this way provide substantial improvements to the current
characterization methods of granular materials. To improve
grain boundary detection, we introduce and improve upon
a level-set based method [12,26,31] that is free from voxe-
lated structures, and rather works directly on greyscale XRCT
images to translate these to continuum descriptions of par-
ticle morphology. Image gradients are used as ‘markers’ of
grain boundaries [23,32]. The proposed method is ultimately
able to resolve grain morphology robustly and autonomously,
it is not tied to the underlying image grid, and it leads to
smooth surfaces that are continuously differentiable. We ver-
ify the method on two very different types of granular mate-
rials imaged using XRCT: Caicos ooids (highly rounded
grains) and Hostun sand (highly angular grains) with excel-
lent results.

1 To provide a sense of scale, the images utilized in this work contain
roughly one particle for every 8,000 greyscale voxels of data.

The contribution is presented in the following order:
Sect. 2 reviews the background on XRCT capture, 3D image
reconstruction, and current techniques for grain extraction.
Section 3 provides a birds-eye view of the proposed method-
ology, with algorithmic details given in Sect. 4. Section 5
presents the results. Concluding remarks are offered in
Sect. 6.

Finally, we note that the proposed work is applicable
beyond the geomaterials discussed in this work. The need
to separate individual material phases can also be found,
for example, in metals that have grains and/or inclusions
within range of XRCT resolution [40], with well documented
importance of grain-to-grain boundaries in controlling the
macroscale plasticity. Other possible applications are the
segmentation of powders, fractures, or in general, systems
in which one desires to quantify discrete features within a
microstructure.

2 Background & motivation: CT capture and
segmentation

2.1 From X-rays to stair-step grains

XRCT is revolutionizing the field of experimental mechan-
ics due to its ability to image the microstructure in opaque
materials. Particularly promising is the ability of XRCT to
capture a sequence of images of a deforming material, non-
destructively, with the promise of quantifying the microstruc-
tural origins of macroscale phenomena.

Despite the aforementioned goal, XRCT still yields a
series of images that must ultimately be converted into math-
ematical ‘quantities’. A continuing challenge is the develop-
ment of robust tools that are able to perform the conver-
sion autonomously and consistently, without significant user
input. Figure 1 provides a visual schematic of key non-trivial
steps involved in the traditional methods. Their brief descrip-
tion is given next.

During the experimental process, 2D radiographs are
acquired while the sample is slowly rotated. The 3D image
is reconstructed, slice by slice (slices are normal to the rota-
tion axis), from 2D radiographs at different angles by solving
the inverse problem of the Radon transform. The result is a
greyscale 3D image of X-ray intensities at a given mater-
ial state (3DXRCT), where higher X-ray attenuation signal
corresponds to denser material volumes.

After 3D image reconstruction, material phases are sepa-
rated via thresholding, usually based on certain limiting cri-
teria [35]. One such criterion used in this work is a posteriori
measure of sample density—which helps preserve overall
mass during thresholding. The outcome of this step (in two-
phase media) is a binary image, with 1s representing the solid

123



Extracting quantitative descriptors from tomographic images 11

3DXRCT

HIGH-ENERGY
X-RAY

BINARY EUCLIDIAN DIST. WATERSHED

density

threshhold

apply

Fig. 1 Visual schematic of the current state-of-the-art in identifying individual grains from 3D X-Ray Computed Tomography (3DXRCT) images.
The reader is referred to Sect. 2.1 for a detailed discussion of the steps involved

phase and 0s the void phase. Individual grains have not yet
been identified.

A single interconnected grain mass (a collection of solid
voxels) is split into individual grains using a watershed-based
algorithm [36]. The algorithm has been around since the
1980s, with several robust variants. The version utilized in
this work is similar to that of [39], initialized by a distance
map (Euclidian or otherwise) between the solid voxels and
phase boundaries. Grain identification begins with the search
for local maxima or islands in the distance map. Individual
islands are assumed to be grain centers that are subsequently
expanded. Where neighboring islands meet, a local water-
shed line is drawn, representing a grain-to-grain boundary.

The ultimate output of the previously described sequence
steps is shown in the rightmost image of Fig. 1, where
black and white colors indicate grain and void voxels, and
grey are the voxels at phase/grain boundaries. For well
rounded Caicos ooids with narrow distribution of particle
sizes, authors’ experience indicates that watershed-based
algorithm is able to detect individual grains roughly 95 % of
the time. ‘Difficult’ configurations that result in lower seg-
mentation success rates include and are not limited to: wide
grain size distribution, irregular grain shapes, irregular grain-
to-grain contacts, porous grains. These factors lead to either
excess or shortage of the starting islands, and ultimately to
an incorrect segmentation. Steps can be taken to improve the
success rate, by fine-tuning starting island configurations, the
speed of ‘island growth’, or both, often via trial and error.

