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On-sky speckle nulling (Keck)

(Things | work on)

* WFIRST coronagraph EMCCD O — @

Starshade optical guidance systems

On-sky, focal plane speckle suppression

Stellar Double Coronagraph support
Starshade optical guidance/control

* Binary star coronagraphy (Kuhn, Wang, Morales) 4
* Microwave kinetic inductance detectors (Meeker, Mazin)
* Self-coherent camera development (Delorme) 3 " ‘.

Post-processing algorithms for high contrast imaging
e w.
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High contrast imaging data is horrible

Planets, disks, etc are at or
below the systematic noise

SPHERE o _
Post-processing is required

Keck SDC WEFIRST-HCIT



Typical data

Many data frames of target star
 Temporally separated
* May be spectrally dispersed
Coronagraph suppresses diffraction of central star
* OK to saturate in areas you don’t care about
(eg central core)
Speckles mostly fixed, but change through data
 Atmosphere
* Flexure
e etc
* Minimizing changes (optical stability) is very
important
Sky background fluctuations
Detector noise
Planet rotates through images

Raw data
from Keck

SNR




Speckles “fixed”
Planet position fixed
Does not work

Typical data

* Many data frames of target star
 Temporally separated
* May be spectrally dispersed
* Coronagraph suppresses diffraction of central star
* OK to saturate in areas you don’t care about
(eg central core)
» Speckles mostly fixed, but change through data

 Atmosphere Speckles “fixed”

Planet position rotates

* F|€XU re (sky rotation/telescope roll)
* etc Occasionally works
* Minimizing changes (optical stability) is very

important

* Sky background fluctuations
* Detector noise
* Planet rotates through images



Perfect post-processing and analysis

* For each frame of the datacube, let the intensity be
Intensity measured Speckle signal Speckle noise Planet signal Planet noise Detector noise

o Li(@,y) = Si(z,y) + Nei(z,y) + Pi(z,y) + Npi(@, y) + Na,i(z,y)
(N will be a spatially-dependent Poisson random variable, but may be more complicated for the detector)
* (optional) Calculate the “reduced datacube”

Ri(z,y) = Li(z,y) — Si(z,y)
= PZ(CC,y) ‘}—Ns,i(xay) +Np,i($>y) —f—Nd,i(ﬂf,y)
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Perfect post-processing and analysis

* For each frame of the datacube, let the intensity be
Intensity measured Speckle signal Speckle noise Planet signal Planet noise Detector noise

Frame#/li(x’ y) - SZ(Q:’ y) T+ NS,?J@:: y) T Pz(aja y) + Np,i(xv y) + Nd,i(ﬂfa y)
(N will be a spatially-dependent Poisson random variable, but may be more complicated for the detector)

(optional) Calculate the “reduced datacube”

Ri(x,y) = Li(x,y) — Si(z,y)
— PZ(CC, y> —}_Ns,i(aj) y) + N ,i(xﬁ y) ‘}’Nd)i(il?, y)
Create a model of your planet/disk signal P, for example g, Airy function, or your known instrument PSF

sky rotation angle
Pi(r,0) = a- PSF(ro,00 + 605

Create a likelihood function (knowing the noise) of the model and run an MCMC over the parameters you
care about (a, r,, 0,) for characterization

* What are the position, amplitude, etc of my planet or disk?

Calculate the Bayesian information criterion against a model with no planet for detection
* Is there really a planet or disk there?



Thanks for your attention! Questions?

* Acknowledgements
e Jeff Jewell
* Dimitri Mawet
* Garreth Ruane
* Graca Rocha

Reduced image of one of the
planets around Alpha Cen (in prep)




..not that simple

Intensity measured Speckle signal Speckle noise Planet signal Planet noise Detector noise

rrome s Li(T:Y) = Si(z,y) + Nsi(z,y) + Pi(x,y) + Npi(z,y) + Na,i(z, )
* You don’t know S, the speckle signal
* You (usually) don’t know N, ; either!
* You must estimate it from the science data /,
* You can also estimate it from other PSFs that behave similarly (a “reference” set)

* The goals of post-processing are to best estimate (or equivalently, remove) the
speckle signal S; for each frame, without including P; in the estimate of S,



