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Why do we build libraries 
of noise realizations?
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Fig. 14 Morphology of state of the art Direct Imaging instrument responses for exoplanet detec-
tion, from Gemini Planet Imager instrument, ?. As the wavelength increase the AO halo becomes
more compact and the quasi-static speckles less prominent. At shorted wavelength the AO cor-
rection is more sensitive to the wind speed underlying the wavefront error and does feature an
asymmetric pattern.

where fres(u) corresponds to the AO residuals (phase only, faster than the expo-
sure time, stationary and zero mean) and yQS(u) corresponds to the complex field
resulting from residual quasi-static errors. A proper treatment of this most general
case consists of plugging Eq. 25 into Eq. 10, as well as replacing the convolution by
a field dependent integral to take into account the effect of the coronagraph. Such
a calculation involve bookkeeping multiple cross terms, that this time, do not sim-
plify out. It can be very technical and instead we follow the presentation in Soummer
et al (2007). Because the coronagraph operator in Eq. 7 is linear in complex field,
we write the overall instrument’s response as:

RC+AO+QS
b (a) =< |F [Cb {y(u)P(u)}]|2 >

= < |F [Cb {P(u)}]+ iF [Cb {fres(u)P(u)}]+F [Cb {yQS(u)P(u)}]|2 > (26)

Since the noise in high contrast instruments is dominated by the stellar contribution,
we drop the field dependence from our notation, and only consider the b = 0 case.
We write the long exposure instrument response as I(a) =< RC+AO+QS

0 (a) >. The
noise in such images is driven by the mean of E[I(a)] over a series of exposures
(which will set the photon noise floor), and its variance of s2

I(a) (speckle noise floor)
. Note in all rigor this variance ought to be obtained over a series of exposures.
However when the power spectral densities of fres and yQS only depend on the
modulus of the spatial frequency (or the radial separation |a|) this variance can also
be calculated over position angle. We write mean of each of the three contributions
as:

From the ground: AO residuals vary 
from star to star.
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Fig. 15 Histograms of the detector reads (ADUs) obtained in an annulus located between 0.400

and 0.500 for the 1.6 µm data on Fig. 14. We have separated the AO and quasi-static residuals using
spatial filtering (and arbitrarily forced the former to zero mean). Both histograms feature Rician
morphologies with long positive tails. The tail for the AO halo is longer than for the quasi-static,
however it can be removed from the data via high pass filtering (only its photon noise matters). The
variance of the dataset is about 30% larger than the sum of the individual variances due to cross
terms. This amplification of quasi-static speckles by the long tail of the AO halo is particularly
problematic since the characteristic spatial scale of the resulting noise precludes simple calibrations
such as high-pass filtering.

where I0 denotes the zero-order modified Bessel function of the first kind and
IS = Ires/g or IQS depending on the case. This PDF is particularly problematic for
quasi-static noise, whose spatial structure looks like the one of a planet. Indeed,
such distributions have a long positive tail, and as a result they yield a small but
non-negligible amount of very bright pixels in the image. Those can masquerade as
an exoplanet. This is illustrated on Fig. 15, where we show histograms of the de-
tector reads (ADUs) obtained in an annulus located between 0.400 and 0.500 for the
1.6 µm data on Fig. 14. We have separated the AO and quasi-static residuals using
spatial filtering (and arbitrarily forced the former to zero mean). Both histograms
feature Rician-like morphologies with long positive tails. The tail for the AO halo
is longer than for the quasi-static, however it can be removed from the data via high
pass filtering (only its photon noise matters). The variance of the dataset is about
30% larger than the sum of the individual variances due to cross terms. This am-
plification of quasi-static speckles by the long tail of the AO halo is particularly
problematic since the characteristic spatial scale of the resulting noise, of the same
order as the one of a planet, precludes simple calibrations such as high-pass filter-

From the ground: there is variance in 
the cross terms. 