2.2 Drawbacks of binary grain representation

The discrete nature of granular materials and the irregularity
of grain surfaces pose significant challenges to grain segmen-
tation. Figure 2 illustrates this point, via a histogram of X-
ray intensities of angular Hostun sand. Specifically, the figure
shows that for any segmentation algorithm, a major challenge
is to correctly allocate a significant volume of the material
(green distribution) between different material phases. For
Hostun sand, the area of under the green distribution adds up
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Fig. 2 Normalized histogram of 3DXRCT intensities of Hostun sand.
Data is aggregated over 8 million voxels (2003 image box). Approxi-
mate normal distributions of void (blue) and grain (red) intensities are
superposed over experimental data points (black circles). The remain-
ing distribution (green), the difference between the experimental and
the two normal distributions, accounts for 39 % of the total volume. For
any segmentation algorithm, it is critical to correctly appropriate vox-
els of the green distribution among the grains and voids (color figure
online)

to 39 % of the total. For Caicos ooids (histogram not shown)
the area was calculated at 36 % of the total.

As described in Sect. 2.1, the traditional watershed-based
methods allocate the voxels of the green distribution using a
binary system, classifying each voxel as either grain or void
phase. In general, steps can be taken to avoid global volume
errors, by choosing the threshold on the basis of sample mass
or density. However, little can be done to avoid local artefacts
of thresholding, which are enhanced by material granularity.

Figure 3 shows the undesirable artefacts of thresholding an
X-ray image of Hostun sand. Specifically, the figure shows
that in the regions of grain-to-grain contacts, where X-ray
intensities are more saturated due to the mutual proximity
of grain surfaces, the grain voxels tend to get over-selected.
By extension, assuming the overall density fixed, other grain
voxels tend to get under-selected. This inherent threshold
bias ultimately hurts the inference of not only grain shape
but also contact normals, essential ingredients for studying
force transmission and strength in granular media [27]. To our
knowledge, only one journal publication [22] has reported
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grain fabric, using binarized images of Ottawa sand. Unfor-
tunately, no quantitative details regarding the algorithm were
provided, which makes it difficult to relate to the study or
judge the accuracy of its results. Another study [2] found
a striking statistical bias in grain-to-grain contact normals
infered from 3DXRCT images that were binarised and then
separated with a classical watershed algorithm.

The aforementioned bias also negatively affects time-
dependent aspects of material structure evolution. For exam-
ple, to infer grain translations from one (imaged) load state
to the next, it becomes necessary to compare the locations of
grain centroids, determined from the spatial distribution of
grain volumes. Similarly, to infer grain rotations between two
(imaged) load states, it becomes necessary to compare prin-
cipal moments of inertia, which are also determined from the
spatial distribution of grain volumes. Rotations, in particular,
are extremely sensitive to the surface artefacts identified in
Fig. 3. Indeed, the authors are unaware of any study to date
that successfully infered grain rotations using binarized CT
images, although advances have been realized recently using
other methodologies [2,41].

In the following sections, a new method is presented aim-
ing to address the outlined shortcomings of current seg-
mentation techniques. Before proceeding, it should be noted
that it is assumed here that two sets of data are already
available: a data file containing a reconstructed greyscale
3DXRCT image, and a binarized data file (0 for void and
a non-zero value for a solid phase) where each solid phase
voxel is labeled with an integer that denotes a grain number
to which it belongs. Individual grains need only be roughly
identified.

3 Proposed method: the big picture

At material scales of the order of particles imaged in this
work, approximately 100 micrometers and above, gravity
(and capillary) forces dominate [34]. It is at these scales that
CT experiments continue to provide unprecedented insight
into the material behavior of granular materials (see e.g., [1]).
It is also in this regime that grain topology has a great influ-
ence on the overall constitutive behavior and strength. Load
is carried via inter-particle contacts, the stiffness and strength
of which depend on contact shape and orientation per classic
Hertz/Mindlin relations (in addition to the inherent material
properties). In other words, the parameters controlling the
macroscopic response are not only the distribution and ori-
entation of grains, but just as importantly, the interactions
between them [29]. At slightly greater scales, highly hetero-
geneous load chains form in response to external load state
(e.g., [28]). When one chain buckles, the system redistributes
load, accompanied by grain rearrangement. Capturing these
salient features in natural materials has been at the heart of

granular research, in geomechanics and physics departments
alike.

As outlined in Sect. 2, the proposed method stands to pro-
vide a much-needed direct path to this ultimate goal. Specif-
ically, the proposed method, schematically illustrated in
Fig. 4, makes possible an accurate 3D characterization of dis-
crete or granular media from greyscale tomographic images,
with sub-voxel resolution and with the ability to resolve grain
topology in the near contact regions. The method also returns
continuous and differentiable geometry over the entire grain
surface, an added benefit of the use of level sets. There
are several features of the proposed approach that make the
above claims possible. We list them with an intent to pro-
vide a bird’s eye perspective of the method. An in-depth
discussion of the key components, namely the algorithmic
details of de-noising and level set algorithms, are given in
Sect. 4.