Classic PSF subtraction

* For each (sub)image I. in your datacube
* Minimize
R; =1I; — a; (I;)

using least-squares

* The signal is rotating through the cube,
so should survive

* Derotate the residuals R, and median
along the time axis




Analysis: classic PSF subtraction

Intensity measured Speckle signal  Speckle noise Planet signal Planet noise Detector noise

Ii(z,y) = Si(z,y) + Ns.i(z,y) + Pi(z,y) + Npi(z,y) + Nai(z,y)
Perfect reduction —> R7;<CU, y) — Iz’(iU, y) - Si(% y)

— Pz<xay) +Ns,i<xay> +Np,i($7y) +Nd,?§($ay)
S, is estimated as a scaled version of the median of all the data frames

R =1 —«; {I;
that is, S;~ a.<l.> t L [ < Z>

As the number of frames grows, N0 by the CLT
P20 as well due to rotation, or is O if a reference star is used

Since you are minimizing residuals, you run the risk of fitting away the planet when the
planet brightness gets really large...

Since this is essentially a scalar, it works only when S is not changing.
* Never works well in ground-based planet data

* But it works just as well as modern methods when the speckles are static, such as in space
coronagraph testbeds!!

Ygouf et al., WFIRST Technical Report TR1605 (2016)



Latest: classic PSF subtraction
Intensity measured Speckle signal  Speckle noise Planet signal Planet noise Detector noise

Li(z,y) = Si(z,y) + Ns.i(z,y) + Pi(z,y) + Npi(z,y) + Na,i(x,y)

e Combined into an MCMC model: (Ii]z,y]) = a (Ref[z,y]) + A - PSF[z — 2,y — Yo

i
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Bottom et al. 2015 ApJ 809, 11B X Y, a A
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Locally optimized combinations of images (LOCI)

* For each (sub)image I. in your datacube
* Try to reproduce it by minimizing

Ri = Iz — Zaijlj

J
solving for a;; using least-squares
* Replace I, with a reference [I;if using RDI

* The signal should be rotating through
the cube, so should survive

* Derotate the residuals R, and median
along the time axis

Lafreniére et al. Ap.J., 660:770-780, 2007



Analysis: LOCI

Intensity measured Speckle signal  Speckle noise Planet signal Planet noise Detector noise

LL(Qjay) — sz(ili,y) +Ns,i(xay) T Pi(xay) +Npai(ajay) _l_Nd,i(x?y)
Perfect reduction —> Ri(CU, y) — Ii(ZU, y) - Si(xyy)

— Pz(ajay) +Ns,i<$7y) +N ,7;<CC,y) —i_Nd,i(xay)
e S is estimated as a linear combination of other

J .
similar dataframes
Rz' = Iz — Zaijlj
that is, SiNZaijIj J

* The “best” élataframes to use will be the closest in
time, but these will contain the planet signal in the
estimate of S|/

* Can exclude nearby frames, making estimate of S, worse

* By minimizing using least-squares residuals, you can
fit away the planet!

* How do you get uncertainties and errors? MCMC?




Latest: Template LOCI (TLOCI)

GPI H Band Nov. 2013 60 sec

* Incorporates PSF model to prevent
reduction from overfitting

* Spatial PSF template
e Spectral PSF template ,Q

* Selects images based on minimizing
PSF contamination

* Forces coefficients to be positive

° Attempts to correct for planet Beta Pic, single frame (GPI) TLOCI reduction
subtraction

* Still challenging to get uncertainties
* No MCMC

Marois et al., Proc. SPIE 9148, Adaptive Optics Systems IV, 91480U (21 July 2014)



Principal Components Analysis (PCA, aka KLIP)

* Unlike LOCI, create “optimal” basis
images Z; from your datacube I;

* These basis vectors capture the
maximum variance in the shortest
number of elements

* Also known as the Karhunen-Loeve
transform

Soummer, R., Pueyo, L., & Larkin, J. 2012, ApJL, 755, L28



Principal Components Analysis (PCA, aka KLIP)

* Pixel intensities are correlated 120-
. o
between images Lo
o Lo,
* Procedure*: 200 e oo’
* Center data (mean subtract each pixel) 5 Different frames o o ‘: o
* Build covariance matrix of data cube 3 180 - \4\‘\: o *’
1 e 3 ® ® e
C=—-"X"X < ° So
N -1 Z ®oe_o0o ©
 Diagonal elements are variance of each pixel % 160 1 . o ¢
* Off-diags are co-variances between pixels = { ®e
* Calculate the eigenvectors, ordered by s
eigenvalue size-->principal components 140
o
o

