







## Future of Giant Planet Imaging: Requirements

K1

### Anne-Marie Lagrange

Institut de Planétologie et d'Astrophysique de Grenoble











Pasadena, April 9th, 2018

# Direct imaging of exoplanets



- Access to long period planets
  Rates of planets, systems architectures
  Planets properties : log(a) Tott D structures
- Planets properties : log(g), Teff, R, atmosphere composition (non-irradiated planets)
- Formation processes, link with disks



<u>1990': Adonis</u> 50 act., 60Hz ESO T3.6m



<u>2000': NaCo</u> 185 act., upto400Hz ESO VLT8.2m



<u>2015: SPHERE XAO</u> 1600 act., 1.2 kHz ESO VLT8.2m



Neuhaueser et al,1995

<u>Classical AO on 3m</u> CFHT/PUE'O , etc



Neuhaueser et al, 2005

<u>Classical AO on 10m nIR/LM</u> VLT, Keck, GEMINI, SUBARU, LBT, Magellan



Beuzit et al, 2015

XAO on 10m nIR/LM SPHERE,GPI,SCEXAO LBTAO, 1640 PALM VLT/ERIS (project)

## Extreme AO-fed instruments

### SPHERE (VLT)

\*Spectro-Polarimeter High-contrast Exoplanet REsearch



Adaptive optics Calibration interferomete

- Heavy & stable at Nasmyth
- HODM: 41\*41 act (NAOS: 185)
- SH WFS 40x40 lensless at 1.38kHz, spatial filtering (NAOS: 180; 400Hz)
- Off-line phase diversity for NCPA
- Control ol star centering behind mask
- Near-IR Imager, IFS, optical imager/ polarimeter



### GPI (Gemini South)

- Compact & light
  - Cassegrain focus
  - SH WFS at 2.5kHz max
  - TTM +4096 act. MEMS DM
  - IR interferometric cal. system for NCPA compensation
  - IFS and integral field polarimeter

# XAO-fed instruments





- · Improved AO XAO Planet-imagers
- Improved coronagraphs
- Improved algorithms for star halo subtraction
  - => improved contrast performances % previous systems