I Making use of a full fidelity 3DXRCT image Whereas
watershed-based algorithms make use of binary images
(21 grey levels) to separate a grain from other grains,
the proposed method uses of full fidelity images aris-
ing from CT (216 grey levels). This enables the method
to look beyond thresholding to detect grain-to-grain and
grain-void boundaries. Together, extrema in the 1st order
image gradient and zero-crossings in the 2nd order image
gradients provide a strong basis for determining accurate
locations of grain surfaces (see Fig. 3).

II Reducing image noise When image gradients (which tend
to amplify noise) are used as basis for edge detection,
removal of noise is of particular importance. To filter out
image noise, while also maintaining sharp edges between
individual phases, we make use of advanced non-local
de-noising. 3DXRCT histogram is used to provide con-
sistent input parameters across different materials and
X-ray attenuation spectra (see Fig. 2 and discussion in
Sect. 4.1).

III Searching for grain edges via level sets Edge-based vari-
ational LS method is used to isolate objects within an
image, using image gradients as input. To this end, a
scalar energy functional is defined and minimized, such
that in the limit, the zero LS contour is located over
the image phase boundaries. Here we also find it neces-
sary to introduce a new penalty procedure to the classic
LS in order to resolve issues associated with detection
of grain shape near grain-to-grain contact regions. The
new penalty procedure ultimately helps recover accurate
topology over the entire surface of the grain (see Sect. 4.2
and Fig. 7).

IV Improving speed and convergence of level sets Tradi-
tional segmentation methods, i.e., watershed-based meth-
ods, provide an excellent basis for distinguishing indi-
vidual grains in a binary image, albeit with significant
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Fig. 3 Drawbacks of
thresholding in granular media.
a 3DXRCT slice of angular
Hostun sand. b Undesirable
by-products of watershed-based
segmentation: melted contacts
and stepped legobrick surfaces.
c, d X-ray intensities plotted for
paths in (a). Magnitude of the
first image gradient |∇ I | and
sign changes in the image
laplacian ∇2 I are shown to be
strong indicators of grain
boundaries (solid lines are
guides to the eye)
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drawbacks as discussed in Sect. 2. Nevertheless, we
find that watershed provides a great initial condition for
our proposed methodology. Specifically, in search of an
energy minimum, LS benefits immensely from a good
initial guess. This directly leads to improved stability
and faster convergence, as LS does not need to travel far
from its starting location in search of grain edges in an
image.

Items I–IV describe the main features of the proposed
method. Figure 4 provides a schematic representation of a
sequence of steps needed to achieve grain characterization
from reconstructed CT data. In this work, all steps were also
implemented directly in three dimensions. In this way, prob-

lems that may be associated with reconstruction from indi-
vidual slices do not appear as part of the final solution.

Finally, we note that the proposed method converts dig-
ital CT images into a collection of grain avatars, i.e., dig-
itized versions of natural grains. Subsequently, a number
of informative operations can be performed. Spatially, one
could examine geometric quantities such as grain shape and
volume (e.g., Fig. 7), or extract system fabric such the loca-
tion and orientation of individual contacts (e.g., Fig. 8). In
time domain, successive snapshots could be compared (e.g.,
Fig. 9), such that grain scale processes could be determined
as a function of load history. These aspects of analysis will
be covered in more quantitative detail in a forthcoming pub-
lication.
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Fig. 4 Visual schematic of a proposed approach for extracting grains
from images of discrete microstructures. The approach, at once, sepa-
rates the grains from the voids, separates grains from other grains, and
provides sub-voxel resolution over the entire grain surface. Validation
on 3D natural geomaterials of highly rounded and highly angular shapes

is presented in Sect. 5. [Upper track] Proposed algorithm follows the
steps I–IV outlined in Sect. 3. [Lower track] Traditional watershed-
based approach provides a starting guess for the spatial locations of
individual grains

4 Algorithmic details: image de-noising & level sets

4.1 Removal of noise from CT images

In the presence of noise, detecting phase boundaries within an
image can be the extremely difficult [20,32]. This is because
essentially all detection algorithms consider image gradients,
using either maxima in the 1st order gradients or so-called
zero crossings in the 2nd order gradients as boundary indi-
cators [23] (see Fig. 3c,d). Image gradients, however, tend to
amplify (rather than reduce) noise in images. As a result, even
a visually recognizable feature in an image can be entirely
missed from the gradients. Reduction of noise is a necessary
first step in boundary detection.

A good de-noising algorithm should be able to clean up
the local intensity variations and preserve image sharpness in
areas of importance, e.g., near phase edges or grain-to-grain
contacts, all without an a priori knowledge of what a noise-
free image looks like. To accomplish this, all de-noising
approaches rely on one underlying idea—averaging—but
differ in terms of what to average, as well as in their suc-
cess at doing so. For completeness, we first review the two
most popular noise reduction algorithms (Gauss and Median
filters), before focusing on a more successful and recently
published algorithm (Non-Local Means filter). The latter is
used as part of the proposed methodology in this paper.