130 140 150 160 170 180 190
Intensity in pixel [14, 14]

*NOTE: Don’t do it this way. Modern methods to calculate the principal components use more stable and efficient algorithms to get same result



Principal Components Analysis (PCA, aka KLIP)

* For each (sub)image I. in your datacube
 Calculate

Ri=1-) (Z;-L)Z

J
* Replace Z;with a reference Z’;if using RDI

* The sighal should be rotating through
the cube, so should survive

* Derotate the residuals R, and median
along the time axis

Soummer, R., Pueyo, L., & Larkin, J. 2012, ApJL, 755, L28



Analysis: PCA

Intensity measured Speckle signal  Speckle noise Planet signal Planet noise Detector noise

Ii<$7y) — sz(iliay) +Ns,i<xay) T Pi(xay) +Npai(ajay) +Nd,i(x7?/)
Perfect reduction —> Ri(CU, y) — L;(ZU, y) - Si(x7y)

— Pz(xay) +Ns,i<$ay) +N ,7;<CC,y) +Nd,i(xay)
S, is estimated as a linear combination of basis

T
veCctors R,L :IZ —Z(ZJ Iz) ZJ

thatis, S,~)_ (Z;- L) Z; j

The basis véctors can contain the planet signall!

e Can try and exclude signal-containing frames, but lose
fidelity

Projection onto principal components remove flux
from the planet.

* Too many components--> no more planet
How do you get uncertainties and errors? MCMC?




Latest: Forward modeling PCA

Ri=1-) (Z;-L)Z
J

Use a model of the (spatial) PSF to
figure out how much the PSF gets
eaten by the principal components

Need supercomputer to do this. Inference still challenging.
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Pueyo L., ApJ 824 117 (2016), Wang et al. AJ 152, 4 (2016), Ruffio et al., ApJ 842, 1 (2017)
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Include and correct for the effects of the PSF in the covariance matrix calculation
Run a match filter in the reduced datacube using the PCA-distorted PSF



Over-subtraction and self-subtraction
I;(x,y) = speckle(x, y) + planet(x,y) + noise(z, y)

Ri=1I;—» (Z;-L,) Z
J
e Over-subtraction

* If the basis vectors “overlap” (in a multiplicative or dot-product sense), then
some of the planet signal will be removed

* This is nearly unavoidable
* This is a linear operation

e Self-subtraction

* If the basis vectors are generated from a dataset that contains the signal,
then the basis vectors will contain the signal as well

* This is avoidable using reference differential imaging or similar tricks
* This is a nonlinear operation



Other recent developments

e Local low rank, sparse, and Gaussian Decomposition (LLSG, Gomez-Gonzalez et al.
2016)

 Decomposes datacube into low-rank term (speckles), sparse term (planet),
extra Gaussian noise

* Seems to outperform PCA and nearly as fast
* No planet model possible—no inference possible
* Has extra free parameters

Gomez-Gonzalez et al. 2016 A&A 589, A54



Other recent developments

Modcl Classical KLIP NMF

* Non-negative matrix factorization
(NMF, Rén et al. 2018)

 Decompose into a weight matrix
and feature matrix, all positive

* More physical for imaging data
(intensity always positive)

* More accurate for disks; much
less over-subtraction

* No way to include model of disk?
—no inference possible

e Useful for planets?

10 10 10°
Flux (mJy arcsec “)

Ren et al. 2018 ApJ 852, 2



Other recent developments

e Simultaneous exoplanet detection
and instrument aberration retrieval
(Ygouf et al. 2013)

e Simultaneously model the image
aberrations in the pupil plane and
planet in the focal plane (!)

