

- U. Liège: O. Absil, J. Surdej, S. Habraken, M. Van Droogenbroeck, D. Defrère, C. Delacroix, G. Orban de Xivry, M. Reggiani, O. Wertz, B. Carlomagno, V. Christiaens, C. Gomez Gonzalez, A. Jolivet
- U. Uppsala: M. Karlsson, P. Forsberg, P. Piron, E. Vargas Catalan
- Caltech/JPL: D. Mawet, E. Serabyn, K. Matthews, G. Ruane, AJ Riggs, E. Choquet, M. Bottom, H. Ngo, R. Jensen-Clem
- Obs. Paris: E. Huby, P. Baudoz

OLIVIER ABSIL

CORONAGRAPH FABRICATION TECHNOLOGIES: SUBWAVELENGTH GRATINGS

WHY SUBWAVELENGTH GRATINGS?

Period smaller than wavelength

★ ^A/_λ ≤ <u>n_I sin θ + max(n_I, n_{III})</u>
Only zeroth order transmitted
★ also called zero-order grating (ZOG)
★ all other modes are evanescent
★ wavefront quality not altered

ID subwavelength gratings create artificial anisotropy in material

٨

FORM BIREFRINGENCE IN SUBWAVELENGTH GRATINGS

h

TE

 $\Delta \Phi$

- TE and TM polarization modes see different effective media, with refractive indices n_{TM} and n_{TE}
- Form birefringence:
 - * $\Delta n(\lambda) = n_{TM} n_{TE}$
 - * creates phase shift $\Delta \phi = 2\pi/\lambda h \Delta n$ between TE and TM modes
- Dispersion of form birefringence controlled through grating geometry
 - * $\Delta n \propto \lambda \rightarrow$ achromatic phase shift

RIGOROUS COUPLED WAVE ANALYSIS (RCWA)

- To analyse response of subwavelength gratings, vectorial nature of light must be taken into account
- RCWA solves Maxwell's equations by decomposing fields and permittivities in Fourier series, and by matching them at grating boundaries
 - * Still makes assumptions ... if not enough, use numerical methods (FDTD)

SUBWAVELENGTH GRATINGS AS PHASE RETARDERS

- Grating geometry can be tuned to achieve any given phase shift between TE and TM modes (in reflection or transmission)
- Can produce any kind of achromatic phase retarder
 - * quarter wave plate: $\Delta n(\lambda) \approx \lambda/4h$ → $\Delta \phi \approx \pi/2$
 - * half wave plate: Δ n(λ) ≈ λ/2h → Δ φ ≈ π
- Perfect achromatic behavior only tangentially approached

VORTEX

SUBWAVELENGTH GRATINGS AS ANTI-REFLECTIVE STRUCTURES

- Fresnel reflections are due to abrupt change in refractive index between two media
- 2D subwavelength grating induces index gradient, which is key to produce anti-reflective structures
- Square pattern ok, but AR gets better for smoother profiles
 (pyramid, egg-box, etc)

SUBWAVELENGTH GRATINGS AS CORONAGRAPHS

- Introduced by Mawet et al (2005) to achromatize the Four Quadrant Phase Mask (FQPM)
- Four half wave plates with perpendicular orientations
 * Act separately on each polarization

FROM FQPM TO AGPM

- Why not try to make the grating continuous?
- Circular grating \approx local version of the FQPM
 - * annular groove phase mask (AGPM)
 - * gets rid of blind areas associated with quadrant transitions

Mawet et al. (2005b)

THE VECTOR VORTEX PHASE MASK

- AGPM = spatially variant half wave plate creating continuously changing phase shift for a given polarization
 - * phase ramp ranges from 0 to 4п around optical axis ≜ optical vortex
- Vector vortex implementation based on ZOGs is not unique
 - * also liquid crystals and photonics crystals
- Scalar vortex also possible

THE VORTEX CORONAGRAPH DOING ITS MAGIC

perfect on-axis cancellation for a circular aperture

THE VORTEX CORONAGRAPH DOING ITS MAGIC

perfect on-axis cancellation for a circular aperture

MAIN ASSETS OF THE VECTOR VORTEX CORONAGRAPH

- Small inner working angle (heritage from the FQPM)
- 360° discovery space: no more blind zones
- Achromatic by concept
 - * geometric phase does not depend on wavelength
- Quasi-achromatic in its implementation (ZOG, LCP)
- High transmission and Strehl ratio

MAIN LIMITATIONS OF THE VECTOR VORTEX CORONAGRAPH

- Sensitivity to pointing errors and low order aberrations
 - * with great powers comes great responsibilities: CONTROL YOUR TELESCOPE!
- Perfect rejection only for circular, unobscured pupil
 - * perfect apodization solutions for centrally obscured pupils
 - * spiders can be (partially) compensated
- Only <u>quasi-achromatic in its implementation</u> (ZOG, LCP)
- Two polarizations treated separately, can limit ultimate performance in unpolarized light

MANUFACTURING DIAMOND AGPM @ UPPSALA

Vargas Catalan et al. (2016)

1. diamond coated with Al and Si layers (sputtering)

 e-beam pattern transferred with solvent-assisted moulding

FΛ

OPTIMIZING THE GRATING DESIGN

L band. Period = $1.42 \mu m$, angle = 3.00°

SETTING UP THE « YACADIRE » BENCH @ MEUDON

ANGUISH.

AFTER SOME TUNING...

BEST PERFORMANCE IN THE LAB – 2018 UPDATE

- Dedicated IR test
 bench (VODCA) now
 available at ULiège
- 10+ science-grade L-band AGPMs etched & tested
- Broadband L
 (3.5-4.1µm) peak
 rejection up to 1500:1

CURRENT STATUS & PERSPECTIVES

- AGPM first developed for thermal infrared (L, M, N bands)
 - * excellent performance on ~20% bandwidth
 - * installed at various observatories (Keck, VLT, LBT)
- Re-etching techniques validated
- Next steps
 - * shorter wavelengths
 - * higher topological charges

deeper

original

shallower

AGPM AT SHORTER WAVELENGTHS

First manufacturing tests at H and K bands

Null depths up to 400:1

HIGHER TOPOLOGICAL CHARGES

- Increase the « speed » of the phase ramp
- Less sensitive to tip-tilt (and low-order aberrations), at expense of larger IWA
- More difficult to design than charge-2 AGPM

CONCLUSIONS

- Subwavelength grating = efficient technology for focalplane phase masks
- Annular Groove Phase Mask = mature technology for thermal infrared applications
- AGPM now also available at shorter wavelengths
 - * going below H-band may require to use other substrate (diamond etching reaching its limits)
- Higher topological charges being developed