Gauss filter (GF), shown in Eq. (4.1), is amongst the sim-
plest and the most commonly applied de-noising filters. Local

in nature, it is based on an implicit assumption that pixels (or
voxels in 3D) which appear near to each other in an image
are also most likely to be similar to each other. As such, GF
performs a weighted average over a small window I (x + t)
centered at x in the raw image domain and assigns the com-
puted scalar value to an output image I G F (x), as shown in
Eq. (4.1). In more formal terms, GF returns a weighted aver-
age over an image area x + t using a discrete Gaussian ker-
nel Gρ(t), whose weights decay exponentially as function
of a distance t from the location x of a source pixel. ρ is a
standard deviation of the Gaussian distribution. A constant C
assures that over a finite domain, the sum of all weights Gρ(t)
is unity. Filtering using GF can be performed very quickly
using standard convolution methods, since the Gauss kernel
is separable into its uni-directional components., e.g., in 2D
one can first apply the kernel in the x-direction, followed
by the y-direction. GF minimizes local image fluctuations
well, but is diffusive and leads to blurring of edges (loss of
sharpness).

I G F (x) = Gρ(t) I (x + t)

where Gρ(t) = 1

C
exp

[
− t · t

2 ρ2

]
(4.1)

Median filter (MF), shown in Eq. (4.2), is another popular
de-noising technique. It is identical to GF in all ways except
one: instead of performing a weighted average over a local
image neighborhood x + t , MF extracts a median pixel value
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Median Filter (MF) Non-Local Means (NLM)Gauss Filter (GF)Raw Image

Fig. 5 Comparison of noise-removal techniques for a slice of rounded
sand, Caicos ooids. (Far left) Raw image slice from reconstructed
3DXRCT. (All other) Noise pattern subtracted from (a), with light color
indicating the greatest difference. That grain outlines can be visually

identified from GF and MF noise patterns indicates that these filters
remove too much important detail from phase/grain boundaries. Note:
prior to comparison, all techniques were adjusted to provide a similar
level of de-noising (see text for details)

from this neighborhood and assigns a scalar value to an output
image I M F (x). To this end, all pixels in a neighborhood are
first sorted based on their numerical value, and the pixel being
considered is subsequently replaced with the middle value of
the sorted list, i.e., the median. As intuitively expected, MF is
very successful in removing local outliers. But again, this is
accomplished at the expense of edge sharpness, particularly
in proximity to grain-to-grain contacts.

I M F (x) = median { I (x + t) } (4.2)

Significant improvements over both GF and MF can be
realized by identifying neighborhoods across an entire image
that are of ‘similar context’ and averaging based on the
degree of similarity between these windows, regardless of
their proximity to the source. These techniques are by nature
non-local, and increasingly sophisticated variants have been
developed over the years. We focus on a particularly suc-
cessful and recently proposed de-noising algorithm: Non-
Local Means (NLM) [9,10]. We choose this particular algo-
rithm because it is extremely intuitive and relatively simple to
implement.

The underlying steps of NLM as shown in Eq. (4.3) are
the following. Compare a source image window I (x + t)
with all other windows across the image I , namely I ( y + t).
For each window of comparison, calculate a scalar weight
w(x, y) dependent on the Euclidian distance ||I (x + t) −
I ( y + t)||. Give less importance to pixels away from the
window centers via discrete Gaussian kernel Gρ(t) (identical
to Gρ(t) in (4.1)) and scale the Euclidian distance by a value
of noise variance h. Once the weights are collected, perform
a weighted average over all window centers I ( y) and assign
the result to the source pixel I N L M (x), i.e., the pixel in the
center of the source window. A constant C(x) assures that the
sum of all weights w(x, y) is unity. In this way, averaging
is no longer based on proximity or distance from the source
pixel (i.e., local), but it is rather a function of the context in
which the pixels appear (i.e., non-local).

I N L M (x) = 1

C(x)

∫
I

w(x, y) I ( y) d y

where w(x, y)

= exp

[
−Gρ(t) ||I (x + t) − I ( y + t)||

2 h2

]
(4.3)

In comparison to GF, NLM contains two additional para-
meters. The first is the image noise variance h, a physical
parameter that can be conveniently estimated from the image
histogram. In this work, the variance is taken as an average
variance of the pore and grain X-ray intensities (e.g., vari-
ance of blue and red Gauss distributions in Fig. 2). The other
additional parameter is the size of a non-local search window.
In practice, it is too expensive computationally to compare a
source window I (x + t) to all other image windows of the
same size. Instead, a comparison is typically restricted to a
vicinity of the source pixel (see [9,10] for details), without
adverse effects on the filter performance. In this work, the
search is restricted to a radius of 15 voxels from the source.