* Uses real physics, makes sense,
inference-friendly

* Only works on simulated data; not
clear how well it will work with
horrible ground-based data

* Requires multichannel data

Ygouf et al. 2013 A&A 551, 138

(a) Object map

(c) Aberration map

(b) Image of the object map in
the focal plane

(d) Image of the speckle field
in the focal plane



Summary

* High contrast imaging data is awful

* Multiple algorithms exist to reduce the data
* Most based on matrix factorization schemes
* Few are based on physics
* Inference hard

* Challenging to protect planet/disk signal from reduction algorithms
* Removed by overfitting
* Included in speckle components



Joint data and model approach

* Joint model + systematics

y=A-w+ u(d) + noise

* Note this is for one frame, to keep things simple

Parameter Shape Typical Description
y Npix x 1 10000 x 1 A single data frame
A Npix x m 10000 x 10 | The systematics design matrix
N/A N/A Matrix dot product
w mx1 10 The weight applied to each vector in the design matrix to
reproduce systematics
vl Npix 10000 Your model
0 ? 3 The number of parameters in your model (x, y, amplitude)
noise Npix 10000 Extra noise (such as read noise, sky noise, whatever)




Data and model y = A-w+ u(f) + noise

r N
* The systematics design matrix A is a collection

of the systematics vectors {V}. {V} could be: t t $
* The principal components of your data 5

* The sparse decomposition of your data
(LLSG) 0.3

. A=]|v1i v2 v3 - w=
* The non-negative matrix factorization
data (NNMF) -2.1

e ...orinclude it as free parameters

* A.w describes the systematics in a single v v v
dataframe

e u(r, B) describes your signal

u(r, )




Put into a probabilistic model

p(y|0,w) = N (y; Aw

u(6),C)

_exp(—3(y —A-w—pu(0)'C T (y —A-w—pu(d)))

Vv (2m)k|C]|

Parameter Shape Typical Description
p(y|6, w) 1 (scalar) 1 Probability of your data given your model parameters and weights
y Npix x 1 10000 x 1 | A single data frame
A Npix x m 10000 x 10 | The systematics design matrix
w mx 1 10 The weight applied to each vector in the design matrix to reproduce
systematics
v Npix 10000 Your model
? 3 The number of parameters in your model (x, y, amplitude)
C Npix x Npix 10000x | Noise covariance matrix (may be assumed to be diagonal)
10000




Finally: inference

weight covariance matrix
incorporates uncertainties

* The expression / in the weights
p(yl0) = N (y; u(0),C + AAAT)

is almost what we want. For inference, we want p(&/y). You can get this
by multiplying by a prior on your model parameters.

p(0ly) o p(y|0)p(0)

* For example, here is a model/prior | will use later

Shifted-scaled PSF model ILL(CUO, Yo, CL) = a - PSF [.CU —20,Y — yO]

Uniform prior on position p(ﬂ:o) ] p(yo) X :-
Scale-invariant prior on p(a) X :_/a,

amplitude




1) ADI with fake signal injected after

e “Perfect” ADI case

e Calculate A. A Cw/out Beta Pictoris dataset
) /4
planet in data

* Should perfectly
reproduce injected
signal (within
uncertainties)

Injected signal Signal + speckles
(note signal not visible)



2 components
Probability map

Injected signal

True values

e

hJ




5 components

Probability map
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Probability map

10 components




20 components

Probability map




Review of common algorithms

* Sources in data will self-subtract if they
overlap with the basis vectors
* Have to inject fake companions to figure
out how bad this effect is

* Where to stop? How many
coefficients/components?

* Noise propagation? Error bars?
* Disks?

* What am | looking at? Is it real? Model
selection?



Issues with LOCI, PCA, etc

e Self subtraction

* The basis vectors will “overlap” with the signal in the
image, so as you increase the number of basis vectors
the signal gets removed more and more

* |f the signal is rotating, low amounts of rotation will
lead to “rotational” self-subtraction

* Throughput calibration

* Fake signals need to be injected in the data to tell
what the algorithm is doing

* Negative fake signals are used to figure out
photometry and astrometry

* Very hard to tell what you are looking at



Review of common algorithms: LOCI

* For each (sub)image I. in your datacube
* Try to reproduce it by minimizing
Ri = Iz — Zaijlj
j

using least-squares
* Replace I, with a reference [I;if using RDI

* Derotate the residuals R. and median
along the time axis




Bayesian inference provides a principled approach to the inference of a set of parameters, ©, in a
model (or hypothesis), H, for data, D. Bayes’ theorem states that

Pr(D|©, H) Pr(©|H)