PCA, current “industry 
standard” for removing 
noise. 
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Frame-to-frame correlation coefficient matrix of the full SPC image 
sequence, after applying the PSF matched filter. The first 200 
images (4 hrs) define the reference library; the remaining frames 
are treated as individual science frames to test PSF subtraction for 
various correlation levels.

()* =
+[!#]

+[!$]+[#$]�

SPC data analysis

6

PCA is about noise covariance. 

Courtesy of N. Zimmermann
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PCA, Data
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Fig. 18 Residual energy as a function of the number of modes (acting as a proxy regularization
parameter). Top: Case of the a Principal Component Analysis. The residual energy in subtracted
images follows closely the theoretical prediction based on the eigenvalues of the data covariance
matrix. Bottom: case of a Non Negative Matrix Factorization (NMF). The key difference between
a least-squared cost function, as in Eq. 36, and a more sophisticated one (NMF) resides in the shape
of the residual noise as a function of the regularization parameter. This behavior can vary widely
depending on the choice of the cost function, and in this case NMF features smoother noise fitting
properties.

Soummer, Pueyo, Larkin, 2012
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Fig. 18 Residual energy as a function of the number of modes (acting as a proxy regularization
parameter). Top: Case of the a Principal Component Analysis. The residual energy in subtracted
images follows closely the theoretical prediction based on the eigenvalues of the data covariance
matrix. Bottom: case of a Non Negative Matrix Factorization (NMF). The key difference between
a least-squared cost function, as in Eq. 36, and a more sophisticated one (NMF) resides in the shape
of the residual noise as a function of the regularization parameter. This behavior can vary widely
depending on the choice of the cost function, and in this case NMF features smoother noise fitting
properties.

Soummer, Pueyo, Larkin, 2012
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(overdetermined) bounds
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PCA performance “predictions”.
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PCA performance “predictions”.

Data	Post-Processing	and	Algorithm	Development	for	the	WFIRST	Coronagraph	 FY17	Report	
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2.3. Post-processing	results	
	

Figure	4	shows	the	post-processed	contrast	gains	we	measured	for	the	SPC	
and	HLC	data.	We	measure	the	contrast	gains	as	the	ratio	of	spatial	standard	

deviations	of	the	matched-filtered	image	before/after	subtraction,	averaged	

over	the	field	of	view.	We	chose	to	use	matched	filter	instead	of	aperture	

photometry	in	order	to	simulate	realistic	detections	scenarios	with	the	SPC	

coronagraphs	(whose	elongated	PSF	with	side	lobes	need	to	be	treated	using	

cross	correlation).		

	

	

	
Figure	4:	Contrast	gain	for	each	science	frame	in	the	SPC	(top)	and	HLC	(bottom)	data	sets,	annotated	
with	elapsed	time	since	the	end	of	the	reference	library	acquisition.	The	classical	gain	curve	(dashed)	
indicates	the	contrast	gain	after	the	subtracting	the	max-correlated	reference	library	image.	The	KLIP	

SPC data 

HLC data 

Courtesy of N. Zimmermann



Problem with PCA: kills 
signal. 



The data Classical PCA Forward Modeling Conclusion

Problem....PSF subtraction algorithms also subtract the signal

ThedataClassicalPCAForwardModelingConclusion

Problem....PSFsubtractionalgorithmsalsosubtractthesignal

Residual noise. 
Flux preserved.

No residual noise. 
Flux gone.



Solution 1:
- minimize: 
|| PCA(noise + signal -  signal_est)  ||^2

The data Classical PCA Forward Modeling Conclusion

Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. Example of an MCMC for astrometry and photometry, Bottom et
al. (2014).