In Fig. 5, we compare NLM with GF and MF because lit-
erature on edge detection almost exclusively uses these two
filters as a pre-processing step. To provide a roughly equal
basis for comparison, input parameters for GF and NLM fil-
ters were adjusted so as to provide a visually similar degree
of de-noising to MF, whose local window I (x + t) was fixed
to 3×3 pixels. This lead to a GF filter with standard deviation
ρ of 0.75 pixel lengths applied over a discrete 7×7 Gaussian
kernel. For NLM a source window size of 5 × 5 with a com-
parison search restricted to a neighborhood of 31×31 pixels
centered at the source pixel was fixed, while noise variance
was adjusted until a degree of smoothing visually similar to
GF and MF was obtained, leading to h = 1500 (out of 216 or
65,536 greyscale values), about 50 % lower than estimated
based on the 3DXRCT image histogram.

Based on the visual indicators in Fig. 5, NLM is shown to
reduce image noise extremely well, particularly for discrete
media where it is able to reduce noise from within phases
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while preserving sharpness both at grain-void boundaries
and grain-to-grain contacts. A more quantitative series of
comparisons of NLM with other filters can be found in [9].
Within our proposed methodology schematically described
in Fig. 4, NLM is also the most computationally consuming
step. However, we found it to be indispensable, as evident
from the results in Sect. 5, Fig. 7.

For completeness, we note several publications which
improve upon the basic premise of NLM (not implemented as
part of this work). These include improvements in weighing
parameters [13], iterative filtering [21], and overall efficiency
[8,14].

4.2 Grain surface detection using active level set contours

4.2.1 Detecting isolated grains

Since their introduction a little over two decades ago [31],
level sets (LS) have been extremely useful as a computational
tool in problems involving interfaces. The primary draw of
LS is that they enable motion of very complex interfaces
and shapes to be computed on a fixed Eulerian grid (rather
than via Lagrangian parametric space), with the direction
and magnitude of the interface motion arbitrarily dependent
on the interface geometry. LS operate in a space that is a
single dimension higher than the space where an interface
resides, as schematically illustrated in Fig. 6. In this way,
an interface can be represented as the (zero) level contour C
of some imbedding function φ : � → R, such that C =
x ∈ � | φ(x) = 0, where � is a plane or a volume [15,30].
For example, to describe a three-dimensional shape such as

x

x

grain

initial guess

nal solution

(a)

(b)

grain 
edge

 0

START

END

pore
 > 0

Fig. 6 Schematic of a 1D level set problem geometry. Boundaries to
be detected are shown as open circles in 1D. a An approximate (binary)
initial guess of a level set (LS) function φ(x) at t = 0. This could
be an output of a traditional segmentation technique, e.g., watershed. b
Final solution, ultimately taking the form of a continuous distance func-
tion. Note that φ(x) is always one dimension higher than the problem
domain. Also, grain boundaries φ(x) = 0 can be arbitrarily located on
a computational grid

a sand grain, one would need a four-dimensional function
(one scalar value for every location x, y, z on a fixed Eulerian
grid). Every zero crossing of that function would represent
a point on the surface of the grain, while a full zero level
contour would describe the entire grain surface.

In the context of this work, we utilize edge-based vari-
ational LS [12,24] in order to locate a grain surface in a
reconstructed 3DXRCT image. In a variational framework,
an object (in this case grain) is segmented from an image by
locally minimizing an appropriate energy functional. To this
end, LS function of same size as the image domain is created,
and its zero level LS contour is subsequently evolved until
the scalar energy functional of LS function is minimized.
The functional is at a minimum when the zero level contour
is optimally located over large gradients of the XRCT image.
The specific details of how this is accomplished are described
next.

For our contribution, we adopt a particular variational
framework [25,26], termed distance regularized level set evo-
lution (DRLSE), because of its two favorable traits: (1) An
initial LS function, i.e., φ(x, y, z, t = 0), can be a binary
function, which allows a binarized image to serve as a start-
ing guess, and (2) No LS re-initialization is needed dur-
ing its evolution, which simplifies numerical implementation
tremendously. Equation (4.4) shows the energy functional E
of DRLSE,

E(φ, I ) = μR(φ) + λ L(φ, I ) + α A(φ, I ) (4.4)

where the three terms on the right-hand side of Eq. (4.4) work
in tandem to identify the most likely location of object bound-
aries within an image. These contain three fixed constants,
namely μ, λ, and α. Minimization of the DRLSE energy
functional in (4.4), i.e., the evolution of the contour in the
direction of the negative energy gradient, leads to the follow-
ing expression [25]:

∂φ(x)

∂t
= μ R(φ) + λ L(φ, I ) + α A(φ, I )

R(φ) = ∇ · (d(φ)∇φ
)

L(φ, I ) = δ(φ)∇ ·
(

g(I )
∇φ

||∇φ||
)

A(φ, I ) = δ(φ) g(I )

