

Jet Propulsion Laboratory California Institute of Technology

Earths and super-Earths Science Enabled by Direct Imaging Technology

Renyu Hu, Ph.D. Jet Propulsion Laboratory California Institute of Technology

Workshop on Technology for Direct Detection and Characterization of Exoplanets April 9, 2018 Pasadena CA

Exoplanet Demography

Commonality of Small Planets

Detecting ExoPlanet Atmospheres

In transit

HAT-P-11b, a Neptune-sized planet

Fraine et al. 2014

H₂ Atmospheres

Detectable via transit

Non-H₂ Atmospheres?

Complication with stellar variability

Transit Feature

- Up to 10% for H₂ atmospheres
- <1% for non-H₂ atmospheres

Emission Feature

- 1-2%

Rackham et al. 2018

Direct Detection of a Solar System

Starshade Rendezvous Mission simulated image of a nearby star

EXO-S Final Report 2015

Detecting Earths

SUPER EARTHS

Fe Core Fe Core Silicates Mantle Silicates Mantle Water Layer Half-Cover Water Layer H₂/He Atmosphere Fe Core H₂O-N₂-CO₂ Atmosphere Fe Core **ROCKY PLANET** H-RICH Silicates Mantle SUPER EARTH Ice Layer Water Layer Water Layer **Silicates Mantle** H₂O-N₂-CO₂ Atmosphere H₂O-N₂-CO₂ Atmosphere DEEP OCEAN PLANET SHALLOW OCEAN PLANET

How do we know

whether an exoplanet has an atmosphere? whether an exoplanet's atmosphere has evolved? whether an exoplanet has geological/biological activities?

Detect Rocky Exoplanet Surfaces

Spectral features of rocky planetary surfaces

Detect Rocky Exoplanet Surfaces

Direct detection of rocky exoplanets

Metal-rich

Primary crust with mantle ripped off Ultramafic

Primary crust with mantle overturn or secondary crust from hot lavas

Feldspathic

Primary crust without mantle overturn Basaltic

Secondary crust

Granitoid

Tertiary crust

Clay

Aqueously altered crust

Ice-rich surface

Fe-oxidized

Oxidative weathering

Hu et al. 2012

Delineate Land and Sea

From phase curves of a rocky planet

Cowan et al. 2009

Rotation Period and Hydrological Cycle

What we learned from DSCOVR observations of Earth

Jiang et al. 2018

How do we know

whether an exoplanet has an atmosphere? whether an exoplanet's atmosphere has evolved? whether an exoplanet has geological/biological activities?

Detecting an Earth-like Atmosphere

Water, Oxygen, and Carbon Dioxide

Turnbull et al. 2006

Detecting an Earth-like Atmosphere

Importance of Clouds

Detecting Earths and Super-Earths

Diverse atmospheric composition of rocky planets

Continuum from Super-Earths to Sub-Neptunes

Diversity of Atmospheres

A Special Case for Water Worlds

Condensible-Rich Atmospheres

Distinguish Water Worlds vs. Giant Planets

In reflected light

Hu 2014; Filippatos & Hu in prep.

How do we know

whether an exoplanet has an atmosphere? whether an exoplanet's atmosphere has evolved? whether an exoplanet has geological/biological activities?

Towards Characterizing Rocky Exoplanets' Atmospheres

JWST/WFIRST/ Other space telescopes

Volcanic emission controls O₂ buildup in CO₂ atmospheres

Escape of hydrogen is balanced by a net oxidizing flux from the atmosphere to the ocean

Dashed: Low vol. emission Dotted: No vol. emission

Hu et al. 2012

O₂ and CH₄ together as a biosignature

Domagal-Goldman et al. 2014

Measuring volcanic outgassing

Transit

- Ground-based transit surveys, TESS
- James Webb Space Telescope (JWST, launch 2018)

Direct imaging

- Starshade Rendez-vous with WFIRST
- Flagship concepts for 2020
 Astrophysics Decadal Survey (HabEx + LUVOIR)

Conclusion

- Direct imaging will enable characterization of Earths and super-Earths
- We may learn about: surface type, atmospheric H₂O, O₂, CO₂, rotation period, variability of clouds
- It may be hard to directly measure: size of planet, mass of atmosphere, liquid water ocean
- Intrinsic widths of spectral features will determine the required resolution, and the need to measure variability will determine the required collection area

We could not guess how different from us they (extraterrestrials) might be. Carl Sagan, *Contact*, 1985

Sensitivity to atmospheric surface pressure

How does O₂ buildup depend on surface pressure and irradiation?

Tre'Shunda James Intern at JPL

Oxygen buildup peaks at ~1 bar

James & Hu, in prep.

Atmospheres of Wide-Separation Exoplanets

Synergy between transit and direct imaging

Transit spectrum of a 229-day-period exoplanet Kepler 16-b (HST GO 14927, PI Renyu Hu)

Copyright 2018 California Institute of Technology. U.S. Government sponsorship acknowledged.