– 5 –

Fig. 1.— Left: a) the background-subtracted target median image, b) the background-subtracted

reference star median image, c) the background-subtracted point-spread function image, d) best-

fitting model from the MCMC algorithm combining images b) and c) attempting to match a) as

explained above. The stretch is nonlinear to better show the companion and speckles. Right:

All the one and two dimensional projections of the posterior probability distributions of the pixel

shifts (xc, yc, the reference background scaling factor (Ra, and the PSF amplitude used to fit

the companion Pa. The two-dimensional projections show very little covariance among any two

parameters, and the marginal distribution histograms (along the diagonal) are nicely peaked.

Bottom et al., 2016

The data Classical PCA Forward Modeling Conclusion

Problem....PSF subtraction algorithms also subtract the signal

Solution is to inject a negative model of the signal in the entire observing
sequence and minimize the residuals over a range of hypothetical astrophysical
observables. Example of a grid search for astrometry and photometry,
Morzinski et al. (2015).
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Figure D4. Grid search in the M � images for the best-fit photometry and astrometry of the planet, using PCA with 20 modes. Left
column: x position (detector coordinates); Center column: y position (detector coordinates); and Right column: flux ratio. Top row:
Parabola fit, local regions; Second row: Gaussian fit, local regions; Third row: Parabola fit, uniform regions; and Bottom row: Gaussian
fit, uniform regions.

Morzinski et al., 2016
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- figure out that:
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- minimize: 
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Fig. 24 Orbital motion of the b Pictoris b planet as measured through now a decade of observa-
tions with ground based telescopes, from Wang et al (2016).

25 shows how such algorithms have been used to determine the obits and spectrum
of the planet orbiting Beta Pictoris.

Confirming the exoplanetary nature of detected point sources

So far we have arbitrarily alternated the terms exoplanet and point source when dis-
cussing astrophysical signal in direct imaging data. Of course, these two are different
since chance alignment might make faint stars, located in our galaxy but in a plane
well behind the host star, appear as very faint point sources. This is the primary
source of astrophysical confusion in high-contrast imaging data. To be absolutely
rigorous, the clear evidence that a detected point source is actually an exoplanet or-
biting the targeted host star, resides in unambiguously measuring the gravitational
interaction between the two objects via the orbital motion of the fainter one. This
means securing multiple measurements of the position of the faint source with re-
spect to the bright one, and establishing curvature and/or acceleration of its orbit.
However, given the large periods (⇠ 10+ years) of the planets currently detected
with ground based coronagraph imagers, looser arguments based on statistical con-
siderations are often used to classify the detected objects. That is, astronomers use

Wang et al., 2016
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Application:  
YJHK Spectrum of  Pic b 

Chilcote, Pueyo, De Rosa, et al. In prep. 

low-gravity and young 
(Faherty et al. 2013) 

Comparison with field-brown dwarfs.

Chilcote et al., 2017



Courtesy of J. Rameau

GPI Spectra of HR 8799 c,d,e 15

Figure 11. Atmospheric models are plotted in various line styles indicated by the legend for HR 8799 c (top), d (middle), and
e (bottom). GPI spectra are plotted as magenta bars. Normalized Phoenix models is displayed with a a thick gray line. For
the Saumon & Marley (2008) patchy cloud models, the normalized models are plotted in thin solid blue lines, while the fixed
models are plotted in dash-dot lines. Cloud-AE models are plotted as a dotted line, and BT-Settl models as dashed lines. We
also plot broadband photometry from previous work, with symbols corresponding to each instrument. Black squares correspond
to VLT/SPHERE IRDIS (Zurlo et al. 2016), teal circles to Keck/NIRC2 (Marois et al. 2008, 2010b; Galicher et al. 2011; Currie
et al. 2011), green vertical triangles to LBT (Skemer et al. 2012, 2014), and pink left-pointing triangles to NACO (Currie et al.
2014).