δ(φ) =
{

1
2a

(
1 + cosπφ

a

)
if abs(φ) ≤ a

0 if abs(φ) > a
(4.5)

d(φ) =
⎧⎨
⎩

1
2π

sin(2π ||∇φ||)
||∇φ|| if ||∇φ|| < 1

|∇φ|−1
||∇φ|| if ||∇φ|| ≥ 1

g(I ) = 1

1 + ||∇ I ||2
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The first term of the right side of Eq. (4.5), R(φ), is a stabiliz-
ing term which helps maintain a smooth (distance) profile of
the LS function during its evolution. At all times, R(φ) works
to keep the signed distance profile of LS, or rather the mag-
nitude of its gradient equal to unity near its zero-level con-
tour. This term also represents a fundamental contribution
of DRLSE over classic edge-based variational approaches
which require periodic re-initialization. The second and third
terms, namely L(φ, I ) and A(φ, I ) are so-called external
energy terms, directly incorporating image information I .
Specifically, L(φ, I ) is a contour integral of the LS function.
L(φ, I ) is minimized when the zero LS contour is located
over the boundaries of an object within an image, as indicated
by an edge marker g(I ) ∝ ||∇ I ||−2 that heavily favors loca-
tions of large image gradients. The third term, A(φ, I ), is a
‘balloon force’ or a weighted area integral. This term speeds
the motion of the zero LS contour, scaled by the edge marker
g(I ). While not strictly necessary, A(φ, I ) helps move the
contour outward (or inward depending on the sign of α) in
order to improve time to convergence. Evolutions of both
L(φ, I ) and A(φ, I ) are restricted by a smooth Dirac delta
function δ(φ) to a narrow band of φ <= a, with a equal
to 3/2.

The stabilizing term R(φ) simplifies numerical imple-
mentation of DRLSE tremendously. It provides diffusivity to
(4.5), enabling gradients to be expressed via a central finite
differences as well as allowing explicit time integration. The
initial condition φ(t = 0) is supplied by the scaled binarized
image, with its zeros set to a + 1/2 = 2 and ones set to
a − 1/2 = −2. This scaling is needed because in the LS
formulation, grain boundary is defined by a zero level con-
tour, while in a binary image, that contour is 1/2. At domain
edges, Neumann boundary conditions are imposed by set-
ting the gradient of φ null. While the applications of DRLSE
have thus far been restricted to 2D images (we are not aware
of 3D implementations in literature), we find that extend-
ing it to 3D images such as 3DXRCT presents no additional
complications.

Thus far, the discussion in this section has implicitly
assumed that objects (or grains) to be segmented are iso-
lated from one another. When in contact, basic DRLSE is
not sufficient and enhancements of Eq. (4.5) are necessary.
This is the subject of the next section.

4.2.2 Detecting contacting grains

In images of discrete media, where individual objects (e.g.,
grains) may be in contact, or more generally where ||∇ I ||
may not have a single distinct maximum (e.g., see Fig. 3d),
DRLSE tends to ‘leak’. In other words, in search for an edge
without a single, clear gradient maximum, zero LS contour
may not slow down sufficiently, overshoot the boundary of

the target object, leak into another contacting object, and
never recover. We found this to be a real, and clearly unde-
sirable problem. As a remedy, we introduce two modification
to classic DRLSE:

I Level set competition Introduce two LS functions, penal-
izing any overlap between the two [19,43]. The first, φ1,
is assigned to a grain under consideration, and the sec-
ond, φ2 is assigned to all other grains in a computational
window. Any attempt by φ1 to ‘leak’ into any other grain
will be met with resistance from φ2 when in contact. In
this way, a single grain can always be segmented with no
more than two LS functions, regardless of the number of
other contacting grains.

II Zero-crossing penalty Some edges, particularly those near
grain-to-grain contact, may not have a strong gradient
maximum. Here, zero-crossings of the 2nd order gradi-
ent, characterized by image laplacian ∇2 I , are excellent
predictors of edges (see Fig. 3c,d). In practice, searching
for the exact locations of zero-crossings is cumbersome
and tends to yield too many false positives. Instead, we
note that ∇2 I is positive in the void regions near contact
(grains have a greater X-ray attenuation than the surround-
ing voids). We incorporate this in the form of a penalty
term that progressively slows down or outright stops the
evolution of LS, depending on the magnitude of ∇2 I > 0.

Together, modifications I and II yield a variational LS in
(4.6) that is better tailored to images of discrete media:

∂φi (x)

∂t
= μ R(φi ) + λ L(φi , I ) + α A(φi , I )︸ ︷︷ ︸

classic DRLSE, (4.5)

+ β P(φi , φ j , I )︸ ︷︷ ︸
modifications I and II

for i, j = 1, 2 , i �= j

P(φi , φ j , I ) = δ(φi )
(
F(I ) + H(−φ j )

)

H(φ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2a

(
1 + φ

a + 1
π

sinπφ
a

)
if abs(φ) ≤ a

1 if φ > a

0 if φ < −a

(4.6)

F(I ) =
{

n ∇2 I if ∇2 I ≥ 0

0 if ∇2 I < 0

Note that the sole difference between Eqs. (4.5) and (4.6)
is the presence of two competing LS functions, φ1 and φ2,
as well as an additional term P(φi , φ j , I ) which specifies
the interactions between φ1 and φ2; β is a constant. Only the
terms not previously defined are expanded in Eq. (4.6).