Pr(©|D, H) = Br (DI} ,

(D)

where Pr(®|D,H) = P(O®|D) is the posterior probability density of the model parameters,
Pr(D|®,H) = L(O) the likelihood of the data, and Pr(®|H) = 7(®) the parameter prior.
The final term, Pr(D|H) = Z (the Bayesian evidence), represents the factor required to normalize
the posterior over the domain of ® given by:

Z = L(O)r(©)dO. (2)
Qe
Being independent of the parameters, however, this factor can be ignored in parameter inference
problems which can be approximated by taking samples from the unnormalized posterior only,
using standard MCMC methods (for instance).
Model selection between two competing models, Hy and H;, can be achieved by comparing
their respective posterior probabilities given the observed dataset as follows:

 Pr(Hy/D) Pr(D|H,)Pr(H,) Z Pr(H,)

= Pr(Ho|D) = Pr(D|Ho) Pr(Ho) _ 2o Pr(Hy)

3)



Joint data and model approach

* Joint model + systematics

y=A-w+ u(d) + noise

* Note this is for one frame, to keep things simple

Parameter Shape Typical Description
y Npix x 1 10000 x 1 A single data frame
A Npix x m 10000 x 10 | The systematics design matrix
N/A N/A Matrix dot product
w mx1 10 The weight applied to each vector in the design matrix to
reproduce systematics
vl Npix 10000 Your model
0 ? 3 The number of parameters in your model (x, y, amplitude)
noise Npix 10000 Extra noise (such as read noise, sky noise, whatever)




Data and model

* Joint model + systematics

y = A-w—+ u(f) + noise

w = [5,0.3,2.1]




Data and model y = A-w+ u(f) + noise

r N
* The systematics design matrix A is a collection

of the systematics vectors {V}. {V} could be: t t $
* The principal components of your data 5

* The sparse decomposition of your data
(LLSG) 0.3

. A=]|v1i v2 v3 - w=
* The non-negative matrix factorization
data (NNMF) -2.1

e ...orinclude it as free parameters

* A.w describes the systematics in a single v v v
dataframe

e u(r, B) describes your signal

u(r, )




Put into a probabilistic model

p(y|0,w) = N (y; Aw

u(6),C)

_exp(—3(y —A-w—pu(0)'C T (y —A-w—pu(d)))

Vv (2m)k|C]|

Parameter Shape Typical Description
p(y|6, w) 1 (scalar) 1 Probability of your data given your model parameters and weights
y Npix x 1 10000 x 1 | A single data frame
A Npix x m 10000 x 10 | The systematics design matrix
w mx 1 10 The weight applied to each vector in the design matrix to reproduce
systematics
v Npix 10000 Your model
? 3 The number of parameters in your model (x, y, amplitude)
C Npix x Npix 10000x | Noise covariance matrix (may be assumed to be diagonal)
10000




Put into a probabilistic model
p(yl0, w) = N (y; Aw + u(6),C)

* Notice this is not making an assumption about “speckle noise being normally
distributed” or anything like that which is obviously wrong. The speckles are

described by some combination w of feature vectors A

 The assumption is the “rest of the noise” after removal of speckles can be
described by a Gaussian with a covariance matrix C



No one cares about the weights
p(yl0, w) = N (y; Aw + u(6), C)

* We don’t care about p(y[&,w). We really want p(y/8)
* The weights w do not contain anything remotely interesting

* Would be nice to get rid of them...let’s invent a prior
p(w) = N(w; 0, A)

* Assume a Gaussian prior on the weights with zero mean and
covariance matrix AA

* Ais an mxm matrix

* Then marginalize them out

pwmzjmpwmwammj

— 0



2 miracle occurs p(y|0, w) = N (y; Aw + u(6),C)

plo) = | " p(w)p(yl6, w)du

— O

* This is a nasty m-dimensional integral and bad news if you try and do
it with a computer. But it actually has an analytic solution!

plo) = | " p(w)p(yl6, w)dw = N (y; 1(8), C + ALAT)

— OO

* This takes about a page of linear algebra to show. See Luger et al
2016



Finally: inference
* The expression
p(y|0) = N (y; n(6),C + ALAT)

is almost what we want. For inference, we want p(&/y). You can get this
by multiplying by a prior on your model parameters.

p(0ly) o p(y|0)p(0)