Greenbaum, el al., 2018
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Better sensitivity?
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Fig. 21 Distribution of the empirical SNR associated with all elements of angular resolutions
for 300 stars observed by the GPI survey, from Ruffio et al (2017). Using tests based on Normal
distributions, e.g Eq. 46, in order to convert SNR into FPF is only valid when seeking to rule out
false alarms at the ⇠ 10�3. After that, even with the most sophisticated algorithms, the residual
noise still features a positive tail beyond what Gaussian distributions can capture. Conversion from
SNR to FPF has then to be calibrated empirically.

In practice t is set using Eq. 46 based on a desired FPP and a measured sL|aP | .
Mawet et al (2014) recently pointed out that when the number of samples in the
local likelihood function is too small (say close to the star, when the number of
angular resolution elements in an annulus is very small), Eq. 46 is not valid anymore.
Instead, a Student-t test ought to be used:

FPF =
Z +•

t
pt(

x

sL|aP |

q
1+ 1

n�2

,n�2)dx (47)

where n is the number of independent samples of LâP over which the standard de-
viation of the likelihood has been calculated, and pt(x,n) is a student-t distribution:

Ruffio et al., 2017
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Fig. 22 Receiver Operating Characteristics for two datasets and a variety of algorithms, from
Ruffio et al (2017) and Gomez Gonzalez et al (2017). The top panel shows that in the specific
example of GPI data, the Forward Model Matched Filter approach (using Eq. 44 as a template)
provides the largest TPF (e.g. completeness) for a given false alarm probability and is thus the
superior algorithm to use. The neural networks in Gomez Gonzalez et al (2017), bottom panel,
use a non-linear relationship for the likelihood map instead of Eq. 45. They also learn based on
a training dataset the optimal template weights underlying in this non-linear mapping. Such a
machine learning approach has the potential to dramatically increase the performances of exoplanet
detection algorithms.
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Fig. 23 50% completeness as a function of brightness of the stellar host for the Gemini Planet
Imager instrument, from Ruffio et al (2017). Calculated by reading the y-axis of the ROCs for
each hypothesized population of exoplanets, at each separation from the star. Observing conditions
impact the performances of ground-based instruments. The sensitivity limit on the ensemble of
surveyed stars is then used to derive the underlying properties of exoplanet populations.

ing conditions from night to night, differences between each star (brightness, age,
distance) in the survey catalog. However Eq. 49 illustrates how ROC curves can
not only help identify the optimal data analysis algorithm, but also help define the
follow up strategy for an exoplanet finding survey.

Astrophysical estimation

When exoplanets are absent from a dataset, completeness is calculated by reading
our the y-axis of the ROCs for each population of planets surveyed and a each sep-
aration from the star, and sensitivity limits such as the one illustrated on Fig. 23
are generated. This figure emphasizes how observing conditions (magnitude of the
host start in this case), impact the performances of ground-based instruments. The
sensitivity limit on the ensemble of survey stars is then used to derive the underly-
ing properties of exoplanet populations. When an exoplanet is present in the data,

“Inverting the model” might help us 
squeeze out a few more objects. 

Ruffio et al., 2017
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The JHU-SDSS Mg II Catalog 3

Fig. 1.— Illustration of the steps involved in the absorption-line detection pipeline: Top panel : The black line shows the normalized
observed spectrum for quasar SDSS J001602.40 − 001225.0. The blue line represents the best-fit NMF continuum and the red line shows
the final continuum estimate after median filtering. The search window for Mg II absorbers is indicated at the top. The filled green region
shows the region where an absorber is considered as intervening. Middle panel : the black line shows the NMF residual spectrum, i.e., the
ratio of the observed spectrum to the NMF continuum estimate. The orange line shows the median continuum estimate. Bottom panel :
Final residual spectrum used for the absorption line detection. In this case an absorber at z ≃ 1.972 is detected from a series of metal
absorption lines.