The additional term P(φi , φ j , I ) incorporates modifica-
tions I and II. Specifically, interpenetration between LS func-
tions is penalized via a smooth Heaviside function H(φ).
Similarly, the motion of both LS functions into regions where
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Fig. 7 Characterization of rounded Caicos ooids (top) and angular
Hostun sand (bottom). (Left) A slice through a 16-bit 3DXRCT volume
of 2003 voxels (approximately 1mm3). Representative grains varying
from 193−253 voxels in volume were chosen at random from each sam-
ple and segmented directly in 3D using the techniques described in this

paper. (Middle) Grains shown at higher magnification. The proposed
technique (LS with prior image de-noising) captures the grain surfaces
faithfully and with consistency. (Right) Grains rendered in Paraview (via
a 3D Contour filter) without any topological modifications or enhance-
ments

image laplacian ∇2 I > 0 is penalized via F(I ). The latter
primarily affects areas in the vicinity of grain-to-grain con-
tacts, where image laplacian is strongly positive. Parameter
n, equal to the mean of the positive values of ∇2 I , normalizes
the magnitude of the image laplacian.

In terms of implementation, φ1(t = 0) is first initialized
as a binary function of the grain to be segmented. φ2(t = 0)

is initialized as a binary function of all other grains in the
computational domain. φ1 and φ2 are further modified by
adding an extra layer to solid voxels, and linearly mapping
the binary [0, 1] to a more appropriate [2, −2] domain, as
discussed in the previous section. Equation (4.6) is imple-
mented as before, via standard 2nd order central finite dif-
ferences, with Neumann boundary conditions enforced at all
domain limits. There are a total of five constants used for
all figures generated in this work: time increment �t = 1
with μ = 0.001, λ = 2, α = −3, and β = 2. A high value
of β leads to faster convergence (on average, around 200–
500 time steps), but also biases the results toward lower than
actual grain volumes. Evolution of LS is terminated when
either the zero crossing points stop varying for consecutive
iterations or exceed a prescribed maximum number of itera-

tions [25]. Here we used a latter termination criterion, capped
at 300 iterations. The results using 3DXRCT images of nat-
ural geomaterials are presented next.

5 Results on natural granular media

In this section, we use the proposed methodology to char-
acterize two morphologically different geomaterials. Hos-
tun sand, named after its town of origin in the south-east
of France, is a plain sand. Its grains result from a gradual
breakdown of rock due to weathering, leading to angular
or sub-angular grain shapes. Primarily composed of silica,
Hostun sand is a reference material in soil mechanics - its
mechanical properties have been studied for decades (e.g.,
[17,18]). On the other hand, Caicos ooids originate in the
warm, tropical waters of the Bahamas island chain. While
still a sand (based on their physical size), ooids do not begin
their life as rock. Rather, they grow from seeds or nuclei,
which can themselves be fragments of quartz or shell. They
accumulate layers in time, a result of chemical precipitation

123



Extracting quantitative descriptors from tomographic images 19

from a saturated aqueous environment. This mechanism of
formation leads to unusually smooth and rounded grains.

Both sand types were imaged non-destructively during
a series of triaxial load states. The samples were first con-
fined isotropically, followed by a series of axial strain-
controlled load increments. At the conclusion of each load
increment, sample is rotated and as series of XRCT images
was collected (see [3] for details). Overall, samples contained
enough grains to allow experiments to reproduce classic fail-
ure mechanism of these materials, i.e., shear bands for the
dense granular packings. In terms of resolution, each grain
was composed of roughly 153 − 253 voxels, a volumetric
equivalent of a sphere of 9−16 voxels in radius. Following the
experiments, individual CT radiographs were reconstructed
into 3DXRCT greyscale images. Thereafter, density-based
thresholding followed by a traditional watershed-based seg-
mentation was performed. This sequence of steps followed
the state of the art in characterization of imaged granular
media, as schematically shown in Fig. 1. Data arising from
these steps provide a starting point for our proposed algo-
rithm, as outlined in Sect. 2.1 and schematically shown in
Fig. 4.

Figures 7 through 9 showcase a range of properties that
can be extracted using our proposed algorithm—including
the topology of individual grains, interactions amongst a
group of grains, and incremental grain kinematics over a
series of images corresponding to different material states.
In all figures, grains of Caicos and Hostun were extracted
using an identical set of algorithmic parameters, as out-
lined in Sect. 4.2. To plot each grain,2 its level set func-
tion was exported directly to Paraview and its zero contour
rendered using a built-in contour filter, without any topo-
logical modifications or enhancements. Based on Figs. 7
through 9 we find the presented technique to be highly effec-
tive in characterizing granular systems whose discrete nature
makes them poor candidates for classic LS segmentation
techniques.