# Direct Imaging Surveys Before XAO

| Reference               | Telescope | Instr.      | Mode     | Piter I             | FoV         | Number     | SpT    | Age      |                        |               |        |          |                |                                                        |         |
|-------------------------|-----------|-------------|----------|---------------------|-------------|------------|--------|----------|------------------------|---------------|--------|----------|----------------|--------------------------------------------------------|---------|
|                         |           |             |          |                     | (***)       | of targets |        | (Myr)    |                        |               |        |          |                |                                                        |         |
| hauvin et al. 2003      | ESO3.6m   | ADONIS      | Cor-I    | н, к                | 3*13        | 29         | GKM    | <-50     |                        |               |        |          |                |                                                        |         |
| leuh/auser et al. 2003  | NTT       | Sharp       | Sat-I    | к                   | 1*11        | 23         | AFGKM  | <-50     |                        |               |        | <b>T</b> |                |                                                        |         |
|                         | NTT       | Sofi        | Sat-I    | н                   | 3*13        | 10         | AFGKM  | <~50     |                        |               |        | Iable    | 91             |                                                        |         |
| owrance et al. 2005     | HST       | NICMOS      | Cor-I    | н                   | 9*19        | 45         | AFGKM  | 10-600   |                        | Nb            | Mass   | Sep      | Age            | F                                                      | CL      |
| Asciadri et al. 2005    | VLT       | NaCo        | Sat-I    | н, к                | 4*14        | 28         | км     | <-200    |                        |               | range  | range    |                |                                                        |         |
| iller et al. 2007       | VLT       | NaCo        | SDI      | н                   | 5           | 45         | GKM    | <-300    |                        | of<br>targets | au     | MJup     |                |                                                        |         |
|                         | MMT       |             | SDI      | н                   | *5          | •          | •      | •        |                        |               |        |          |                |                                                        |         |
| asper et al. 2007       | VLT       | NaCo        | Sat-I    | e -                 | 8*28        | 22         | GKM    | <-60     | Metchev et al.<br>2009 | 266           | 12-72  | 28-1590  | 3 Myr–3<br>Gyr | 0.5-6.3 (FGK)                                          | 2 sigma |
| afreni/ ere et al. 2007 | Gemini-N  | NIRI        | ADI      | н                   | 2*22        | 85         |        | 10-5000  |                        |               |        |          |                |                                                        |         |
| pai et al. 2008         | VLT       | NaCo        | SDI      | н                   | *3          | 8          | FG     | 12-500   | Galicher et al         | 356           | 0.5-14 | 20-300   | <<br>200Myr    | 0.3-3.85 (BAFGKM)<br>0.25-4.95 (GM)<br>0.35- 7.15 (AF) | 95 %    |
| fetchev et al. 2009     | Palomar   | PALAO/PHARO | Cor-I    | ĸ                   | 5.2*25.2    | 266        | FK     | 3-3000   | 2016                   |               |        |          |                |                                                        |         |
|                         | Keck-II   | NIRC2       | Cor-I    | к                   | 0.6*40.6    | •          | •      | •        |                        |               |        |          |                |                                                        |         |
| hauvin et al. 2010      | VLT       | NaCo        | Cor-I    | н, к                | 8*28        | 88         | BAFGKM | <~100    | Bowler et al.<br>2016  | 384           | 1100   | 0.5-100  | 5-300<br>Myr   | 0.1-1.3 (BAFGKM)<br>-0.5-6.5 BA <4.1%<br>FGK (95%)     | 68 %    |
| leinze et al. 2010ab    | MMT       | Clio        | ADI      | L', M               | 5.5*12.4    | 54         | FGK    | 100-5000 |                        |               |        |          |                |                                                        |         |
| anson et al. 2011       | Gemini-N  | NIRI        | ADI      | н, к                | 2*22        | 15         | BA     | 20-700   |                        |               |        |          |                |                                                        |         |
| ligan et al. 2012       | Gemini-N  | NIRI        | ADI      | н, к                | 2*22        | 42         | AF     | 10-400   |                        |               |        |          |                | <3.9% M (95%)                                          |         |
|                         | VLT       | NaCo        | ADI      | н.к                 | 4*14        | -          | 1 C    | •        | Vigan et al. 2016      | 199           | 575    | 5300     | <<br>200Myr    | 0.8-3.4 / 0.3-5.75                                     | 68/95 % |
| elorme et al. 2012      | VLT       | NaCo        | ADI      | u i                 | 8*28        | 16         | м      | <-200    |                        |               |        |          |                |                                                        |         |
| Rameau et al. 2013c     | VLT       | NaCo        | ADI      | Ľ.                  | 8*28        | 59         | AF     | <~200    |                        |               | 575    | 5300     |                | 1.6-4.4 / 0.85-6.45                                    | 68/95 % |
| amamoto et al. 2013     | Subaru    | HCIAO       | ADI      | н, к                | 0*20        | 20         | FG     | 125+/-8  |                        |               | 0.5.44 | 00.000   |                |                                                        |         |
| iller et al. 2013       | Gemini-S  | NICI        | Cor-ASDI | н                   | 8*18        | 80         | BAFGKM | <-200    |                        |               | 0.5-14 | 20-300   |                | 0.7-3.0/0.25-5.05                                      | 68/95 % |
| lielsen et al. 2013     | Gemini-S  | NICI        | Cor-ASDI | н                   | 8*18        | 70         | BA     | 50-500   |                        |               | 0.5-75 | 20-300   |                | 1.4-3.85 / 0.75-5.7                                    | 68/95 % |
| Vahhaj et al. 2013      | Gemini-S  | NICI        | Cor-ASDI | н                   | 8*18        | 57         | AFGKM  | 100      |                        |               |        |          |                |                                                        |         |
| anson et al. 2013       | Subaru    | HICIAO      | ADI      | н                   | 0*20        | 50         | AFGKM  | <~1000   |                        |               |        |          |                |                                                        |         |
| irandt et al. 2014      | Subaru    | HCIAO       | ADI      | н                   | 0*20        | 63         | AFGKM  | <-500    |                        |               |        |          |                |                                                        |         |
| hauvin et al. 2015      | VLT       | NaCo        | ADI      | н                   | 4*14        | 86         | FGK    | <~200    |                        |               |        |          |                |                                                        |         |
| lowler et al. 2015      | Gemini-S  | NICI        | Cor-ASDI | нк                  | 8"18        | 122        | м      | <-620    |                        |               |        |          |                |                                                        |         |
| annier et al. 2016      | VLT&NaCo  | NaCo        | ADI      | ·                   | 23*28       | 58         | м      | <~120    |                        |               |        |          |                |                                                        |         |
| Salicher et al. 2016    | Gemini-N  | NIRI        | ADI      | LH,K,CH4            | 22*22       | 292        | BAFGKM | <~100    |                        |               |        |          |                |                                                        |         |
|                         | Gemini-S  | NICI        | ADI      | CH4,K               | 13*18       |            |        |          |                        |               |        |          |                |                                                        |         |
|                         | Keckil    | NIRC2       | ADI      | I,H,K,L',F2I,H2,CH4 | 10"10,40"40 |            |        |          |                        |               |        |          |                |                                                        |         |