exclude objects for which the value is significantly larger
than that of the overall population. This procedure re-
moves 16, 704 objects from our sample. We note that this
in principle can reject quasars whose spectra host a very
large number (∼ 10) of strong Mg II absorbers. These
systems, however, are extremely rare, and should not
have any practical effects on our survey. Due to catas-
trophic errors and gaps in the data, a small fraction of the
quasar spectra (55 objects) present less than 5 valid pix-
els in the wavelength ranges used for flux normalization.
Such objects are not included in our analysis. Beyond
z = 4.7, we have only 219 quasars and cannot build a
well-defined basis set of eigenspectra. We do not con-
sider these high-redshift quasars. We also exclude 5682
quasars with z < 0.4 which cannot be used to look for
Mg II absorption. This leaves 84, 534 quasars well suited
for narrow absorption-line detection.

2.2. Absorption line detection

Having compiled a set of continuum-normalized quasar
fluxes we now detect, identify and characterize narrow
absorption lines. Our procedure includes three steps: (1)
candidate selection; (2) false positive elimination; and (3)
equivalent-width measurement.

2.2.1. Search window

For a given quasar spectrum the redshift range in which
we search for absorbers is constrained by several factors:
the wavelength coverage of the SDSS spectrum, the red-
shift of the quasar, and the capability of the detection
method to differentiate between different types of ab-
sorbers.
Mg II absorbers with zabs ∼ zQSO are likely physi-

cally associated with their background quasar. Associ-
ated absorbers can either be blueshifted or redshifted
(e.g., Vanden Berk et al. 2008; Shen & Ménard 2012).
Although we are primarily interested in intervening Mg II

absorbers associated with foreground sources, we ex-
tend the search window redshifted from the quasar by
∆z = 0.04 (12, 000 km s−1) to include these quasar-
associated absorbers. At wavelengths blueward of the
quasar C IV emission line, the covering fraction of inter-
vening C IV absorbers is substantially higher than that
of Mg II absorbers. A doublet found close to or blue-
ward of the C IV emission line, has a higher probability
to be C IV than Mg II. In this Mg II-based survey, we
thus do not consider the region blueward of the quasar’s
C IV line, leaving the C IV-Mg II discrimination to future

Zhu and Menard, 2018

NMF for quasar spectral templates.
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Figure 5. Comparison between KLIP and NMF projections using a synthetic face-on MCFOST disk model. (a) The disk model.
(b) The projection of the disk model onto the KLIP components, the central circularly-shaped structure is the result from
over-fitting. (c) The coe�cients of each component in KLIP modeling. (d) The “projection” of the model onto the NMF
components. (e) The coe�cients of each component in NMF modeling in (d): the fact that both the components and the
coe�cients are non-negative reduces the likelihood of over-fitting, as shown in Eq. (D25). Note: the central dark regions in (b)
and (d) are the coronagraphic occulting mask at the STIS BAR5 position; and the images are in the same scale.

reach lower or similar levels, demonstrating its compe-
tence in disk retrieval. In the cases when the NMF �2

values are slightly larger than that of KLIP, it is from the
fact that KLIP is over-fitting the random noise, which
in principle should not be fitted by any method, rather
than KLIP has a better matching to the disk model.

3.2.2. Radial Profile

For a face-on disk, its radial profile informs us of the
spatial distribution of the amount of circumstellar ma-
terial, which should be recovered faithfully. From the
radial profiles shown in Fig. 11 for the recovered face-on
disks in Fig. 7, we compare the three methods as follows:
Classical subtraction seems to be able to recover the

radial profile of the face-on disk at first glance, but it
has large uncertainties. This is because we calculate the
uncertainties from the standard deviation of pixels at
similar radial separations. Because classical subtraction
cannot suppress quasi-static noise, a radial profile with
large uncertainty is typically not useful for further anal-
ysis beyond a marginal detection.

