The role of polarization in Coronagraphy

J. B. Breckinridge

Caltech GALCIT, Pasadena, CA

&

College of Optical Sciences University of Arizona, Tucson, AZ

Protractor is transparent to the eye but has polarization aberrations

Breckinridge, Lam & Chipman (2015) *Polarization Aberrations in Astronomical Telescopes: The Point Spread Function*, PASP **127**:445-468

Polarization aspects of exoplanet science

- Polarimetry map the exoplanet neighborhood: Gas & Dust
- Polarimetry of unresolved planets
- Internal polarization modifies shape of the PSF

Physical optics says:

- Unpolarized white light can be represented by 2 orthogonal polarizations
- For convenience we select 2 linear orthogonal polarizations
 - Perpendicular Y and
 - Parallel X

Role of vector waves in image formation

angle <u>in</u>dependent

To represent internal polarization in the extreme we add two perpendicular linear polarizers

Role of vector waves in image formation

Fresnel (1823) equations & definitions

$$\frac{N_{0} = 1.}{F_{0} \text{ metals, index}}$$
is complex: $N_{1} = n_{1} - ik_{1}$

$$\theta_{1} = \arccos\left\{\frac{\sqrt{N_{1}^{2} - N_{0}^{2} \sin^{2} \theta_{0}}}{N_{1}}\right\}$$

$$r_{p} = \frac{\tan(\theta_{0} - \theta_{1})}{\tan(\theta_{0} + \theta_{1})}$$

$$r_{p} = \frac{\sin(\theta_{0} - \theta_{1})}{\sin(\theta_{0} + \theta_{1})}$$

$$\frac{P_{p} = \frac{1}{\sin(\theta_{0} - \theta_{1})}$$

Reflection coefficients (A & ϕ) for Al @ 800 nm; $N_1 = 2.80 + 8.45i$

 $\frac{r_s - r_p}{r_s + r_p} = \text{Diattenuation \& Retardance} \left(\tan \psi = \left| r_p \right| / \left| r_s \right| \right)$

For a white-light, incoherent point in object space a ray is mapped through the optical system.

How to calculate the PSF for each polarization

Compute the multiplicative amplitude and cumulative phase for both the || and the \perp light for each ray traced across the entrance pupil & map these 4 complex arrays onto the <u>exit</u> pupil.

30 milli-radians of retardance @ 450 nm is $\psi = 2.15$ -nm or 2150-pm

Cumulative Diattenuation (11 mirrors) across the last mirror before the focal plane mask

@ 500nm

Cumulative retardance (11 mirrors) across the exit pupil to the focal plane mask

Back up

The vector transmittance of the telescope is

$$\vec{\tau}_{2}(\xi_{2},\eta_{2}) = \begin{vmatrix} J_{XX} & J_{YX} \\ J_{XY} & J_{YY} \end{vmatrix}_{\xi,\eta}$$

The telescope/coronagraph system complex transmittance across the exit pupil depends on the vector of the electromagnetic field at point (ξ, η) within the exit pupil. The complex electric field at the image plane, for an on-axis unpolarized star of unit brightness follows from the Fresnel Kirchoff diffraction integral and is written:

$$u_{3}(x_{3}, y_{3}) = K\left\{\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \left| \begin{array}{c} J_{XX} & J_{YX} \\ J_{XY} & J_{YY} \end{array} \right| \exp\left(-\frac{2\pi}{\lambda f} \left[x_{3}\xi_{2} + y_{3}\eta_{2}\right]\right)\right\} d\xi d\eta = K\left\{\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} \left[J_{XX} + J_{YY} + J_{YX} + J_{XY}\right] \exp\left(-\frac{2\pi}{\lambda f} \left[x_{3}\xi_{2} + y_{3}\eta_{2}\right]\right) d\xi d\eta\right\}$$

The HabEx Lyot coronagraph divides into three optical subsystems

Vector wave image formation

$$\vec{U}_{3}(x_{3},y_{3}) = K\left[\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} [\vec{U}_{2}^{-}(\xi_{2},\eta_{2})] \cdot \vec{\tau}_{2}(\xi_{2},\eta_{2}) \exp\left\{-j\frac{2\pi}{\lambda f}(x_{3}\xi_{2}+y_{3}\eta_{2})\right\} d\xi_{2} d\eta_{2}\right]$$

In astronomical telescopes and instruments the term $\vec{\tau}_2(\xi_2,\eta_2)$ is a **vector** and $\vec{U}_3(x_3,y_3)$ depends on **BOTH** the polarization properties of the **source** & **the telescope/instrument end to end optical system**.

Pupil transmittance complex
Jones matrix
$$\vec{\tau}_2(\xi_2,\eta_2) = \begin{vmatrix} J_{XX} & J_{XY} \\ J_{YX} & J_{YY} \end{vmatrix}$$
Where J_{XX} is \vec{X} light in \vec{X}
light out and J_{XY} is the \vec{X} light in
that has been projected into \vec{Y}

How do we calculate the vector PSF? The complex field at the focal plane is given by $U_{3}(x_{3}, y_{3}) = \mathcal{F} \{ J_{XX} + J_{YY} + J_{XY} + J_{YX} \}$ The intensity is then $I_{3}(x_{3}, y_{3}) = \left| U_{3}(x_{3}, y_{3}) \right|^{2} = \left| \mathcal{F} \left\{ J_{XX} + J_{YY} + J_{XY} + J_{YX} \right\} \right|^{2}$ E. Wolf [Theory Of Coherence & Polarization Of Light (Cambridge2007)] shows that these four fields are not correlated and are therefore incoherent. The intensity at the focal plane is then the incoherent sum: $I_{3}(x_{3}, y_{3}) = \left| \mathcal{F}(J_{XX}) \right|^{2} + \left| \mathcal{F}(J_{YY}) \right|^{2} + \left| \mathcal{F}(J_{YX}) \right|^{2} + \left| \mathcal{F}(J_{XY}) \right|^{2}$ The telescope PSF is the linear (uncorrelated) superposition of these 4 separate PSF's