Coronagraph fabrication technologies: liquid crystals

M Kenworthy // Leiden Observatory 2018 April 11 // KISS JPL/MPIA Workshop

C Keller

V Radhakrishnan

Maaike van Kooten

Emiel Por

David Doelman

Mike Wilby

Sebastiaan Haffert Stephanie Heikamp

Steven Bos

M Kenworthy

N Doelman

F Snik

R Stuik

Apodizing Phase Plate (APP)

Adding this phase on your telescope pupil.....

- Chromatic
- Impossible to make complex patterns
- Only 180 degree search space

Pupil plane coronagraphs not degraded by telescope vibrations that AO cannot catch

VLT/NaCo 4 microns at real time speed

Pupil plane coronagraphs not degraded by telescope vibrations that AO cannot catch

VLT/NaCo 4 microns at real time speed

Classical Phase

Classical Phase

Opposite handed polarisation has opposite phase shift

Enabling freeform phase patterns

Typically 1 micron accuracy over >50mm optics

Vector APP coronagraph

Orientation of fast axis encodes the phase shift

- Inherently achromatic
- Liquid crystal allows complex pa
- Two PSFs

Geometric phase using self-aligning birefringent polymers

Fig. 8. The MTR fabrication procedure resulting in a monolithic broadband element, on a single substrate and alignment layer: (a) alignment layer processing; (b) LCP coating (m = 1); (c) LCP photo-polymerization; and (d) repeat LCP coating and curing for $(m \ge 2)$.

Komanduri+ (2012) Optics Express 21 1 404

Komanduri+ (2012) Optics Express 21 1 404

Komanduri+ (2012) Optics Express 21 1 404

Komanduri+ (2012) Optics Express 21 1 404

Opens up a new parameter space for coronagraph designs

360 degree APPs

Prototype vAPP tested at optical wavelengths in Leiden

Otten+ (2014) SPIE 91511

Left-hand and right-hand circular polarizations have opposite phases

Broadband wavelength works

...but "leakage term" remains

Solved with: Grating vector APP (gvAPP)

MagAO on-sky (2015) at 3.9 microns

Unsaturated leakage term in every science image - it's an astrometric and photometric reference!

Otten, Snik et al. (2017)

Grating aperture mask

Doelman+ (2017) SPIE

Lab measured PSF (monday!)

Courtesy Emiel Por

Subaru/SCExAO/CHARIS gvAPP

SCExAO Leakage term <5%

SCExAO gvAPP Transmission

First light at Subaru

Leakage Term

Dark zone 2

Dark zone 1

Single-mode Complex Amplitude Refinement coronagraph (SCAR)

Theory: Por and Haffert (2018) 1803.10691 Laboratory measurements: Haffert+ (2018) 1803.10693

Builds on idea of single-mode fiber as a rejection filter for starlight (Mawet+ 2017 ApJ) by shaping PSF with custom APP coronagraph

Single-mode Complex Amplitude Refinement coronagraph (SCAR)

Theory: Por and Haffert (2018) 1803.10691 Laboratory measurements: Haffert+ (2018) 1803.10693

Builds on idea of single-mode fiber as a rejection filter for starlight (Mawet+ 2017 ApJ) by shaping PSF with custom APP coronagraph

Putting SECOND order null across fibre face makes it BROADBAND

APP reimages star onto lenslet array with single mode fibres

Image of star on hex lenslets

APP squeezes two nulls across one lens....

T=98%

APP squeezes two nulls across three lenses....

 $(f) = 10^{-4} - 3 \times 10^{-5} - 10^{-5}$

T=94%

APP squeezes two nulls across six lenses....

T=63%

Robust to 0.1 lambda/D tip tilt error!

SCAR APP tested in the lab

...and multi-fibre SCAR on the way

courtesy: Sebastiaan Haffert

Adding holograms to make focal plane wavefront sensors

Wilby+ 2007

Adding holograms to make focal plane wavefront sensors

Wilby+ 2007

gvAPP+WFS for balloon experiment HiCiBaS in Aug 2018

vAPP for HiClBaS

Conclusions

- Complex broadband phase patterns are now possible
- Rich diversity of designs realisable
- Combining coronagraphs and wavefront sensing in one optic
- Pushing up the TRL