KLIP is not able to recover the radial profile of the
face-on disk. This results from the over-fitting of the
astrophysical signals (as discussed in §3.1): KLIP is not
only unable to recover the flux correctly, it is also chang-
ing the slope of the radial profile, and forward modeling
has to be implemented to recover the distribution. Al-
though the uncertainties of KLIP are smaller, this is a
result from an artificial over-fitting of the noise and does
not encapsulate systematic uncertainties.
NMF not only recovers the radial profile with no bias,

it also has small uncertainties. With small uncertain-
ties, NMF is expected to detect fainter structures than
the other two methods, especially for low inclination.
Therefore, the NMF results can be used to perform
more detailed analysis with fewer underlying assump-
tions, e.g., Stark et al. (2014).

In this subsection, we have demonstrated that NMF
outperforms current methods with synthetic circumstel-
lar disks both in morphology and in radial profile. In
the next subsection, we will apply NMF to a specific

Ren et al., 2018

Advantage of using positive coefficients. 
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Fig. 18 Residual energy as a function of the number of modes (acting as a proxy regularization
parameter). Top: Case of the a Principal Component Analysis. The residual energy in subtracted
images follows closely the theoretical prediction based on the eigenvalues of the data covariance
matrix. Bottom: case of a Non Negative Matrix Factorization (NMF). The key difference between
a least-squared cost function, as in Eq. 36, and a more sophisticated one (NMF) resides in the shape
of the residual noise as a function of the regularization parameter. This behavior can vary widely
depending on the choice of the cost function, and in this case NMF features smoother noise fitting
properties.

Ren et al., 2018
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Figure 6. Initial models created by MCFOST at three di↵er-
ent inclinations: morphology of disks reduced by di↵erent
methods. From top to bottom, the disks are inclined by
0�, 45�, and 75� (going from face-on to nearly edge-on) with
F
disk

/F
star

= (1.5, 0.9, 1.9)⇥ 10�4, respectively. 1st column:
models; 2nd column: classical subtraction results; 3rd col-
umn: KLIP subtraction results; 4th column: NMF subtrac-
tion results. Both KLIP and NMF recover the geometries
better than the classical method, and the dark halo around
the KLIP images arises from its over-subtraction.

9 AU
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Figure 7. Initial models dimmed by a factor of 10: mor-
phology of disks reduced by di↵erent methods for di↵erent
inclination angles with F

disk

/F
star

= (1.5, 0.9, 1.9) ⇥ 10�5

from top to bottom. The classical method is working poorly,
and NMF works better than KLIP in the sense of recovering
faint signals (i.e., the far side of the inclined disks).
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Figure 8. Initial models dimmed by a factor of 20: mor-
phology of disks reduced by di↵erent methods for di↵erent
inclination angles with F

disk

/F
star

= (7.4, 4.8, 9.0) ⇥ 10�6,
respectively. Classical method is not working. Both KLIP
and NMF recover the geometries, however NMF preserves
the morphology and flux better than KLIP.
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Figure 9. Initial models dimmed by a factor of 50: mor-
phology of disks reduced by di↵erent methods for di↵erent
inclination angles with F

disk

/F
star

= (3.1, 1.9, 3.7) ⇥ 10�6.
The disks are too faint in this case, none of the methods
could recover the flux of the disks properly, but NMF is still
able to marginally recover the morphology.

case when the classical method works, ensuring the re-
liability of NMF using a well-characterized disk.

Ren et al., 2018
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mild temperature for liquid water, and a rocky surface
(e.g., Seager 2013). Most of currently detected planets
are too close to their host stars to be habitable (e.g., Udry
& Santos 2007), and only direct imaging observations are
able to consistently probe the further out regions; how-
ever, directly imaged planets are rare (e.g., Bowler &
Nielsen 2018). Even though, an occurrence rate anal-
ysis leads to more exoplanets around stars with debris
disk (Meshkat et al. 2017). Debris disks, the extrasolar
analogy of the Asteroid Belt and Kuiper Belt, are the
remnants of planet formation, and nearly 25% of stars
host debris disks (Kral 2016); however the diversity of
them still indicates di↵erent formation mechanisms (Wy-
att 2008). We plan to perform detailed analysis for the
debris disk surrounding HD 191089 to study its specific
properties, then generalize and apply the method to all
other debris disks.

