Algorithms for high contrast imaging

Laurent Pueyo, STScl

04/10/2018

Why do we build libraries of noise realizations?

From space: errors in the instrument vary from star to star,

From space: errors in the instrument vary from star to star,

From the ground: AO residuals vary from star to star.

From the ground: there is variance in the cross terms.

PCA, current "industry standard" for removing noise.

Courtesy of J. Wang

PCA is about noise covariance.

Courtesy of N. Zimmermann

Number of modes

Soummer, Pueyo, Larkin, 2012

PCA is about noise covariance.

Courtesy of N. Zimmermann

Number of modes

Soummer, Pueyo, Larkin, 2012

PCA performance "predictions".

Courtesy of N. Zimmermann

PCA performance "predictions".

Problem with PCA: kills signal.

Residual noise. Flux preserved.

No residual noise. Flux gone.

Solution 1: - minimize: II PCA(noise + signal - signal_est) II^2

 x_c

 P_a

Bottom et al., 2016

- figure out that:

PCA(noise + signal) ~= PCA(noise) + signal \delta[PCA(noise)] - minimize:

II PCA(noise + signal) - signal_est \delta[PCA(noise)] II^2

Non aggressive reduction: $N_r = 5$, $N_{\phi} = 4$, $N_{Corr} = 30$, $K_{Klip} = 30$, $N_{\delta} = 0.8$. Pueyo, 2016

- figure out that:
- PCA(noise + signal) ~= PCA(noise) + signal \delta[PCA(noise)] - minimize:
- II PCA(noise + signal) signal_est \delta[PCA(noise)] II^2

- figure out that:

PCA(noise + signal) ~= PCA(noise) + signal \delta[PCA(noise)] - minimize:

II PCA(noise + signal) - signal_est \delta[PCA(noise)] II^2

Non aggressive reduction: $N_r = 5$, $N_{\phi} = 4$, $N_{Corr} = 30$, $K_{Klip} = 30$, $N_{\delta} = 1$. Pueyo, 2016

- figure out that:

PCA(noise + signal) ~= PCA(noise) + signal \delta[PCA(noise)] - minimize:

II PCA(noise + signal) - signal_est \delta[PCA(noise)] II^2

Aggressive reduction: $N_r = 5$, $N_{\phi} = 4$, $N_{Corr} = 50$, $K_{Klip} = 50$, $N_{\delta} = 0.6$.

Pueyo, 2016

- figure out that:

PCA(noise + signal) ~= PCA(noise) + signal \delta[PCA(noise)] - minimize:

II PCA(noise + signal) - signal_est \delta[PCA(noise)] II^2

Aggressive reduction: $N_r = 5$, $N_{\phi} = 4$, $N_{Corr} = 50$, $K_{Klip} = 50$, $N_{\delta} = 0.6$.

Pueyo, 2016

Comparison with field-brown dwarfs.

Better sensitivity?

Ruffio et al., 2017

"Inverting the model" might help us squeeze out a few more objects.

Where do we go from there?

- We are more clever about getting the data.
- We change the cost function.
- We change the decision making machine.

Where do we go from there?

- We are more clever about getting the data.
- We change the cost function.
- We change the decision making machine.

SDSS J001602.40-001225.0 (z=2.090)

NMF for quasar spectral templates.

Advantage of using positive coefficients.

Where do we go from there?

- We are more clever about getting the data.
- We change the cost function.
- We change the decision making machine.