* For example, here is a model/prior | will use later

Shifted-scaled PSF model ILL(CUO, Yo, CL) = a - PSF [.CU —20,Y — yO]

Uniform prior on position p(ﬂ:o) ] p(yo) X :-
Scale-invariant prior on p(a) X :_/a,

amplitude




How to calculate everything | talked about

* The design vectors and such depend on the particular reduction approach you
'gsc/eq Here is how to calculate everything when you take the design vectors from

* A (design matrix)
* Calculate the first m principal components of your datacube

* N (weight covariance matrix)
* For each frame in your datacube, reduce it using A
 (thisis just a dot product for PCA.)
* Then find the covariances of each component weight (the means are automatically zero for
PCA, and off-diagonal elements are also ~0)
* C (noise covariance matrix)
* Reduce the datacube using A
* don’t derotate; make a pixel-by-pixel diagonal matrix of the variances
* Multiply by ~2 if you are paranoid about extra noise (fudge factor)



Algorithm layout

 Calculate A, C, A; choose a PSF model/priors

* For each frame of the datacube:
* Look up the sky angle, a
e Offset the PSF model (r, 6, a) -> (r, 6 + a, a)

* This tracks excess flux at a moving position
* No derotation here

» Sample from p(0|y) o p(y|0)p(0)
* This is the Gaussian from before

* Only 3 parameters due to marginalization trick
* Use nested sampling

* Save the samples

 Combine all the samples



Complaints about this approach

e This is just PCA repackaged in confusing Bayesianism; there’s nothing
new here

* You can use PCA to generate the design vectors, or you can use anything you
want. The point is that you can include uncertainties in your systematics
model in your data analysis.

e Other people already do forward modeling; nothing to see here folks

* No, other people forward model the effects of self subtraction on the PSF and
then run an MCMC chain over the reduced data. This is operating on the raw
datacube.

e This will only work for point sources since you need to know the PSF

* |f you don’t have a model for your data, you’re not doing inference. This will
work on disks if you have a disk model.




Comparisons

Primary use Data model Extra free Compatible Self- Can tell you
needed? parameters with MCMC subtraction whether a

planet is
there

PCA, LLSG, Blind discovery No No Yes No Always No

NNMF, etc

With linear Discovery, Yes Yes—as Yes Yes Not really Yes

model characterization many as

your model



1) ADI with fake signal injected after

e “Perfect” ADI case

e Calculate A. A Cw/out Beta Pictoris dataset
) /4
planet in data

* Should perfectly
reproduce injected
signal (within
uncertainties)

Injected signal Signal + speckles
(note signal not visible)



2 components
Probability map

Injected signal

True values

e

hJ




5 components

Probability map
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Probability map

10 components




20 components

Probability map




1) ADI with fake signal injected after

* Adding more components shrinks uncertainties
* Position and amplitude are perfectly recovered by probabilistic model

* No self-subtraction even though the design vectors overlap with the
PSF to some degree.

* Remember:
 Raw data frames fed into algorithm; not operating on reduced data
* Model and systematics jointly fit



2) ADI with signal in the data

e “Realistic” ADI case

* Calculate A, A, C w/planet in data

 Self-subtraction will be partially
accounted for in error budget?

e Corresponds to what you get
out of a telescope if you're too
lazy to do RDI



5 components

Classic ADI/PCA

Best fit model
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10 components

Best fit model
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20 components

Classic ADI/PCA

Best fit model



10 components, bright signal

1 Note this is like 2

/ sigma off. Sad!!

Classic ADI/PCA

Best fit model




Analyzing why ADI isn’t working for bright stuff

* The joint fit approach works fine on getting positions
* But the photometry is bad, bad, bad for brighter planets.
* The reason for this is because the signal is included in the design matrix

Difference between design
matrix when signal is included
vs not included in datacube

DA, DA, AA, AA, DA,




How to fix this?

Just do RDI

. Sﬁ_ems depressing to be forced into
this
* Already implemented

Use temporal rather than spatial
correlations

* Interesting idea but concerned
about computational time

Nuclear option: Do a full _
inference on the design matrix as
well as the model

* This is the goal for the end of the
year

e Too much freedom?
e Math hard

* Computationally insane
Help me?