.0 0.2 0.6 1.4 3.0 6.1 12.4 25.0 50.2 100.2 199

(a) (b)
(c) (d)

Figure 3. HD 191089 circumstellar disk extracted from
di↵erent instruments with North-up and East-left, the
dashed lines indicate the semi-major axes for the ellipses.
NICMOS: (a) reduced by NMF and (b) by KLIP; STIS:
(c), reduced by NMF; and GPI: (d), reduced from po-
larimetry imaging. The spurious “precession” between
(b) and (c) are resolved when (a) is obtained.

HD 191089 is an F5V star with Te↵ = 6441 K (Roc-
catagliata et al. 2009) located at 50.9 ± 0.8 pc (Gaia
Collaboration et al. 2016), which hosts a debris disk first
resolved image at 18.3 µm in Churcher et al. (2011). An
ongoing debate on the disk component number
is: in Chen et al. (2014), they suggested two rings for
explaining the Spectral Energy Distribution (SED) anal-

ysis, however Kennedy & Wyatt (2014) argued for one
ring, which was supported in the scattered light image
in Soummer et al. (2014) with archival HST/NICMOS
observation in 2006. We observed the target with
HST/STIS in 2014 (PI: M. Perrin) and Gemini/GPI in
2015, aiming at further characterizing the disk.
The project for the modeling of the HD 191089 disk

with NICMOS, STIS, and GPI observations, which is
planned to be achieved with radiative transfer modeling
of the disk (Pinte et al. 2006, 2009), is aiming at testing
the formation mechanism of the HD 191089 de-
bris disk by (1) finding the minimum grain size of the
system: if it is smaller than the blown-out size by stellar
radiation, that would mean the existence of continuing
collisions in the disk; (2) extract the optical properties of
the disk, which will help us find the most probable com-
position among given grain models (e.g., Ballering et al.
2016; Wol↵ et al. 2017). Beyond the empirical measure-
ments, we will characterize the grain size distribution of
the system, which indicates what is the current status
of the grain population, and the underlying collisional
mechanism among them. Furthermore, we aim to ex-
plain the origin of the fan-like structure (Figure 4)
on whether it is from catastrophic collisions in the pri-
mary ring (Stark et al. 2014), or an intrinsic secondary
ring with faint backward scattering materials.

0 0.044 0.13 0.31 0.66 1.4 2.8 5.6 11 22 4
Figure 4. HD 191089 observation with a larger field of
view (Left: STIS; Right: NICMOS). The top fan-like
structure may be a result from planet-disk interaction
(Lee & Chiang 2016), or a secondary disk.

The planned procedure for the HD 191089 model-
ing work is as follows: (1) fit ellipse to the GPI observa-
tion due to its best angular resolution as in Stark et al.
(2014)2: if the centers of the ellipse and the star deviate
from each other, that may be perturbed by a compan-
ion (e.g., HR 4796A in Perrin et al. 2015); (2) take the
best-fit ellipse parameters, then run a grid search for four
other parameters: disk mass, minimum grain size, grain

2 Completed on March 13, 2018.
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ration). In a previous study with polarimetry measure-
ment, Perrin et al. (2015) observed HR 4796A in H-band
using GPI, and report a strong forward scattering prop-
erty of the disk. However, this is not observed in the to-
tal intensity as observed in the Solar System example by
Hedman & Stark (2015): in the left panel of Figure 1, we
present the total intensity observation processed with the
Soummer et al. (2012) method. The forward scattering
materials cannot be recovered, as confirmed in the Milli
et al. (2017). Even though Milli et al. (2017) proposes
multiplying specific coe�cients to enhance the forward
scattered flux, this treatment boosts the uncertainty as
well, which thus does not lead to confident analysis of the
scattering property of the HD 4796A dust. With NMF,
we are able to confirm the existence of the forward scat-
tering material (Figure 1, right panel) for the first time,
which is consistent with the hypothesis that the debris
disk around HR 4796 A is probably a scaled up
version of Saturn’s ring in terms of photon scattering
property.