Perhaps the most remarkable part of the results is that the
grain surfaces in Fig. 7 correctly reflect the expected mor-
phologies of two very different geomaterials. Specifically,
Caicos ooids appear well rounded, while Hostun sand shows
a high degree of angularity, an expected outcome based on
the materials’ geologic mechanisms of formation. The center
images in Fig. 7 also illustrate a key sequence of steps needed
to obtain final 3D grain shapes. This includes a rough initial
guess, as provided by the watershed-based algorithm, and
improvements in calculated image gradients, as enabled by
the non-local NLM de-noising filter.

2 Recall that our proposed technique ultimately yields one level set
function for each grain, i.e., a scalar value for each node on a regular
Eulerian grid. A zero contour of this function describes the surface of
a chosen grain.
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Fig. 8 Multiple grains of Caicos ooids (top) and Hostun sand (bottom)
in contact. (Left) Grains rendered in Paraview (via a 3D contour filter),
without any topological modifications or enhancements. X marks a cen-
tral grain and numbers 1–3 mark the three grains in contact with the
central grain. (Right) Contact orientations projected on a plane com-
mon to the three contact points. On the same plane, 3DXRCT image
projection is shown

That surface topology of grains in Fig. 7 do not appear to
be significantly affected by their surroundings, especially by
several other grains which are in contact with them (not all
visible from a 2D slice), suggests that more reliable measure-
ments of contact properties should be on the horizon. This
point is schematically shown in Fig. 8 where three contact-
ing grains around a central grain are rendered in two different
flavors: (at left) with grains isolated from their surroundings,
and (at right) with a central grain over a projected 3DXRCT
image in a plane containing the three points of contact. Pro-
jected contact orientations are visually estimated.

Figure 9 provides a visual indicator of the resolution avail-
able for inference of grain kinematics. The inset indicates the
size of the tested granular sample and the boundary condi-
tions applied to it. The ultimate failure plane, or shear band,
is also shown in relation to the global axes. Here, a Caicos
grain originating from a region that will ultimately be a part
of a failure band is followed during two (macroscopically)
equal strain increments: the first, imaged at the start of testing
(small strain inside the shear band) and the second, during
the approach to critical state (large strain inside the shear
band). As Fig. 9 shows, both increments appear with enough
resolution so as to visually provide high-fidelity grain kine-
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(a)

(b) before & after
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Fig. 9 Grain kinematics inside a shear band during two equal macro-
scopic strain increments. (Inset) Macroscopic boundary conditions,
with the shear (localization) band shown in relation to the global axis.
a and b Grain contours of a Caicos ooid, in a plane of inset global axis.
Grain resolution afforded by the proposed methodology allows for direct
assessment of grain-scale kinematics. Note: differences between con-
tours in (a) and (b) are due to significant out-of-plane grain rotation
between the two load stations

matics, both in terms of the translations and rotations. To give
a sense of magnitude, grain motion during the early load step
in Fig. 9a corresponds to roughly 1 voxel length of vertical
(z-direction) displacement.

That the presented method is able to successfully char-
acterize natural materials with sub-image resolution, despite
the inherent noise in elemental grain composition and XRCT
image capture, suggests significant promise. Planned future
studies will provide more focus to statistical aspects of the
granular material response.

6 Summary

We have presented a level set-based methodology for
enhanced quantitative characterization of particle morphol-
ogy. The new technique affords avant-garde imaging tech-
niques, epitomized by X-ray computed tomography, the real
possibility of accurately quantifying kinematics and spatial
interactions amongst grains as a function of macroscopic
processes, e.g., deformation under load. This new technique
makes full use of grayscale image data arising from CT and
then filters it to furnish precise edge markers via the first and
second gradients of X-ray attenuation. Using these mark-
ers and current segmentation techniques (e.g., watershed)
as initial conditions, level sets are allowed to evolve until
the boundary of particles is identified and, consequently,

mathematically characterized. The very challenging region
of grain-to-grain contact is accurately resolved by using two
competing level set functions, one belonging to the source
grain and the other belonging to other grains in the com-
putational field of view. In this way, the proposed method-
ology ultimately enables a quantitative description of parti-
cle shape, particle kinematics, and characteristics of neigh-
boring contacts. This information is crucial to quantify the
micro mechanical essence of granular matter: fabric, kine-
matics, and contact forces [11]. Armed with this informa-
tion, future models can more accurately describe the micro
mechanics of granular materials (e.g., using discrete meth-
ods [6]) based directly on in situ experiments, and ulti-
mately lead to ‘tomography-to-simulation’ paradigms that
can unify micro and macro mechanical processes in granular
materials [7].
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