Massive (> 5 MJup) GPs further than ~10-20 au are not common GPs more common around early type stars than late-type stars



# GPIES & SPHERE/SHINE planet surveys



| GEMINI/GPI                                        | VLT/SPHERE                                           |                      | SPHERE/IRD | IS Image              |
|---------------------------------------------------|------------------------------------------------------|----------------------|------------|-----------------------|
| IFS Y-K (+polar)<br>890 hours over 3 y<br>(GPIES) | 2 new planets<br>planets charact<br>several new dis  | terisat<br>ks        | *12'       |                       |
| 600 stars                                         | ~800                                                 |                      |            |                       |
| Young (<100 Myr),<br>Close <75 pc                 | Young (< 150 pc) + <1 Gyr<br>< 100 pc<br>V upto 13.5 |                      |            |                       |
| A to M stars                                      | A to M stars                                         | SPHERE/I<br>1.7*1.7" | FS FoV     | GPI FoV<br>(2.7*2.7") |
| Started: nov 2014                                 | Started: Feb 2015                                    |                      |            |                       |



### Known bright young debris disks with SPHERE



Disks close to the stars — morphology at sub-AU scale — multiple belts — asymmetries

Aug. 2014

#### New young debris disks with SPHERE - The Sco Cen 'niche'



More to come

Currie+ 2015



Protoplanetary disks with SPHERE

### Spirals & gaps

### Planets to explain spirals in transition disks?







# PDS70

### SPHERE/IRDIS DPI observations

- Young transition disk
- Inner and outer belts detected
- Large 65 au sized gap; Flared Geometry;





### Exoplanet candidate

- Separation = 200 mas (25 au)
- $\Delta H2 = 9.2 \pm 0.2 \text{ mag}$
- Mass = 5-10  $M_{Jup}$ ; Teff = 800 1100 K
- IRDIS H2, H3, K1 and K2 + NaCo L'

### Keppler et al. 2018, submitted

### cf Beth's Talk

## Status

- Very few planet-mass companions detected despite XAO
- Distribution of giant planets :
  - massive giant planets are not numerous, at separations
    > 5-10au
  - directly imaged planets so far belong to a small category of planets
- · Many disks detected
- Planets in protoplanetary disks still debated
- Studies of individual cases very informative : confirms that DI is a powerful tool for planet characterisation and studies of planet-disk interactions

# GP Exploration in Direct Imaging Detection

- Still very limited in (mass, sep) : ~5 MJup, 10 au

we still lack most of the 5-10 Mjup in the 5-10 au range and by far the SS young GP analogs

- Still very limited in age (a few 10-100 Myr)

=> Need to improve contrast, sensitivity, IWA

# Spectral characterisation

- Mostly limited to R<100

- Few cases of "molecular" detections and velocitybased measurements (Planet rot, orbital vel) (Snellen et al) with no/moderate AQ correction

### Coupling (high resolution) spectroscopy and AO



Beta Pic b rotation period (Snellen et al, 2014)





#### R~100000 CRIRES + MACAO

Coupling ESPRESSO+SPHERE for aCen b (Pepe+ 2018)

### Spectroscopy coupled with AO



Hoeijmaker+, 2018, subm

### Coupling (high resolution) spectroscopy and AO



**R5000 SINFONI** 

(Hoeijmaker+, 2018, subm.)

#### Improve XAO 10m class telescopes near-mid-IR

## Future





Beichman, 2010

# Improving current systems on 10m

There is a spectrum of possibilities, with different levels of complexity and costs

- More sensitive WFS
- Faster correction
- Improved correction of NCPA
- Improved instrumental stability
- Improved coronagraphs (Vortex, APP and derivatives are not yet used routinely !)
- Coupling spectroscopy and XAO (various flavors)

Such improvements will serve as test benches for ELTs

# Improving current systems on 10m Basic Requirements

- IWA down to 0.1"
- C=10<sup>-5</sup> (goal a few 10<sup>-6</sup>) at 0.1-0.2" (5-20 au at 50-100 pc: e.g. Sco -Cen) under median conditions
- Spectral Resolutions : 2 interesting domains: 5000-10000 for detection and 100000 for Doppler charac.
- Wavelength domains : H, K, (L-M)
- For targets brighter than R~13 (// Sphere)
  - Access targets fainter than R~13 (P2)