1.2. MWC 758: Location of the Arm-Driving Planet(s)

NMF is a promising method not only for retrieving the
optical properties of the circumstellar disks, its preserva-
tion of disk morphology also enables our assessment of
the rotation of the spiral arms around MWC 758 for the
first time.
Spiral arms have been found only in a few systems (e.g.,

SAO 206462 [HD 135344]: Muto et al. 2012; Garufi et al.
2013; Stolker et al. 2016; LkH↵ 330: Akiyama et al. 2016;
MWC 758 [HD 36112]: Grady et al. 2013; Benisty et al.
2015; HD 100453: Wagner et al. 2015; Benisty et al. 2017;
and HD 141569 A: Mouillet et al. 2001; Clampin et al.
2003; Konishi et al. 2016), and two mechanisms are pro-
posed to reproduce such structures: gravitational insta-
bility which occurs in disks with su�cient mass (Lodato
& Rice 2005; Dong et al. 2015a; Kratter & Lodato 2016),
and companion-disk interaction (Dong et al. 2015b; Zhu
et al. 2015; Bae et al. 2016). Since these disks are prob-
ably not massive enough to trigger the gravitational in-
stability (e.g., Andrews et al. 2011), the latter scenario
is more likely.
Recently, Reggiani et al. (2017) reported a protoplanet

candidate around MWC 758, which calls for our attempt
to establish the relationship between the proto-
planet candidate and the spiral arms. We perform
NMF reduction on the ALICE archive of HST/NICMOS
observations (Hagan et al. 2018), and the Keck/NIRC2
observations of MWC 758 (Figure 2) . To quantify
the motion of the spiral arms, we adopt a statistical
method (Least Square with Dummy Variables, LSDV),
and generalize it by taking into account of input uncer-
tainties. The generalized LSDV method is used to fit
same disk morphology at di↵erent epochs, but with dif-

ferent position angles. Combining the NIRC2, NICMOS,
and VLT/SPHERE observations, we obtain a rotation

speed of 0.�6+3.�3
�0.�6

yr�1 at 3� for the spiral arms around

MWC 758.
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Figure 2. The r2-scaled HST/NICMOS, VLT/SPHERE,
and Keck/NIRC2 (from left to right) observations of
MWC 758 in Cartesian (top) and polar (bottom) coor-
dinates with total flux normalized to unity. The gray
dotted circles and lines mark the inner working angles.

With a ⇠10-yr timescale, we not only reveal the
MWC 758 spiral arms at the earliest observational epoch,
but also predict the location of the arm-driving
planet to be at 89 au from its host star, with a 3�
lowerlimit at 30 au. Our result rule out the scenario
that the Reggiani et al. (2017) protoplanet candidate is
driving the spiral arms at 6� level. The MWC 758 sys-
tem is currently one of the top candidates for the search
of arm-driving planets, and the direct imaging commu-
nity needs to see this result as soon as possible in order
to properly prepare observing proposals in the upcom-
ing telescope time application season (in particular, the
strategy towards the Reggiani et al. 2017 protoplanet
candidate).
The paper has been accepted for publication in the

Astrophysical Journal Letters, to confirm and better con-
strain our findings, we are preparing a VLT/SPHERE
proposal to observe the target.

2. ONGOING WORK

There are two ongoing projects for the upcoming sum-
mer and the 2018–2019 academic year.

2.1. Top priority: HD 191089 Disk Modelling

The discovery and characterization of exoplanets have
been a long e↵ort in the exoplanet community. For a hab-
itable planet, some conditions have to be satisfied, e.g.,

Ren et al., 2018
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