RDI examples

e Using Keck Vortex data
* No change to algorithm
e Still injecting fake signals tho
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- Faint signal, 15 comps




Bright signal, 10 comps




Bright signal, 15 comps




Summary

* Developing an approach to jointly model signal and systematics in
high contrast imaging data

* Works on raw data frames

* Current work promising
* No self-subtraction
 Self-consistent, includes uncertainties in systematics
* plays well with Bayes, MCMC
* Allows inference



Future work

* Try with more datasets
* Disks
* Multiple companions
* Different telescopes

* Generalize to include datacube all at once rather than frame-by-frame
* Include planet noise
* Temporal correlation approach?

* Fully infer design matrix and signal



Using temporal covariances instead

* PCA, LLSG, LOCI, etc are all based on spatial
covariances

* Diagonalizing covariance matrix
e But you can also think of the data cube as Npix time
series
* Some advantages
* More datapoints than dimensions

e Can generate basis vectors while guaranteeing
signal is not in the vectors

* Bright basis vectors can be used for faint points
(less noise)

Intensity in pixel [15,15]
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Using temporal covariances instead

400
* PCA, LLSG, LOCI, etc are all based on spatial
covariances 350 -
* Diagonalizing covariance matrix 200
e But you can also think of the data cube as Npix time 7
series 5 2501
* Some advantages % 200 4
* More datapoints than dimensions g
e Can generate basis vectors while guaranteeing 107
signal is not in the vectors 100
* Bright basis vectors can be used for faint points
(less noise) | 501

0 10 20 30 40
Frame number




Using temporal covariances instead

* Current work is semi-promising

* You can at least see planets but
it’s not that fast and | don’t like
how sensitive the algorithm is to
different “regularization”

parameters
* How to do cross-validation?

* Not clear how feasible with
MCMC/Bayes




Nested sampling

* Model fitting

* multimodal parameter spaces o e )
* high-dimensional parameter g ° |
S p daCes e = W | @

e Can run until convergence " Xa

 Model selection

* Select between different models
* ie, “is there a planetin my data?” | __.e°" a 5
4 6 8 10x312 14 16 18 ) 6 8 10X412 14 16 18

All these datasets have the same mean and
stdev. All these fits are least square. But
some of these models are pretty bad!!!



Bayesian inference provides a principled approach to the inference of a set of parameters, ©, in a
model (or hypothesis), H, for data, D. Bayes’ theorem states that

Pr(D|©, H) Pr(©|H)

Pr(©|D, H) = Br (DI} ,

(D)

where Pr(®|D,H) = P(O®|D) is the posterior probability density of the model parameters,
Pr(D|®,H) = L(O) the likelihood of the data, and Pr(®|H) = 7(®) the parameter prior.
The final term, Pr(D|H) = Z (the Bayesian evidence), represents the factor required to normalize
the posterior over the domain of ® given by:

Z = L(O)r(©)dO. (2)
Qe
Being independent of the parameters, however, this factor can be ignored in parameter inference
problems which can be approximated by taking samples from the unnormalized posterior only,
using standard MCMC methods (for instance).
Model selection between two competing models, Hy and H;, can be achieved by comparing
their respective posterior probabilities given the observed dataset as follows:

 Pr(Hy/D) Pr(D|H,)Pr(H,) Z Pr(H,)

= Pr(Ho|D) = Pr(D|Ho) Pr(Ho) _ 2o Pr(Hy)

3)



Note: Ensemble samplers don’t work on high contrast imaging data

True Log likelihood surface

1.0

emcee affine invariant
ensemble sampler
200,000 samples
Sad!!
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Note: Ensemble samplers don’t work on high contrast imaging data

True Log likelihood surface

1.0

nestle nested sampling
code

~3000 samples

Great success!




Note: Ensemble samplers don’t work on high contrast imaging data

DNest4: Diffusive Nested Sampling in C4++4+ and

Python
Brendon J. Brewer Daniel Foreman-Mackey
Department of Statistics Sagan Fellow
The University of Auckland University of Washington
Package Easy to High Multimodal Dependent Phase | Computes Z7?
implement | dimensions? | distributions? | distributions? | changes?
models?

DNest4 X v v v v v
emcee v X X v X X
JAGS v v X X X X
MultiNest v X v v v v
Stan v v X v X X

Table 1: A simplified summary of the advantages and disadvantages of some Bayesian
computation software packages.



